Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.27.20.2
      1 /*	$NetBSD: nand.c,v 1.27.20.2 2021/04/02 22:17:44 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.27.20.2 2021/04/02 22:17:44 thorpej Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/atomic.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/flash/flash_io.h>
     49 #include <dev/nand/nand.h>
     50 #include <dev/nand/onfi.h>
     51 #include <dev/nand/hamming.h>
     52 #include <dev/nand/nand_bbt.h>
     53 #include <dev/nand/nand_crc.h>
     54 
     55 #include "opt_nand.h"
     56 
     57 int nand_match(device_t, cfdata_t, void *);
     58 void nand_attach(device_t, device_t, void *);
     59 int nand_detach(device_t, int);
     60 bool nand_shutdown(device_t, int);
     61 
     62 int nand_print(void *, const char *);
     63 
     64 static int nand_search(device_t, cfdata_t, const int *, void *);
     65 static void nand_address_row(device_t, size_t);
     66 static inline uint8_t nand_get_status(device_t);
     67 static void nand_address_column(device_t, size_t, size_t);
     68 static int nand_fill_chip_structure(device_t, struct nand_chip *);
     69 static int nand_scan_media(device_t, struct nand_chip *);
     70 static bool nand_check_wp(device_t);
     71 
     72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     73     nand_match, nand_attach, nand_detach, NULL);
     74 
     75 #ifdef NAND_DEBUG
     76 int	nanddebug = NAND_DEBUG;
     77 #endif
     78 
     79 struct flash_interface nand_flash_if = {
     80 	.type = FLASH_TYPE_NAND,
     81 
     82 	.read = nand_flash_read,
     83 	.write = nand_flash_write,
     84 	.erase = nand_flash_erase,
     85 	.block_isbad = nand_flash_isbad,
     86 	.block_markbad = nand_flash_markbad,
     87 
     88 	.submit = nand_flash_submit
     89 };
     90 
     91 const struct nand_manufacturer nand_mfrs[] = {
     92 	{ NAND_MFR_AMD,		"AMD" },
     93 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     94 	{ NAND_MFR_RENESAS,	"Renesas" },
     95 	{ NAND_MFR_STMICRO,	"ST Micro" },
     96 	{ NAND_MFR_MICRON,	"Micron" },
     97 	{ NAND_MFR_NATIONAL,	"National" },
     98 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     99 	{ NAND_MFR_HYNIX,	"Hynix" },
    100 	{ NAND_MFR_SAMSUNG,	"Samsung" },
    101 	{ NAND_MFR_UNKNOWN,	"Unknown" }
    102 };
    103 
    104 static const char *
    105 nand_midtoname(int id)
    106 {
    107 	int i;
    108 
    109 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    110 		if (nand_mfrs[i].id == id)
    111 			return nand_mfrs[i].name;
    112 	}
    113 
    114 	KASSERT(nand_mfrs[i].id == 0);
    115 
    116 	return nand_mfrs[i].name;
    117 }
    118 
    119 /* ARGSUSED */
    120 int
    121 nand_match(device_t parent, cfdata_t match, void *aux)
    122 {
    123 	/* pseudo device, always attaches */
    124 	return 1;
    125 }
    126 
    127 void
    128 nand_attach(device_t parent, device_t self, void *aux)
    129 {
    130 	struct nand_softc *sc = device_private(self);
    131 	struct nand_attach_args *naa = aux;
    132 	struct nand_chip *chip = &sc->sc_chip;
    133 
    134 	sc->sc_dev = self;
    135 	sc->controller_dev = parent;
    136 	sc->nand_if = naa->naa_nand_if;
    137 
    138 	aprint_naive("\n");
    139 
    140 	if (nand_check_wp(self)) {
    141 		aprint_error("NAND chip is write protected!\n");
    142 		return;
    143 	}
    144 
    145 	if (nand_scan_media(self, chip)) {
    146 		return;
    147 	}
    148 
    149 	nand_flash_if.erasesize = chip->nc_block_size;
    150 	nand_flash_if.page_size = chip->nc_page_size;
    151 	nand_flash_if.writesize = chip->nc_page_size;
    152 
    153 	/* allocate cache */
    154 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    155 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    156 
    157 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    158 
    159 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
    160 		goto error;
    161 	}
    162 
    163 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    164 		aprint_error_dev(sc->sc_dev,
    165 		    "couldn't establish power handler\n");
    166 
    167 #ifdef NAND_BBT
    168 	nand_bbt_init(self);
    169 	nand_bbt_scan(self);
    170 #endif
    171 
    172 	/*
    173 	 * Attach all our devices
    174 	 */
    175 	config_search(self, NULL,
    176 	    CFARG_SUBMATCH, nand_search,
    177 	    CFARG_EOL);
    178 
    179 	return;
    180 error:
    181 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    182 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    183 	mutex_destroy(&sc->sc_device_lock);
    184 }
    185 
    186 static int
    187 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    188 {
    189 	struct nand_softc *sc = device_private(parent);
    190 	struct nand_chip *chip = &sc->sc_chip;
    191 	struct flash_attach_args faa;
    192 
    193 	if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0)
    194 		return 0;
    195 
    196 	faa.flash_if = &nand_flash_if;
    197 
    198 	faa.partinfo.part_name = NULL;
    199 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    200 
    201 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    202 		faa.partinfo.part_size = chip->nc_size -
    203 		    faa.partinfo.part_offset;
    204 	} else {
    205 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    206 	}
    207 
    208 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    209 		faa.partinfo.part_flags = FLASH_PART_READONLY;
    210 	else
    211 		faa.partinfo.part_flags = 0;
    212 
    213 	if (config_match(parent, cf, &faa)) {
    214 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
    215 			return 0;
    216 		} else {
    217 			return 1;
    218 		}
    219 	}
    220 
    221 	return 1;
    222 }
    223 
    224 void
    225 nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline)
    226 {
    227 	struct nand_softc *sc = device_private(parent);
    228 	struct nand_chip *chip = &sc->sc_chip;
    229 
    230 	flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size,
    231 	    mtd_id, cmdline);
    232 }
    233 
    234 int
    235 nand_detach(device_t self, int flags)
    236 {
    237 	struct nand_softc *sc = device_private(self);
    238 	struct nand_chip *chip = &sc->sc_chip;
    239 	int error = 0;
    240 
    241 	error = config_detach_children(self, flags);
    242 	if (error) {
    243 		return error;
    244 	}
    245 
    246 	flash_sync_thread_destroy(&sc->sc_flash_io);
    247 #ifdef NAND_BBT
    248 	nand_bbt_detach(self);
    249 #endif
    250 	/* free oob cache */
    251 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    252 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    253 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    254 
    255 	mutex_destroy(&sc->sc_device_lock);
    256 
    257 	pmf_device_deregister(sc->sc_dev);
    258 
    259 	return error;
    260 }
    261 
    262 int
    263 nand_print(void *aux, const char *pnp)
    264 {
    265 	if (pnp != NULL)
    266 		aprint_normal("nand at %s\n", pnp);
    267 
    268 	return UNCONF;
    269 }
    270 
    271 /* ask for a nand driver to attach to the controller */
    272 device_t
    273 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    274 {
    275 	struct nand_attach_args arg;
    276 
    277 	KASSERT(nand_if != NULL);
    278 
    279 	/* fill the defaults if we have null pointers */
    280 	if (nand_if->program_page == NULL) {
    281 		nand_if->program_page = &nand_default_program_page;
    282 	}
    283 
    284 	if (nand_if->read_page == NULL) {
    285 		nand_if->read_page = &nand_default_read_page;
    286 	}
    287 
    288 	arg.naa_nand_if = nand_if;
    289 	return config_found(parent, &arg, nand_print,
    290 	    CFARG_IATTR, "nandbus",
    291 	    CFARG_EOL);
    292 }
    293 
    294 /* default everything to reasonable values, to ease future api changes */
    295 void
    296 nand_init_interface(struct nand_interface *interface)
    297 {
    298 	interface->select = &nand_default_select;
    299 	interface->command = NULL;
    300 	interface->address = NULL;
    301 	interface->read_buf_1 = NULL;
    302 	interface->read_buf_2 = NULL;
    303 	interface->read_1 = NULL;
    304 	interface->read_2 = NULL;
    305 	interface->write_buf_1 = NULL;
    306 	interface->write_buf_2 = NULL;
    307 	interface->write_1 = NULL;
    308 	interface->write_2 = NULL;
    309 	interface->busy = NULL;
    310 
    311 	/*-
    312 	 * most drivers dont want to change this, but some implement
    313 	 * read/program in one step
    314 	 */
    315 	interface->program_page = &nand_default_program_page;
    316 	interface->read_page = &nand_default_read_page;
    317 
    318 	/* default to soft ecc, that should work everywhere */
    319 	interface->ecc_compute = &nand_default_ecc_compute;
    320 	interface->ecc_correct = &nand_default_ecc_correct;
    321 	interface->ecc_prepare = NULL;
    322 	interface->ecc.necc_code_size = 3;
    323 	interface->ecc.necc_block_size = 256;
    324 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
    325 }
    326 
    327 #if 0
    328 /* handle quirks here */
    329 static void
    330 nand_quirks(device_t self, struct nand_chip *chip)
    331 {
    332 	/* this is an example only! */
    333 	switch (chip->nc_manf_id) {
    334 	case NAND_MFR_SAMSUNG:
    335 		if (chip->nc_dev_id == 0x00) {
    336 			/* do something only samsung chips need */
    337 			/* or */
    338 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    339 		}
    340 	}
    341 
    342 	return;
    343 }
    344 #endif
    345 
    346 static int
    347 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
    348 {
    349 	switch (chip->nc_manf_id) {
    350 	case NAND_MFR_MICRON:
    351 		return nand_read_parameters_micron(self, chip);
    352 	case NAND_MFR_SAMSUNG:
    353 		return nand_read_parameters_samsung(self, chip);
    354 	case NAND_MFR_TOSHIBA:
    355 		return nand_read_parameters_toshiba(self, chip);
    356 	default:
    357 		return 1;
    358 	}
    359 
    360 	return 0;
    361 }
    362 
    363 /**
    364  * scan media to determine the chip's properties
    365  * this function resets the device
    366  */
    367 static int
    368 nand_scan_media(device_t self, struct nand_chip *chip)
    369 {
    370 	struct nand_softc *sc = device_private(self);
    371 	struct nand_ecc *ecc;
    372 	uint8_t onfi_signature[4];
    373 
    374 	nand_select(self, true);
    375 	nand_command(self, ONFI_RESET);
    376 	KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
    377 	nand_select(self, false);
    378 
    379 	/* check if the device implements the ONFI standard */
    380 	nand_select(self, true);
    381 	nand_command(self, ONFI_READ_ID);
    382 	nand_address(self, 0x20);
    383 	nand_read_1(self, &onfi_signature[0]);
    384 	nand_read_1(self, &onfi_signature[1]);
    385 	nand_read_1(self, &onfi_signature[2]);
    386 	nand_read_1(self, &onfi_signature[3]);
    387 	nand_select(self, false);
    388 
    389 #ifdef NAND_DEBUG
    390 	device_printf(self, "signature: %02x %02x %02x %02x\n",
    391 	    onfi_signature[0], onfi_signature[1],
    392 	    onfi_signature[2], onfi_signature[3]);
    393 #endif
    394 
    395 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    396 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    397 		chip->nc_isonfi = false;
    398 
    399 		aprint_normal(": Legacy NAND Flash\n");
    400 
    401 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    402 
    403 		if (nand_fill_chip_structure_legacy(self, chip)) {
    404 			aprint_error_dev(self,
    405 			    "can't read device parameters for legacy chip\n");
    406 			return 1;
    407 		}
    408 	} else {
    409 		chip->nc_isonfi = true;
    410 
    411 		aprint_normal(": ONFI NAND Flash\n");
    412 
    413 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    414 
    415 		if (nand_fill_chip_structure(self, chip)) {
    416 			aprint_error_dev(self,
    417 			    "can't read device parameters\n");
    418 			return 1;
    419 		}
    420 	}
    421 
    422 	aprint_normal_dev(self,
    423 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    424 	    chip->nc_manf_id,
    425 	    nand_midtoname(chip->nc_manf_id),
    426 	    chip->nc_dev_id);
    427 
    428 	aprint_normal_dev(self,
    429 	    "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
    430 	    "block size: %" PRIu32 " bytes\n",
    431 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    432 
    433 	aprint_normal_dev(self,
    434 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
    435 	    ", total storage size: %" PRIu64 " MB\n",
    436 	    chip->nc_lun_blocks, chip->nc_num_luns,
    437 	    chip->nc_size / 1024 / 1024);
    438 
    439 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
    440 	    PRIu8 ", width: %s\n",
    441 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
    442 	    (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
    443 
    444 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    445 
    446 	/*
    447 	 * calculate the place of ecc data in oob
    448 	 * we try to be compatible with Linux here
    449 	 */
    450 	switch (chip->nc_spare_size) {
    451 	case 8:
    452 		ecc->necc_offset = 0;
    453 		break;
    454 	case 16:
    455 		ecc->necc_offset = 0;
    456 		break;
    457 	case 32:
    458 		ecc->necc_offset = 0;
    459 		break;
    460 	case 64:
    461 		ecc->necc_offset = 40;
    462 		break;
    463 	case 128:
    464 		ecc->necc_offset = 80;
    465 		break;
    466 	default:
    467 		panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
    468 	}
    469 
    470 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    471 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    472 
    473 	/* check if we fit in oob */
    474 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    475 		panic("NAND ECC bits dont fit in OOB");
    476 	}
    477 
    478 	/* TODO: mark free oob area available for file systems */
    479 
    480 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    481 
    482 	/*
    483 	 * calculate badblock marker offset in oob
    484 	 * we try to be compatible with linux here
    485 	 */
    486 	if (chip->nc_page_size > 512)
    487 		chip->nc_badmarker_offs = 0;
    488 	else
    489 		chip->nc_badmarker_offs = 5;
    490 
    491 	/* Calculate page shift and mask */
    492 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    493 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    494 	/* same for block */
    495 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    496 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    497 
    498 	/* look for quirks here if needed in future */
    499 	/* nand_quirks(self, chip); */
    500 
    501 	return 0;
    502 }
    503 
    504 void
    505 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
    506 {
    507 	nand_select(self, true);
    508 	nand_command(self, ONFI_READ_ID);
    509 	nand_address(self, 0x00);
    510 
    511 	nand_read_1(self, manf);
    512 	nand_read_1(self, dev);
    513 
    514 	nand_select(self, false);
    515 }
    516 
    517 int
    518 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
    519 {
    520 	uint8_t *bufp;
    521 	uint16_t crc;
    522 	int i;//, tries = 0;
    523 
    524 	KASSERT(sizeof(*params) == 256);
    525 
    526 //read_params:
    527 //	tries++;
    528 
    529 	nand_select(self, true);
    530 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    531 	nand_address(self, 0x00);
    532 
    533 	nand_busy(self);
    534 
    535 	/* TODO check the signature if it contains at least 2 letters */
    536 
    537 	bufp = (uint8_t *)params;
    538 	/* XXX why i am not using read_buf? */
    539 	for (i = 0; i < 256; i++) {
    540 		nand_read_1(self, &bufp[i]);
    541 	}
    542 	nand_select(self, false);
    543 
    544 	/* validate the parameter page with the crc */
    545 	crc = nand_crc16(bufp, 254);
    546 
    547 	if (crc != params->param_integrity_crc) {
    548 		aprint_error_dev(self, "parameter page crc check failed\n");
    549 		/* TODO: we should read the next parameter page copy */
    550 		return 1;
    551 	}
    552 
    553 	return 0;
    554 }
    555 
    556 static int
    557 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
    558 {
    559 	struct onfi_parameter_page params;
    560 	uint8_t	vendor[13], model[21];
    561 	int i;
    562 
    563 	if (nand_read_parameter_page(self, &params)) {
    564 		return 1;
    565 	}
    566 
    567 	/* strip manufacturer and model string */
    568 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    569 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    570 		vendor[i] = 0;
    571 	strlcpy(model, params.param_model, sizeof(model));
    572 	for (i = 19; i > 0 && model[i] == ' '; i--)
    573 		model[i] = 0;
    574 
    575 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    576 
    577 	chip->nc_page_size = le32toh(params.param_pagesize);
    578 	chip->nc_block_size =
    579 	    le32toh(params.param_blocksize) * chip->nc_page_size;
    580 	chip->nc_spare_size = le16toh(params.param_sparesize);
    581 	chip->nc_lun_blocks = le32toh(params.param_lunsize);
    582 	chip->nc_num_luns = params.param_numluns;
    583 
    584 	chip->nc_size =
    585 	    chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
    586 
    587 	/* the lower 4 bits contain the row address cycles */
    588 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    589 	/* the upper 4 bits contain the column address cycles */
    590 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    591 
    592 	uint16_t features = le16toh(params.param_features);
    593 	if (features & ONFI_FEATURE_16BIT) {
    594 		chip->nc_flags |= NC_BUSWIDTH_16;
    595 	}
    596 
    597 	if (features & ONFI_FEATURE_EXTENDED_PARAM) {
    598 		chip->nc_flags |= NC_EXTENDED_PARAM;
    599 	}
    600 
    601 	return 0;
    602 }
    603 
    604 /* ARGSUSED */
    605 bool
    606 nand_shutdown(device_t self, int howto)
    607 {
    608 	return true;
    609 }
    610 
    611 static void
    612 nand_address_column(device_t self, size_t row, size_t column)
    613 {
    614 	struct nand_softc *sc = device_private(self);
    615 	struct nand_chip *chip = &sc->sc_chip;
    616 	uint8_t i;
    617 
    618 	DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
    619 		(uintmax_t )row, column));
    620 
    621 	/* XXX TODO */
    622 	row >>= chip->nc_page_shift;
    623 
    624 	/* Write the column (subpage) address */
    625 	if (chip->nc_flags & NC_BUSWIDTH_16)
    626 		column >>= 1;
    627 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    628 		nand_address(self, column & 0xff);
    629 
    630 	/* Write the row (page) address */
    631 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    632 		nand_address(self, row & 0xff);
    633 }
    634 
    635 static void
    636 nand_address_row(device_t self, size_t row)
    637 {
    638 	struct nand_softc *sc = device_private(self);
    639 	struct nand_chip *chip = &sc->sc_chip;
    640 	int i;
    641 
    642 	/* XXX TODO */
    643 	row >>= chip->nc_page_shift;
    644 
    645 	/* Write the row (page) address */
    646 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    647 		nand_address(self, row & 0xff);
    648 }
    649 
    650 static inline uint8_t
    651 nand_get_status(device_t self)
    652 {
    653 	uint8_t status;
    654 
    655 	nand_command(self, ONFI_READ_STATUS);
    656 	nand_busy(self);
    657 	nand_read_1(self, &status);
    658 
    659 	return status;
    660 }
    661 
    662 static bool
    663 nand_check_wp(device_t self)
    664 {
    665 	if (nand_get_status(self) & ONFI_STATUS_WP)
    666 		return false;
    667 	else
    668 		return true;
    669 }
    670 
    671 static void
    672 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
    673 {
    674 	nand_command(self, ONFI_READ);
    675 	nand_address_column(self, row, column);
    676 	nand_command(self, ONFI_READ_START);
    677 
    678 	nand_busy(self);
    679 }
    680 
    681 /* read a page with ecc correction, default implementation */
    682 int
    683 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
    684 {
    685 	struct nand_softc *sc = device_private(self);
    686 	struct nand_chip *chip = &sc->sc_chip;
    687 	size_t b, bs, e, cs;
    688 	uint8_t *ecc;
    689 	int result;
    690 
    691 	nand_prepare_read(self, offset, 0);
    692 
    693 	bs = chip->nc_ecc->necc_block_size;
    694 	cs = chip->nc_ecc->necc_code_size;
    695 
    696 	/* decide if we access by 8 or 16 bits */
    697 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    698 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    699 			nand_ecc_prepare(self, NAND_ECC_READ);
    700 			nand_read_buf_2(self, data + b, bs);
    701 			nand_ecc_compute(self, data + b,
    702 			    chip->nc_ecc_cache + e);
    703 		}
    704 	} else {
    705 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    706 			nand_ecc_prepare(self, NAND_ECC_READ);
    707 			nand_read_buf_1(self, data + b, bs);
    708 			nand_ecc_compute(self, data + b,
    709 			    chip->nc_ecc_cache + e);
    710 		}
    711 	}
    712 
    713 	/* for debugging new drivers */
    714 #if 0
    715 	nand_dump_data("page", data, chip->nc_page_size);
    716 #endif
    717 
    718 	nand_read_oob(self, offset, chip->nc_oob_cache);
    719 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    720 
    721 	/* useful for debugging new ecc drivers */
    722 #if 0
    723 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    724 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    725 		printf("0x");
    726 		for (b = 0; b < cs; b++) {
    727 			printf("%.2hhx", ecc[e+b]);
    728 		}
    729 		printf(" 0x");
    730 		for (b = 0; b < cs; b++) {
    731 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    732 		}
    733 		printf("\n");
    734 	}
    735 	printf("--------------\n");
    736 #endif
    737 
    738 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    739 		result = nand_ecc_correct(self, data + b, ecc + e,
    740 		    chip->nc_ecc_cache + e);
    741 
    742 		switch (result) {
    743 		case NAND_ECC_OK:
    744 			break;
    745 		case NAND_ECC_CORRECTED:
    746 			aprint_error_dev(self,
    747 			    "data corrected with ECC at page offset 0x%jx "
    748 			    "block %zu\n", (uintmax_t)offset, b);
    749 			break;
    750 		case NAND_ECC_TWOBIT:
    751 			aprint_error_dev(self,
    752 			    "uncorrectable ECC error at page offset 0x%jx "
    753 			    "block %zu\n", (uintmax_t)offset, b);
    754 			return EIO;
    755 			break;
    756 		case NAND_ECC_INVALID:
    757 			aprint_error_dev(self,
    758 			    "invalid ECC in oob at page offset 0x%jx "
    759 			    "block %zu\n", (uintmax_t)offset, b);
    760 			return EIO;
    761 			break;
    762 		default:
    763 			panic("invalid ECC correction errno");
    764 		}
    765 	}
    766 
    767 	return 0;
    768 }
    769 
    770 int
    771 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
    772 {
    773 	struct nand_softc *sc = device_private(self);
    774 	struct nand_chip *chip = &sc->sc_chip;
    775 	size_t bs, cs, e, b;
    776 	uint8_t status;
    777 	uint8_t *ecc;
    778 
    779 	nand_command(self, ONFI_PAGE_PROGRAM);
    780 	nand_address_column(self, page, 0);
    781 
    782 	nand_busy(self);
    783 
    784 	bs = chip->nc_ecc->necc_block_size;
    785 	cs = chip->nc_ecc->necc_code_size;
    786 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    787 
    788 	/* XXX code duplication */
    789 	/* decide if we access by 8 or 16 bits */
    790 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    791 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    792 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    793 			nand_write_buf_2(self, data + b, bs);
    794 			nand_ecc_compute(self, data + b, ecc + e);
    795 		}
    796 		/* write oob with ecc correction code */
    797 		nand_write_buf_2(self, chip->nc_oob_cache,
    798 		    chip->nc_spare_size);
    799 	} else {
    800 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    801 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    802 			nand_write_buf_1(self, data + b, bs);
    803 			nand_ecc_compute(self, data + b, ecc + e);
    804 		}
    805 		/* write oob with ecc correction code */
    806 		nand_write_buf_1(self, chip->nc_oob_cache,
    807 		    chip->nc_spare_size);
    808 	}
    809 
    810 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    811 
    812 	nand_busy(self);
    813 
    814 	/* for debugging ecc */
    815 #if 0
    816 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    817 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    818 		printf("0x");
    819 		for (b = 0; b < cs; b++) {
    820 			printf("%.2hhx", ecc[e+b]);
    821 		}
    822 		printf("\n");
    823 	}
    824 	printf("--------------\n");
    825 #endif
    826 
    827 	status = nand_get_status(self);
    828 	KASSERT(status & ONFI_STATUS_RDY);
    829 	if (status & ONFI_STATUS_FAIL) {
    830 		aprint_error_dev(self, "page program failed!\n");
    831 		return EIO;
    832 	}
    833 
    834 	return 0;
    835 }
    836 
    837 /* read the OOB of a page */
    838 int
    839 nand_read_oob(device_t self, size_t page, uint8_t *oob)
    840 {
    841 	struct nand_softc *sc = device_private(self);
    842 	struct nand_chip *chip = &sc->sc_chip;
    843 
    844 	nand_prepare_read(self, page, chip->nc_page_size);
    845 
    846 	if (chip->nc_flags & NC_BUSWIDTH_16)
    847 		nand_read_buf_2(self, oob, chip->nc_spare_size);
    848 	else
    849 		nand_read_buf_1(self, oob, chip->nc_spare_size);
    850 
    851 	/* for debugging drivers */
    852 #if 0
    853 	nand_dump_data("oob", oob, chip->nc_spare_size);
    854 #endif
    855 
    856 	return 0;
    857 }
    858 
    859 static int
    860 nand_write_oob(device_t self, size_t offset, const void *oob)
    861 {
    862 	struct nand_softc *sc = device_private(self);
    863 	struct nand_chip *chip = &sc->sc_chip;
    864 	uint8_t status;
    865 
    866 	nand_command(self, ONFI_PAGE_PROGRAM);
    867 	nand_address_column(self, offset, chip->nc_page_size);
    868 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    869 
    870 	nand_busy(self);
    871 
    872 	if (chip->nc_flags & NC_BUSWIDTH_16)
    873 		nand_write_buf_2(self, oob, chip->nc_spare_size);
    874 	else
    875 		nand_write_buf_1(self, oob, chip->nc_spare_size);
    876 
    877 	status = nand_get_status(self);
    878 	KASSERT(status & ONFI_STATUS_RDY);
    879 	if (status & ONFI_STATUS_FAIL)
    880 		return EIO;
    881 	else
    882 		return 0;
    883 }
    884 
    885 void
    886 nand_markbad(device_t self, size_t offset)
    887 {
    888 	struct nand_softc *sc = device_private(self);
    889 	struct nand_chip *chip = &sc->sc_chip;
    890 	flash_off_t blockoffset;
    891 #ifdef NAND_BBT
    892 	flash_off_t block;
    893 
    894 	block = offset / chip->nc_block_size;
    895 
    896 	nand_bbt_block_markbad(self, block);
    897 #endif
    898 	blockoffset = offset & chip->nc_block_mask;
    899 
    900 	/* check if it is already marked bad */
    901 	if (nand_isbad(self, blockoffset))
    902 		return;
    903 
    904 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    905 
    906 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    907 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    908 
    909 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    910 }
    911 
    912 bool
    913 nand_isfactorybad(device_t self, flash_off_t offset)
    914 {
    915 	struct nand_softc *sc = device_private(self);
    916 	struct nand_chip *chip = &sc->sc_chip;
    917 	flash_off_t block, first_page, last_page, page;
    918 	int i;
    919 
    920 	/* Check for factory bad blocks first
    921 	 * Factory bad blocks are marked in the first or last
    922 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    923 	 */
    924 	block = offset / chip->nc_block_size;
    925 	first_page = block * chip->nc_block_size;
    926 	last_page = (block + 1) * chip->nc_block_size
    927 	    - chip->nc_page_size;
    928 
    929 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    930 		/* address OOB */
    931 		nand_prepare_read(self, page, chip->nc_page_size);
    932 
    933 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    934 			uint16_t word;
    935 			nand_read_2(self, &word);
    936 			if (word == 0x0000)
    937 				return true;
    938 		} else {
    939 			uint8_t byte;
    940 			nand_read_1(self, &byte);
    941 			if (byte == 0x00)
    942 				return true;
    943 		}
    944 	}
    945 
    946 	return false;
    947 }
    948 
    949 bool
    950 nand_iswornoutbad(device_t self, flash_off_t offset)
    951 {
    952 	struct nand_softc *sc = device_private(self);
    953 	struct nand_chip *chip = &sc->sc_chip;
    954 	flash_off_t block;
    955 
    956 	/* we inspect the first page of the block */
    957 	block = offset & chip->nc_block_mask;
    958 
    959 	/* Linux/u-boot compatible badblock handling */
    960 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    961 		uint16_t word, mark;
    962 
    963 		nand_prepare_read(self, block,
    964 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    965 
    966 		nand_read_2(self, &word);
    967 		mark = htole16(word);
    968 		if (chip->nc_badmarker_offs & 0x01)
    969 			mark >>= 8;
    970 		if ((mark & 0xff) != 0xff)
    971 			return true;
    972 	} else {
    973 		uint8_t byte;
    974 
    975 		nand_prepare_read(self, block,
    976 		    chip->nc_page_size + chip->nc_badmarker_offs);
    977 
    978 		nand_read_1(self, &byte);
    979 		if (byte != 0xff)
    980 			return true;
    981 	}
    982 
    983 	return false;
    984 }
    985 
    986 bool
    987 nand_isbad(device_t self, flash_off_t offset)
    988 {
    989 #ifdef NAND_BBT
    990 	struct nand_softc *sc = device_private(self);
    991 	struct nand_chip *chip = &sc->sc_chip;
    992 	flash_off_t block;
    993 
    994 	block = offset / chip->nc_block_size;
    995 
    996 	return nand_bbt_block_isbad(self, block);
    997 #else
    998 	/* ONFI host requirement */
    999 	if (nand_isfactorybad(self, offset))
   1000 		return true;
   1001 
   1002 	/* Look for Linux/U-Boot compatible bad marker */
   1003 	if (nand_iswornoutbad(self, offset))
   1004 		return true;
   1005 
   1006 	return false;
   1007 #endif
   1008 }
   1009 
   1010 int
   1011 nand_erase_block(device_t self, size_t offset)
   1012 {
   1013 	uint8_t status;
   1014 
   1015 	/* xxx calculate first page of block for address? */
   1016 
   1017 	nand_command(self, ONFI_BLOCK_ERASE);
   1018 	nand_address_row(self, offset);
   1019 	nand_command(self, ONFI_BLOCK_ERASE_START);
   1020 
   1021 	nand_busy(self);
   1022 
   1023 	status = nand_get_status(self);
   1024 	KASSERT(status & ONFI_STATUS_RDY);
   1025 	if (status & ONFI_STATUS_FAIL) {
   1026 		aprint_error_dev(self, "block erase failed!\n");
   1027 		nand_markbad(self, offset);
   1028 		return EIO;
   1029 	} else {
   1030 		return 0;
   1031 	}
   1032 }
   1033 
   1034 /* default functions for driver development */
   1035 
   1036 /* default ECC using hamming code of 256 byte chunks */
   1037 int
   1038 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
   1039 {
   1040 	hamming_compute_256(data, code);
   1041 
   1042 	return 0;
   1043 }
   1044 
   1045 int
   1046 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
   1047 	const uint8_t *compcode)
   1048 {
   1049 	return hamming_correct_256(data, origcode, compcode);
   1050 }
   1051 
   1052 void
   1053 nand_default_select(device_t self, bool enable)
   1054 {
   1055 	/* do nothing */
   1056 	return;
   1057 }
   1058 
   1059 /* implementation of the block device API */
   1060 
   1061 int
   1062 nand_flash_submit(device_t self, struct buf * const bp)
   1063 {
   1064 	struct nand_softc *sc = device_private(self);
   1065 
   1066 	return flash_io_submit(&sc->sc_flash_io, bp);
   1067 }
   1068 
   1069 /*
   1070  * handle (page) unaligned write to nand
   1071  */
   1072 static int
   1073 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   1074     size_t *retlen, const uint8_t *buf)
   1075 {
   1076 	struct nand_softc *sc = device_private(self);
   1077 	struct nand_chip *chip = &sc->sc_chip;
   1078 	flash_off_t first, last, firstoff;
   1079 	const uint8_t *bufp;
   1080 	flash_off_t addr;
   1081 	size_t left, count;
   1082 	int error = 0, i;
   1083 
   1084 	first = offset & chip->nc_page_mask;
   1085 	firstoff = offset & ~chip->nc_page_mask;
   1086 	/* XXX check if this should be len - 1 */
   1087 	last = (offset + len) & chip->nc_page_mask;
   1088 	count = last - first + 1;
   1089 
   1090 	addr = first;
   1091 	*retlen = 0;
   1092 
   1093 	mutex_enter(&sc->sc_device_lock);
   1094 	if (count == 1) {
   1095 		if (nand_isbad(self, addr)) {
   1096 			aprint_error_dev(self,
   1097 			    "nand_flash_write_unaligned: "
   1098 			    "bad block encountered\n");
   1099 			error = EIO;
   1100 			goto out;
   1101 		}
   1102 
   1103 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1104 		if (error) {
   1105 			goto out;
   1106 		}
   1107 
   1108 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1109 
   1110 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1111 		if (error) {
   1112 			goto out;
   1113 		}
   1114 
   1115 		*retlen = len;
   1116 		goto out;
   1117 	}
   1118 
   1119 	bufp = buf;
   1120 	left = len;
   1121 
   1122 	for (i = 0; i < count && left != 0; i++) {
   1123 		if (nand_isbad(self, addr)) {
   1124 			aprint_error_dev(self,
   1125 			    "nand_flash_write_unaligned: "
   1126 			    "bad block encountered\n");
   1127 			error = EIO;
   1128 			goto out;
   1129 		}
   1130 
   1131 		if (i == 0) {
   1132 			error = nand_read_page(self,
   1133 			    addr, chip->nc_page_cache);
   1134 			if (error) {
   1135 				goto out;
   1136 			}
   1137 
   1138 			memcpy(chip->nc_page_cache + firstoff,
   1139 			    bufp, chip->nc_page_size - firstoff);
   1140 
   1141 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1142 			error = nand_program_page(self,
   1143 			    addr, chip->nc_page_cache);
   1144 			if (error) {
   1145 				goto out;
   1146 			}
   1147 
   1148 			bufp += chip->nc_page_size - firstoff;
   1149 			left -= chip->nc_page_size - firstoff;
   1150 			*retlen += chip->nc_page_size - firstoff;
   1151 
   1152 		} else if (i == count - 1) {
   1153 			error = nand_read_page(self,
   1154 			    addr, chip->nc_page_cache);
   1155 			if (error) {
   1156 				goto out;
   1157 			}
   1158 
   1159 			memcpy(chip->nc_page_cache, bufp, left);
   1160 
   1161 			error = nand_program_page(self,
   1162 			    addr, chip->nc_page_cache);
   1163 			if (error) {
   1164 				goto out;
   1165 			}
   1166 
   1167 			*retlen += left;
   1168 			KASSERT(left < chip->nc_page_size);
   1169 
   1170 		} else {
   1171 			/* XXX debug */
   1172 			if (left > chip->nc_page_size) {
   1173 				printf("left: %zu, i: %d, count: %zu\n",
   1174 				    left, i, count);
   1175 			}
   1176 			KASSERT(left > chip->nc_page_size);
   1177 
   1178 			error = nand_program_page(self, addr, bufp);
   1179 			if (error) {
   1180 				goto out;
   1181 			}
   1182 
   1183 			bufp += chip->nc_page_size;
   1184 			left -= chip->nc_page_size;
   1185 			*retlen += chip->nc_page_size;
   1186 		}
   1187 
   1188 		addr += chip->nc_page_size;
   1189 	}
   1190 
   1191 	KASSERT(*retlen == len);
   1192 out:
   1193 	mutex_exit(&sc->sc_device_lock);
   1194 
   1195 	return error;
   1196 }
   1197 
   1198 int
   1199 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1200     const uint8_t *buf)
   1201 {
   1202 	struct nand_softc *sc = device_private(self);
   1203 	struct nand_chip *chip = &sc->sc_chip;
   1204 	const uint8_t *bufp;
   1205 	size_t pages, page;
   1206 	daddr_t addr;
   1207 	int error = 0;
   1208 
   1209 	if ((offset + len) > chip->nc_size) {
   1210 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1211 			" is over device size (0x%jx)\n",
   1212 			(uintmax_t)offset, (uintmax_t)len,
   1213 			(uintmax_t)chip->nc_size));
   1214 		return EINVAL;
   1215 	}
   1216 
   1217 	if (len % chip->nc_page_size != 0 ||
   1218 	    offset % chip->nc_page_size != 0) {
   1219 		return nand_flash_write_unaligned(self,
   1220 		    offset, len, retlen, buf);
   1221 	}
   1222 
   1223 	pages = len / chip->nc_page_size;
   1224 	KASSERT(pages != 0);
   1225 	*retlen = 0;
   1226 
   1227 	addr = offset;
   1228 	bufp = buf;
   1229 
   1230 	mutex_enter(&sc->sc_device_lock);
   1231 	for (page = 0; page < pages; page++) {
   1232 		/* do we need this check here? */
   1233 		if (nand_isbad(self, addr)) {
   1234 			aprint_error_dev(self,
   1235 			    "nand_flash_write: bad block encountered\n");
   1236 
   1237 			error = EIO;
   1238 			goto out;
   1239 		}
   1240 
   1241 		error = nand_program_page(self, addr, bufp);
   1242 		if (error) {
   1243 			goto out;
   1244 		}
   1245 
   1246 		addr += chip->nc_page_size;
   1247 		bufp += chip->nc_page_size;
   1248 		*retlen += chip->nc_page_size;
   1249 	}
   1250 out:
   1251 	mutex_exit(&sc->sc_device_lock);
   1252 	DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
   1253 
   1254 	return error;
   1255 }
   1256 
   1257 /*
   1258  * handle (page) unaligned read from nand
   1259  */
   1260 static int
   1261 nand_flash_read_unaligned(device_t self, size_t offset,
   1262     size_t len, size_t *retlen, uint8_t *buf)
   1263 {
   1264 	struct nand_softc *sc = device_private(self);
   1265 	struct nand_chip *chip = &sc->sc_chip;
   1266 	daddr_t first, last, count, firstoff;
   1267 	uint8_t *bufp;
   1268 	daddr_t addr;
   1269 	size_t left;
   1270 	int error = 0, i;
   1271 
   1272 	first = offset & chip->nc_page_mask;
   1273 	firstoff = offset & ~chip->nc_page_mask;
   1274 	last = (offset + len) & chip->nc_page_mask;
   1275 	count = (last - first) / chip->nc_page_size + 1;
   1276 
   1277 	addr = first;
   1278 	bufp = buf;
   1279 	left = len;
   1280 	*retlen = 0;
   1281 
   1282 	mutex_enter(&sc->sc_device_lock);
   1283 	if (count == 1) {
   1284 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1285 		if (error) {
   1286 			goto out;
   1287 		}
   1288 
   1289 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1290 
   1291 		*retlen = len;
   1292 		goto out;
   1293 	}
   1294 
   1295 	for (i = 0; i < count && left != 0; i++) {
   1296 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1297 		if (error) {
   1298 			goto out;
   1299 		}
   1300 
   1301 		if (i == 0) {
   1302 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1303 			    chip->nc_page_size - firstoff);
   1304 
   1305 			bufp += chip->nc_page_size - firstoff;
   1306 			left -= chip->nc_page_size - firstoff;
   1307 			*retlen += chip->nc_page_size - firstoff;
   1308 
   1309 		} else if (i == count - 1) {
   1310 			memcpy(bufp, chip->nc_page_cache, left);
   1311 			*retlen += left;
   1312 			KASSERT(left < chip->nc_page_size);
   1313 
   1314 		} else {
   1315 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1316 
   1317 			bufp += chip->nc_page_size;
   1318 			left -= chip->nc_page_size;
   1319 			*retlen += chip->nc_page_size;
   1320 		}
   1321 
   1322 		addr += chip->nc_page_size;
   1323 	}
   1324 	KASSERT(*retlen == len);
   1325 out:
   1326 	mutex_exit(&sc->sc_device_lock);
   1327 
   1328 	return error;
   1329 }
   1330 
   1331 int
   1332 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1333     uint8_t *buf)
   1334 {
   1335 	struct nand_softc *sc = device_private(self);
   1336 	struct nand_chip *chip = &sc->sc_chip;
   1337 	uint8_t *bufp;
   1338 	size_t addr;
   1339 	size_t i, pages;
   1340 	int error = 0;
   1341 
   1342 	*retlen = 0;
   1343 
   1344 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
   1345 		(uintmax_t)offset, len));
   1346 
   1347 	if (__predict_false((offset + len) > chip->nc_size)) {
   1348 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
   1349 			" is over device size (%ju)\n", (uintmax_t)offset,
   1350 			len, (uintmax_t)chip->nc_size));
   1351 		return EINVAL;
   1352 	}
   1353 
   1354 	/* Handle unaligned access, shouldnt be needed when using the
   1355 	 * block device, as strategy handles it, so only low level
   1356 	 * accesses will use this path
   1357 	 */
   1358 	/* XXX^2 */
   1359 #if 0
   1360 	if (len < chip->nc_page_size)
   1361 		panic("TODO page size is larger than read size");
   1362 #endif
   1363 
   1364 	if (len % chip->nc_page_size != 0 ||
   1365 	    offset % chip->nc_page_size != 0) {
   1366 		return nand_flash_read_unaligned(self,
   1367 		    offset, len, retlen, buf);
   1368 	}
   1369 
   1370 	bufp = buf;
   1371 	addr = offset;
   1372 	pages = len / chip->nc_page_size;
   1373 
   1374 	mutex_enter(&sc->sc_device_lock);
   1375 	for (i = 0; i < pages; i++) {
   1376 		/* XXX do we need this check here? */
   1377 		if (nand_isbad(self, addr)) {
   1378 			aprint_error_dev(self, "bad block encountered\n");
   1379 			error = EIO;
   1380 			goto out;
   1381 		}
   1382 		error = nand_read_page(self, addr, bufp);
   1383 		if (error)
   1384 			goto out;
   1385 
   1386 		bufp += chip->nc_page_size;
   1387 		addr += chip->nc_page_size;
   1388 		*retlen += chip->nc_page_size;
   1389 	}
   1390 out:
   1391 	mutex_exit(&sc->sc_device_lock);
   1392 
   1393 	return error;
   1394 }
   1395 
   1396 int
   1397 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
   1398 {
   1399 	struct nand_softc *sc = device_private(self);
   1400 	struct nand_chip *chip = &sc->sc_chip;
   1401 	bool result;
   1402 
   1403 	if (ofs > chip->nc_size) {
   1404 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1405 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1406 			(uintmax_t)chip->nc_size));
   1407 		return EINVAL;
   1408 	}
   1409 
   1410 	if (ofs % chip->nc_block_size != 0) {
   1411 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
   1412 			"(%ju)",
   1413 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
   1414 		return EINVAL;
   1415 	}
   1416 
   1417 	mutex_enter(&sc->sc_device_lock);
   1418 	result = nand_isbad(self, ofs);
   1419 	mutex_exit(&sc->sc_device_lock);
   1420 
   1421 	*is_bad = result;
   1422 
   1423 	return 0;
   1424 }
   1425 
   1426 int
   1427 nand_flash_markbad(device_t self, flash_off_t ofs)
   1428 {
   1429 	struct nand_softc *sc = device_private(self);
   1430 	struct nand_chip *chip = &sc->sc_chip;
   1431 
   1432 	if (ofs > chip->nc_size) {
   1433 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1434 			" device size (0x%jx)\n", ofs,
   1435 			(uintmax_t)chip->nc_size));
   1436 		return EINVAL;
   1437 	}
   1438 
   1439 	if (ofs % chip->nc_block_size != 0) {
   1440 		panic("offset (%ju) is not a multiple of block size (%ju)",
   1441 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1442 	}
   1443 
   1444 	mutex_enter(&sc->sc_device_lock);
   1445 	nand_markbad(self, ofs);
   1446 	mutex_exit(&sc->sc_device_lock);
   1447 
   1448 	return 0;
   1449 }
   1450 
   1451 int
   1452 nand_flash_erase(device_t self,
   1453     struct flash_erase_instruction *ei)
   1454 {
   1455 	struct nand_softc *sc = device_private(self);
   1456 	struct nand_chip *chip = &sc->sc_chip;
   1457 	flash_off_t addr;
   1458 	int error = 0;
   1459 
   1460 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1461 		return EINVAL;
   1462 
   1463 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1464 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1465 			" of the device\n"));
   1466 		return EINVAL;
   1467 	}
   1468 
   1469 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1470 		aprint_error_dev(self,
   1471 		    "nand_flash_erase: ei_addr (%ju) is not"
   1472 		    " a multiple of block size (%ju)",
   1473 		    (uintmax_t)ei->ei_addr,
   1474 		    (uintmax_t)chip->nc_block_size);
   1475 		return EINVAL;
   1476 	}
   1477 
   1478 	if (ei->ei_len % chip->nc_block_size != 0) {
   1479 		aprint_error_dev(self,
   1480 		    "nand_flash_erase: ei_len (%ju) is not"
   1481 		    " a multiple of block size (%ju)",
   1482 		    (uintmax_t)ei->ei_len,
   1483 		    (uintmax_t)chip->nc_block_size);
   1484 		return EINVAL;
   1485 	}
   1486 
   1487 	mutex_enter(&sc->sc_device_lock);
   1488 	addr = ei->ei_addr;
   1489 	while (addr < ei->ei_addr + ei->ei_len) {
   1490 		if (nand_isbad(self, addr)) {
   1491 			aprint_error_dev(self, "bad block encountered\n");
   1492 			ei->ei_state = FLASH_ERASE_FAILED;
   1493 			error = EIO;
   1494 			goto out;
   1495 		}
   1496 
   1497 		error = nand_erase_block(self, addr);
   1498 		if (error) {
   1499 			ei->ei_state = FLASH_ERASE_FAILED;
   1500 			goto out;
   1501 		}
   1502 
   1503 		addr += chip->nc_block_size;
   1504 	}
   1505 	mutex_exit(&sc->sc_device_lock);
   1506 
   1507 	ei->ei_state = FLASH_ERASE_DONE;
   1508 	if (ei->ei_callback != NULL) {
   1509 		ei->ei_callback(ei);
   1510 	}
   1511 
   1512 	return 0;
   1513 out:
   1514 	mutex_exit(&sc->sc_device_lock);
   1515 
   1516 	return error;
   1517 }
   1518 
   1519 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1520 
   1521 #ifdef _MODULE
   1522 #include "ioconf.c"
   1523 #endif
   1524 
   1525 static int
   1526 nand_modcmd(modcmd_t cmd, void *opaque)
   1527 {
   1528 	switch (cmd) {
   1529 	case MODULE_CMD_INIT:
   1530 #ifdef _MODULE
   1531 		return config_init_component(cfdriver_ioconf_nand,
   1532 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1533 #else
   1534 		return 0;
   1535 #endif
   1536 	case MODULE_CMD_FINI:
   1537 #ifdef _MODULE
   1538 		return config_fini_component(cfdriver_ioconf_nand,
   1539 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1540 #else
   1541 		return 0;
   1542 #endif
   1543 	default:
   1544 		return ENOTTY;
   1545 	}
   1546 }
   1547