Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.23.10.1
      1 /*	$NetBSD: nand.c,v 1.23.10.1 2016/11/04 14:49:09 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.23.10.1 2016/11/04 14:49:09 pgoyette Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/atomic.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/flash/flash_io.h>
     49 #include <dev/nand/nand.h>
     50 #include <dev/nand/onfi.h>
     51 #include <dev/nand/hamming.h>
     52 #include <dev/nand/nand_bbt.h>
     53 #include <dev/nand/nand_crc.h>
     54 
     55 #include "opt_nand.h"
     56 
     57 int nand_match(device_t, cfdata_t, void *);
     58 void nand_attach(device_t, device_t, void *);
     59 int nand_detach(device_t, int);
     60 bool nand_shutdown(device_t, int);
     61 
     62 int nand_print(void *, const char *);
     63 
     64 static int nand_search(device_t, cfdata_t, const int *, void *);
     65 static void nand_address_row(device_t, size_t);
     66 static inline uint8_t nand_get_status(device_t);
     67 static void nand_address_column(device_t, size_t, size_t);
     68 static int nand_fill_chip_structure(device_t, struct nand_chip *);
     69 static int nand_scan_media(device_t, struct nand_chip *);
     70 static bool nand_check_wp(device_t);
     71 
     72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     73     nand_match, nand_attach, nand_detach, NULL);
     74 
     75 #ifdef NAND_DEBUG
     76 int	nanddebug = NAND_DEBUG;
     77 #endif
     78 
     79 struct flash_interface nand_flash_if = {
     80 	.type = FLASH_TYPE_NAND,
     81 
     82 	.read = nand_flash_read,
     83 	.write = nand_flash_write,
     84 	.erase = nand_flash_erase,
     85 	.block_isbad = nand_flash_isbad,
     86 	.block_markbad = nand_flash_markbad,
     87 
     88 	.submit = nand_flash_submit
     89 };
     90 
     91 #ifdef NAND_VERBOSE
     92 const struct nand_manufacturer nand_mfrs[] = {
     93 	{ NAND_MFR_AMD,		"AMD" },
     94 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     95 	{ NAND_MFR_RENESAS,	"Renesas" },
     96 	{ NAND_MFR_STMICRO,	"ST Micro" },
     97 	{ NAND_MFR_MICRON,	"Micron" },
     98 	{ NAND_MFR_NATIONAL,	"National" },
     99 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
    100 	{ NAND_MFR_HYNIX,	"Hynix" },
    101 	{ NAND_MFR_SAMSUNG,	"Samsung" },
    102 	{ NAND_MFR_UNKNOWN,	"Unknown" }
    103 };
    104 
    105 static const char *
    106 nand_midtoname(int id)
    107 {
    108 	int i;
    109 
    110 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    111 		if (nand_mfrs[i].id == id)
    112 			return nand_mfrs[i].name;
    113 	}
    114 
    115 	KASSERT(nand_mfrs[i].id == 0);
    116 
    117 	return nand_mfrs[i].name;
    118 }
    119 #endif
    120 
    121 /* ARGSUSED */
    122 int
    123 nand_match(device_t parent, cfdata_t match, void *aux)
    124 {
    125 	/* pseudo device, always attaches */
    126 	return 1;
    127 }
    128 
    129 void
    130 nand_attach(device_t parent, device_t self, void *aux)
    131 {
    132 	struct nand_softc *sc = device_private(self);
    133 	struct nand_attach_args *naa = aux;
    134 	struct nand_chip *chip = &sc->sc_chip;
    135 
    136 	sc->sc_dev = self;
    137 	sc->controller_dev = parent;
    138 	sc->nand_if = naa->naa_nand_if;
    139 
    140 	aprint_naive("\n");
    141 
    142 	if (nand_check_wp(self)) {
    143 		aprint_error("NAND chip is write protected!\n");
    144 		return;
    145 	}
    146 
    147 	if (nand_scan_media(self, chip)) {
    148 		return;
    149 	}
    150 
    151 	nand_flash_if.erasesize = chip->nc_block_size;
    152 	nand_flash_if.page_size = chip->nc_page_size;
    153 	nand_flash_if.writesize = chip->nc_page_size;
    154 
    155 	/* allocate cache */
    156 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    157 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    158 
    159 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    160 
    161 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
    162 		goto error;
    163 	}
    164 
    165 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    166 		aprint_error_dev(sc->sc_dev,
    167 		    "couldn't establish power handler\n");
    168 
    169 #ifdef NAND_BBT
    170 	nand_bbt_init(self);
    171 	nand_bbt_scan(self);
    172 #endif
    173 
    174 	/*
    175 	 * Attach all our devices
    176 	 */
    177 	config_search_ia(nand_search, self, NULL, NULL);
    178 
    179 	return;
    180 error:
    181 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    182 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    183 	mutex_destroy(&sc->sc_device_lock);
    184 }
    185 
    186 static int
    187 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    188 {
    189 	struct nand_softc *sc = device_private(parent);
    190 	struct nand_chip *chip = &sc->sc_chip;
    191 	struct flash_attach_args faa;
    192 
    193 	faa.flash_if = &nand_flash_if;
    194 
    195 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    196 
    197 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    198 		faa.partinfo.part_size = chip->nc_size -
    199 		    faa.partinfo.part_offset;
    200 	} else {
    201 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    202 	}
    203 
    204 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    205 		faa.partinfo.part_flags = FLASH_PART_READONLY;
    206 	else
    207 		faa.partinfo.part_flags = 0;
    208 
    209 	if (config_match(parent, cf, &faa)) {
    210 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
    211 			return 0;
    212 		} else {
    213 			return 1;
    214 		}
    215 	}
    216 
    217 	return 1;
    218 }
    219 
    220 int
    221 nand_detach(device_t self, int flags)
    222 {
    223 	struct nand_softc *sc = device_private(self);
    224 	struct nand_chip *chip = &sc->sc_chip;
    225 	int error = 0;
    226 
    227 	error = config_detach_children(self, flags);
    228 	if (error) {
    229 		return error;
    230 	}
    231 
    232 	flash_sync_thread_destroy(&sc->sc_flash_io);
    233 #ifdef NAND_BBT
    234 	nand_bbt_detach(self);
    235 #endif
    236 	/* free oob cache */
    237 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    238 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    239 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    240 
    241 	mutex_destroy(&sc->sc_device_lock);
    242 
    243 	pmf_device_deregister(sc->sc_dev);
    244 
    245 	return error;
    246 }
    247 
    248 int
    249 nand_print(void *aux, const char *pnp)
    250 {
    251 	if (pnp != NULL)
    252 		aprint_normal("nand at %s\n", pnp);
    253 
    254 	return UNCONF;
    255 }
    256 
    257 /* ask for a nand driver to attach to the controller */
    258 device_t
    259 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    260 {
    261 	struct nand_attach_args arg;
    262 
    263 	KASSERT(nand_if != NULL);
    264 
    265 	/* fill the defaults if we have null pointers */
    266 	if (nand_if->program_page == NULL) {
    267 		nand_if->program_page = &nand_default_program_page;
    268 	}
    269 
    270 	if (nand_if->read_page == NULL) {
    271 		nand_if->read_page = &nand_default_read_page;
    272 	}
    273 
    274 	arg.naa_nand_if = nand_if;
    275 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    276 }
    277 
    278 /* default everything to reasonable values, to ease future api changes */
    279 void
    280 nand_init_interface(struct nand_interface *interface)
    281 {
    282 	interface->select = &nand_default_select;
    283 	interface->command = NULL;
    284 	interface->address = NULL;
    285 	interface->read_buf_1 = NULL;
    286 	interface->read_buf_2 = NULL;
    287 	interface->read_1 = NULL;
    288 	interface->read_2 = NULL;
    289 	interface->write_buf_1 = NULL;
    290 	interface->write_buf_2 = NULL;
    291 	interface->write_1 = NULL;
    292 	interface->write_2 = NULL;
    293 	interface->busy = NULL;
    294 
    295 	/*-
    296 	 * most drivers dont want to change this, but some implement
    297 	 * read/program in one step
    298 	 */
    299 	interface->program_page = &nand_default_program_page;
    300 	interface->read_page = &nand_default_read_page;
    301 
    302 	/* default to soft ecc, that should work everywhere */
    303 	interface->ecc_compute = &nand_default_ecc_compute;
    304 	interface->ecc_correct = &nand_default_ecc_correct;
    305 	interface->ecc_prepare = NULL;
    306 	interface->ecc.necc_code_size = 3;
    307 	interface->ecc.necc_block_size = 256;
    308 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
    309 }
    310 
    311 #if 0
    312 /* handle quirks here */
    313 static void
    314 nand_quirks(device_t self, struct nand_chip *chip)
    315 {
    316 	/* this is an example only! */
    317 	switch (chip->nc_manf_id) {
    318 	case NAND_MFR_SAMSUNG:
    319 		if (chip->nc_dev_id == 0x00) {
    320 			/* do something only samsung chips need */
    321 			/* or */
    322 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    323 		}
    324 	}
    325 
    326 	return;
    327 }
    328 #endif
    329 
    330 static int
    331 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
    332 {
    333 	switch (chip->nc_manf_id) {
    334 	case NAND_MFR_MICRON:
    335 		return nand_read_parameters_micron(self, chip);
    336 	case NAND_MFR_SAMSUNG:
    337 		return nand_read_parameters_samsung(self, chip);
    338 	default:
    339 		return 1;
    340 	}
    341 
    342 	return 0;
    343 }
    344 
    345 /**
    346  * scan media to determine the chip's properties
    347  * this function resets the device
    348  */
    349 static int
    350 nand_scan_media(device_t self, struct nand_chip *chip)
    351 {
    352 	struct nand_softc *sc = device_private(self);
    353 	struct nand_ecc *ecc;
    354 	uint8_t onfi_signature[4];
    355 
    356 	nand_select(self, true);
    357 	nand_command(self, ONFI_RESET);
    358 	KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
    359 	nand_select(self, false);
    360 
    361 	/* check if the device implements the ONFI standard */
    362 	nand_select(self, true);
    363 	nand_command(self, ONFI_READ_ID);
    364 	nand_address(self, 0x20);
    365 	nand_read_1(self, &onfi_signature[0]);
    366 	nand_read_1(self, &onfi_signature[1]);
    367 	nand_read_1(self, &onfi_signature[2]);
    368 	nand_read_1(self, &onfi_signature[3]);
    369 	nand_select(self, false);
    370 
    371 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    372 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    373 		chip->nc_isonfi = false;
    374 
    375 		aprint_normal(": Legacy NAND Flash\n");
    376 
    377 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    378 
    379 		if (nand_fill_chip_structure_legacy(self, chip)) {
    380 			aprint_error_dev(self,
    381 			    "can't read device parameters for legacy chip\n");
    382 			return 1;
    383 		}
    384 	} else {
    385 		chip->nc_isonfi = true;
    386 
    387 		aprint_normal(": ONFI NAND Flash\n");
    388 
    389 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    390 
    391 		if (nand_fill_chip_structure(self, chip)) {
    392 			aprint_error_dev(self,
    393 			    "can't read device parameters\n");
    394 			return 1;
    395 		}
    396 	}
    397 
    398 #ifdef NAND_VERBOSE
    399 	aprint_normal_dev(self,
    400 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    401 	    chip->nc_manf_id,
    402 	    nand_midtoname(chip->nc_manf_id),
    403 	    chip->nc_dev_id);
    404 #endif
    405 
    406 	aprint_normal_dev(self,
    407 	    "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
    408 	    "block size: %" PRIu32 " bytes\n",
    409 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    410 
    411 	aprint_normal_dev(self,
    412 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
    413 	    ", total storage size: %" PRIu64 " MB\n",
    414 	    chip->nc_lun_blocks, chip->nc_num_luns,
    415 	    chip->nc_size / 1024 / 1024);
    416 
    417 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
    418 	    PRIu8 ", width: %s\n",
    419 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
    420 	    (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
    421 
    422 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    423 
    424 	/*
    425 	 * calculate the place of ecc data in oob
    426 	 * we try to be compatible with Linux here
    427 	 */
    428 	switch (chip->nc_spare_size) {
    429 	case 8:
    430 		ecc->necc_offset = 0;
    431 		break;
    432 	case 16:
    433 		ecc->necc_offset = 0;
    434 		break;
    435 	case 32:
    436 		ecc->necc_offset = 0;
    437 		break;
    438 	case 64:
    439 		ecc->necc_offset = 40;
    440 		break;
    441 	case 128:
    442 		ecc->necc_offset = 80;
    443 		break;
    444 	default:
    445 		panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
    446 	}
    447 
    448 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    449 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    450 
    451 	/* check if we fit in oob */
    452 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    453 		panic("NAND ECC bits dont fit in OOB");
    454 	}
    455 
    456 	/* TODO: mark free oob area available for file systems */
    457 
    458 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    459 
    460 	/*
    461 	 * calculate badblock marker offset in oob
    462 	 * we try to be compatible with linux here
    463 	 */
    464 	if (chip->nc_page_size > 512)
    465 		chip->nc_badmarker_offs = 0;
    466 	else
    467 		chip->nc_badmarker_offs = 5;
    468 
    469 	/* Calculate page shift and mask */
    470 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    471 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    472 	/* same for block */
    473 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    474 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    475 
    476 	/* look for quirks here if needed in future */
    477 	/* nand_quirks(self, chip); */
    478 
    479 	return 0;
    480 }
    481 
    482 void
    483 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
    484 {
    485 	nand_select(self, true);
    486 	nand_command(self, ONFI_READ_ID);
    487 	nand_address(self, 0x00);
    488 
    489 	nand_read_1(self, manf);
    490 	nand_read_1(self, dev);
    491 
    492 	nand_select(self, false);
    493 }
    494 
    495 int
    496 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
    497 {
    498 	uint8_t *bufp;
    499 	uint16_t crc;
    500 	int i;//, tries = 0;
    501 
    502 	KASSERT(sizeof(*params) == 256);
    503 
    504 //read_params:
    505 //	tries++;
    506 
    507 	nand_select(self, true);
    508 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    509 	nand_address(self, 0x00);
    510 
    511 	nand_busy(self);
    512 
    513 	/* TODO check the signature if it contains at least 2 letters */
    514 
    515 	bufp = (uint8_t *)params;
    516 	/* XXX why i am not using read_buf? */
    517 	for (i = 0; i < 256; i++) {
    518 		nand_read_1(self, &bufp[i]);
    519 	}
    520 	nand_select(self, false);
    521 
    522 	/* validate the parameter page with the crc */
    523 	crc = nand_crc16(bufp, 254);
    524 
    525 	if (crc != params->param_integrity_crc) {
    526 		aprint_error_dev(self, "parameter page crc check failed\n");
    527 		/* TODO: we should read the next parameter page copy */
    528 		return 1;
    529 	}
    530 
    531 	return 0;
    532 }
    533 
    534 static int
    535 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
    536 {
    537 	struct onfi_parameter_page params;
    538 	uint8_t	vendor[13], model[21];
    539 	int i;
    540 
    541 	if (nand_read_parameter_page(self, &params)) {
    542 		return 1;
    543 	}
    544 
    545 	/* strip manufacturer and model string */
    546 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    547 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    548 		vendor[i] = 0;
    549 	strlcpy(model, params.param_model, sizeof(model));
    550 	for (i = 19; i > 0 && model[i] == ' '; i--)
    551 		model[i] = 0;
    552 
    553 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    554 
    555 	chip->nc_page_size = le32toh(params.param_pagesize);
    556 	chip->nc_block_size =
    557 	    le32toh(params.param_blocksize) * chip->nc_page_size;
    558 	chip->nc_spare_size = le16toh(params.param_sparesize);
    559 	chip->nc_lun_blocks = le32toh(params.param_lunsize);
    560 	chip->nc_num_luns = params.param_numluns;
    561 
    562 	chip->nc_size =
    563 	    chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
    564 
    565 	/* the lower 4 bits contain the row address cycles */
    566 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    567 	/* the upper 4 bits contain the column address cycles */
    568 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    569 
    570 	uint16_t features = le16toh(params.param_features);
    571 	if (features & ONFI_FEATURE_16BIT) {
    572 		chip->nc_flags |= NC_BUSWIDTH_16;
    573 	}
    574 
    575 	if (features & ONFI_FEATURE_EXTENDED_PARAM) {
    576 		chip->nc_flags |= NC_EXTENDED_PARAM;
    577 	}
    578 
    579 	return 0;
    580 }
    581 
    582 /* ARGSUSED */
    583 bool
    584 nand_shutdown(device_t self, int howto)
    585 {
    586 	return true;
    587 }
    588 
    589 static void
    590 nand_address_column(device_t self, size_t row, size_t column)
    591 {
    592 	struct nand_softc *sc = device_private(self);
    593 	struct nand_chip *chip = &sc->sc_chip;
    594 	uint8_t i;
    595 
    596 	DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
    597 		(uintmax_t )row, column));
    598 
    599 	/* XXX TODO */
    600 	row >>= chip->nc_page_shift;
    601 
    602 	/* Write the column (subpage) address */
    603 	if (chip->nc_flags & NC_BUSWIDTH_16)
    604 		column >>= 1;
    605 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    606 		nand_address(self, column & 0xff);
    607 
    608 	/* Write the row (page) address */
    609 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    610 		nand_address(self, row & 0xff);
    611 }
    612 
    613 static void
    614 nand_address_row(device_t self, size_t row)
    615 {
    616 	struct nand_softc *sc = device_private(self);
    617 	struct nand_chip *chip = &sc->sc_chip;
    618 	int i;
    619 
    620 	/* XXX TODO */
    621 	row >>= chip->nc_page_shift;
    622 
    623 	/* Write the row (page) address */
    624 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    625 		nand_address(self, row & 0xff);
    626 }
    627 
    628 static inline uint8_t
    629 nand_get_status(device_t self)
    630 {
    631 	uint8_t status;
    632 
    633 	nand_command(self, ONFI_READ_STATUS);
    634 	nand_busy(self);
    635 	nand_read_1(self, &status);
    636 
    637 	return status;
    638 }
    639 
    640 static bool
    641 nand_check_wp(device_t self)
    642 {
    643 	if (nand_get_status(self) & ONFI_STATUS_WP)
    644 		return false;
    645 	else
    646 		return true;
    647 }
    648 
    649 static void
    650 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
    651 {
    652 	nand_command(self, ONFI_READ);
    653 	nand_address_column(self, row, column);
    654 	nand_command(self, ONFI_READ_START);
    655 
    656 	nand_busy(self);
    657 }
    658 
    659 /* read a page with ecc correction, default implementation */
    660 int
    661 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
    662 {
    663 	struct nand_softc *sc = device_private(self);
    664 	struct nand_chip *chip = &sc->sc_chip;
    665 	size_t b, bs, e, cs;
    666 	uint8_t *ecc;
    667 	int result;
    668 
    669 	nand_prepare_read(self, offset, 0);
    670 
    671 	bs = chip->nc_ecc->necc_block_size;
    672 	cs = chip->nc_ecc->necc_code_size;
    673 
    674 	/* decide if we access by 8 or 16 bits */
    675 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    676 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    677 			nand_ecc_prepare(self, NAND_ECC_READ);
    678 			nand_read_buf_2(self, data + b, bs);
    679 			nand_ecc_compute(self, data + b,
    680 			    chip->nc_ecc_cache + e);
    681 		}
    682 	} else {
    683 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    684 			nand_ecc_prepare(self, NAND_ECC_READ);
    685 			nand_read_buf_1(self, data + b, bs);
    686 			nand_ecc_compute(self, data + b,
    687 			    chip->nc_ecc_cache + e);
    688 		}
    689 	}
    690 
    691 	/* for debugging new drivers */
    692 #if 0
    693 	nand_dump_data("page", data, chip->nc_page_size);
    694 #endif
    695 
    696 	nand_read_oob(self, offset, chip->nc_oob_cache);
    697 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    698 
    699 	/* useful for debugging new ecc drivers */
    700 #if 0
    701 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    702 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    703 		printf("0x");
    704 		for (b = 0; b < cs; b++) {
    705 			printf("%.2hhx", ecc[e+b]);
    706 		}
    707 		printf(" 0x");
    708 		for (b = 0; b < cs; b++) {
    709 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    710 		}
    711 		printf("\n");
    712 	}
    713 	printf("--------------\n");
    714 #endif
    715 
    716 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    717 		result = nand_ecc_correct(self, data + b, ecc + e,
    718 		    chip->nc_ecc_cache + e);
    719 
    720 		switch (result) {
    721 		case NAND_ECC_OK:
    722 			break;
    723 		case NAND_ECC_CORRECTED:
    724 			aprint_error_dev(self,
    725 			    "data corrected with ECC at page offset 0x%jx "
    726 			    "block %zu\n", (uintmax_t)offset, b);
    727 			break;
    728 		case NAND_ECC_TWOBIT:
    729 			aprint_error_dev(self,
    730 			    "uncorrectable ECC error at page offset 0x%jx "
    731 			    "block %zu\n", (uintmax_t)offset, b);
    732 			return EIO;
    733 			break;
    734 		case NAND_ECC_INVALID:
    735 			aprint_error_dev(self,
    736 			    "invalid ECC in oob at page offset 0x%jx "
    737 			    "block %zu\n", (uintmax_t)offset, b);
    738 			return EIO;
    739 			break;
    740 		default:
    741 			panic("invalid ECC correction errno");
    742 		}
    743 	}
    744 
    745 	return 0;
    746 }
    747 
    748 int
    749 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
    750 {
    751 	struct nand_softc *sc = device_private(self);
    752 	struct nand_chip *chip = &sc->sc_chip;
    753 	size_t bs, cs, e, b;
    754 	uint8_t status;
    755 	uint8_t *ecc;
    756 
    757 	nand_command(self, ONFI_PAGE_PROGRAM);
    758 	nand_address_column(self, page, 0);
    759 
    760 	nand_busy(self);
    761 
    762 	bs = chip->nc_ecc->necc_block_size;
    763 	cs = chip->nc_ecc->necc_code_size;
    764 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    765 
    766 	/* XXX code duplication */
    767 	/* decide if we access by 8 or 16 bits */
    768 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    769 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    770 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    771 			nand_write_buf_2(self, data + b, bs);
    772 			nand_ecc_compute(self, data + b, ecc + e);
    773 		}
    774 		/* write oob with ecc correction code */
    775 		nand_write_buf_2(self, chip->nc_oob_cache,
    776 		    chip->nc_spare_size);
    777 	} else {
    778 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    779 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    780 			nand_write_buf_1(self, data + b, bs);
    781 			nand_ecc_compute(self, data + b, ecc + e);
    782 		}
    783 		/* write oob with ecc correction code */
    784 		nand_write_buf_1(self, chip->nc_oob_cache,
    785 		    chip->nc_spare_size);
    786 	}
    787 
    788 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    789 
    790 	nand_busy(self);
    791 
    792 	/* for debugging ecc */
    793 #if 0
    794 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    795 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    796 		printf("0x");
    797 		for (b = 0; b < cs; b++) {
    798 			printf("%.2hhx", ecc[e+b]);
    799 		}
    800 		printf("\n");
    801 	}
    802 	printf("--------------\n");
    803 #endif
    804 
    805 	status = nand_get_status(self);
    806 	KASSERT(status & ONFI_STATUS_RDY);
    807 	if (status & ONFI_STATUS_FAIL) {
    808 		aprint_error_dev(self, "page program failed!\n");
    809 		return EIO;
    810 	}
    811 
    812 	return 0;
    813 }
    814 
    815 /* read the OOB of a page */
    816 int
    817 nand_read_oob(device_t self, size_t page, uint8_t *oob)
    818 {
    819 	struct nand_softc *sc = device_private(self);
    820 	struct nand_chip *chip = &sc->sc_chip;
    821 
    822 	nand_prepare_read(self, page, chip->nc_page_size);
    823 
    824 	if (chip->nc_flags & NC_BUSWIDTH_16)
    825 		nand_read_buf_2(self, oob, chip->nc_spare_size);
    826 	else
    827 		nand_read_buf_1(self, oob, chip->nc_spare_size);
    828 
    829 	/* for debugging drivers */
    830 #if 0
    831 	nand_dump_data("oob", oob, chip->nc_spare_size);
    832 #endif
    833 
    834 	return 0;
    835 }
    836 
    837 static int
    838 nand_write_oob(device_t self, size_t offset, const void *oob)
    839 {
    840 	struct nand_softc *sc = device_private(self);
    841 	struct nand_chip *chip = &sc->sc_chip;
    842 	uint8_t status;
    843 
    844 	nand_command(self, ONFI_PAGE_PROGRAM);
    845 	nand_address_column(self, offset, chip->nc_page_size);
    846 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    847 
    848 	nand_busy(self);
    849 
    850 	if (chip->nc_flags & NC_BUSWIDTH_16)
    851 		nand_write_buf_2(self, oob, chip->nc_spare_size);
    852 	else
    853 		nand_write_buf_1(self, oob, chip->nc_spare_size);
    854 
    855 	status = nand_get_status(self);
    856 	KASSERT(status & ONFI_STATUS_RDY);
    857 	if (status & ONFI_STATUS_FAIL)
    858 		return EIO;
    859 	else
    860 		return 0;
    861 }
    862 
    863 void
    864 nand_markbad(device_t self, size_t offset)
    865 {
    866 	struct nand_softc *sc = device_private(self);
    867 	struct nand_chip *chip = &sc->sc_chip;
    868 	flash_off_t blockoffset;
    869 #ifdef NAND_BBT
    870 	flash_off_t block;
    871 
    872 	block = offset / chip->nc_block_size;
    873 
    874 	nand_bbt_block_markbad(self, block);
    875 #endif
    876 	blockoffset = offset & chip->nc_block_mask;
    877 
    878 	/* check if it is already marked bad */
    879 	if (nand_isbad(self, blockoffset))
    880 		return;
    881 
    882 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    883 
    884 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    885 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    886 
    887 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    888 }
    889 
    890 bool
    891 nand_isfactorybad(device_t self, flash_off_t offset)
    892 {
    893 	struct nand_softc *sc = device_private(self);
    894 	struct nand_chip *chip = &sc->sc_chip;
    895 	flash_off_t block, first_page, last_page, page;
    896 	int i;
    897 
    898 	/* Check for factory bad blocks first
    899 	 * Factory bad blocks are marked in the first or last
    900 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    901 	 */
    902 	block = offset / chip->nc_block_size;
    903 	first_page = block * chip->nc_block_size;
    904 	last_page = (block + 1) * chip->nc_block_size
    905 	    - chip->nc_page_size;
    906 
    907 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    908 		/* address OOB */
    909 		nand_prepare_read(self, page, chip->nc_page_size);
    910 
    911 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    912 			uint16_t word;
    913 			nand_read_2(self, &word);
    914 			if (word == 0x0000)
    915 				return true;
    916 		} else {
    917 			uint8_t byte;
    918 			nand_read_1(self, &byte);
    919 			if (byte == 0x00)
    920 				return true;
    921 		}
    922 	}
    923 
    924 	return false;
    925 }
    926 
    927 bool
    928 nand_iswornoutbad(device_t self, flash_off_t offset)
    929 {
    930 	struct nand_softc *sc = device_private(self);
    931 	struct nand_chip *chip = &sc->sc_chip;
    932 	flash_off_t block;
    933 
    934 	/* we inspect the first page of the block */
    935 	block = offset & chip->nc_block_mask;
    936 
    937 	/* Linux/u-boot compatible badblock handling */
    938 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    939 		uint16_t word, mark;
    940 
    941 		nand_prepare_read(self, block,
    942 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    943 
    944 		nand_read_2(self, &word);
    945 		mark = htole16(word);
    946 		if (chip->nc_badmarker_offs & 0x01)
    947 			mark >>= 8;
    948 		if ((mark & 0xff) != 0xff)
    949 			return true;
    950 	} else {
    951 		uint8_t byte;
    952 
    953 		nand_prepare_read(self, block,
    954 		    chip->nc_page_size + chip->nc_badmarker_offs);
    955 
    956 		nand_read_1(self, &byte);
    957 		if (byte != 0xff)
    958 			return true;
    959 	}
    960 
    961 	return false;
    962 }
    963 
    964 bool
    965 nand_isbad(device_t self, flash_off_t offset)
    966 {
    967 #ifdef NAND_BBT
    968 	struct nand_softc *sc = device_private(self);
    969 	struct nand_chip *chip = &sc->sc_chip;
    970 	flash_off_t block;
    971 
    972 	block = offset / chip->nc_block_size;
    973 
    974 	return nand_bbt_block_isbad(self, block);
    975 #else
    976 	/* ONFI host requirement */
    977 	if (nand_isfactorybad(self, offset))
    978 		return true;
    979 
    980 	/* Look for Linux/U-Boot compatible bad marker */
    981 	if (nand_iswornoutbad(self, offset))
    982 		return true;
    983 
    984 	return false;
    985 #endif
    986 }
    987 
    988 int
    989 nand_erase_block(device_t self, size_t offset)
    990 {
    991 	uint8_t status;
    992 
    993 	/* xxx calculate first page of block for address? */
    994 
    995 	nand_command(self, ONFI_BLOCK_ERASE);
    996 	nand_address_row(self, offset);
    997 	nand_command(self, ONFI_BLOCK_ERASE_START);
    998 
    999 	nand_busy(self);
   1000 
   1001 	status = nand_get_status(self);
   1002 	KASSERT(status & ONFI_STATUS_RDY);
   1003 	if (status & ONFI_STATUS_FAIL) {
   1004 		aprint_error_dev(self, "block erase failed!\n");
   1005 		nand_markbad(self, offset);
   1006 		return EIO;
   1007 	} else {
   1008 		return 0;
   1009 	}
   1010 }
   1011 
   1012 /* default functions for driver development */
   1013 
   1014 /* default ECC using hamming code of 256 byte chunks */
   1015 int
   1016 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
   1017 {
   1018 	hamming_compute_256(data, code);
   1019 
   1020 	return 0;
   1021 }
   1022 
   1023 int
   1024 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
   1025 	const uint8_t *compcode)
   1026 {
   1027 	return hamming_correct_256(data, origcode, compcode);
   1028 }
   1029 
   1030 void
   1031 nand_default_select(device_t self, bool enable)
   1032 {
   1033 	/* do nothing */
   1034 	return;
   1035 }
   1036 
   1037 /* implementation of the block device API */
   1038 
   1039 int
   1040 nand_flash_submit(device_t self, struct buf * const bp)
   1041 {
   1042 	struct nand_softc *sc = device_private(self);
   1043 
   1044 	return flash_io_submit(&sc->sc_flash_io, bp);
   1045 }
   1046 
   1047 /*
   1048  * handle (page) unaligned write to nand
   1049  */
   1050 static int
   1051 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   1052     size_t *retlen, const uint8_t *buf)
   1053 {
   1054 	struct nand_softc *sc = device_private(self);
   1055 	struct nand_chip *chip = &sc->sc_chip;
   1056 	flash_off_t first, last, firstoff;
   1057 	const uint8_t *bufp;
   1058 	flash_off_t addr;
   1059 	size_t left, count;
   1060 	int error = 0, i;
   1061 
   1062 	first = offset & chip->nc_page_mask;
   1063 	firstoff = offset & ~chip->nc_page_mask;
   1064 	/* XXX check if this should be len - 1 */
   1065 	last = (offset + len) & chip->nc_page_mask;
   1066 	count = last - first + 1;
   1067 
   1068 	addr = first;
   1069 	*retlen = 0;
   1070 
   1071 	mutex_enter(&sc->sc_device_lock);
   1072 	if (count == 1) {
   1073 		if (nand_isbad(self, addr)) {
   1074 			aprint_error_dev(self,
   1075 			    "nand_flash_write_unaligned: "
   1076 			    "bad block encountered\n");
   1077 			error = EIO;
   1078 			goto out;
   1079 		}
   1080 
   1081 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1082 		if (error) {
   1083 			goto out;
   1084 		}
   1085 
   1086 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1087 
   1088 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1089 		if (error) {
   1090 			goto out;
   1091 		}
   1092 
   1093 		*retlen = len;
   1094 		goto out;
   1095 	}
   1096 
   1097 	bufp = buf;
   1098 	left = len;
   1099 
   1100 	for (i = 0; i < count && left != 0; i++) {
   1101 		if (nand_isbad(self, addr)) {
   1102 			aprint_error_dev(self,
   1103 			    "nand_flash_write_unaligned: "
   1104 			    "bad block encountered\n");
   1105 			error = EIO;
   1106 			goto out;
   1107 		}
   1108 
   1109 		if (i == 0) {
   1110 			error = nand_read_page(self,
   1111 			    addr, chip->nc_page_cache);
   1112 			if (error) {
   1113 				goto out;
   1114 			}
   1115 
   1116 			memcpy(chip->nc_page_cache + firstoff,
   1117 			    bufp, chip->nc_page_size - firstoff);
   1118 
   1119 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1120 			error = nand_program_page(self,
   1121 			    addr, chip->nc_page_cache);
   1122 			if (error) {
   1123 				goto out;
   1124 			}
   1125 
   1126 			bufp += chip->nc_page_size - firstoff;
   1127 			left -= chip->nc_page_size - firstoff;
   1128 			*retlen += chip->nc_page_size - firstoff;
   1129 
   1130 		} else if (i == count - 1) {
   1131 			error = nand_read_page(self,
   1132 			    addr, chip->nc_page_cache);
   1133 			if (error) {
   1134 				goto out;
   1135 			}
   1136 
   1137 			memcpy(chip->nc_page_cache, bufp, left);
   1138 
   1139 			error = nand_program_page(self,
   1140 			    addr, chip->nc_page_cache);
   1141 			if (error) {
   1142 				goto out;
   1143 			}
   1144 
   1145 			*retlen += left;
   1146 			KASSERT(left < chip->nc_page_size);
   1147 
   1148 		} else {
   1149 			/* XXX debug */
   1150 			if (left > chip->nc_page_size) {
   1151 				printf("left: %zu, i: %d, count: %zu\n",
   1152 				    left, i, count);
   1153 			}
   1154 			KASSERT(left > chip->nc_page_size);
   1155 
   1156 			error = nand_program_page(self, addr, bufp);
   1157 			if (error) {
   1158 				goto out;
   1159 			}
   1160 
   1161 			bufp += chip->nc_page_size;
   1162 			left -= chip->nc_page_size;
   1163 			*retlen += chip->nc_page_size;
   1164 		}
   1165 
   1166 		addr += chip->nc_page_size;
   1167 	}
   1168 
   1169 	KASSERT(*retlen == len);
   1170 out:
   1171 	mutex_exit(&sc->sc_device_lock);
   1172 
   1173 	return error;
   1174 }
   1175 
   1176 int
   1177 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1178     const uint8_t *buf)
   1179 {
   1180 	struct nand_softc *sc = device_private(self);
   1181 	struct nand_chip *chip = &sc->sc_chip;
   1182 	const uint8_t *bufp;
   1183 	size_t pages, page;
   1184 	daddr_t addr;
   1185 	int error = 0;
   1186 
   1187 	if ((offset + len) > chip->nc_size) {
   1188 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1189 			" is over device size (0x%jx)\n",
   1190 			(uintmax_t)offset, (uintmax_t)len,
   1191 			(uintmax_t)chip->nc_size));
   1192 		return EINVAL;
   1193 	}
   1194 
   1195 	if (len % chip->nc_page_size != 0 ||
   1196 	    offset % chip->nc_page_size != 0) {
   1197 		return nand_flash_write_unaligned(self,
   1198 		    offset, len, retlen, buf);
   1199 	}
   1200 
   1201 	pages = len / chip->nc_page_size;
   1202 	KASSERT(pages != 0);
   1203 	*retlen = 0;
   1204 
   1205 	addr = offset;
   1206 	bufp = buf;
   1207 
   1208 	mutex_enter(&sc->sc_device_lock);
   1209 	for (page = 0; page < pages; page++) {
   1210 		/* do we need this check here? */
   1211 		if (nand_isbad(self, addr)) {
   1212 			aprint_error_dev(self,
   1213 			    "nand_flash_write: bad block encountered\n");
   1214 
   1215 			error = EIO;
   1216 			goto out;
   1217 		}
   1218 
   1219 		error = nand_program_page(self, addr, bufp);
   1220 		if (error) {
   1221 			goto out;
   1222 		}
   1223 
   1224 		addr += chip->nc_page_size;
   1225 		bufp += chip->nc_page_size;
   1226 		*retlen += chip->nc_page_size;
   1227 	}
   1228 out:
   1229 	mutex_exit(&sc->sc_device_lock);
   1230 	DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
   1231 
   1232 	return error;
   1233 }
   1234 
   1235 /*
   1236  * handle (page) unaligned read from nand
   1237  */
   1238 static int
   1239 nand_flash_read_unaligned(device_t self, size_t offset,
   1240     size_t len, size_t *retlen, uint8_t *buf)
   1241 {
   1242 	struct nand_softc *sc = device_private(self);
   1243 	struct nand_chip *chip = &sc->sc_chip;
   1244 	daddr_t first, last, count, firstoff;
   1245 	uint8_t *bufp;
   1246 	daddr_t addr;
   1247 	size_t left;
   1248 	int error = 0, i;
   1249 
   1250 	first = offset & chip->nc_page_mask;
   1251 	firstoff = offset & ~chip->nc_page_mask;
   1252 	last = (offset + len) & chip->nc_page_mask;
   1253 	count = (last - first) / chip->nc_page_size + 1;
   1254 
   1255 	addr = first;
   1256 	bufp = buf;
   1257 	left = len;
   1258 	*retlen = 0;
   1259 
   1260 	mutex_enter(&sc->sc_device_lock);
   1261 	if (count == 1) {
   1262 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1263 		if (error) {
   1264 			goto out;
   1265 		}
   1266 
   1267 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1268 
   1269 		*retlen = len;
   1270 		goto out;
   1271 	}
   1272 
   1273 	for (i = 0; i < count && left != 0; i++) {
   1274 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1275 		if (error) {
   1276 			goto out;
   1277 		}
   1278 
   1279 		if (i == 0) {
   1280 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1281 			    chip->nc_page_size - firstoff);
   1282 
   1283 			bufp += chip->nc_page_size - firstoff;
   1284 			left -= chip->nc_page_size - firstoff;
   1285 			*retlen += chip->nc_page_size - firstoff;
   1286 
   1287 		} else if (i == count - 1) {
   1288 			memcpy(bufp, chip->nc_page_cache, left);
   1289 			*retlen += left;
   1290 			KASSERT(left < chip->nc_page_size);
   1291 
   1292 		} else {
   1293 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1294 
   1295 			bufp += chip->nc_page_size;
   1296 			left -= chip->nc_page_size;
   1297 			*retlen += chip->nc_page_size;
   1298 		}
   1299 
   1300 		addr += chip->nc_page_size;
   1301 	}
   1302 	KASSERT(*retlen == len);
   1303 out:
   1304 	mutex_exit(&sc->sc_device_lock);
   1305 
   1306 	return error;
   1307 }
   1308 
   1309 int
   1310 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1311     uint8_t *buf)
   1312 {
   1313 	struct nand_softc *sc = device_private(self);
   1314 	struct nand_chip *chip = &sc->sc_chip;
   1315 	uint8_t *bufp;
   1316 	size_t addr;
   1317 	size_t i, pages;
   1318 	int error = 0;
   1319 
   1320 	*retlen = 0;
   1321 
   1322 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
   1323 		(uintmax_t)offset, len));
   1324 
   1325 	if (__predict_false((offset + len) > chip->nc_size)) {
   1326 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
   1327 			" is over device size (%ju)\n", (uintmax_t)offset,
   1328 			len, (uintmax_t)chip->nc_size));
   1329 		return EINVAL;
   1330 	}
   1331 
   1332 	/* Handle unaligned access, shouldnt be needed when using the
   1333 	 * block device, as strategy handles it, so only low level
   1334 	 * accesses will use this path
   1335 	 */
   1336 	/* XXX^2 */
   1337 #if 0
   1338 	if (len < chip->nc_page_size)
   1339 		panic("TODO page size is larger than read size");
   1340 #endif
   1341 
   1342 	if (len % chip->nc_page_size != 0 ||
   1343 	    offset % chip->nc_page_size != 0) {
   1344 		return nand_flash_read_unaligned(self,
   1345 		    offset, len, retlen, buf);
   1346 	}
   1347 
   1348 	bufp = buf;
   1349 	addr = offset;
   1350 	pages = len / chip->nc_page_size;
   1351 
   1352 	mutex_enter(&sc->sc_device_lock);
   1353 	for (i = 0; i < pages; i++) {
   1354 		/* XXX do we need this check here? */
   1355 		if (nand_isbad(self, addr)) {
   1356 			aprint_error_dev(self, "bad block encountered\n");
   1357 			error = EIO;
   1358 			goto out;
   1359 		}
   1360 		error = nand_read_page(self, addr, bufp);
   1361 		if (error)
   1362 			goto out;
   1363 
   1364 		bufp += chip->nc_page_size;
   1365 		addr += chip->nc_page_size;
   1366 		*retlen += chip->nc_page_size;
   1367 	}
   1368 out:
   1369 	mutex_exit(&sc->sc_device_lock);
   1370 
   1371 	return error;
   1372 }
   1373 
   1374 int
   1375 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
   1376 {
   1377 	struct nand_softc *sc = device_private(self);
   1378 	struct nand_chip *chip = &sc->sc_chip;
   1379 	bool result;
   1380 
   1381 	if (ofs > chip->nc_size) {
   1382 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1383 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1384 			(uintmax_t)chip->nc_size));
   1385 		return EINVAL;
   1386 	}
   1387 
   1388 	if (ofs % chip->nc_block_size != 0) {
   1389 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
   1390 			"(%ju)",
   1391 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
   1392 		return EINVAL;
   1393 	}
   1394 
   1395 	mutex_enter(&sc->sc_device_lock);
   1396 	result = nand_isbad(self, ofs);
   1397 	mutex_exit(&sc->sc_device_lock);
   1398 
   1399 	*is_bad = result;
   1400 
   1401 	return 0;
   1402 }
   1403 
   1404 int
   1405 nand_flash_markbad(device_t self, flash_off_t ofs)
   1406 {
   1407 	struct nand_softc *sc = device_private(self);
   1408 	struct nand_chip *chip = &sc->sc_chip;
   1409 
   1410 	if (ofs > chip->nc_size) {
   1411 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1412 			" device size (0x%jx)\n", ofs,
   1413 			(uintmax_t)chip->nc_size));
   1414 		return EINVAL;
   1415 	}
   1416 
   1417 	if (ofs % chip->nc_block_size != 0) {
   1418 		panic("offset (%ju) is not a multiple of block size (%ju)",
   1419 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1420 	}
   1421 
   1422 	mutex_enter(&sc->sc_device_lock);
   1423 	nand_markbad(self, ofs);
   1424 	mutex_exit(&sc->sc_device_lock);
   1425 
   1426 	return 0;
   1427 }
   1428 
   1429 int
   1430 nand_flash_erase(device_t self,
   1431     struct flash_erase_instruction *ei)
   1432 {
   1433 	struct nand_softc *sc = device_private(self);
   1434 	struct nand_chip *chip = &sc->sc_chip;
   1435 	flash_off_t addr;
   1436 	int error = 0;
   1437 
   1438 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1439 		return EINVAL;
   1440 
   1441 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1442 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1443 			" of the device\n"));
   1444 		return EINVAL;
   1445 	}
   1446 
   1447 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1448 		aprint_error_dev(self,
   1449 		    "nand_flash_erase: ei_addr (%ju) is not"
   1450 		    " a multiple of block size (%ju)",
   1451 		    (uintmax_t)ei->ei_addr,
   1452 		    (uintmax_t)chip->nc_block_size);
   1453 		return EINVAL;
   1454 	}
   1455 
   1456 	if (ei->ei_len % chip->nc_block_size != 0) {
   1457 		aprint_error_dev(self,
   1458 		    "nand_flash_erase: ei_len (%ju) is not"
   1459 		    " a multiple of block size (%ju)",
   1460 		    (uintmax_t)ei->ei_len,
   1461 		    (uintmax_t)chip->nc_block_size);
   1462 		return EINVAL;
   1463 	}
   1464 
   1465 	mutex_enter(&sc->sc_device_lock);
   1466 	addr = ei->ei_addr;
   1467 	while (addr < ei->ei_addr + ei->ei_len) {
   1468 		if (nand_isbad(self, addr)) {
   1469 			aprint_error_dev(self, "bad block encountered\n");
   1470 			ei->ei_state = FLASH_ERASE_FAILED;
   1471 			error = EIO;
   1472 			goto out;
   1473 		}
   1474 
   1475 		error = nand_erase_block(self, addr);
   1476 		if (error) {
   1477 			ei->ei_state = FLASH_ERASE_FAILED;
   1478 			goto out;
   1479 		}
   1480 
   1481 		addr += chip->nc_block_size;
   1482 	}
   1483 	mutex_exit(&sc->sc_device_lock);
   1484 
   1485 	ei->ei_state = FLASH_ERASE_DONE;
   1486 	if (ei->ei_callback != NULL) {
   1487 		ei->ei_callback(ei);
   1488 	}
   1489 
   1490 	return 0;
   1491 out:
   1492 	mutex_exit(&sc->sc_device_lock);
   1493 
   1494 	return error;
   1495 }
   1496 
   1497 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1498 
   1499 #ifdef _MODULE
   1500 #include "ioconf.c"
   1501 #endif
   1502 
   1503 static int
   1504 nand_modcmd(modcmd_t cmd, void *opaque)
   1505 {
   1506 	switch (cmd) {
   1507 	case MODULE_CMD_INIT:
   1508 #ifdef _MODULE
   1509 		return config_init_component(cfdriver_ioconf_nand,
   1510 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1511 #else
   1512 		return 0;
   1513 #endif
   1514 	case MODULE_CMD_FINI:
   1515 #ifdef _MODULE
   1516 		return config_fini_component(cfdriver_ioconf_nand,
   1517 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1518 #else
   1519 		return 0;
   1520 #endif
   1521 	default:
   1522 		return ENOTTY;
   1523 	}
   1524 }
   1525