Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.3
      1 /*	$NetBSD: nand.c,v 1.3 2011/03/09 10:05:08 ahoka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.3 2011/03/09 10:05:08 ahoka Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/sysctl.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/nand/nand.h>
     49 #include <dev/nand/onfi.h>
     50 #include <dev/nand/hamming.h>
     51 #include <dev/nand/nand_bbt.h>
     52 #include <dev/nand/nand_crc.h>
     53 
     54 #include "opt_nand.h"
     55 
     56 int nand_match(device_t, cfdata_t, void *);
     57 void nand_attach(device_t, device_t, void *);
     58 int nand_detach(device_t, int);
     59 bool nand_shutdown(device_t, int);
     60 
     61 int nand_print(void *, const char *);
     62 
     63 static int nand_search(device_t, cfdata_t, const int *, void *);
     64 static void nand_address_row(device_t, size_t);
     65 static void nand_address_column(device_t, size_t, size_t);
     66 static void nand_readid(device_t, struct nand_chip *);
     67 static void nand_read_parameter_page(device_t, struct nand_chip *);
     68 static const char *nand_midtoname(int);
     69 static int nand_scan_media(device_t, struct nand_chip *);
     70 static bool nand_check_wp(device_t);
     71 
     72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     73     nand_match, nand_attach, nand_detach, NULL);
     74 
     75 #ifdef NAND_DEBUG
     76 int	nanddebug = NAND_DEBUG;
     77 #endif
     78 
     79 int nand_cachesync_timeout = 1;
     80 int nand_cachesync_nodenum;
     81 
     82 const struct nand_manufacturer nand_mfrs[] = {
     83 	{ NAND_MFR_AMD,		"AMD" },
     84 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     85 	{ NAND_MFR_RENESAS,	"Renesas" },
     86 	{ NAND_MFR_STMICRO,	"ST Micro" },
     87 	{ NAND_MFR_MICRON,	"Micron" },
     88 	{ NAND_MFR_NATIONAL,	"National" },
     89 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     90 	{ NAND_MFR_HYNIX,	"Hynix" },
     91 	{ NAND_MFR_SAMSUNG,	"Samsung" },
     92 	{ NAND_MFR_UNKNOWN,	"Unknown" }
     93 };
     94 
     95 /* ARGSUSED */
     96 int
     97 nand_match(device_t parent, cfdata_t match, void *aux)
     98 {
     99 	/* pseudo device, always attaches */
    100 	return 1;
    101 }
    102 
    103 void
    104 nand_attach(device_t parent, device_t self, void *aux)
    105 {
    106 	struct nand_softc *sc = device_private(self);
    107 	struct nand_attach_args *naa = aux;
    108 	struct nand_chip *chip = &sc->sc_chip;
    109 
    110 	sc->sc_dev = self;
    111 	sc->nand_dev = parent;
    112 	sc->nand_if = naa->naa_nand_if;
    113 
    114 	aprint_naive("\n");
    115 
    116 	if (nand_check_wp(self)) {
    117 		aprint_error("NAND chip is write protected!\n");
    118 		return;
    119 	}
    120 
    121 	if (nand_scan_media(self, chip)) {
    122 		return;
    123 	}
    124 
    125 	/* allocate cache */
    126 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    127 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    128 
    129 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    130 
    131 	if (nand_sync_thread_start(self)) {
    132 		goto error;
    133 	}
    134 
    135 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    136 		aprint_error_dev(sc->sc_dev,
    137 		    "couldn't establish power handler\n");
    138 
    139 #ifdef NAND_BBT
    140 	nand_bbt_init(self);
    141 	nand_bbt_scan(self);
    142 #endif
    143 
    144 	/*
    145 	 * Attach all our devices
    146 	 */
    147 	config_search_ia(nand_search, self, NULL, NULL);
    148 
    149 	return;
    150 error:
    151 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    152 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    153 	mutex_destroy(&sc->sc_device_lock);
    154 }
    155 
    156 static int
    157 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    158 {
    159 	struct nand_softc *sc = device_private(parent);
    160 	struct nand_chip *chip = &sc->sc_chip;
    161 	struct flash_interface *flash_if;
    162 	struct flash_attach_args faa;
    163 
    164 	flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
    165 
    166 	flash_if->type = FLASH_TYPE_NAND;
    167 
    168 	flash_if->read = nand_flash_read;
    169 	flash_if->write = nand_flash_write;
    170 	flash_if->erase = nand_flash_erase;
    171 	flash_if->block_isbad = nand_flash_isbad;
    172 	flash_if->block_markbad = nand_flash_markbad;
    173 
    174 	flash_if->submit = nand_io_submit;
    175 
    176 	flash_if->erasesize = chip->nc_block_size;
    177 	flash_if->page_size = chip->nc_page_size;
    178 	flash_if->writesize = chip->nc_page_size;
    179 
    180 	flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    181 
    182 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    183 		flash_if->size = chip->nc_size -
    184 		    flash_if->partition.part_offset;
    185 		flash_if->partition.part_size = flash_if->size;
    186 	} else {
    187 		flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
    188 		flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    189 	}
    190 
    191 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    192 		flash_if->partition.part_flags = FLASH_PART_READONLY;
    193 	else
    194 		flash_if->partition.part_flags = 0;
    195 
    196 	faa.flash_if = flash_if;
    197 
    198 	if (config_match(parent, cf, &faa)) {
    199 		config_attach(parent, cf, &faa, nand_print);
    200 		return 0;
    201 	} else {
    202 		kmem_free(flash_if, sizeof(*flash_if));
    203 	}
    204 
    205 	return 1;
    206 }
    207 
    208 int
    209 nand_detach(device_t self, int flags)
    210 {
    211 	struct nand_softc *sc = device_private(self);
    212 	struct nand_chip *chip = &sc->sc_chip;
    213 	int ret = 0;
    214 
    215 #ifdef NAND_BBT
    216 	nand_bbt_detach(self);
    217 #endif
    218 	nand_sync_thread_stop(self);
    219 
    220 	/* free oob cache */
    221 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    222 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    223 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    224 
    225 	mutex_destroy(&sc->sc_device_lock);
    226 
    227 	pmf_device_deregister(sc->sc_dev);
    228 
    229 	return ret;
    230 }
    231 
    232 int
    233 nand_print(void *aux, const char *pnp)
    234 {
    235 	if (pnp != NULL)
    236 		aprint_normal("nand at %s\n", pnp);
    237 
    238 	return UNCONF;
    239 }
    240 
    241 device_t
    242 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    243 {
    244 	struct nand_attach_args arg;
    245 
    246 	KASSERT(nand_if != NULL);
    247 
    248 	arg.naa_nand_if = nand_if;
    249 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    250 }
    251 
    252 static const char *
    253 nand_midtoname(int id)
    254 {
    255 	int i;
    256 
    257 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    258 		if (nand_mfrs[i].id == id)
    259 			return nand_mfrs[i].name;
    260 	}
    261 
    262 	KASSERT(nand_mfrs[i].id == 0);
    263 
    264 	return nand_mfrs[i].name;
    265 }
    266 
    267 #if 0
    268 /* handle quirks here */
    269 static void
    270 nand_quirks(device_t self, struct nand_chip *chip)
    271 {
    272 	/* this is an example only! */
    273 	switch (chip->nc_manf_id) {
    274 	case NAND_MFR_SAMSUNG:
    275 		if (chip->nc_dev_id == 0x00) {
    276 			/* do something only samsung chips need */
    277 			/* or */
    278 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    279 		}
    280 	}
    281 
    282 	return;
    283 }
    284 #endif
    285 
    286 static int
    287 nand_read_legacy_parameters(device_t self, struct nand_chip *chip)
    288 {
    289 	switch (chip->nc_manf_id) {
    290 	case NAND_MFR_MICRON:
    291 		return nand_read_parameters_micron(self, chip);
    292 	default:
    293 		return 1;
    294 	}
    295 
    296 	return 0;
    297 }
    298 
    299 /**
    300  * scan media to determine the chip's properties
    301  * this function resets the device
    302  */
    303 static int
    304 nand_scan_media(device_t self, struct nand_chip *chip)
    305 {
    306 	struct nand_softc *sc = device_private(self);
    307 	struct nand_ecc *ecc;
    308 	uint8_t onfi_signature[4];
    309 
    310 	nand_select(self, true);
    311 	nand_command(self, ONFI_RESET);
    312 	nand_select(self, false);
    313 
    314 	/* check if the device implements the ONFI standard */
    315 	nand_select(self, true);
    316 	nand_command(self, ONFI_READ_ID);
    317 	nand_address(self, 0x20);
    318 	nand_read_byte(self, &onfi_signature[0]);
    319 	nand_read_byte(self, &onfi_signature[1]);
    320 	nand_read_byte(self, &onfi_signature[2]);
    321 	nand_read_byte(self, &onfi_signature[3]);
    322 	nand_select(self, false);
    323 
    324 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    325 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    326 		chip->nc_isonfi = false;
    327 
    328 		aprint_normal(": Legacy NAND Flash\n");
    329 
    330 		nand_readid(self, chip);
    331 
    332 		if (nand_read_legacy_parameters(self, chip)) {
    333 			aprint_error_dev(self,
    334 			    "can't read device parameters for legacy chip\n");
    335 			return 1;
    336 		}
    337 	} else {
    338 		chip->nc_isonfi = true;
    339 
    340 		aprint_normal(": ONFI NAND Flash\n");
    341 
    342 		nand_readid(self, chip);
    343 		nand_read_parameter_page(self, chip);
    344 	}
    345 
    346 #ifdef NAND_VERBOSE
    347 	aprint_normal_dev(self,
    348 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    349 	    chip->nc_manf_id,
    350 	    nand_midtoname(chip->nc_manf_id),
    351 	    chip->nc_dev_id);
    352 #endif
    353 
    354 	aprint_normal_dev(self,
    355 	   "page size: %u bytes, spare size: %u bytes, block size: %u bytes\n",
    356 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    357 
    358 	aprint_normal_dev(self,
    359 	    "LUN size: %u blocks, LUNs: %u, total storage size: %u MB\n",
    360 	    chip->nc_lun_blocks, chip->nc_num_luns,
    361 	    chip->nc_size / 1024 / 1024);
    362 
    363 #ifdef NAND_VERBOSE
    364 	aprint_normal_dev(self, "column cycles: %d, row cycles: %d\n",
    365 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
    366 #endif
    367 
    368 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    369 
    370 	/*
    371 	 * calculate the place of ecc data in oob
    372 	 * we try to be compatible with Linux here
    373 	 */
    374 	switch (chip->nc_spare_size) {
    375 	case 8:
    376 		ecc->necc_offset = 0;
    377 		break;
    378 	case 16:
    379 		ecc->necc_offset = 0;
    380 		break;
    381 	case 64:
    382 		ecc->necc_offset = 40;
    383 		break;
    384 	case 128:
    385 		ecc->necc_offset = 80;
    386 		break;
    387 	default:
    388 		panic("OOB size is unexpected");
    389 	}
    390 
    391 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    392 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    393 
    394 	/* check if we fit in oob */
    395 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    396 		panic("NAND ECC bits dont fit in OOB");
    397 	}
    398 
    399 	/* TODO: mark free oob area available for file systems */
    400 
    401 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    402 
    403 	/*
    404 	 * calculate badblock marker offset in oob
    405 	 * we try to be compatible with linux here
    406 	 */
    407 	if (chip->nc_page_size > 512)
    408 		chip->nc_badmarker_offs = 0;
    409 	else
    410 		chip->nc_badmarker_offs = 5;
    411 
    412 	/* Calculate page shift and mask */
    413 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    414 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    415 	/* same for block */
    416 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    417 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    418 
    419 	/* look for quirks here if needed in future */
    420 	/* nand_quirks(self, chip); */
    421 
    422 	return 0;
    423 }
    424 
    425 static void
    426 nand_readid(device_t self, struct nand_chip *chip)
    427 {
    428 	nand_select(self, true);
    429 	nand_command(self, ONFI_READ_ID);
    430 	nand_address(self, 0x00);
    431 
    432 	nand_read_byte(self, &chip->nc_manf_id);
    433 	nand_read_byte(self, &chip->nc_dev_id);
    434 
    435 	nand_select(self, false);
    436 }
    437 
    438 static void
    439 nand_read_parameter_page(device_t self, struct nand_chip *chip)
    440 {
    441 	struct onfi_parameter_page params;
    442 	uint8_t *bufp;
    443 	uint8_t	vendor[13], model[21];
    444 	uint16_t crc;
    445 	int i;
    446 
    447 	KASSERT(sizeof(params) == 256);
    448 
    449 	nand_select(self, true);
    450 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    451 	nand_address(self, 0x00);
    452 
    453 	nand_busy(self);
    454 
    455 	bufp = (uint8_t *)&params;
    456 	for (i = 0; i < 256; i++) {
    457 		nand_read_byte(self, &bufp[i]);
    458 	}
    459 	nand_select(self, false);
    460 
    461 	/* validate the parameter page with the crc */
    462 	crc = nand_crc16(bufp, 254);
    463 
    464 	if (crc != params.param_integrity_crc) {
    465 		aprint_error_dev(self, "parameter page crc check failed\n");
    466 		/* TODO: we should read the next parameter page copy */
    467 	}
    468 
    469 	/* strip manufacturer and model string */
    470 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    471 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    472 		vendor[i] = 0;
    473 	strlcpy(model, params.param_model, sizeof(model));
    474 	for (i = 19; i > 0 && model[i] == ' '; i--)
    475 		model[i] = 0;
    476 
    477 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    478 
    479 	/* XXX TODO multiple LUNs */
    480 	if (__predict_false(params.param_numluns != 1)) {
    481 		panic("more than one LUNs are not supported yet!\n");
    482 	}
    483 
    484 	chip->nc_size = params.param_pagesize * params.param_blocksize *
    485 	    params.param_lunsize * params.param_numluns;
    486 
    487 	chip->nc_page_size = params.param_pagesize;
    488 	chip->nc_block_pages = params.param_blocksize;
    489 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
    490 	chip->nc_spare_size = params.param_sparesize;
    491 	chip->nc_lun_blocks = params.param_lunsize;
    492 	chip->nc_num_luns = params.param_numluns;
    493 
    494 	/* the lower 4 bits contain the row address cycles */
    495 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    496 	/* the upper 4 bits contain the column address cycles */
    497 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    498 
    499 	if (params.param_features & ONFI_FEATURE_16BIT)
    500 		chip->nc_flags |= NC_BUSWIDTH_16;
    501 
    502 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
    503 		chip->nc_flags |= NC_EXTENDED_PARAM;
    504 }
    505 
    506 /* ARGSUSED */
    507 bool
    508 nand_shutdown(device_t self, int howto)
    509 {
    510 	return true;
    511 }
    512 
    513 static void
    514 nand_address_column(device_t self, size_t row, size_t column)
    515 {
    516 	struct nand_softc *sc = device_private(self);
    517 	struct nand_chip *chip = &sc->sc_chip;
    518 	uint8_t i;
    519 
    520 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
    521 		(uintmax_t )row, column));
    522 
    523 	/* XXX TODO */
    524 	row >>= chip->nc_page_shift;
    525 
    526 	/* Write the column (subpage) address */
    527 	if (chip->nc_flags & NC_BUSWIDTH_16)
    528 		column >>= 1;
    529 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    530 		nand_address(self, column & 0xff);
    531 
    532 	/* Write the row (page) address */
    533 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    534 		nand_address(self, row & 0xff);
    535 }
    536 
    537 static void
    538 nand_address_row(device_t self, size_t row)
    539 {
    540 	struct nand_softc *sc = device_private(self);
    541 	struct nand_chip *chip = &sc->sc_chip;
    542 	off_t i;
    543 
    544 	/* XXX TODO */
    545 	row >>= chip->nc_page_shift;
    546 
    547 	/* Write the row (page) address */
    548 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    549 		nand_address(self, row & 0xff);
    550 }
    551 
    552 static inline uint8_t
    553 nand_get_status(device_t self)
    554 {
    555 	uint8_t status;
    556 
    557 	nand_command(self, ONFI_READ_STATUS);
    558 	nand_busy(self);
    559 	nand_read_byte(self, &status);
    560 
    561 	return status;
    562 }
    563 
    564 static bool
    565 nand_check_wp(device_t self)
    566 {
    567 	if (nand_get_status(self) & 0x80)
    568 		return false;
    569 	else
    570 		return true;
    571 }
    572 
    573 static void
    574 nand_prepare_read(device_t self, flash_addr_t row, flash_addr_t column)
    575 {
    576 	nand_command(self, ONFI_READ);
    577 	nand_address_column(self, row, column);
    578 	nand_command(self, ONFI_READ_START);
    579 
    580 	nand_busy(self);
    581 }
    582 
    583 /* read a page with ecc correction */
    584 int
    585 nand_read_page(device_t self, size_t offset, uint8_t *data)
    586 {
    587 	struct nand_softc *sc = device_private(self);
    588 	struct nand_chip *chip = &sc->sc_chip;
    589 	size_t b, bs, e, cs;
    590 	uint8_t *ecc;
    591 	int result;
    592 
    593 	nand_prepare_read(self, offset, 0);
    594 
    595 	bs = chip->nc_ecc->necc_block_size;
    596 	cs = chip->nc_ecc->necc_code_size;
    597 
    598 	/* decide if we access by 8 or 16 bits */
    599 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    600 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    601 			nand_ecc_prepare(self, NAND_ECC_READ);
    602 			nand_read_buf_word(self, data + b, bs);
    603 			nand_ecc_compute(self, data + b,
    604 			    chip->nc_ecc_cache + e);
    605 		}
    606 	} else {
    607 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    608 			nand_ecc_prepare(self, NAND_ECC_READ);
    609 			nand_read_buf_byte(self, data + b, bs);
    610 			nand_ecc_compute(self, data + b,
    611 			    chip->nc_ecc_cache + e);
    612 		}
    613 	}
    614 
    615 	/* for debugging new drivers */
    616 #if 0
    617 	nand_dump_data("page", data, chip->nc_page_size);
    618 #endif
    619 
    620 	nand_read_oob(self, offset, chip->nc_oob_cache);
    621 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    622 
    623 	/* useful for debugging new ecc drivers */
    624 #if 0
    625 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    626 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    627 		printf("0x");
    628 		for (b = 0; b < cs; b++) {
    629 			printf("%.2hhx", ecc[e+b]);
    630 		}
    631 		printf(" 0x");
    632 		for (b = 0; b < cs; b++) {
    633 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    634 		}
    635 		printf("\n");
    636 	}
    637 	printf("--------------\n");
    638 #endif
    639 
    640 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    641 		result = nand_ecc_correct(self, data + b, ecc + e,
    642 		    chip->nc_ecc_cache + e);
    643 
    644 		switch (result) {
    645 		case NAND_ECC_OK:
    646 			break;
    647 		case NAND_ECC_CORRECTED:
    648 			aprint_error_dev(self,
    649 			    "data corrected with ECC at page offset 0x%jx "
    650 			    "block %zu\n", (uintmax_t)offset, b);
    651 			break;
    652 		case NAND_ECC_TWOBIT:
    653 			aprint_error_dev(self,
    654 			    "uncorrectable ECC error at page offset 0x%jx "
    655 			    "block %zu\n", (uintmax_t)offset, b);
    656 			return EIO;
    657 			break;
    658 		case NAND_ECC_INVALID:
    659 			aprint_error_dev(self,
    660 			    "invalid ECC in oob at page offset 0x%jx "
    661 			    "block %zu\n", (uintmax_t)offset, b);
    662 			return EIO;
    663 			break;
    664 		default:
    665 			panic("invalid ECC correction errno");
    666 		}
    667 	}
    668 
    669 	return 0;
    670 }
    671 
    672 static int
    673 nand_program_page(device_t self, size_t page, const uint8_t *data)
    674 {
    675 	struct nand_softc *sc = device_private(self);
    676 	struct nand_chip *chip = &sc->sc_chip;
    677 	size_t bs, cs, e, b;
    678 	uint8_t status;
    679 	uint8_t *ecc;
    680 
    681 	nand_command(self, ONFI_PAGE_PROGRAM);
    682 	nand_address_column(self, page, 0);
    683 
    684 	nand_busy(self);
    685 
    686 	bs = chip->nc_ecc->necc_block_size;
    687 	cs = chip->nc_ecc->necc_code_size;
    688 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    689 
    690 	/* XXX code duplication */
    691 	/* decide if we access by 8 or 16 bits */
    692 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    693 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    694 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    695 			nand_write_buf_word(self, data + b, bs);
    696 			nand_ecc_compute(self, data + b, ecc + e);
    697 		}
    698 		/* write oob with ecc correction code */
    699 		nand_write_buf_word(self, chip->nc_oob_cache,
    700 		    chip->nc_spare_size);
    701 	} else {
    702 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    703 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    704 			nand_write_buf_byte(self, data + b, bs);
    705 			nand_ecc_compute(self, data + b, ecc + e);
    706 		}
    707 		/* write oob with ecc correction code */
    708 		nand_write_buf_byte(self, chip->nc_oob_cache,
    709 		    chip->nc_spare_size);
    710 	}
    711 
    712 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    713 
    714 	nand_busy(self);
    715 
    716 	/* for debugging ecc */
    717 #if 0
    718 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    719 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    720 		printf("0x");
    721 		for (b = 0; b < cs; b++) {
    722 			printf("%.2hhx", ecc[e+b]);
    723 		}
    724 		printf("\n");
    725 	}
    726 	printf("--------------\n");
    727 #endif
    728 
    729 	status = nand_get_status(self);
    730 	KASSERT(status & ONFI_STATUS_RDY);
    731 	if (status & ONFI_STATUS_FAIL) {
    732 		aprint_error_dev(self, "page program failed!\n");
    733 		return EIO;
    734 	}
    735 
    736 	return 0;
    737 }
    738 
    739 int
    740 nand_read_oob(device_t self, size_t page, void *oob)
    741 {
    742 	struct nand_softc *sc = device_private(self);
    743 	struct nand_chip *chip = &sc->sc_chip;
    744 
    745 	nand_prepare_read(self, page, chip->nc_page_size);
    746 
    747 	if (chip->nc_flags & NC_BUSWIDTH_16)
    748 		nand_read_buf_word(self, oob, chip->nc_spare_size);
    749 	else
    750 		nand_read_buf_byte(self, oob, chip->nc_spare_size);
    751 
    752 	/* for debugging drivers */
    753 #if 0
    754 	nand_dump_data("oob", oob, chip->nc_spare_size);
    755 #endif
    756 
    757 	return 0;
    758 }
    759 
    760 static int
    761 nand_write_oob(device_t self, size_t offset, const void *oob)
    762 {
    763 	struct nand_softc *sc = device_private(self);
    764 	struct nand_chip *chip = &sc->sc_chip;
    765 	uint8_t status;
    766 
    767 	nand_command(self, ONFI_PAGE_PROGRAM);
    768 	nand_address_column(self, offset, chip->nc_page_size);
    769 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    770 
    771 	nand_busy(self);
    772 
    773 	if (chip->nc_flags & NC_BUSWIDTH_16)
    774 		nand_write_buf_word(self, oob, chip->nc_spare_size);
    775 	else
    776 		nand_write_buf_byte(self, oob, chip->nc_spare_size);
    777 
    778 	status = nand_get_status(self);
    779 	KASSERT(status & ONFI_STATUS_RDY);
    780 	if (status & ONFI_STATUS_FAIL)
    781 		return EIO;
    782 	else
    783 		return 0;
    784 }
    785 
    786 void
    787 nand_markbad(device_t self, size_t offset)
    788 {
    789 	struct nand_softc *sc = device_private(self);
    790 	struct nand_chip *chip = &sc->sc_chip;
    791 	flash_addr_t blockoffset, marker;
    792 #ifdef NAND_BBT
    793 	flash_addr_t block;
    794 
    795 	block = offset / chip->nc_block_size;
    796 
    797 	nand_bbt_block_markbad(self, block);
    798 #endif
    799 	blockoffset = offset & chip->nc_block_mask;
    800 	marker = chip->nc_badmarker_offs & ~0x01;
    801 
    802 	/* check if it is already marked bad */
    803 	if (nand_isbad(self, blockoffset))
    804 		return;
    805 
    806 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    807 
    808 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    809 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    810 
    811 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    812 }
    813 
    814 bool
    815 nand_isfactorybad(device_t self, flash_addr_t offset)
    816 {
    817 	struct nand_softc *sc = device_private(self);
    818 	struct nand_chip *chip = &sc->sc_chip;
    819 	flash_addr_t block, first_page, last_page, page;
    820 	int i;
    821 
    822 	/* Check for factory bad blocks first
    823 	 * Factory bad blocks are marked in the first or last
    824 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    825 	 */
    826 	block = offset / chip->nc_block_size;
    827 	first_page = block * chip->nc_block_size;
    828 	last_page = (block + 1) * chip->nc_block_size
    829 	    - chip->nc_page_size;
    830 
    831 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    832 		/* address OOB */
    833 		nand_prepare_read(self, page, chip->nc_page_size);
    834 
    835 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    836 			uint16_t word;
    837 			nand_read_word(self, &word);
    838 			if (word == 0x0000)
    839 				return true;
    840 		} else {
    841 			uint8_t byte;
    842 			nand_read_byte(self, &byte);
    843 			if (byte == 0x00)
    844 				return true;
    845 		}
    846 	}
    847 
    848 	return false;
    849 }
    850 
    851 bool
    852 nand_iswornoutbad(device_t self, flash_addr_t offset)
    853 {
    854 	struct nand_softc *sc = device_private(self);
    855 	struct nand_chip *chip = &sc->sc_chip;
    856 	flash_addr_t block;
    857 
    858 	/* we inspect the first page of the block */
    859 	block = offset & chip->nc_block_mask;
    860 
    861 	/* Linux/u-boot compatible badblock handling */
    862 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    863 		uint16_t word, mark;
    864 
    865 		nand_prepare_read(self, block,
    866 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    867 
    868 		nand_read_word(self, &word);
    869 		mark = htole16(word);
    870 		if (chip->nc_badmarker_offs & 0x01)
    871 			mark >>= 8;
    872 		if ((mark & 0xff) != 0xff)
    873 			return true;
    874 	} else {
    875 		uint8_t byte;
    876 
    877 		nand_prepare_read(self, block,
    878 		    chip->nc_page_size + chip->nc_badmarker_offs);
    879 
    880 		nand_read_byte(self, &byte);
    881 		if (byte != 0xff)
    882 			return true;
    883 	}
    884 
    885 	return false;
    886 }
    887 
    888 bool
    889 nand_isbad(device_t self, flash_addr_t offset)
    890 {
    891 #ifdef NAND_BBT
    892 	struct nand_softc *sc = device_private(self);
    893 	struct nand_chip *chip = &sc->sc_chip;
    894 	flash_addr_t block;
    895 
    896 	block = offset / chip->nc_block_size;
    897 
    898 	return nand_bbt_block_isbad(self, block);
    899 #else
    900 	/* ONFI host requirement */
    901 	if (nand_isfactorybad(self, offset))
    902 		return true;
    903 
    904 	/* Look for Linux/U-Boot compatible bad marker */
    905 	if (nand_iswornoutbad(self, offset))
    906 		return true;
    907 
    908 	return false;
    909 #endif
    910 }
    911 
    912 int
    913 nand_erase_block(device_t self, size_t offset)
    914 {
    915 	uint8_t status;
    916 
    917 	/* xxx calculate first page of block for address? */
    918 
    919 	nand_command(self, ONFI_BLOCK_ERASE);
    920 	nand_address_row(self, offset);
    921 	nand_command(self, ONFI_BLOCK_ERASE_START);
    922 
    923 	nand_busy(self);
    924 
    925 	status = nand_get_status(self);
    926 	KASSERT(status & ONFI_STATUS_RDY);
    927 	if (status & ONFI_STATUS_FAIL) {
    928 		aprint_error_dev(self, "block erase failed!\n");
    929 		nand_markbad(self, offset);
    930 		return EIO;
    931 	} else {
    932 		return 0;
    933 	}
    934 }
    935 
    936 /* default functions for driver development */
    937 
    938 /* default ECC using hamming code of 256 byte chunks */
    939 int
    940 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
    941 {
    942 	hamming_compute_256(data, code);
    943 
    944 	return 0;
    945 }
    946 
    947 int
    948 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
    949 	const uint8_t *compcode)
    950 {
    951 	return hamming_correct_256(data, origcode, compcode);
    952 }
    953 
    954 void
    955 nand_default_select(device_t self, bool enable)
    956 {
    957 	/* do nothing */
    958 	return;
    959 }
    960 
    961 /* implementation of the block device API */
    962 
    963 /*
    964  * handle (page) unaligned write to nand
    965  */
    966 static int
    967 nand_flash_write_unaligned(device_t self, off_t offset, size_t len,
    968     size_t *retlen, const uint8_t *buf)
    969 {
    970 	struct nand_softc *sc = device_private(self);
    971 	struct nand_chip *chip = &sc->sc_chip;
    972 	flash_addr_t first, last, firstoff;
    973 	const uint8_t *bufp;
    974 	flash_addr_t addr;
    975 	size_t left, count;
    976 	int error, i;
    977 
    978 	first = offset & chip->nc_page_mask;
    979 	firstoff = offset & ~chip->nc_page_mask;
    980 	/* XXX check if this should be len - 1 */
    981 	last = (offset + len) & chip->nc_page_mask;
    982 	count = last - first + 1;
    983 
    984 	addr = first;
    985 	*retlen = 0;
    986 
    987 	if (count == 1) {
    988 		if (nand_isbad(self, addr)) {
    989 			aprint_error_dev(self,
    990 			    "nand_flash_write_unaligned: "
    991 			    "bad block encountered\n");
    992 			return EIO;
    993 		}
    994 
    995 		error = nand_read_page(self, addr, chip->nc_page_cache);
    996 		if (error)
    997 			return error;
    998 
    999 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1000 
   1001 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1002 		if (error)
   1003 			return error;
   1004 
   1005 		*retlen = len;
   1006 		return 0;
   1007 	}
   1008 
   1009 	bufp = buf;
   1010 	left = len;
   1011 
   1012 	for (i = 0; i < count && left != 0; i++) {
   1013 		if (nand_isbad(self, addr)) {
   1014 			aprint_error_dev(self,
   1015 			    "nand_flash_write_unaligned: "
   1016 			    "bad block encountered\n");
   1017 			return EIO;
   1018 		}
   1019 
   1020 		if (i == 0) {
   1021 			error = nand_read_page(self,
   1022 			    addr, chip->nc_page_cache);
   1023 			if (error)
   1024 				return error;
   1025 
   1026 			memcpy(chip->nc_page_cache + firstoff,
   1027 			    bufp, chip->nc_page_size - firstoff);
   1028 
   1029 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1030 			error = nand_program_page(self,
   1031 			    addr, chip->nc_page_cache);
   1032 			if (error)
   1033 				return error;
   1034 
   1035 			bufp += chip->nc_page_size - firstoff;
   1036 			left -= chip->nc_page_size - firstoff;
   1037 			*retlen += chip->nc_page_size - firstoff;
   1038 
   1039 		} else if (i == count - 1) {
   1040 			error = nand_read_page(self,
   1041 			    addr, chip->nc_page_cache);
   1042 			if (error)
   1043 				return error;
   1044 
   1045 			memcpy(chip->nc_page_cache, bufp, left);
   1046 
   1047 			error = nand_program_page(self,
   1048 			    addr, chip->nc_page_cache);
   1049 			if (error)
   1050 				return error;
   1051 
   1052 			*retlen += left;
   1053 			KASSERT(left < chip->nc_page_size);
   1054 
   1055 		} else {
   1056 			/* XXX debug */
   1057 			if (left > chip->nc_page_size) {
   1058 				printf("left: %zu, i: %d, count: %zu\n",
   1059 				    (size_t )left, i, count);
   1060 			}
   1061 			KASSERT(left > chip->nc_page_size);
   1062 
   1063 			error = nand_program_page(self, addr, bufp);
   1064 			if (error)
   1065 				return error;
   1066 
   1067 			bufp += chip->nc_page_size;
   1068 			left -= chip->nc_page_size;
   1069 			*retlen += chip->nc_page_size;
   1070 		}
   1071 
   1072 		addr += chip->nc_page_size;
   1073 	}
   1074 
   1075 	KASSERT(*retlen == len);
   1076 
   1077 	return 0;
   1078 }
   1079 
   1080 int
   1081 nand_flash_write(device_t self, off_t offset, size_t len, size_t *retlen,
   1082     const uint8_t *buf)
   1083 {
   1084 	struct nand_softc *sc = device_private(self);
   1085 	struct nand_chip *chip = &sc->sc_chip;
   1086 	const uint8_t *bufp;
   1087 	size_t pages, page;
   1088 	daddr_t addr;
   1089 	int error = 0;
   1090 
   1091 	if ((offset + len) > chip->nc_size) {
   1092 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1093 			" is over device size (0x%jx)\n",
   1094 			(uintmax_t)offset, (uintmax_t)len,
   1095 			(uintmax_t)chip->nc_size));
   1096 		return EINVAL;
   1097 	}
   1098 
   1099 	if (len % chip->nc_page_size != 0 ||
   1100 	    offset % chip->nc_page_size != 0) {
   1101 		return nand_flash_write_unaligned(self,
   1102 		    offset, len, retlen, buf);
   1103 	}
   1104 
   1105 	pages = len / chip->nc_page_size;
   1106 	KASSERT(pages != 0);
   1107 	*retlen = 0;
   1108 
   1109 	addr = offset;
   1110 	bufp = buf;
   1111 
   1112 	mutex_enter(&sc->sc_device_lock);
   1113 	for (page = 0; page < pages; page++) {
   1114 		/* do we need this check here? */
   1115 		if (nand_isbad(self, addr)) {
   1116 			aprint_error_dev(self,
   1117 			    "nand_flash_write: bad block encountered\n");
   1118 
   1119 			error = EIO;
   1120 			goto out;
   1121 		}
   1122 
   1123 		error = nand_program_page(self, addr, bufp);
   1124 		if (error)
   1125 			goto out;
   1126 
   1127 		addr += chip->nc_page_size;
   1128 		bufp += chip->nc_page_size;
   1129 		*retlen += chip->nc_page_size;
   1130 	}
   1131 out:
   1132 	mutex_exit(&sc->sc_device_lock);
   1133 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
   1134 
   1135 	return error;
   1136 }
   1137 
   1138 /*
   1139  * handle (page) unaligned read from nand
   1140  */
   1141 static int
   1142 nand_flash_read_unaligned(device_t self, size_t offset,
   1143     size_t len, size_t *retlen, uint8_t *buf)
   1144 {
   1145 	struct nand_softc *sc = device_private(self);
   1146 	struct nand_chip *chip = &sc->sc_chip;
   1147 	daddr_t first, last, count, firstoff;
   1148 	uint8_t *bufp;
   1149 	daddr_t addr;
   1150 	size_t left;
   1151 	int error = 0, i;
   1152 
   1153 	first = offset & chip->nc_page_mask;
   1154 	firstoff = offset & ~chip->nc_page_mask;
   1155 	last = (offset + len) & chip->nc_page_mask;
   1156 	count = (last - first) / chip->nc_page_size + 1;
   1157 
   1158 	addr = first;
   1159 	bufp = buf;
   1160 	left = len;
   1161 	*retlen = 0;
   1162 
   1163 	mutex_enter(&sc->sc_device_lock);
   1164 	if (count == 1) {
   1165 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1166 		if (error)
   1167 			goto out;
   1168 
   1169 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1170 
   1171 		*retlen = len;
   1172 		goto out;
   1173 	}
   1174 
   1175 	for (i = 0; i < count && left != 0; i++) {
   1176 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1177 		if (error)
   1178 			goto out;
   1179 
   1180 		if (i == 0) {
   1181 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1182 			    chip->nc_page_size - firstoff);
   1183 
   1184 			bufp += chip->nc_page_size - firstoff;
   1185 			left -= chip->nc_page_size - firstoff;
   1186 			*retlen += chip->nc_page_size - firstoff;
   1187 
   1188 		} else if (i == count - 1) {
   1189 			memcpy(bufp, chip->nc_page_cache, left);
   1190 			*retlen += left;
   1191 			KASSERT(left < chip->nc_page_size);
   1192 
   1193 		} else {
   1194 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1195 
   1196 			bufp += chip->nc_page_size;
   1197 			left -= chip->nc_page_size;
   1198 			*retlen += chip->nc_page_size;
   1199 		}
   1200 
   1201 		addr += chip->nc_page_size;
   1202 	}
   1203 
   1204 	KASSERT(*retlen == len);
   1205 
   1206 out:
   1207 	mutex_exit(&sc->sc_device_lock);
   1208 
   1209 	return error;
   1210 }
   1211 
   1212 int
   1213 nand_flash_read(device_t self, off_t offset, size_t len, size_t *retlen,
   1214     uint8_t *buf)
   1215 {
   1216 	struct nand_softc *sc = device_private(self);
   1217 	struct nand_chip *chip = &sc->sc_chip;
   1218 	uint8_t *bufp;
   1219 	size_t addr;
   1220 	size_t i, pages;
   1221 	int error = 0;
   1222 
   1223 	*retlen = 0;
   1224 
   1225 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
   1226 		(uintmax_t)offset, len));
   1227 
   1228 	if (__predict_false((offset + len) > chip->nc_size)) {
   1229 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
   1230 			" is over device size (%ju)\n", (uintmax_t)offset,
   1231 			len, (uintmax_t)chip->nc_size));
   1232 		return EINVAL;
   1233 	}
   1234 
   1235 	/* Handle unaligned access, shouldnt be needed when using the
   1236 	 * block device, as strategy handles it, so only low level
   1237 	 * accesses will use this path
   1238 	 */
   1239 	/* XXX^2 */
   1240 #if 0
   1241 	if (len < chip->nc_page_size)
   1242 		panic("TODO page size is larger than read size");
   1243 #endif
   1244 
   1245 
   1246 	if (len % chip->nc_page_size != 0 ||
   1247 	    offset % chip->nc_page_size != 0) {
   1248 		return nand_flash_read_unaligned(self,
   1249 		    offset, len, retlen, buf);
   1250 	}
   1251 
   1252 	bufp = buf;
   1253 	addr = offset;
   1254 	pages = len / chip->nc_page_size;
   1255 
   1256 	mutex_enter(&sc->sc_device_lock);
   1257 	for (i = 0; i < pages; i++) {
   1258 		/* XXX do we need this check here? */
   1259 		if (nand_isbad(self, addr)) {
   1260 			aprint_error_dev(self, "bad block encountered\n");
   1261 			error = EIO;
   1262 			goto out;
   1263 		}
   1264 		error = nand_read_page(self, addr, bufp);
   1265 		if (error)
   1266 			goto out;
   1267 
   1268 		bufp += chip->nc_page_size;
   1269 		addr += chip->nc_page_size;
   1270 		*retlen += chip->nc_page_size;
   1271 	}
   1272 
   1273 out:
   1274 	mutex_exit(&sc->sc_device_lock);
   1275 
   1276 	return error;
   1277 }
   1278 
   1279 int
   1280 nand_flash_isbad(device_t self, uint64_t ofs)
   1281 {
   1282 	struct nand_softc *sc = device_private(self);
   1283 	struct nand_chip *chip = &sc->sc_chip;
   1284 	bool result;
   1285 
   1286 	if (ofs > chip->nc_size) {
   1287 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1288 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1289 			(uintmax_t)chip->nc_size));
   1290 		return EINVAL;
   1291 	}
   1292 
   1293 	if (ofs % chip->nc_block_size != 0) {
   1294 		panic("offset (0x%jx) is not the multiple of block size (%ju)",
   1295 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1296 	}
   1297 
   1298 	mutex_enter(&sc->sc_device_lock);
   1299 	result = nand_isbad(self, ofs);
   1300 	mutex_exit(&sc->sc_device_lock);
   1301 
   1302 	if (result)
   1303 		return 1;
   1304 	else
   1305 		return 0;
   1306 }
   1307 
   1308 int
   1309 nand_flash_markbad(device_t self, uint64_t ofs)
   1310 {
   1311 	struct nand_softc *sc = device_private(self);
   1312 	struct nand_chip *chip = &sc->sc_chip;
   1313 
   1314 	if (ofs > chip->nc_size) {
   1315 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1316 			" device size (0x%jx)\n", ofs,
   1317 			(uintmax_t)chip->nc_size));
   1318 		return EINVAL;
   1319 	}
   1320 
   1321 	if (ofs % chip->nc_block_size != 0) {
   1322 		panic("offset (%ju) is not the multiple of block size (%ju)",
   1323 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1324 	}
   1325 
   1326 	mutex_enter(&sc->sc_device_lock);
   1327 	nand_markbad(self, ofs);
   1328 	mutex_exit(&sc->sc_device_lock);
   1329 
   1330 	return 0;
   1331 }
   1332 
   1333 int
   1334 nand_flash_erase(device_t self,
   1335     struct flash_erase_instruction *ei)
   1336 {
   1337 	struct nand_softc *sc = device_private(self);
   1338 	struct nand_chip *chip = &sc->sc_chip;
   1339 	flash_addr_t addr;
   1340 	int error;
   1341 
   1342 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1343 		return EINVAL;
   1344 
   1345 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1346 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1347 			" of the device\n"));
   1348 		return EINVAL;
   1349 	}
   1350 
   1351 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1352 		aprint_error_dev(self,
   1353 		    "nand_flash_erase: ei_addr (%ju) is not"
   1354 		    "the multiple of block size (%ju)",
   1355 		    (uintmax_t)ei->ei_addr,
   1356 		    (uintmax_t)chip->nc_block_size);
   1357 		return EINVAL;
   1358 	}
   1359 
   1360 	if (ei->ei_len % chip->nc_block_size != 0) {
   1361 		aprint_error_dev(self,
   1362 		    "nand_flash_erase: ei_len (%ju) is not"
   1363 		    "the multiple of block size (%ju)",
   1364 		    (uintmax_t)ei->ei_addr,
   1365 		    (uintmax_t)chip->nc_block_size);
   1366 		return EINVAL;
   1367 	}
   1368 
   1369 	mutex_enter(&sc->sc_device_lock);
   1370 	addr = ei->ei_addr;
   1371 	while (addr < ei->ei_addr + ei->ei_len) {
   1372 		if (nand_isbad(self, addr)) {
   1373 			mutex_exit(&sc->sc_device_lock);
   1374 			aprint_error_dev(self, "bad block encountered\n");
   1375 			ei->ei_state = FLASH_ERASE_FAILED;
   1376 			return EIO;
   1377 		}
   1378 
   1379 		error = nand_erase_block(self, addr);
   1380 		if (error) {
   1381 			mutex_exit(&sc->sc_device_lock);
   1382 			ei->ei_state = FLASH_ERASE_FAILED;
   1383 			return error;
   1384 		}
   1385 
   1386 		addr += chip->nc_block_size;
   1387 	}
   1388 	mutex_exit(&sc->sc_device_lock);
   1389 
   1390 	ei->ei_state = FLASH_ERASE_DONE;
   1391 	if (ei->ei_callback != NULL)
   1392 		ei->ei_callback(ei);
   1393 
   1394 	return 0;
   1395 }
   1396 
   1397 static int
   1398 sysctl_nand_verify(SYSCTLFN_ARGS)
   1399 {
   1400 	int error, t;
   1401 	struct sysctlnode node;
   1402 
   1403 	node = *rnode;
   1404 	t = *(int *)rnode->sysctl_data;
   1405 	node.sysctl_data = &t;
   1406 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1407 	if (error || newp == NULL)
   1408 		return error;
   1409 
   1410 	if (node.sysctl_num == nand_cachesync_nodenum) {
   1411 		if (t <= 0 || t > 60)
   1412 			return EINVAL;
   1413 	} else {
   1414 		return EINVAL;
   1415 	}
   1416 
   1417 	*(int *)rnode->sysctl_data = t;
   1418 
   1419 	return 0;
   1420 }
   1421 
   1422 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
   1423 {
   1424 	int rc, nand_root_num;
   1425 	const struct sysctlnode *node;
   1426 
   1427 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   1428 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   1429 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   1430 		goto error;
   1431 	}
   1432 
   1433 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1434 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
   1435 	    SYSCTL_DESCR("NAND driver controls"),
   1436 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1437 		goto error;
   1438 	}
   1439 
   1440 	nand_root_num = node->sysctl_num;
   1441 
   1442 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1443 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1444 	    CTLTYPE_INT, "cache_sync_timeout",
   1445 	    SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
   1446 	    sysctl_nand_verify, 0, &nand_cachesync_timeout,
   1447 	    0, CTL_HW, nand_root_num, CTL_CREATE,
   1448 	    CTL_EOL)) != 0) {
   1449 		goto error;
   1450 	}
   1451 
   1452 	nand_cachesync_nodenum = node->sysctl_num;
   1453 
   1454 	return;
   1455 
   1456 error:
   1457 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   1458 }
   1459 
   1460 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1461 
   1462 #ifdef _MODULE
   1463 #include "ioconf.c"
   1464 #endif
   1465 
   1466 static int
   1467 nand_modcmd(modcmd_t cmd, void *opaque)
   1468 {
   1469 	switch (cmd) {
   1470 	case MODULE_CMD_INIT:
   1471 #ifdef _MODULE
   1472 		return config_init_component(cfdriver_ioconf_nand,
   1473 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1474 #else
   1475 		return 0;
   1476 #endif
   1477 	case MODULE_CMD_FINI:
   1478 #ifdef _MODULE
   1479 		return config_fini_component(cfdriver_ioconf_nand,
   1480 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1481 #else
   1482 		return 0;
   1483 #endif
   1484 	default:
   1485 		return ENOTTY;
   1486 	}
   1487 }
   1488