nand.c revision 1.27.20.2 1 /* $NetBSD: nand.c,v 1.27.20.2 2021/04/02 22:17:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by the Department of Software Engineering, University of Szeged, Hungary
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.27.20.2 2021/04/02 22:17:44 thorpej Exp $");
38
39 #include "locators.h"
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/atomic.h>
46
47 #include <dev/flash/flash.h>
48 #include <dev/flash/flash_io.h>
49 #include <dev/nand/nand.h>
50 #include <dev/nand/onfi.h>
51 #include <dev/nand/hamming.h>
52 #include <dev/nand/nand_bbt.h>
53 #include <dev/nand/nand_crc.h>
54
55 #include "opt_nand.h"
56
57 int nand_match(device_t, cfdata_t, void *);
58 void nand_attach(device_t, device_t, void *);
59 int nand_detach(device_t, int);
60 bool nand_shutdown(device_t, int);
61
62 int nand_print(void *, const char *);
63
64 static int nand_search(device_t, cfdata_t, const int *, void *);
65 static void nand_address_row(device_t, size_t);
66 static inline uint8_t nand_get_status(device_t);
67 static void nand_address_column(device_t, size_t, size_t);
68 static int nand_fill_chip_structure(device_t, struct nand_chip *);
69 static int nand_scan_media(device_t, struct nand_chip *);
70 static bool nand_check_wp(device_t);
71
72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
73 nand_match, nand_attach, nand_detach, NULL);
74
75 #ifdef NAND_DEBUG
76 int nanddebug = NAND_DEBUG;
77 #endif
78
79 struct flash_interface nand_flash_if = {
80 .type = FLASH_TYPE_NAND,
81
82 .read = nand_flash_read,
83 .write = nand_flash_write,
84 .erase = nand_flash_erase,
85 .block_isbad = nand_flash_isbad,
86 .block_markbad = nand_flash_markbad,
87
88 .submit = nand_flash_submit
89 };
90
91 const struct nand_manufacturer nand_mfrs[] = {
92 { NAND_MFR_AMD, "AMD" },
93 { NAND_MFR_FUJITSU, "Fujitsu" },
94 { NAND_MFR_RENESAS, "Renesas" },
95 { NAND_MFR_STMICRO, "ST Micro" },
96 { NAND_MFR_MICRON, "Micron" },
97 { NAND_MFR_NATIONAL, "National" },
98 { NAND_MFR_TOSHIBA, "Toshiba" },
99 { NAND_MFR_HYNIX, "Hynix" },
100 { NAND_MFR_SAMSUNG, "Samsung" },
101 { NAND_MFR_UNKNOWN, "Unknown" }
102 };
103
104 static const char *
105 nand_midtoname(int id)
106 {
107 int i;
108
109 for (i = 0; nand_mfrs[i].id != 0; i++) {
110 if (nand_mfrs[i].id == id)
111 return nand_mfrs[i].name;
112 }
113
114 KASSERT(nand_mfrs[i].id == 0);
115
116 return nand_mfrs[i].name;
117 }
118
119 /* ARGSUSED */
120 int
121 nand_match(device_t parent, cfdata_t match, void *aux)
122 {
123 /* pseudo device, always attaches */
124 return 1;
125 }
126
127 void
128 nand_attach(device_t parent, device_t self, void *aux)
129 {
130 struct nand_softc *sc = device_private(self);
131 struct nand_attach_args *naa = aux;
132 struct nand_chip *chip = &sc->sc_chip;
133
134 sc->sc_dev = self;
135 sc->controller_dev = parent;
136 sc->nand_if = naa->naa_nand_if;
137
138 aprint_naive("\n");
139
140 if (nand_check_wp(self)) {
141 aprint_error("NAND chip is write protected!\n");
142 return;
143 }
144
145 if (nand_scan_media(self, chip)) {
146 return;
147 }
148
149 nand_flash_if.erasesize = chip->nc_block_size;
150 nand_flash_if.page_size = chip->nc_page_size;
151 nand_flash_if.writesize = chip->nc_page_size;
152
153 /* allocate cache */
154 chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
155 chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
156
157 mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
158
159 if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
160 goto error;
161 }
162
163 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
164 aprint_error_dev(sc->sc_dev,
165 "couldn't establish power handler\n");
166
167 #ifdef NAND_BBT
168 nand_bbt_init(self);
169 nand_bbt_scan(self);
170 #endif
171
172 /*
173 * Attach all our devices
174 */
175 config_search(self, NULL,
176 CFARG_SUBMATCH, nand_search,
177 CFARG_EOL);
178
179 return;
180 error:
181 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
182 kmem_free(chip->nc_page_cache, chip->nc_page_size);
183 mutex_destroy(&sc->sc_device_lock);
184 }
185
186 static int
187 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
188 {
189 struct nand_softc *sc = device_private(parent);
190 struct nand_chip *chip = &sc->sc_chip;
191 struct flash_attach_args faa;
192
193 if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0)
194 return 0;
195
196 faa.flash_if = &nand_flash_if;
197
198 faa.partinfo.part_name = NULL;
199 faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
200
201 if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
202 faa.partinfo.part_size = chip->nc_size -
203 faa.partinfo.part_offset;
204 } else {
205 faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
206 }
207
208 if (cf->cf_loc[FLASHBUSCF_READONLY])
209 faa.partinfo.part_flags = FLASH_PART_READONLY;
210 else
211 faa.partinfo.part_flags = 0;
212
213 if (config_match(parent, cf, &faa)) {
214 if (config_attach(parent, cf, &faa, nand_print) != NULL) {
215 return 0;
216 } else {
217 return 1;
218 }
219 }
220
221 return 1;
222 }
223
224 void
225 nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline)
226 {
227 struct nand_softc *sc = device_private(parent);
228 struct nand_chip *chip = &sc->sc_chip;
229
230 flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size,
231 mtd_id, cmdline);
232 }
233
234 int
235 nand_detach(device_t self, int flags)
236 {
237 struct nand_softc *sc = device_private(self);
238 struct nand_chip *chip = &sc->sc_chip;
239 int error = 0;
240
241 error = config_detach_children(self, flags);
242 if (error) {
243 return error;
244 }
245
246 flash_sync_thread_destroy(&sc->sc_flash_io);
247 #ifdef NAND_BBT
248 nand_bbt_detach(self);
249 #endif
250 /* free oob cache */
251 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
252 kmem_free(chip->nc_page_cache, chip->nc_page_size);
253 kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
254
255 mutex_destroy(&sc->sc_device_lock);
256
257 pmf_device_deregister(sc->sc_dev);
258
259 return error;
260 }
261
262 int
263 nand_print(void *aux, const char *pnp)
264 {
265 if (pnp != NULL)
266 aprint_normal("nand at %s\n", pnp);
267
268 return UNCONF;
269 }
270
271 /* ask for a nand driver to attach to the controller */
272 device_t
273 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
274 {
275 struct nand_attach_args arg;
276
277 KASSERT(nand_if != NULL);
278
279 /* fill the defaults if we have null pointers */
280 if (nand_if->program_page == NULL) {
281 nand_if->program_page = &nand_default_program_page;
282 }
283
284 if (nand_if->read_page == NULL) {
285 nand_if->read_page = &nand_default_read_page;
286 }
287
288 arg.naa_nand_if = nand_if;
289 return config_found(parent, &arg, nand_print,
290 CFARG_IATTR, "nandbus",
291 CFARG_EOL);
292 }
293
294 /* default everything to reasonable values, to ease future api changes */
295 void
296 nand_init_interface(struct nand_interface *interface)
297 {
298 interface->select = &nand_default_select;
299 interface->command = NULL;
300 interface->address = NULL;
301 interface->read_buf_1 = NULL;
302 interface->read_buf_2 = NULL;
303 interface->read_1 = NULL;
304 interface->read_2 = NULL;
305 interface->write_buf_1 = NULL;
306 interface->write_buf_2 = NULL;
307 interface->write_1 = NULL;
308 interface->write_2 = NULL;
309 interface->busy = NULL;
310
311 /*-
312 * most drivers dont want to change this, but some implement
313 * read/program in one step
314 */
315 interface->program_page = &nand_default_program_page;
316 interface->read_page = &nand_default_read_page;
317
318 /* default to soft ecc, that should work everywhere */
319 interface->ecc_compute = &nand_default_ecc_compute;
320 interface->ecc_correct = &nand_default_ecc_correct;
321 interface->ecc_prepare = NULL;
322 interface->ecc.necc_code_size = 3;
323 interface->ecc.necc_block_size = 256;
324 interface->ecc.necc_type = NAND_ECC_TYPE_SW;
325 }
326
327 #if 0
328 /* handle quirks here */
329 static void
330 nand_quirks(device_t self, struct nand_chip *chip)
331 {
332 /* this is an example only! */
333 switch (chip->nc_manf_id) {
334 case NAND_MFR_SAMSUNG:
335 if (chip->nc_dev_id == 0x00) {
336 /* do something only samsung chips need */
337 /* or */
338 /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
339 }
340 }
341
342 return;
343 }
344 #endif
345
346 static int
347 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
348 {
349 switch (chip->nc_manf_id) {
350 case NAND_MFR_MICRON:
351 return nand_read_parameters_micron(self, chip);
352 case NAND_MFR_SAMSUNG:
353 return nand_read_parameters_samsung(self, chip);
354 case NAND_MFR_TOSHIBA:
355 return nand_read_parameters_toshiba(self, chip);
356 default:
357 return 1;
358 }
359
360 return 0;
361 }
362
363 /**
364 * scan media to determine the chip's properties
365 * this function resets the device
366 */
367 static int
368 nand_scan_media(device_t self, struct nand_chip *chip)
369 {
370 struct nand_softc *sc = device_private(self);
371 struct nand_ecc *ecc;
372 uint8_t onfi_signature[4];
373
374 nand_select(self, true);
375 nand_command(self, ONFI_RESET);
376 KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
377 nand_select(self, false);
378
379 /* check if the device implements the ONFI standard */
380 nand_select(self, true);
381 nand_command(self, ONFI_READ_ID);
382 nand_address(self, 0x20);
383 nand_read_1(self, &onfi_signature[0]);
384 nand_read_1(self, &onfi_signature[1]);
385 nand_read_1(self, &onfi_signature[2]);
386 nand_read_1(self, &onfi_signature[3]);
387 nand_select(self, false);
388
389 #ifdef NAND_DEBUG
390 device_printf(self, "signature: %02x %02x %02x %02x\n",
391 onfi_signature[0], onfi_signature[1],
392 onfi_signature[2], onfi_signature[3]);
393 #endif
394
395 if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
396 onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
397 chip->nc_isonfi = false;
398
399 aprint_normal(": Legacy NAND Flash\n");
400
401 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
402
403 if (nand_fill_chip_structure_legacy(self, chip)) {
404 aprint_error_dev(self,
405 "can't read device parameters for legacy chip\n");
406 return 1;
407 }
408 } else {
409 chip->nc_isonfi = true;
410
411 aprint_normal(": ONFI NAND Flash\n");
412
413 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
414
415 if (nand_fill_chip_structure(self, chip)) {
416 aprint_error_dev(self,
417 "can't read device parameters\n");
418 return 1;
419 }
420 }
421
422 aprint_normal_dev(self,
423 "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
424 chip->nc_manf_id,
425 nand_midtoname(chip->nc_manf_id),
426 chip->nc_dev_id);
427
428 aprint_normal_dev(self,
429 "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
430 "block size: %" PRIu32 " bytes\n",
431 chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
432
433 aprint_normal_dev(self,
434 "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
435 ", total storage size: %" PRIu64 " MB\n",
436 chip->nc_lun_blocks, chip->nc_num_luns,
437 chip->nc_size / 1024 / 1024);
438
439 aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
440 PRIu8 ", width: %s\n",
441 chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
442 (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
443
444 ecc = chip->nc_ecc = &sc->nand_if->ecc;
445
446 /*
447 * calculate the place of ecc data in oob
448 * we try to be compatible with Linux here
449 */
450 switch (chip->nc_spare_size) {
451 case 8:
452 ecc->necc_offset = 0;
453 break;
454 case 16:
455 ecc->necc_offset = 0;
456 break;
457 case 32:
458 ecc->necc_offset = 0;
459 break;
460 case 64:
461 ecc->necc_offset = 40;
462 break;
463 case 128:
464 ecc->necc_offset = 80;
465 break;
466 default:
467 panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
468 }
469
470 ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
471 ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
472
473 /* check if we fit in oob */
474 if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
475 panic("NAND ECC bits dont fit in OOB");
476 }
477
478 /* TODO: mark free oob area available for file systems */
479
480 chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
481
482 /*
483 * calculate badblock marker offset in oob
484 * we try to be compatible with linux here
485 */
486 if (chip->nc_page_size > 512)
487 chip->nc_badmarker_offs = 0;
488 else
489 chip->nc_badmarker_offs = 5;
490
491 /* Calculate page shift and mask */
492 chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
493 chip->nc_page_mask = ~(chip->nc_page_size - 1);
494 /* same for block */
495 chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
496 chip->nc_block_mask = ~(chip->nc_block_size - 1);
497
498 /* look for quirks here if needed in future */
499 /* nand_quirks(self, chip); */
500
501 return 0;
502 }
503
504 void
505 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
506 {
507 nand_select(self, true);
508 nand_command(self, ONFI_READ_ID);
509 nand_address(self, 0x00);
510
511 nand_read_1(self, manf);
512 nand_read_1(self, dev);
513
514 nand_select(self, false);
515 }
516
517 int
518 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
519 {
520 uint8_t *bufp;
521 uint16_t crc;
522 int i;//, tries = 0;
523
524 KASSERT(sizeof(*params) == 256);
525
526 //read_params:
527 // tries++;
528
529 nand_select(self, true);
530 nand_command(self, ONFI_READ_PARAMETER_PAGE);
531 nand_address(self, 0x00);
532
533 nand_busy(self);
534
535 /* TODO check the signature if it contains at least 2 letters */
536
537 bufp = (uint8_t *)params;
538 /* XXX why i am not using read_buf? */
539 for (i = 0; i < 256; i++) {
540 nand_read_1(self, &bufp[i]);
541 }
542 nand_select(self, false);
543
544 /* validate the parameter page with the crc */
545 crc = nand_crc16(bufp, 254);
546
547 if (crc != params->param_integrity_crc) {
548 aprint_error_dev(self, "parameter page crc check failed\n");
549 /* TODO: we should read the next parameter page copy */
550 return 1;
551 }
552
553 return 0;
554 }
555
556 static int
557 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
558 {
559 struct onfi_parameter_page params;
560 uint8_t vendor[13], model[21];
561 int i;
562
563 if (nand_read_parameter_page(self, ¶ms)) {
564 return 1;
565 }
566
567 /* strip manufacturer and model string */
568 strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
569 for (i = 11; i > 0 && vendor[i] == ' '; i--)
570 vendor[i] = 0;
571 strlcpy(model, params.param_model, sizeof(model));
572 for (i = 19; i > 0 && model[i] == ' '; i--)
573 model[i] = 0;
574
575 aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
576
577 chip->nc_page_size = le32toh(params.param_pagesize);
578 chip->nc_block_size =
579 le32toh(params.param_blocksize) * chip->nc_page_size;
580 chip->nc_spare_size = le16toh(params.param_sparesize);
581 chip->nc_lun_blocks = le32toh(params.param_lunsize);
582 chip->nc_num_luns = params.param_numluns;
583
584 chip->nc_size =
585 chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
586
587 /* the lower 4 bits contain the row address cycles */
588 chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
589 /* the upper 4 bits contain the column address cycles */
590 chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
591
592 uint16_t features = le16toh(params.param_features);
593 if (features & ONFI_FEATURE_16BIT) {
594 chip->nc_flags |= NC_BUSWIDTH_16;
595 }
596
597 if (features & ONFI_FEATURE_EXTENDED_PARAM) {
598 chip->nc_flags |= NC_EXTENDED_PARAM;
599 }
600
601 return 0;
602 }
603
604 /* ARGSUSED */
605 bool
606 nand_shutdown(device_t self, int howto)
607 {
608 return true;
609 }
610
611 static void
612 nand_address_column(device_t self, size_t row, size_t column)
613 {
614 struct nand_softc *sc = device_private(self);
615 struct nand_chip *chip = &sc->sc_chip;
616 uint8_t i;
617
618 DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
619 (uintmax_t )row, column));
620
621 /* XXX TODO */
622 row >>= chip->nc_page_shift;
623
624 /* Write the column (subpage) address */
625 if (chip->nc_flags & NC_BUSWIDTH_16)
626 column >>= 1;
627 for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
628 nand_address(self, column & 0xff);
629
630 /* Write the row (page) address */
631 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
632 nand_address(self, row & 0xff);
633 }
634
635 static void
636 nand_address_row(device_t self, size_t row)
637 {
638 struct nand_softc *sc = device_private(self);
639 struct nand_chip *chip = &sc->sc_chip;
640 int i;
641
642 /* XXX TODO */
643 row >>= chip->nc_page_shift;
644
645 /* Write the row (page) address */
646 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
647 nand_address(self, row & 0xff);
648 }
649
650 static inline uint8_t
651 nand_get_status(device_t self)
652 {
653 uint8_t status;
654
655 nand_command(self, ONFI_READ_STATUS);
656 nand_busy(self);
657 nand_read_1(self, &status);
658
659 return status;
660 }
661
662 static bool
663 nand_check_wp(device_t self)
664 {
665 if (nand_get_status(self) & ONFI_STATUS_WP)
666 return false;
667 else
668 return true;
669 }
670
671 static void
672 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
673 {
674 nand_command(self, ONFI_READ);
675 nand_address_column(self, row, column);
676 nand_command(self, ONFI_READ_START);
677
678 nand_busy(self);
679 }
680
681 /* read a page with ecc correction, default implementation */
682 int
683 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
684 {
685 struct nand_softc *sc = device_private(self);
686 struct nand_chip *chip = &sc->sc_chip;
687 size_t b, bs, e, cs;
688 uint8_t *ecc;
689 int result;
690
691 nand_prepare_read(self, offset, 0);
692
693 bs = chip->nc_ecc->necc_block_size;
694 cs = chip->nc_ecc->necc_code_size;
695
696 /* decide if we access by 8 or 16 bits */
697 if (chip->nc_flags & NC_BUSWIDTH_16) {
698 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
699 nand_ecc_prepare(self, NAND_ECC_READ);
700 nand_read_buf_2(self, data + b, bs);
701 nand_ecc_compute(self, data + b,
702 chip->nc_ecc_cache + e);
703 }
704 } else {
705 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
706 nand_ecc_prepare(self, NAND_ECC_READ);
707 nand_read_buf_1(self, data + b, bs);
708 nand_ecc_compute(self, data + b,
709 chip->nc_ecc_cache + e);
710 }
711 }
712
713 /* for debugging new drivers */
714 #if 0
715 nand_dump_data("page", data, chip->nc_page_size);
716 #endif
717
718 nand_read_oob(self, offset, chip->nc_oob_cache);
719 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
720
721 /* useful for debugging new ecc drivers */
722 #if 0
723 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
724 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
725 printf("0x");
726 for (b = 0; b < cs; b++) {
727 printf("%.2hhx", ecc[e+b]);
728 }
729 printf(" 0x");
730 for (b = 0; b < cs; b++) {
731 printf("%.2hhx", chip->nc_ecc_cache[e+b]);
732 }
733 printf("\n");
734 }
735 printf("--------------\n");
736 #endif
737
738 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
739 result = nand_ecc_correct(self, data + b, ecc + e,
740 chip->nc_ecc_cache + e);
741
742 switch (result) {
743 case NAND_ECC_OK:
744 break;
745 case NAND_ECC_CORRECTED:
746 aprint_error_dev(self,
747 "data corrected with ECC at page offset 0x%jx "
748 "block %zu\n", (uintmax_t)offset, b);
749 break;
750 case NAND_ECC_TWOBIT:
751 aprint_error_dev(self,
752 "uncorrectable ECC error at page offset 0x%jx "
753 "block %zu\n", (uintmax_t)offset, b);
754 return EIO;
755 break;
756 case NAND_ECC_INVALID:
757 aprint_error_dev(self,
758 "invalid ECC in oob at page offset 0x%jx "
759 "block %zu\n", (uintmax_t)offset, b);
760 return EIO;
761 break;
762 default:
763 panic("invalid ECC correction errno");
764 }
765 }
766
767 return 0;
768 }
769
770 int
771 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
772 {
773 struct nand_softc *sc = device_private(self);
774 struct nand_chip *chip = &sc->sc_chip;
775 size_t bs, cs, e, b;
776 uint8_t status;
777 uint8_t *ecc;
778
779 nand_command(self, ONFI_PAGE_PROGRAM);
780 nand_address_column(self, page, 0);
781
782 nand_busy(self);
783
784 bs = chip->nc_ecc->necc_block_size;
785 cs = chip->nc_ecc->necc_code_size;
786 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
787
788 /* XXX code duplication */
789 /* decide if we access by 8 or 16 bits */
790 if (chip->nc_flags & NC_BUSWIDTH_16) {
791 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
792 nand_ecc_prepare(self, NAND_ECC_WRITE);
793 nand_write_buf_2(self, data + b, bs);
794 nand_ecc_compute(self, data + b, ecc + e);
795 }
796 /* write oob with ecc correction code */
797 nand_write_buf_2(self, chip->nc_oob_cache,
798 chip->nc_spare_size);
799 } else {
800 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
801 nand_ecc_prepare(self, NAND_ECC_WRITE);
802 nand_write_buf_1(self, data + b, bs);
803 nand_ecc_compute(self, data + b, ecc + e);
804 }
805 /* write oob with ecc correction code */
806 nand_write_buf_1(self, chip->nc_oob_cache,
807 chip->nc_spare_size);
808 }
809
810 nand_command(self, ONFI_PAGE_PROGRAM_START);
811
812 nand_busy(self);
813
814 /* for debugging ecc */
815 #if 0
816 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
817 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
818 printf("0x");
819 for (b = 0; b < cs; b++) {
820 printf("%.2hhx", ecc[e+b]);
821 }
822 printf("\n");
823 }
824 printf("--------------\n");
825 #endif
826
827 status = nand_get_status(self);
828 KASSERT(status & ONFI_STATUS_RDY);
829 if (status & ONFI_STATUS_FAIL) {
830 aprint_error_dev(self, "page program failed!\n");
831 return EIO;
832 }
833
834 return 0;
835 }
836
837 /* read the OOB of a page */
838 int
839 nand_read_oob(device_t self, size_t page, uint8_t *oob)
840 {
841 struct nand_softc *sc = device_private(self);
842 struct nand_chip *chip = &sc->sc_chip;
843
844 nand_prepare_read(self, page, chip->nc_page_size);
845
846 if (chip->nc_flags & NC_BUSWIDTH_16)
847 nand_read_buf_2(self, oob, chip->nc_spare_size);
848 else
849 nand_read_buf_1(self, oob, chip->nc_spare_size);
850
851 /* for debugging drivers */
852 #if 0
853 nand_dump_data("oob", oob, chip->nc_spare_size);
854 #endif
855
856 return 0;
857 }
858
859 static int
860 nand_write_oob(device_t self, size_t offset, const void *oob)
861 {
862 struct nand_softc *sc = device_private(self);
863 struct nand_chip *chip = &sc->sc_chip;
864 uint8_t status;
865
866 nand_command(self, ONFI_PAGE_PROGRAM);
867 nand_address_column(self, offset, chip->nc_page_size);
868 nand_command(self, ONFI_PAGE_PROGRAM_START);
869
870 nand_busy(self);
871
872 if (chip->nc_flags & NC_BUSWIDTH_16)
873 nand_write_buf_2(self, oob, chip->nc_spare_size);
874 else
875 nand_write_buf_1(self, oob, chip->nc_spare_size);
876
877 status = nand_get_status(self);
878 KASSERT(status & ONFI_STATUS_RDY);
879 if (status & ONFI_STATUS_FAIL)
880 return EIO;
881 else
882 return 0;
883 }
884
885 void
886 nand_markbad(device_t self, size_t offset)
887 {
888 struct nand_softc *sc = device_private(self);
889 struct nand_chip *chip = &sc->sc_chip;
890 flash_off_t blockoffset;
891 #ifdef NAND_BBT
892 flash_off_t block;
893
894 block = offset / chip->nc_block_size;
895
896 nand_bbt_block_markbad(self, block);
897 #endif
898 blockoffset = offset & chip->nc_block_mask;
899
900 /* check if it is already marked bad */
901 if (nand_isbad(self, blockoffset))
902 return;
903
904 nand_read_oob(self, blockoffset, chip->nc_oob_cache);
905
906 chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
907 chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
908
909 nand_write_oob(self, blockoffset, chip->nc_oob_cache);
910 }
911
912 bool
913 nand_isfactorybad(device_t self, flash_off_t offset)
914 {
915 struct nand_softc *sc = device_private(self);
916 struct nand_chip *chip = &sc->sc_chip;
917 flash_off_t block, first_page, last_page, page;
918 int i;
919
920 /* Check for factory bad blocks first
921 * Factory bad blocks are marked in the first or last
922 * page of the blocks, see: ONFI 2.2, 3.2.2.
923 */
924 block = offset / chip->nc_block_size;
925 first_page = block * chip->nc_block_size;
926 last_page = (block + 1) * chip->nc_block_size
927 - chip->nc_page_size;
928
929 for (i = 0, page = first_page; i < 2; i++, page = last_page) {
930 /* address OOB */
931 nand_prepare_read(self, page, chip->nc_page_size);
932
933 if (chip->nc_flags & NC_BUSWIDTH_16) {
934 uint16_t word;
935 nand_read_2(self, &word);
936 if (word == 0x0000)
937 return true;
938 } else {
939 uint8_t byte;
940 nand_read_1(self, &byte);
941 if (byte == 0x00)
942 return true;
943 }
944 }
945
946 return false;
947 }
948
949 bool
950 nand_iswornoutbad(device_t self, flash_off_t offset)
951 {
952 struct nand_softc *sc = device_private(self);
953 struct nand_chip *chip = &sc->sc_chip;
954 flash_off_t block;
955
956 /* we inspect the first page of the block */
957 block = offset & chip->nc_block_mask;
958
959 /* Linux/u-boot compatible badblock handling */
960 if (chip->nc_flags & NC_BUSWIDTH_16) {
961 uint16_t word, mark;
962
963 nand_prepare_read(self, block,
964 chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
965
966 nand_read_2(self, &word);
967 mark = htole16(word);
968 if (chip->nc_badmarker_offs & 0x01)
969 mark >>= 8;
970 if ((mark & 0xff) != 0xff)
971 return true;
972 } else {
973 uint8_t byte;
974
975 nand_prepare_read(self, block,
976 chip->nc_page_size + chip->nc_badmarker_offs);
977
978 nand_read_1(self, &byte);
979 if (byte != 0xff)
980 return true;
981 }
982
983 return false;
984 }
985
986 bool
987 nand_isbad(device_t self, flash_off_t offset)
988 {
989 #ifdef NAND_BBT
990 struct nand_softc *sc = device_private(self);
991 struct nand_chip *chip = &sc->sc_chip;
992 flash_off_t block;
993
994 block = offset / chip->nc_block_size;
995
996 return nand_bbt_block_isbad(self, block);
997 #else
998 /* ONFI host requirement */
999 if (nand_isfactorybad(self, offset))
1000 return true;
1001
1002 /* Look for Linux/U-Boot compatible bad marker */
1003 if (nand_iswornoutbad(self, offset))
1004 return true;
1005
1006 return false;
1007 #endif
1008 }
1009
1010 int
1011 nand_erase_block(device_t self, size_t offset)
1012 {
1013 uint8_t status;
1014
1015 /* xxx calculate first page of block for address? */
1016
1017 nand_command(self, ONFI_BLOCK_ERASE);
1018 nand_address_row(self, offset);
1019 nand_command(self, ONFI_BLOCK_ERASE_START);
1020
1021 nand_busy(self);
1022
1023 status = nand_get_status(self);
1024 KASSERT(status & ONFI_STATUS_RDY);
1025 if (status & ONFI_STATUS_FAIL) {
1026 aprint_error_dev(self, "block erase failed!\n");
1027 nand_markbad(self, offset);
1028 return EIO;
1029 } else {
1030 return 0;
1031 }
1032 }
1033
1034 /* default functions for driver development */
1035
1036 /* default ECC using hamming code of 256 byte chunks */
1037 int
1038 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1039 {
1040 hamming_compute_256(data, code);
1041
1042 return 0;
1043 }
1044
1045 int
1046 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1047 const uint8_t *compcode)
1048 {
1049 return hamming_correct_256(data, origcode, compcode);
1050 }
1051
1052 void
1053 nand_default_select(device_t self, bool enable)
1054 {
1055 /* do nothing */
1056 return;
1057 }
1058
1059 /* implementation of the block device API */
1060
1061 int
1062 nand_flash_submit(device_t self, struct buf * const bp)
1063 {
1064 struct nand_softc *sc = device_private(self);
1065
1066 return flash_io_submit(&sc->sc_flash_io, bp);
1067 }
1068
1069 /*
1070 * handle (page) unaligned write to nand
1071 */
1072 static int
1073 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1074 size_t *retlen, const uint8_t *buf)
1075 {
1076 struct nand_softc *sc = device_private(self);
1077 struct nand_chip *chip = &sc->sc_chip;
1078 flash_off_t first, last, firstoff;
1079 const uint8_t *bufp;
1080 flash_off_t addr;
1081 size_t left, count;
1082 int error = 0, i;
1083
1084 first = offset & chip->nc_page_mask;
1085 firstoff = offset & ~chip->nc_page_mask;
1086 /* XXX check if this should be len - 1 */
1087 last = (offset + len) & chip->nc_page_mask;
1088 count = last - first + 1;
1089
1090 addr = first;
1091 *retlen = 0;
1092
1093 mutex_enter(&sc->sc_device_lock);
1094 if (count == 1) {
1095 if (nand_isbad(self, addr)) {
1096 aprint_error_dev(self,
1097 "nand_flash_write_unaligned: "
1098 "bad block encountered\n");
1099 error = EIO;
1100 goto out;
1101 }
1102
1103 error = nand_read_page(self, addr, chip->nc_page_cache);
1104 if (error) {
1105 goto out;
1106 }
1107
1108 memcpy(chip->nc_page_cache + firstoff, buf, len);
1109
1110 error = nand_program_page(self, addr, chip->nc_page_cache);
1111 if (error) {
1112 goto out;
1113 }
1114
1115 *retlen = len;
1116 goto out;
1117 }
1118
1119 bufp = buf;
1120 left = len;
1121
1122 for (i = 0; i < count && left != 0; i++) {
1123 if (nand_isbad(self, addr)) {
1124 aprint_error_dev(self,
1125 "nand_flash_write_unaligned: "
1126 "bad block encountered\n");
1127 error = EIO;
1128 goto out;
1129 }
1130
1131 if (i == 0) {
1132 error = nand_read_page(self,
1133 addr, chip->nc_page_cache);
1134 if (error) {
1135 goto out;
1136 }
1137
1138 memcpy(chip->nc_page_cache + firstoff,
1139 bufp, chip->nc_page_size - firstoff);
1140
1141 printf("program page: %s: %d\n", __FILE__, __LINE__);
1142 error = nand_program_page(self,
1143 addr, chip->nc_page_cache);
1144 if (error) {
1145 goto out;
1146 }
1147
1148 bufp += chip->nc_page_size - firstoff;
1149 left -= chip->nc_page_size - firstoff;
1150 *retlen += chip->nc_page_size - firstoff;
1151
1152 } else if (i == count - 1) {
1153 error = nand_read_page(self,
1154 addr, chip->nc_page_cache);
1155 if (error) {
1156 goto out;
1157 }
1158
1159 memcpy(chip->nc_page_cache, bufp, left);
1160
1161 error = nand_program_page(self,
1162 addr, chip->nc_page_cache);
1163 if (error) {
1164 goto out;
1165 }
1166
1167 *retlen += left;
1168 KASSERT(left < chip->nc_page_size);
1169
1170 } else {
1171 /* XXX debug */
1172 if (left > chip->nc_page_size) {
1173 printf("left: %zu, i: %d, count: %zu\n",
1174 left, i, count);
1175 }
1176 KASSERT(left > chip->nc_page_size);
1177
1178 error = nand_program_page(self, addr, bufp);
1179 if (error) {
1180 goto out;
1181 }
1182
1183 bufp += chip->nc_page_size;
1184 left -= chip->nc_page_size;
1185 *retlen += chip->nc_page_size;
1186 }
1187
1188 addr += chip->nc_page_size;
1189 }
1190
1191 KASSERT(*retlen == len);
1192 out:
1193 mutex_exit(&sc->sc_device_lock);
1194
1195 return error;
1196 }
1197
1198 int
1199 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1200 const uint8_t *buf)
1201 {
1202 struct nand_softc *sc = device_private(self);
1203 struct nand_chip *chip = &sc->sc_chip;
1204 const uint8_t *bufp;
1205 size_t pages, page;
1206 daddr_t addr;
1207 int error = 0;
1208
1209 if ((offset + len) > chip->nc_size) {
1210 DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1211 " is over device size (0x%jx)\n",
1212 (uintmax_t)offset, (uintmax_t)len,
1213 (uintmax_t)chip->nc_size));
1214 return EINVAL;
1215 }
1216
1217 if (len % chip->nc_page_size != 0 ||
1218 offset % chip->nc_page_size != 0) {
1219 return nand_flash_write_unaligned(self,
1220 offset, len, retlen, buf);
1221 }
1222
1223 pages = len / chip->nc_page_size;
1224 KASSERT(pages != 0);
1225 *retlen = 0;
1226
1227 addr = offset;
1228 bufp = buf;
1229
1230 mutex_enter(&sc->sc_device_lock);
1231 for (page = 0; page < pages; page++) {
1232 /* do we need this check here? */
1233 if (nand_isbad(self, addr)) {
1234 aprint_error_dev(self,
1235 "nand_flash_write: bad block encountered\n");
1236
1237 error = EIO;
1238 goto out;
1239 }
1240
1241 error = nand_program_page(self, addr, bufp);
1242 if (error) {
1243 goto out;
1244 }
1245
1246 addr += chip->nc_page_size;
1247 bufp += chip->nc_page_size;
1248 *retlen += chip->nc_page_size;
1249 }
1250 out:
1251 mutex_exit(&sc->sc_device_lock);
1252 DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
1253
1254 return error;
1255 }
1256
1257 /*
1258 * handle (page) unaligned read from nand
1259 */
1260 static int
1261 nand_flash_read_unaligned(device_t self, size_t offset,
1262 size_t len, size_t *retlen, uint8_t *buf)
1263 {
1264 struct nand_softc *sc = device_private(self);
1265 struct nand_chip *chip = &sc->sc_chip;
1266 daddr_t first, last, count, firstoff;
1267 uint8_t *bufp;
1268 daddr_t addr;
1269 size_t left;
1270 int error = 0, i;
1271
1272 first = offset & chip->nc_page_mask;
1273 firstoff = offset & ~chip->nc_page_mask;
1274 last = (offset + len) & chip->nc_page_mask;
1275 count = (last - first) / chip->nc_page_size + 1;
1276
1277 addr = first;
1278 bufp = buf;
1279 left = len;
1280 *retlen = 0;
1281
1282 mutex_enter(&sc->sc_device_lock);
1283 if (count == 1) {
1284 error = nand_read_page(self, addr, chip->nc_page_cache);
1285 if (error) {
1286 goto out;
1287 }
1288
1289 memcpy(bufp, chip->nc_page_cache + firstoff, len);
1290
1291 *retlen = len;
1292 goto out;
1293 }
1294
1295 for (i = 0; i < count && left != 0; i++) {
1296 error = nand_read_page(self, addr, chip->nc_page_cache);
1297 if (error) {
1298 goto out;
1299 }
1300
1301 if (i == 0) {
1302 memcpy(bufp, chip->nc_page_cache + firstoff,
1303 chip->nc_page_size - firstoff);
1304
1305 bufp += chip->nc_page_size - firstoff;
1306 left -= chip->nc_page_size - firstoff;
1307 *retlen += chip->nc_page_size - firstoff;
1308
1309 } else if (i == count - 1) {
1310 memcpy(bufp, chip->nc_page_cache, left);
1311 *retlen += left;
1312 KASSERT(left < chip->nc_page_size);
1313
1314 } else {
1315 memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1316
1317 bufp += chip->nc_page_size;
1318 left -= chip->nc_page_size;
1319 *retlen += chip->nc_page_size;
1320 }
1321
1322 addr += chip->nc_page_size;
1323 }
1324 KASSERT(*retlen == len);
1325 out:
1326 mutex_exit(&sc->sc_device_lock);
1327
1328 return error;
1329 }
1330
1331 int
1332 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1333 uint8_t *buf)
1334 {
1335 struct nand_softc *sc = device_private(self);
1336 struct nand_chip *chip = &sc->sc_chip;
1337 uint8_t *bufp;
1338 size_t addr;
1339 size_t i, pages;
1340 int error = 0;
1341
1342 *retlen = 0;
1343
1344 DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
1345 (uintmax_t)offset, len));
1346
1347 if (__predict_false((offset + len) > chip->nc_size)) {
1348 DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
1349 " is over device size (%ju)\n", (uintmax_t)offset,
1350 len, (uintmax_t)chip->nc_size));
1351 return EINVAL;
1352 }
1353
1354 /* Handle unaligned access, shouldnt be needed when using the
1355 * block device, as strategy handles it, so only low level
1356 * accesses will use this path
1357 */
1358 /* XXX^2 */
1359 #if 0
1360 if (len < chip->nc_page_size)
1361 panic("TODO page size is larger than read size");
1362 #endif
1363
1364 if (len % chip->nc_page_size != 0 ||
1365 offset % chip->nc_page_size != 0) {
1366 return nand_flash_read_unaligned(self,
1367 offset, len, retlen, buf);
1368 }
1369
1370 bufp = buf;
1371 addr = offset;
1372 pages = len / chip->nc_page_size;
1373
1374 mutex_enter(&sc->sc_device_lock);
1375 for (i = 0; i < pages; i++) {
1376 /* XXX do we need this check here? */
1377 if (nand_isbad(self, addr)) {
1378 aprint_error_dev(self, "bad block encountered\n");
1379 error = EIO;
1380 goto out;
1381 }
1382 error = nand_read_page(self, addr, bufp);
1383 if (error)
1384 goto out;
1385
1386 bufp += chip->nc_page_size;
1387 addr += chip->nc_page_size;
1388 *retlen += chip->nc_page_size;
1389 }
1390 out:
1391 mutex_exit(&sc->sc_device_lock);
1392
1393 return error;
1394 }
1395
1396 int
1397 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
1398 {
1399 struct nand_softc *sc = device_private(self);
1400 struct nand_chip *chip = &sc->sc_chip;
1401 bool result;
1402
1403 if (ofs > chip->nc_size) {
1404 DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1405 " device size (0x%jx)\n", (uintmax_t)ofs,
1406 (uintmax_t)chip->nc_size));
1407 return EINVAL;
1408 }
1409
1410 if (ofs % chip->nc_block_size != 0) {
1411 DPRINTF(("offset (0x%jx) is not a multiple of block size "
1412 "(%ju)",
1413 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1414 return EINVAL;
1415 }
1416
1417 mutex_enter(&sc->sc_device_lock);
1418 result = nand_isbad(self, ofs);
1419 mutex_exit(&sc->sc_device_lock);
1420
1421 *is_bad = result;
1422
1423 return 0;
1424 }
1425
1426 int
1427 nand_flash_markbad(device_t self, flash_off_t ofs)
1428 {
1429 struct nand_softc *sc = device_private(self);
1430 struct nand_chip *chip = &sc->sc_chip;
1431
1432 if (ofs > chip->nc_size) {
1433 DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1434 " device size (0x%jx)\n", ofs,
1435 (uintmax_t)chip->nc_size));
1436 return EINVAL;
1437 }
1438
1439 if (ofs % chip->nc_block_size != 0) {
1440 panic("offset (%ju) is not a multiple of block size (%ju)",
1441 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1442 }
1443
1444 mutex_enter(&sc->sc_device_lock);
1445 nand_markbad(self, ofs);
1446 mutex_exit(&sc->sc_device_lock);
1447
1448 return 0;
1449 }
1450
1451 int
1452 nand_flash_erase(device_t self,
1453 struct flash_erase_instruction *ei)
1454 {
1455 struct nand_softc *sc = device_private(self);
1456 struct nand_chip *chip = &sc->sc_chip;
1457 flash_off_t addr;
1458 int error = 0;
1459
1460 if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1461 return EINVAL;
1462
1463 if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1464 DPRINTF(("nand_flash_erase: erase address is over the end"
1465 " of the device\n"));
1466 return EINVAL;
1467 }
1468
1469 if (ei->ei_addr % chip->nc_block_size != 0) {
1470 aprint_error_dev(self,
1471 "nand_flash_erase: ei_addr (%ju) is not"
1472 " a multiple of block size (%ju)",
1473 (uintmax_t)ei->ei_addr,
1474 (uintmax_t)chip->nc_block_size);
1475 return EINVAL;
1476 }
1477
1478 if (ei->ei_len % chip->nc_block_size != 0) {
1479 aprint_error_dev(self,
1480 "nand_flash_erase: ei_len (%ju) is not"
1481 " a multiple of block size (%ju)",
1482 (uintmax_t)ei->ei_len,
1483 (uintmax_t)chip->nc_block_size);
1484 return EINVAL;
1485 }
1486
1487 mutex_enter(&sc->sc_device_lock);
1488 addr = ei->ei_addr;
1489 while (addr < ei->ei_addr + ei->ei_len) {
1490 if (nand_isbad(self, addr)) {
1491 aprint_error_dev(self, "bad block encountered\n");
1492 ei->ei_state = FLASH_ERASE_FAILED;
1493 error = EIO;
1494 goto out;
1495 }
1496
1497 error = nand_erase_block(self, addr);
1498 if (error) {
1499 ei->ei_state = FLASH_ERASE_FAILED;
1500 goto out;
1501 }
1502
1503 addr += chip->nc_block_size;
1504 }
1505 mutex_exit(&sc->sc_device_lock);
1506
1507 ei->ei_state = FLASH_ERASE_DONE;
1508 if (ei->ei_callback != NULL) {
1509 ei->ei_callback(ei);
1510 }
1511
1512 return 0;
1513 out:
1514 mutex_exit(&sc->sc_device_lock);
1515
1516 return error;
1517 }
1518
1519 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1520
1521 #ifdef _MODULE
1522 #include "ioconf.c"
1523 #endif
1524
1525 static int
1526 nand_modcmd(modcmd_t cmd, void *opaque)
1527 {
1528 switch (cmd) {
1529 case MODULE_CMD_INIT:
1530 #ifdef _MODULE
1531 return config_init_component(cfdriver_ioconf_nand,
1532 cfattach_ioconf_nand, cfdata_ioconf_nand);
1533 #else
1534 return 0;
1535 #endif
1536 case MODULE_CMD_FINI:
1537 #ifdef _MODULE
1538 return config_fini_component(cfdriver_ioconf_nand,
1539 cfattach_ioconf_nand, cfdata_ioconf_nand);
1540 #else
1541 return 0;
1542 #endif
1543 default:
1544 return ENOTTY;
1545 }
1546 }
1547