nand.c revision 1.27.20.4 1 /* $NetBSD: nand.c,v 1.27.20.4 2021/04/04 22:01:22 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by the Department of Software Engineering, University of Szeged, Hungary
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.27.20.4 2021/04/04 22:01:22 thorpej Exp $");
38
39 #include "locators.h"
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/atomic.h>
46
47 #include <dev/flash/flash.h>
48 #include <dev/flash/flash_io.h>
49 #include <dev/nand/nand.h>
50 #include <dev/nand/onfi.h>
51 #include <dev/nand/hamming.h>
52 #include <dev/nand/nand_bbt.h>
53 #include <dev/nand/nand_crc.h>
54
55 #include "opt_nand.h"
56
57 int nand_match(device_t, cfdata_t, void *);
58 void nand_attach(device_t, device_t, void *);
59 int nand_detach(device_t, int);
60 bool nand_shutdown(device_t, int);
61
62 int nand_print(void *, const char *);
63
64 static int nand_search(device_t, cfdata_t, const int *, void *);
65 static void nand_address_row(device_t, size_t);
66 static inline uint8_t nand_get_status(device_t);
67 static void nand_address_column(device_t, size_t, size_t);
68 static int nand_fill_chip_structure(device_t, struct nand_chip *);
69 static int nand_scan_media(device_t, struct nand_chip *);
70 static bool nand_check_wp(device_t);
71
72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
73 nand_match, nand_attach, nand_detach, NULL);
74
75 #ifdef NAND_DEBUG
76 int nanddebug = NAND_DEBUG;
77 #endif
78
79 struct flash_interface nand_flash_if = {
80 .type = FLASH_TYPE_NAND,
81
82 .read = nand_flash_read,
83 .write = nand_flash_write,
84 .erase = nand_flash_erase,
85 .block_isbad = nand_flash_isbad,
86 .block_markbad = nand_flash_markbad,
87
88 .submit = nand_flash_submit
89 };
90
91 const struct nand_manufacturer nand_mfrs[] = {
92 { NAND_MFR_AMD, "AMD" },
93 { NAND_MFR_FUJITSU, "Fujitsu" },
94 { NAND_MFR_RENESAS, "Renesas" },
95 { NAND_MFR_STMICRO, "ST Micro" },
96 { NAND_MFR_MICRON, "Micron" },
97 { NAND_MFR_NATIONAL, "National" },
98 { NAND_MFR_TOSHIBA, "Toshiba" },
99 { NAND_MFR_HYNIX, "Hynix" },
100 { NAND_MFR_SAMSUNG, "Samsung" },
101 { NAND_MFR_UNKNOWN, "Unknown" }
102 };
103
104 static const char *
105 nand_midtoname(int id)
106 {
107 int i;
108
109 for (i = 0; nand_mfrs[i].id != 0; i++) {
110 if (nand_mfrs[i].id == id)
111 return nand_mfrs[i].name;
112 }
113
114 KASSERT(nand_mfrs[i].id == 0);
115
116 return nand_mfrs[i].name;
117 }
118
119 /* ARGSUSED */
120 int
121 nand_match(device_t parent, cfdata_t match, void *aux)
122 {
123 /* pseudo device, always attaches */
124 return 1;
125 }
126
127 void
128 nand_attach(device_t parent, device_t self, void *aux)
129 {
130 struct nand_softc *sc = device_private(self);
131 struct nand_attach_args *naa = aux;
132 struct nand_chip *chip = &sc->sc_chip;
133
134 sc->sc_dev = self;
135 sc->controller_dev = parent;
136 sc->nand_if = naa->naa_nand_if;
137
138 aprint_naive("\n");
139
140 if (nand_check_wp(self)) {
141 aprint_error("NAND chip is write protected!\n");
142 return;
143 }
144
145 if (nand_scan_media(self, chip)) {
146 return;
147 }
148
149 nand_flash_if.erasesize = chip->nc_block_size;
150 nand_flash_if.page_size = chip->nc_page_size;
151 nand_flash_if.writesize = chip->nc_page_size;
152
153 /* allocate cache */
154 chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
155 chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
156
157 mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
158
159 if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
160 goto error;
161 }
162
163 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
164 aprint_error_dev(sc->sc_dev,
165 "couldn't establish power handler\n");
166
167 #ifdef NAND_BBT
168 nand_bbt_init(self);
169 nand_bbt_scan(self);
170 #endif
171
172 /*
173 * Attach all our devices
174 */
175 config_search(self, NULL,
176 CFARG_SEARCH, nand_search,
177 CFARG_EOL);
178
179 return;
180 error:
181 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
182 kmem_free(chip->nc_page_cache, chip->nc_page_size);
183 mutex_destroy(&sc->sc_device_lock);
184 }
185
186 static int
187 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
188 {
189 struct nand_softc *sc = device_private(parent);
190 struct nand_chip *chip = &sc->sc_chip;
191 struct flash_attach_args faa;
192
193 if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0)
194 return 0;
195
196 faa.flash_if = &nand_flash_if;
197
198 faa.partinfo.part_name = NULL;
199 faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
200
201 if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
202 faa.partinfo.part_size = chip->nc_size -
203 faa.partinfo.part_offset;
204 } else {
205 faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
206 }
207
208 if (cf->cf_loc[FLASHBUSCF_READONLY])
209 faa.partinfo.part_flags = FLASH_PART_READONLY;
210 else
211 faa.partinfo.part_flags = 0;
212
213 if (config_match(parent, cf, &faa)) {
214 if (config_attach(parent, cf, &faa, nand_print,
215 CFARG_EOL) != NULL) {
216 return 0;
217 } else {
218 return 1;
219 }
220 }
221
222 return 1;
223 }
224
225 void
226 nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline)
227 {
228 struct nand_softc *sc = device_private(parent);
229 struct nand_chip *chip = &sc->sc_chip;
230
231 flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size,
232 mtd_id, cmdline);
233 }
234
235 int
236 nand_detach(device_t self, int flags)
237 {
238 struct nand_softc *sc = device_private(self);
239 struct nand_chip *chip = &sc->sc_chip;
240 int error = 0;
241
242 error = config_detach_children(self, flags);
243 if (error) {
244 return error;
245 }
246
247 flash_sync_thread_destroy(&sc->sc_flash_io);
248 #ifdef NAND_BBT
249 nand_bbt_detach(self);
250 #endif
251 /* free oob cache */
252 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
253 kmem_free(chip->nc_page_cache, chip->nc_page_size);
254 kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
255
256 mutex_destroy(&sc->sc_device_lock);
257
258 pmf_device_deregister(sc->sc_dev);
259
260 return error;
261 }
262
263 int
264 nand_print(void *aux, const char *pnp)
265 {
266 if (pnp != NULL)
267 aprint_normal("nand at %s\n", pnp);
268
269 return UNCONF;
270 }
271
272 /* ask for a nand driver to attach to the controller */
273 device_t
274 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
275 {
276 struct nand_attach_args arg;
277
278 KASSERT(nand_if != NULL);
279
280 /* fill the defaults if we have null pointers */
281 if (nand_if->program_page == NULL) {
282 nand_if->program_page = &nand_default_program_page;
283 }
284
285 if (nand_if->read_page == NULL) {
286 nand_if->read_page = &nand_default_read_page;
287 }
288
289 arg.naa_nand_if = nand_if;
290 return config_found(parent, &arg, nand_print,
291 CFARG_IATTR, "nandbus",
292 CFARG_EOL);
293 }
294
295 /* default everything to reasonable values, to ease future api changes */
296 void
297 nand_init_interface(struct nand_interface *interface)
298 {
299 interface->select = &nand_default_select;
300 interface->command = NULL;
301 interface->address = NULL;
302 interface->read_buf_1 = NULL;
303 interface->read_buf_2 = NULL;
304 interface->read_1 = NULL;
305 interface->read_2 = NULL;
306 interface->write_buf_1 = NULL;
307 interface->write_buf_2 = NULL;
308 interface->write_1 = NULL;
309 interface->write_2 = NULL;
310 interface->busy = NULL;
311
312 /*-
313 * most drivers dont want to change this, but some implement
314 * read/program in one step
315 */
316 interface->program_page = &nand_default_program_page;
317 interface->read_page = &nand_default_read_page;
318
319 /* default to soft ecc, that should work everywhere */
320 interface->ecc_compute = &nand_default_ecc_compute;
321 interface->ecc_correct = &nand_default_ecc_correct;
322 interface->ecc_prepare = NULL;
323 interface->ecc.necc_code_size = 3;
324 interface->ecc.necc_block_size = 256;
325 interface->ecc.necc_type = NAND_ECC_TYPE_SW;
326 }
327
328 #if 0
329 /* handle quirks here */
330 static void
331 nand_quirks(device_t self, struct nand_chip *chip)
332 {
333 /* this is an example only! */
334 switch (chip->nc_manf_id) {
335 case NAND_MFR_SAMSUNG:
336 if (chip->nc_dev_id == 0x00) {
337 /* do something only samsung chips need */
338 /* or */
339 /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
340 }
341 }
342
343 return;
344 }
345 #endif
346
347 static int
348 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
349 {
350 switch (chip->nc_manf_id) {
351 case NAND_MFR_MICRON:
352 return nand_read_parameters_micron(self, chip);
353 case NAND_MFR_SAMSUNG:
354 return nand_read_parameters_samsung(self, chip);
355 case NAND_MFR_TOSHIBA:
356 return nand_read_parameters_toshiba(self, chip);
357 default:
358 return 1;
359 }
360
361 return 0;
362 }
363
364 /**
365 * scan media to determine the chip's properties
366 * this function resets the device
367 */
368 static int
369 nand_scan_media(device_t self, struct nand_chip *chip)
370 {
371 struct nand_softc *sc = device_private(self);
372 struct nand_ecc *ecc;
373 uint8_t onfi_signature[4];
374
375 nand_select(self, true);
376 nand_command(self, ONFI_RESET);
377 KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
378 nand_select(self, false);
379
380 /* check if the device implements the ONFI standard */
381 nand_select(self, true);
382 nand_command(self, ONFI_READ_ID);
383 nand_address(self, 0x20);
384 nand_read_1(self, &onfi_signature[0]);
385 nand_read_1(self, &onfi_signature[1]);
386 nand_read_1(self, &onfi_signature[2]);
387 nand_read_1(self, &onfi_signature[3]);
388 nand_select(self, false);
389
390 #ifdef NAND_DEBUG
391 device_printf(self, "signature: %02x %02x %02x %02x\n",
392 onfi_signature[0], onfi_signature[1],
393 onfi_signature[2], onfi_signature[3]);
394 #endif
395
396 if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
397 onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
398 chip->nc_isonfi = false;
399
400 aprint_normal(": Legacy NAND Flash\n");
401
402 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
403
404 if (nand_fill_chip_structure_legacy(self, chip)) {
405 aprint_error_dev(self,
406 "can't read device parameters for legacy chip\n");
407 return 1;
408 }
409 } else {
410 chip->nc_isonfi = true;
411
412 aprint_normal(": ONFI NAND Flash\n");
413
414 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
415
416 if (nand_fill_chip_structure(self, chip)) {
417 aprint_error_dev(self,
418 "can't read device parameters\n");
419 return 1;
420 }
421 }
422
423 aprint_normal_dev(self,
424 "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
425 chip->nc_manf_id,
426 nand_midtoname(chip->nc_manf_id),
427 chip->nc_dev_id);
428
429 aprint_normal_dev(self,
430 "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
431 "block size: %" PRIu32 " bytes\n",
432 chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
433
434 aprint_normal_dev(self,
435 "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
436 ", total storage size: %" PRIu64 " MB\n",
437 chip->nc_lun_blocks, chip->nc_num_luns,
438 chip->nc_size / 1024 / 1024);
439
440 aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
441 PRIu8 ", width: %s\n",
442 chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
443 (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
444
445 ecc = chip->nc_ecc = &sc->nand_if->ecc;
446
447 /*
448 * calculate the place of ecc data in oob
449 * we try to be compatible with Linux here
450 */
451 switch (chip->nc_spare_size) {
452 case 8:
453 ecc->necc_offset = 0;
454 break;
455 case 16:
456 ecc->necc_offset = 0;
457 break;
458 case 32:
459 ecc->necc_offset = 0;
460 break;
461 case 64:
462 ecc->necc_offset = 40;
463 break;
464 case 128:
465 ecc->necc_offset = 80;
466 break;
467 default:
468 panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
469 }
470
471 ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
472 ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
473
474 /* check if we fit in oob */
475 if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
476 panic("NAND ECC bits dont fit in OOB");
477 }
478
479 /* TODO: mark free oob area available for file systems */
480
481 chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
482
483 /*
484 * calculate badblock marker offset in oob
485 * we try to be compatible with linux here
486 */
487 if (chip->nc_page_size > 512)
488 chip->nc_badmarker_offs = 0;
489 else
490 chip->nc_badmarker_offs = 5;
491
492 /* Calculate page shift and mask */
493 chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
494 chip->nc_page_mask = ~(chip->nc_page_size - 1);
495 /* same for block */
496 chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
497 chip->nc_block_mask = ~(chip->nc_block_size - 1);
498
499 /* look for quirks here if needed in future */
500 /* nand_quirks(self, chip); */
501
502 return 0;
503 }
504
505 void
506 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
507 {
508 nand_select(self, true);
509 nand_command(self, ONFI_READ_ID);
510 nand_address(self, 0x00);
511
512 nand_read_1(self, manf);
513 nand_read_1(self, dev);
514
515 nand_select(self, false);
516 }
517
518 int
519 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
520 {
521 uint8_t *bufp;
522 uint16_t crc;
523 int i;//, tries = 0;
524
525 KASSERT(sizeof(*params) == 256);
526
527 //read_params:
528 // tries++;
529
530 nand_select(self, true);
531 nand_command(self, ONFI_READ_PARAMETER_PAGE);
532 nand_address(self, 0x00);
533
534 nand_busy(self);
535
536 /* TODO check the signature if it contains at least 2 letters */
537
538 bufp = (uint8_t *)params;
539 /* XXX why i am not using read_buf? */
540 for (i = 0; i < 256; i++) {
541 nand_read_1(self, &bufp[i]);
542 }
543 nand_select(self, false);
544
545 /* validate the parameter page with the crc */
546 crc = nand_crc16(bufp, 254);
547
548 if (crc != params->param_integrity_crc) {
549 aprint_error_dev(self, "parameter page crc check failed\n");
550 /* TODO: we should read the next parameter page copy */
551 return 1;
552 }
553
554 return 0;
555 }
556
557 static int
558 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
559 {
560 struct onfi_parameter_page params;
561 uint8_t vendor[13], model[21];
562 int i;
563
564 if (nand_read_parameter_page(self, ¶ms)) {
565 return 1;
566 }
567
568 /* strip manufacturer and model string */
569 strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
570 for (i = 11; i > 0 && vendor[i] == ' '; i--)
571 vendor[i] = 0;
572 strlcpy(model, params.param_model, sizeof(model));
573 for (i = 19; i > 0 && model[i] == ' '; i--)
574 model[i] = 0;
575
576 aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
577
578 chip->nc_page_size = le32toh(params.param_pagesize);
579 chip->nc_block_size =
580 le32toh(params.param_blocksize) * chip->nc_page_size;
581 chip->nc_spare_size = le16toh(params.param_sparesize);
582 chip->nc_lun_blocks = le32toh(params.param_lunsize);
583 chip->nc_num_luns = params.param_numluns;
584
585 chip->nc_size =
586 chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
587
588 /* the lower 4 bits contain the row address cycles */
589 chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
590 /* the upper 4 bits contain the column address cycles */
591 chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
592
593 uint16_t features = le16toh(params.param_features);
594 if (features & ONFI_FEATURE_16BIT) {
595 chip->nc_flags |= NC_BUSWIDTH_16;
596 }
597
598 if (features & ONFI_FEATURE_EXTENDED_PARAM) {
599 chip->nc_flags |= NC_EXTENDED_PARAM;
600 }
601
602 return 0;
603 }
604
605 /* ARGSUSED */
606 bool
607 nand_shutdown(device_t self, int howto)
608 {
609 return true;
610 }
611
612 static void
613 nand_address_column(device_t self, size_t row, size_t column)
614 {
615 struct nand_softc *sc = device_private(self);
616 struct nand_chip *chip = &sc->sc_chip;
617 uint8_t i;
618
619 DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
620 (uintmax_t )row, column));
621
622 /* XXX TODO */
623 row >>= chip->nc_page_shift;
624
625 /* Write the column (subpage) address */
626 if (chip->nc_flags & NC_BUSWIDTH_16)
627 column >>= 1;
628 for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
629 nand_address(self, column & 0xff);
630
631 /* Write the row (page) address */
632 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
633 nand_address(self, row & 0xff);
634 }
635
636 static void
637 nand_address_row(device_t self, size_t row)
638 {
639 struct nand_softc *sc = device_private(self);
640 struct nand_chip *chip = &sc->sc_chip;
641 int i;
642
643 /* XXX TODO */
644 row >>= chip->nc_page_shift;
645
646 /* Write the row (page) address */
647 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
648 nand_address(self, row & 0xff);
649 }
650
651 static inline uint8_t
652 nand_get_status(device_t self)
653 {
654 uint8_t status;
655
656 nand_command(self, ONFI_READ_STATUS);
657 nand_busy(self);
658 nand_read_1(self, &status);
659
660 return status;
661 }
662
663 static bool
664 nand_check_wp(device_t self)
665 {
666 if (nand_get_status(self) & ONFI_STATUS_WP)
667 return false;
668 else
669 return true;
670 }
671
672 static void
673 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
674 {
675 nand_command(self, ONFI_READ);
676 nand_address_column(self, row, column);
677 nand_command(self, ONFI_READ_START);
678
679 nand_busy(self);
680 }
681
682 /* read a page with ecc correction, default implementation */
683 int
684 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
685 {
686 struct nand_softc *sc = device_private(self);
687 struct nand_chip *chip = &sc->sc_chip;
688 size_t b, bs, e, cs;
689 uint8_t *ecc;
690 int result;
691
692 nand_prepare_read(self, offset, 0);
693
694 bs = chip->nc_ecc->necc_block_size;
695 cs = chip->nc_ecc->necc_code_size;
696
697 /* decide if we access by 8 or 16 bits */
698 if (chip->nc_flags & NC_BUSWIDTH_16) {
699 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
700 nand_ecc_prepare(self, NAND_ECC_READ);
701 nand_read_buf_2(self, data + b, bs);
702 nand_ecc_compute(self, data + b,
703 chip->nc_ecc_cache + e);
704 }
705 } else {
706 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
707 nand_ecc_prepare(self, NAND_ECC_READ);
708 nand_read_buf_1(self, data + b, bs);
709 nand_ecc_compute(self, data + b,
710 chip->nc_ecc_cache + e);
711 }
712 }
713
714 /* for debugging new drivers */
715 #if 0
716 nand_dump_data("page", data, chip->nc_page_size);
717 #endif
718
719 nand_read_oob(self, offset, chip->nc_oob_cache);
720 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
721
722 /* useful for debugging new ecc drivers */
723 #if 0
724 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
725 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
726 printf("0x");
727 for (b = 0; b < cs; b++) {
728 printf("%.2hhx", ecc[e+b]);
729 }
730 printf(" 0x");
731 for (b = 0; b < cs; b++) {
732 printf("%.2hhx", chip->nc_ecc_cache[e+b]);
733 }
734 printf("\n");
735 }
736 printf("--------------\n");
737 #endif
738
739 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
740 result = nand_ecc_correct(self, data + b, ecc + e,
741 chip->nc_ecc_cache + e);
742
743 switch (result) {
744 case NAND_ECC_OK:
745 break;
746 case NAND_ECC_CORRECTED:
747 aprint_error_dev(self,
748 "data corrected with ECC at page offset 0x%jx "
749 "block %zu\n", (uintmax_t)offset, b);
750 break;
751 case NAND_ECC_TWOBIT:
752 aprint_error_dev(self,
753 "uncorrectable ECC error at page offset 0x%jx "
754 "block %zu\n", (uintmax_t)offset, b);
755 return EIO;
756 break;
757 case NAND_ECC_INVALID:
758 aprint_error_dev(self,
759 "invalid ECC in oob at page offset 0x%jx "
760 "block %zu\n", (uintmax_t)offset, b);
761 return EIO;
762 break;
763 default:
764 panic("invalid ECC correction errno");
765 }
766 }
767
768 return 0;
769 }
770
771 int
772 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
773 {
774 struct nand_softc *sc = device_private(self);
775 struct nand_chip *chip = &sc->sc_chip;
776 size_t bs, cs, e, b;
777 uint8_t status;
778 uint8_t *ecc;
779
780 nand_command(self, ONFI_PAGE_PROGRAM);
781 nand_address_column(self, page, 0);
782
783 nand_busy(self);
784
785 bs = chip->nc_ecc->necc_block_size;
786 cs = chip->nc_ecc->necc_code_size;
787 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
788
789 /* XXX code duplication */
790 /* decide if we access by 8 or 16 bits */
791 if (chip->nc_flags & NC_BUSWIDTH_16) {
792 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
793 nand_ecc_prepare(self, NAND_ECC_WRITE);
794 nand_write_buf_2(self, data + b, bs);
795 nand_ecc_compute(self, data + b, ecc + e);
796 }
797 /* write oob with ecc correction code */
798 nand_write_buf_2(self, chip->nc_oob_cache,
799 chip->nc_spare_size);
800 } else {
801 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
802 nand_ecc_prepare(self, NAND_ECC_WRITE);
803 nand_write_buf_1(self, data + b, bs);
804 nand_ecc_compute(self, data + b, ecc + e);
805 }
806 /* write oob with ecc correction code */
807 nand_write_buf_1(self, chip->nc_oob_cache,
808 chip->nc_spare_size);
809 }
810
811 nand_command(self, ONFI_PAGE_PROGRAM_START);
812
813 nand_busy(self);
814
815 /* for debugging ecc */
816 #if 0
817 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
818 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
819 printf("0x");
820 for (b = 0; b < cs; b++) {
821 printf("%.2hhx", ecc[e+b]);
822 }
823 printf("\n");
824 }
825 printf("--------------\n");
826 #endif
827
828 status = nand_get_status(self);
829 KASSERT(status & ONFI_STATUS_RDY);
830 if (status & ONFI_STATUS_FAIL) {
831 aprint_error_dev(self, "page program failed!\n");
832 return EIO;
833 }
834
835 return 0;
836 }
837
838 /* read the OOB of a page */
839 int
840 nand_read_oob(device_t self, size_t page, uint8_t *oob)
841 {
842 struct nand_softc *sc = device_private(self);
843 struct nand_chip *chip = &sc->sc_chip;
844
845 nand_prepare_read(self, page, chip->nc_page_size);
846
847 if (chip->nc_flags & NC_BUSWIDTH_16)
848 nand_read_buf_2(self, oob, chip->nc_spare_size);
849 else
850 nand_read_buf_1(self, oob, chip->nc_spare_size);
851
852 /* for debugging drivers */
853 #if 0
854 nand_dump_data("oob", oob, chip->nc_spare_size);
855 #endif
856
857 return 0;
858 }
859
860 static int
861 nand_write_oob(device_t self, size_t offset, const void *oob)
862 {
863 struct nand_softc *sc = device_private(self);
864 struct nand_chip *chip = &sc->sc_chip;
865 uint8_t status;
866
867 nand_command(self, ONFI_PAGE_PROGRAM);
868 nand_address_column(self, offset, chip->nc_page_size);
869 nand_command(self, ONFI_PAGE_PROGRAM_START);
870
871 nand_busy(self);
872
873 if (chip->nc_flags & NC_BUSWIDTH_16)
874 nand_write_buf_2(self, oob, chip->nc_spare_size);
875 else
876 nand_write_buf_1(self, oob, chip->nc_spare_size);
877
878 status = nand_get_status(self);
879 KASSERT(status & ONFI_STATUS_RDY);
880 if (status & ONFI_STATUS_FAIL)
881 return EIO;
882 else
883 return 0;
884 }
885
886 void
887 nand_markbad(device_t self, size_t offset)
888 {
889 struct nand_softc *sc = device_private(self);
890 struct nand_chip *chip = &sc->sc_chip;
891 flash_off_t blockoffset;
892 #ifdef NAND_BBT
893 flash_off_t block;
894
895 block = offset / chip->nc_block_size;
896
897 nand_bbt_block_markbad(self, block);
898 #endif
899 blockoffset = offset & chip->nc_block_mask;
900
901 /* check if it is already marked bad */
902 if (nand_isbad(self, blockoffset))
903 return;
904
905 nand_read_oob(self, blockoffset, chip->nc_oob_cache);
906
907 chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
908 chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
909
910 nand_write_oob(self, blockoffset, chip->nc_oob_cache);
911 }
912
913 bool
914 nand_isfactorybad(device_t self, flash_off_t offset)
915 {
916 struct nand_softc *sc = device_private(self);
917 struct nand_chip *chip = &sc->sc_chip;
918 flash_off_t block, first_page, last_page, page;
919 int i;
920
921 /* Check for factory bad blocks first
922 * Factory bad blocks are marked in the first or last
923 * page of the blocks, see: ONFI 2.2, 3.2.2.
924 */
925 block = offset / chip->nc_block_size;
926 first_page = block * chip->nc_block_size;
927 last_page = (block + 1) * chip->nc_block_size
928 - chip->nc_page_size;
929
930 for (i = 0, page = first_page; i < 2; i++, page = last_page) {
931 /* address OOB */
932 nand_prepare_read(self, page, chip->nc_page_size);
933
934 if (chip->nc_flags & NC_BUSWIDTH_16) {
935 uint16_t word;
936 nand_read_2(self, &word);
937 if (word == 0x0000)
938 return true;
939 } else {
940 uint8_t byte;
941 nand_read_1(self, &byte);
942 if (byte == 0x00)
943 return true;
944 }
945 }
946
947 return false;
948 }
949
950 bool
951 nand_iswornoutbad(device_t self, flash_off_t offset)
952 {
953 struct nand_softc *sc = device_private(self);
954 struct nand_chip *chip = &sc->sc_chip;
955 flash_off_t block;
956
957 /* we inspect the first page of the block */
958 block = offset & chip->nc_block_mask;
959
960 /* Linux/u-boot compatible badblock handling */
961 if (chip->nc_flags & NC_BUSWIDTH_16) {
962 uint16_t word, mark;
963
964 nand_prepare_read(self, block,
965 chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
966
967 nand_read_2(self, &word);
968 mark = htole16(word);
969 if (chip->nc_badmarker_offs & 0x01)
970 mark >>= 8;
971 if ((mark & 0xff) != 0xff)
972 return true;
973 } else {
974 uint8_t byte;
975
976 nand_prepare_read(self, block,
977 chip->nc_page_size + chip->nc_badmarker_offs);
978
979 nand_read_1(self, &byte);
980 if (byte != 0xff)
981 return true;
982 }
983
984 return false;
985 }
986
987 bool
988 nand_isbad(device_t self, flash_off_t offset)
989 {
990 #ifdef NAND_BBT
991 struct nand_softc *sc = device_private(self);
992 struct nand_chip *chip = &sc->sc_chip;
993 flash_off_t block;
994
995 block = offset / chip->nc_block_size;
996
997 return nand_bbt_block_isbad(self, block);
998 #else
999 /* ONFI host requirement */
1000 if (nand_isfactorybad(self, offset))
1001 return true;
1002
1003 /* Look for Linux/U-Boot compatible bad marker */
1004 if (nand_iswornoutbad(self, offset))
1005 return true;
1006
1007 return false;
1008 #endif
1009 }
1010
1011 int
1012 nand_erase_block(device_t self, size_t offset)
1013 {
1014 uint8_t status;
1015
1016 /* xxx calculate first page of block for address? */
1017
1018 nand_command(self, ONFI_BLOCK_ERASE);
1019 nand_address_row(self, offset);
1020 nand_command(self, ONFI_BLOCK_ERASE_START);
1021
1022 nand_busy(self);
1023
1024 status = nand_get_status(self);
1025 KASSERT(status & ONFI_STATUS_RDY);
1026 if (status & ONFI_STATUS_FAIL) {
1027 aprint_error_dev(self, "block erase failed!\n");
1028 nand_markbad(self, offset);
1029 return EIO;
1030 } else {
1031 return 0;
1032 }
1033 }
1034
1035 /* default functions for driver development */
1036
1037 /* default ECC using hamming code of 256 byte chunks */
1038 int
1039 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1040 {
1041 hamming_compute_256(data, code);
1042
1043 return 0;
1044 }
1045
1046 int
1047 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1048 const uint8_t *compcode)
1049 {
1050 return hamming_correct_256(data, origcode, compcode);
1051 }
1052
1053 void
1054 nand_default_select(device_t self, bool enable)
1055 {
1056 /* do nothing */
1057 return;
1058 }
1059
1060 /* implementation of the block device API */
1061
1062 int
1063 nand_flash_submit(device_t self, struct buf * const bp)
1064 {
1065 struct nand_softc *sc = device_private(self);
1066
1067 return flash_io_submit(&sc->sc_flash_io, bp);
1068 }
1069
1070 /*
1071 * handle (page) unaligned write to nand
1072 */
1073 static int
1074 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1075 size_t *retlen, const uint8_t *buf)
1076 {
1077 struct nand_softc *sc = device_private(self);
1078 struct nand_chip *chip = &sc->sc_chip;
1079 flash_off_t first, last, firstoff;
1080 const uint8_t *bufp;
1081 flash_off_t addr;
1082 size_t left, count;
1083 int error = 0, i;
1084
1085 first = offset & chip->nc_page_mask;
1086 firstoff = offset & ~chip->nc_page_mask;
1087 /* XXX check if this should be len - 1 */
1088 last = (offset + len) & chip->nc_page_mask;
1089 count = last - first + 1;
1090
1091 addr = first;
1092 *retlen = 0;
1093
1094 mutex_enter(&sc->sc_device_lock);
1095 if (count == 1) {
1096 if (nand_isbad(self, addr)) {
1097 aprint_error_dev(self,
1098 "nand_flash_write_unaligned: "
1099 "bad block encountered\n");
1100 error = EIO;
1101 goto out;
1102 }
1103
1104 error = nand_read_page(self, addr, chip->nc_page_cache);
1105 if (error) {
1106 goto out;
1107 }
1108
1109 memcpy(chip->nc_page_cache + firstoff, buf, len);
1110
1111 error = nand_program_page(self, addr, chip->nc_page_cache);
1112 if (error) {
1113 goto out;
1114 }
1115
1116 *retlen = len;
1117 goto out;
1118 }
1119
1120 bufp = buf;
1121 left = len;
1122
1123 for (i = 0; i < count && left != 0; i++) {
1124 if (nand_isbad(self, addr)) {
1125 aprint_error_dev(self,
1126 "nand_flash_write_unaligned: "
1127 "bad block encountered\n");
1128 error = EIO;
1129 goto out;
1130 }
1131
1132 if (i == 0) {
1133 error = nand_read_page(self,
1134 addr, chip->nc_page_cache);
1135 if (error) {
1136 goto out;
1137 }
1138
1139 memcpy(chip->nc_page_cache + firstoff,
1140 bufp, chip->nc_page_size - firstoff);
1141
1142 printf("program page: %s: %d\n", __FILE__, __LINE__);
1143 error = nand_program_page(self,
1144 addr, chip->nc_page_cache);
1145 if (error) {
1146 goto out;
1147 }
1148
1149 bufp += chip->nc_page_size - firstoff;
1150 left -= chip->nc_page_size - firstoff;
1151 *retlen += chip->nc_page_size - firstoff;
1152
1153 } else if (i == count - 1) {
1154 error = nand_read_page(self,
1155 addr, chip->nc_page_cache);
1156 if (error) {
1157 goto out;
1158 }
1159
1160 memcpy(chip->nc_page_cache, bufp, left);
1161
1162 error = nand_program_page(self,
1163 addr, chip->nc_page_cache);
1164 if (error) {
1165 goto out;
1166 }
1167
1168 *retlen += left;
1169 KASSERT(left < chip->nc_page_size);
1170
1171 } else {
1172 /* XXX debug */
1173 if (left > chip->nc_page_size) {
1174 printf("left: %zu, i: %d, count: %zu\n",
1175 left, i, count);
1176 }
1177 KASSERT(left > chip->nc_page_size);
1178
1179 error = nand_program_page(self, addr, bufp);
1180 if (error) {
1181 goto out;
1182 }
1183
1184 bufp += chip->nc_page_size;
1185 left -= chip->nc_page_size;
1186 *retlen += chip->nc_page_size;
1187 }
1188
1189 addr += chip->nc_page_size;
1190 }
1191
1192 KASSERT(*retlen == len);
1193 out:
1194 mutex_exit(&sc->sc_device_lock);
1195
1196 return error;
1197 }
1198
1199 int
1200 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1201 const uint8_t *buf)
1202 {
1203 struct nand_softc *sc = device_private(self);
1204 struct nand_chip *chip = &sc->sc_chip;
1205 const uint8_t *bufp;
1206 size_t pages, page;
1207 daddr_t addr;
1208 int error = 0;
1209
1210 if ((offset + len) > chip->nc_size) {
1211 DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1212 " is over device size (0x%jx)\n",
1213 (uintmax_t)offset, (uintmax_t)len,
1214 (uintmax_t)chip->nc_size));
1215 return EINVAL;
1216 }
1217
1218 if (len % chip->nc_page_size != 0 ||
1219 offset % chip->nc_page_size != 0) {
1220 return nand_flash_write_unaligned(self,
1221 offset, len, retlen, buf);
1222 }
1223
1224 pages = len / chip->nc_page_size;
1225 KASSERT(pages != 0);
1226 *retlen = 0;
1227
1228 addr = offset;
1229 bufp = buf;
1230
1231 mutex_enter(&sc->sc_device_lock);
1232 for (page = 0; page < pages; page++) {
1233 /* do we need this check here? */
1234 if (nand_isbad(self, addr)) {
1235 aprint_error_dev(self,
1236 "nand_flash_write: bad block encountered\n");
1237
1238 error = EIO;
1239 goto out;
1240 }
1241
1242 error = nand_program_page(self, addr, bufp);
1243 if (error) {
1244 goto out;
1245 }
1246
1247 addr += chip->nc_page_size;
1248 bufp += chip->nc_page_size;
1249 *retlen += chip->nc_page_size;
1250 }
1251 out:
1252 mutex_exit(&sc->sc_device_lock);
1253 DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
1254
1255 return error;
1256 }
1257
1258 /*
1259 * handle (page) unaligned read from nand
1260 */
1261 static int
1262 nand_flash_read_unaligned(device_t self, size_t offset,
1263 size_t len, size_t *retlen, uint8_t *buf)
1264 {
1265 struct nand_softc *sc = device_private(self);
1266 struct nand_chip *chip = &sc->sc_chip;
1267 daddr_t first, last, count, firstoff;
1268 uint8_t *bufp;
1269 daddr_t addr;
1270 size_t left;
1271 int error = 0, i;
1272
1273 first = offset & chip->nc_page_mask;
1274 firstoff = offset & ~chip->nc_page_mask;
1275 last = (offset + len) & chip->nc_page_mask;
1276 count = (last - first) / chip->nc_page_size + 1;
1277
1278 addr = first;
1279 bufp = buf;
1280 left = len;
1281 *retlen = 0;
1282
1283 mutex_enter(&sc->sc_device_lock);
1284 if (count == 1) {
1285 error = nand_read_page(self, addr, chip->nc_page_cache);
1286 if (error) {
1287 goto out;
1288 }
1289
1290 memcpy(bufp, chip->nc_page_cache + firstoff, len);
1291
1292 *retlen = len;
1293 goto out;
1294 }
1295
1296 for (i = 0; i < count && left != 0; i++) {
1297 error = nand_read_page(self, addr, chip->nc_page_cache);
1298 if (error) {
1299 goto out;
1300 }
1301
1302 if (i == 0) {
1303 memcpy(bufp, chip->nc_page_cache + firstoff,
1304 chip->nc_page_size - firstoff);
1305
1306 bufp += chip->nc_page_size - firstoff;
1307 left -= chip->nc_page_size - firstoff;
1308 *retlen += chip->nc_page_size - firstoff;
1309
1310 } else if (i == count - 1) {
1311 memcpy(bufp, chip->nc_page_cache, left);
1312 *retlen += left;
1313 KASSERT(left < chip->nc_page_size);
1314
1315 } else {
1316 memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1317
1318 bufp += chip->nc_page_size;
1319 left -= chip->nc_page_size;
1320 *retlen += chip->nc_page_size;
1321 }
1322
1323 addr += chip->nc_page_size;
1324 }
1325 KASSERT(*retlen == len);
1326 out:
1327 mutex_exit(&sc->sc_device_lock);
1328
1329 return error;
1330 }
1331
1332 int
1333 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1334 uint8_t *buf)
1335 {
1336 struct nand_softc *sc = device_private(self);
1337 struct nand_chip *chip = &sc->sc_chip;
1338 uint8_t *bufp;
1339 size_t addr;
1340 size_t i, pages;
1341 int error = 0;
1342
1343 *retlen = 0;
1344
1345 DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
1346 (uintmax_t)offset, len));
1347
1348 if (__predict_false((offset + len) > chip->nc_size)) {
1349 DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
1350 " is over device size (%ju)\n", (uintmax_t)offset,
1351 len, (uintmax_t)chip->nc_size));
1352 return EINVAL;
1353 }
1354
1355 /* Handle unaligned access, shouldnt be needed when using the
1356 * block device, as strategy handles it, so only low level
1357 * accesses will use this path
1358 */
1359 /* XXX^2 */
1360 #if 0
1361 if (len < chip->nc_page_size)
1362 panic("TODO page size is larger than read size");
1363 #endif
1364
1365 if (len % chip->nc_page_size != 0 ||
1366 offset % chip->nc_page_size != 0) {
1367 return nand_flash_read_unaligned(self,
1368 offset, len, retlen, buf);
1369 }
1370
1371 bufp = buf;
1372 addr = offset;
1373 pages = len / chip->nc_page_size;
1374
1375 mutex_enter(&sc->sc_device_lock);
1376 for (i = 0; i < pages; i++) {
1377 /* XXX do we need this check here? */
1378 if (nand_isbad(self, addr)) {
1379 aprint_error_dev(self, "bad block encountered\n");
1380 error = EIO;
1381 goto out;
1382 }
1383 error = nand_read_page(self, addr, bufp);
1384 if (error)
1385 goto out;
1386
1387 bufp += chip->nc_page_size;
1388 addr += chip->nc_page_size;
1389 *retlen += chip->nc_page_size;
1390 }
1391 out:
1392 mutex_exit(&sc->sc_device_lock);
1393
1394 return error;
1395 }
1396
1397 int
1398 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
1399 {
1400 struct nand_softc *sc = device_private(self);
1401 struct nand_chip *chip = &sc->sc_chip;
1402 bool result;
1403
1404 if (ofs > chip->nc_size) {
1405 DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1406 " device size (0x%jx)\n", (uintmax_t)ofs,
1407 (uintmax_t)chip->nc_size));
1408 return EINVAL;
1409 }
1410
1411 if (ofs % chip->nc_block_size != 0) {
1412 DPRINTF(("offset (0x%jx) is not a multiple of block size "
1413 "(%ju)",
1414 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1415 return EINVAL;
1416 }
1417
1418 mutex_enter(&sc->sc_device_lock);
1419 result = nand_isbad(self, ofs);
1420 mutex_exit(&sc->sc_device_lock);
1421
1422 *is_bad = result;
1423
1424 return 0;
1425 }
1426
1427 int
1428 nand_flash_markbad(device_t self, flash_off_t ofs)
1429 {
1430 struct nand_softc *sc = device_private(self);
1431 struct nand_chip *chip = &sc->sc_chip;
1432
1433 if (ofs > chip->nc_size) {
1434 DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1435 " device size (0x%jx)\n", ofs,
1436 (uintmax_t)chip->nc_size));
1437 return EINVAL;
1438 }
1439
1440 if (ofs % chip->nc_block_size != 0) {
1441 panic("offset (%ju) is not a multiple of block size (%ju)",
1442 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1443 }
1444
1445 mutex_enter(&sc->sc_device_lock);
1446 nand_markbad(self, ofs);
1447 mutex_exit(&sc->sc_device_lock);
1448
1449 return 0;
1450 }
1451
1452 int
1453 nand_flash_erase(device_t self,
1454 struct flash_erase_instruction *ei)
1455 {
1456 struct nand_softc *sc = device_private(self);
1457 struct nand_chip *chip = &sc->sc_chip;
1458 flash_off_t addr;
1459 int error = 0;
1460
1461 if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1462 return EINVAL;
1463
1464 if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1465 DPRINTF(("nand_flash_erase: erase address is over the end"
1466 " of the device\n"));
1467 return EINVAL;
1468 }
1469
1470 if (ei->ei_addr % chip->nc_block_size != 0) {
1471 aprint_error_dev(self,
1472 "nand_flash_erase: ei_addr (%ju) is not"
1473 " a multiple of block size (%ju)",
1474 (uintmax_t)ei->ei_addr,
1475 (uintmax_t)chip->nc_block_size);
1476 return EINVAL;
1477 }
1478
1479 if (ei->ei_len % chip->nc_block_size != 0) {
1480 aprint_error_dev(self,
1481 "nand_flash_erase: ei_len (%ju) is not"
1482 " a multiple of block size (%ju)",
1483 (uintmax_t)ei->ei_len,
1484 (uintmax_t)chip->nc_block_size);
1485 return EINVAL;
1486 }
1487
1488 mutex_enter(&sc->sc_device_lock);
1489 addr = ei->ei_addr;
1490 while (addr < ei->ei_addr + ei->ei_len) {
1491 if (nand_isbad(self, addr)) {
1492 aprint_error_dev(self, "bad block encountered\n");
1493 ei->ei_state = FLASH_ERASE_FAILED;
1494 error = EIO;
1495 goto out;
1496 }
1497
1498 error = nand_erase_block(self, addr);
1499 if (error) {
1500 ei->ei_state = FLASH_ERASE_FAILED;
1501 goto out;
1502 }
1503
1504 addr += chip->nc_block_size;
1505 }
1506 mutex_exit(&sc->sc_device_lock);
1507
1508 ei->ei_state = FLASH_ERASE_DONE;
1509 if (ei->ei_callback != NULL) {
1510 ei->ei_callback(ei);
1511 }
1512
1513 return 0;
1514 out:
1515 mutex_exit(&sc->sc_device_lock);
1516
1517 return error;
1518 }
1519
1520 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1521
1522 #ifdef _MODULE
1523 #include "ioconf.c"
1524 #endif
1525
1526 static int
1527 nand_modcmd(modcmd_t cmd, void *opaque)
1528 {
1529 switch (cmd) {
1530 case MODULE_CMD_INIT:
1531 #ifdef _MODULE
1532 return config_init_component(cfdriver_ioconf_nand,
1533 cfattach_ioconf_nand, cfdata_ioconf_nand);
1534 #else
1535 return 0;
1536 #endif
1537 case MODULE_CMD_FINI:
1538 #ifdef _MODULE
1539 return config_fini_component(cfdriver_ioconf_nand,
1540 cfattach_ioconf_nand, cfdata_ioconf_nand);
1541 #else
1542 return 0;
1543 #endif
1544 default:
1545 return ENOTTY;
1546 }
1547 }
1548