nvmm.c revision 1.39 1 /* $NetBSD: nvmm.c,v 1.39 2020/09/05 07:22:25 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm.c,v 1.39 2020/09/05 07:22:25 maxv Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37
38 #include <sys/atomic.h>
39 #include <sys/cpu.h>
40 #include <sys/conf.h>
41 #include <sys/kmem.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/mman.h>
45 #include <sys/file.h>
46 #include <sys/filedesc.h>
47 #include <sys/device.h>
48
49 #include <uvm/uvm.h>
50 #include <uvm/uvm_page.h>
51
52 #include "ioconf.h"
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/nvmm_ioctl.h>
57
58 static struct nvmm_machine machines[NVMM_MAX_MACHINES];
59 static volatile unsigned int nmachines __cacheline_aligned;
60
61 static const struct nvmm_impl *nvmm_impl_list[] = {
62 #if defined(__x86_64__)
63 &nvmm_x86_svm, /* x86 AMD SVM */
64 &nvmm_x86_vmx /* x86 Intel VMX */
65 #endif
66 };
67
68 static const struct nvmm_impl *nvmm_impl __read_mostly = NULL;
69
70 static struct nvmm_owner root_owner;
71
72 /* -------------------------------------------------------------------------- */
73
74 static int
75 nvmm_machine_alloc(struct nvmm_machine **ret)
76 {
77 struct nvmm_machine *mach;
78 size_t i;
79
80 for (i = 0; i < NVMM_MAX_MACHINES; i++) {
81 mach = &machines[i];
82
83 rw_enter(&mach->lock, RW_WRITER);
84 if (mach->present) {
85 rw_exit(&mach->lock);
86 continue;
87 }
88
89 mach->present = true;
90 mach->time = time_second;
91 *ret = mach;
92 atomic_inc_uint(&nmachines);
93 return 0;
94 }
95
96 return ENOBUFS;
97 }
98
99 static void
100 nvmm_machine_free(struct nvmm_machine *mach)
101 {
102 KASSERT(rw_write_held(&mach->lock));
103 KASSERT(mach->present);
104 mach->present = false;
105 atomic_dec_uint(&nmachines);
106 }
107
108 static int
109 nvmm_machine_get(struct nvmm_owner *owner, nvmm_machid_t machid,
110 struct nvmm_machine **ret, bool writer)
111 {
112 struct nvmm_machine *mach;
113 krw_t op = writer ? RW_WRITER : RW_READER;
114
115 if (__predict_false(machid >= NVMM_MAX_MACHINES)) {
116 return EINVAL;
117 }
118 mach = &machines[machid];
119
120 rw_enter(&mach->lock, op);
121 if (__predict_false(!mach->present)) {
122 rw_exit(&mach->lock);
123 return ENOENT;
124 }
125 if (__predict_false(mach->owner != owner && owner != &root_owner)) {
126 rw_exit(&mach->lock);
127 return EPERM;
128 }
129 *ret = mach;
130
131 return 0;
132 }
133
134 static void
135 nvmm_machine_put(struct nvmm_machine *mach)
136 {
137 rw_exit(&mach->lock);
138 }
139
140 /* -------------------------------------------------------------------------- */
141
142 static int
143 nvmm_vcpu_alloc(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
144 struct nvmm_cpu **ret)
145 {
146 struct nvmm_cpu *vcpu;
147
148 if (cpuid >= NVMM_MAX_VCPUS) {
149 return EINVAL;
150 }
151 vcpu = &mach->cpus[cpuid];
152
153 mutex_enter(&vcpu->lock);
154 if (vcpu->present) {
155 mutex_exit(&vcpu->lock);
156 return EBUSY;
157 }
158
159 vcpu->present = true;
160 vcpu->comm = NULL;
161 vcpu->hcpu_last = -1;
162 *ret = vcpu;
163 return 0;
164 }
165
166 static void
167 nvmm_vcpu_free(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
168 {
169 KASSERT(mutex_owned(&vcpu->lock));
170 vcpu->present = false;
171 if (vcpu->comm != NULL) {
172 uvm_deallocate(kernel_map, (vaddr_t)vcpu->comm, PAGE_SIZE);
173 }
174 }
175
176 static int
177 nvmm_vcpu_get(struct nvmm_machine *mach, nvmm_cpuid_t cpuid,
178 struct nvmm_cpu **ret)
179 {
180 struct nvmm_cpu *vcpu;
181
182 if (__predict_false(cpuid >= NVMM_MAX_VCPUS)) {
183 return EINVAL;
184 }
185 vcpu = &mach->cpus[cpuid];
186
187 mutex_enter(&vcpu->lock);
188 if (__predict_false(!vcpu->present)) {
189 mutex_exit(&vcpu->lock);
190 return ENOENT;
191 }
192 *ret = vcpu;
193
194 return 0;
195 }
196
197 static void
198 nvmm_vcpu_put(struct nvmm_cpu *vcpu)
199 {
200 mutex_exit(&vcpu->lock);
201 }
202
203 /* -------------------------------------------------------------------------- */
204
205 static void
206 nvmm_kill_machines(struct nvmm_owner *owner)
207 {
208 struct nvmm_machine *mach;
209 struct nvmm_cpu *vcpu;
210 size_t i, j;
211 int error;
212
213 for (i = 0; i < NVMM_MAX_MACHINES; i++) {
214 mach = &machines[i];
215
216 rw_enter(&mach->lock, RW_WRITER);
217 if (!mach->present || mach->owner != owner) {
218 rw_exit(&mach->lock);
219 continue;
220 }
221
222 /* Kill it. */
223 for (j = 0; j < NVMM_MAX_VCPUS; j++) {
224 error = nvmm_vcpu_get(mach, j, &vcpu);
225 if (error)
226 continue;
227 (*nvmm_impl->vcpu_destroy)(mach, vcpu);
228 nvmm_vcpu_free(mach, vcpu);
229 nvmm_vcpu_put(vcpu);
230 atomic_dec_uint(&mach->ncpus);
231 }
232 (*nvmm_impl->machine_destroy)(mach);
233 uvmspace_free(mach->vm);
234
235 /* Drop the kernel UOBJ refs. */
236 for (j = 0; j < NVMM_MAX_HMAPPINGS; j++) {
237 if (!mach->hmap[j].present)
238 continue;
239 uao_detach(mach->hmap[j].uobj);
240 }
241
242 nvmm_machine_free(mach);
243
244 rw_exit(&mach->lock);
245 }
246 }
247
248 /* -------------------------------------------------------------------------- */
249
250 static int
251 nvmm_capability(struct nvmm_owner *owner, struct nvmm_ioc_capability *args)
252 {
253 args->cap.version = NVMM_KERN_VERSION;
254 args->cap.state_size = nvmm_impl->state_size;
255 args->cap.max_machines = NVMM_MAX_MACHINES;
256 args->cap.max_vcpus = NVMM_MAX_VCPUS;
257 args->cap.max_ram = NVMM_MAX_RAM;
258
259 (*nvmm_impl->capability)(&args->cap);
260
261 return 0;
262 }
263
264 static int
265 nvmm_machine_create(struct nvmm_owner *owner,
266 struct nvmm_ioc_machine_create *args)
267 {
268 struct nvmm_machine *mach;
269 int error;
270
271 error = nvmm_machine_alloc(&mach);
272 if (error)
273 return error;
274
275 /* Curproc owns the machine. */
276 mach->owner = owner;
277
278 /* Zero out the host mappings. */
279 memset(&mach->hmap, 0, sizeof(mach->hmap));
280
281 /* Create the machine vmspace. */
282 mach->gpa_begin = 0;
283 mach->gpa_end = NVMM_MAX_RAM;
284 mach->vm = uvmspace_alloc(0, mach->gpa_end - mach->gpa_begin, false);
285
286 /* Create the comm uobj. */
287 mach->commuobj = uao_create(NVMM_MAX_VCPUS * PAGE_SIZE, 0);
288
289 (*nvmm_impl->machine_create)(mach);
290
291 args->machid = mach->machid;
292 nvmm_machine_put(mach);
293
294 return 0;
295 }
296
297 static int
298 nvmm_machine_destroy(struct nvmm_owner *owner,
299 struct nvmm_ioc_machine_destroy *args)
300 {
301 struct nvmm_machine *mach;
302 struct nvmm_cpu *vcpu;
303 int error;
304 size_t i;
305
306 error = nvmm_machine_get(owner, args->machid, &mach, true);
307 if (error)
308 return error;
309
310 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
311 error = nvmm_vcpu_get(mach, i, &vcpu);
312 if (error)
313 continue;
314
315 (*nvmm_impl->vcpu_destroy)(mach, vcpu);
316 nvmm_vcpu_free(mach, vcpu);
317 nvmm_vcpu_put(vcpu);
318 atomic_dec_uint(&mach->ncpus);
319 }
320
321 (*nvmm_impl->machine_destroy)(mach);
322
323 /* Free the machine vmspace. */
324 uvmspace_free(mach->vm);
325
326 /* Drop the kernel UOBJ refs. */
327 for (i = 0; i < NVMM_MAX_HMAPPINGS; i++) {
328 if (!mach->hmap[i].present)
329 continue;
330 uao_detach(mach->hmap[i].uobj);
331 }
332
333 nvmm_machine_free(mach);
334 nvmm_machine_put(mach);
335
336 return 0;
337 }
338
339 static int
340 nvmm_machine_configure(struct nvmm_owner *owner,
341 struct nvmm_ioc_machine_configure *args)
342 {
343 struct nvmm_machine *mach;
344 size_t allocsz;
345 uint64_t op;
346 void *data;
347 int error;
348
349 op = NVMM_MACH_CONF_MD(args->op);
350 if (__predict_false(op >= nvmm_impl->mach_conf_max)) {
351 return EINVAL;
352 }
353
354 allocsz = nvmm_impl->mach_conf_sizes[op];
355 data = kmem_alloc(allocsz, KM_SLEEP);
356
357 error = nvmm_machine_get(owner, args->machid, &mach, true);
358 if (error) {
359 kmem_free(data, allocsz);
360 return error;
361 }
362
363 error = copyin(args->conf, data, allocsz);
364 if (error) {
365 goto out;
366 }
367
368 error = (*nvmm_impl->machine_configure)(mach, op, data);
369
370 out:
371 nvmm_machine_put(mach);
372 kmem_free(data, allocsz);
373 return error;
374 }
375
376 static int
377 nvmm_vcpu_create(struct nvmm_owner *owner, struct nvmm_ioc_vcpu_create *args)
378 {
379 struct nvmm_machine *mach;
380 struct nvmm_cpu *vcpu;
381 int error;
382
383 error = nvmm_machine_get(owner, args->machid, &mach, false);
384 if (error)
385 return error;
386
387 error = nvmm_vcpu_alloc(mach, args->cpuid, &vcpu);
388 if (error)
389 goto out;
390
391 /* Allocate the comm page. */
392 uao_reference(mach->commuobj);
393 error = uvm_map(kernel_map, (vaddr_t *)&vcpu->comm, PAGE_SIZE,
394 mach->commuobj, args->cpuid * PAGE_SIZE, 0, UVM_MAPFLAG(UVM_PROT_RW,
395 UVM_PROT_RW, UVM_INH_SHARE, UVM_ADV_RANDOM, 0));
396 if (error) {
397 uao_detach(mach->commuobj);
398 nvmm_vcpu_free(mach, vcpu);
399 nvmm_vcpu_put(vcpu);
400 goto out;
401 }
402 error = uvm_map_pageable(kernel_map, (vaddr_t)vcpu->comm,
403 (vaddr_t)vcpu->comm + PAGE_SIZE, false, 0);
404 if (error) {
405 nvmm_vcpu_free(mach, vcpu);
406 nvmm_vcpu_put(vcpu);
407 goto out;
408 }
409 memset(vcpu->comm, 0, PAGE_SIZE);
410
411 error = (*nvmm_impl->vcpu_create)(mach, vcpu);
412 if (error) {
413 nvmm_vcpu_free(mach, vcpu);
414 nvmm_vcpu_put(vcpu);
415 goto out;
416 }
417
418 nvmm_vcpu_put(vcpu);
419 atomic_inc_uint(&mach->ncpus);
420
421 out:
422 nvmm_machine_put(mach);
423 return error;
424 }
425
426 static int
427 nvmm_vcpu_destroy(struct nvmm_owner *owner, struct nvmm_ioc_vcpu_destroy *args)
428 {
429 struct nvmm_machine *mach;
430 struct nvmm_cpu *vcpu;
431 int error;
432
433 error = nvmm_machine_get(owner, args->machid, &mach, false);
434 if (error)
435 return error;
436
437 error = nvmm_vcpu_get(mach, args->cpuid, &vcpu);
438 if (error)
439 goto out;
440
441 (*nvmm_impl->vcpu_destroy)(mach, vcpu);
442 nvmm_vcpu_free(mach, vcpu);
443 nvmm_vcpu_put(vcpu);
444 atomic_dec_uint(&mach->ncpus);
445
446 out:
447 nvmm_machine_put(mach);
448 return error;
449 }
450
451 static int
452 nvmm_vcpu_configure(struct nvmm_owner *owner,
453 struct nvmm_ioc_vcpu_configure *args)
454 {
455 struct nvmm_machine *mach;
456 struct nvmm_cpu *vcpu;
457 size_t allocsz;
458 uint64_t op;
459 void *data;
460 int error;
461
462 op = NVMM_VCPU_CONF_MD(args->op);
463 if (__predict_false(op >= nvmm_impl->vcpu_conf_max))
464 return EINVAL;
465
466 allocsz = nvmm_impl->vcpu_conf_sizes[op];
467 data = kmem_alloc(allocsz, KM_SLEEP);
468
469 error = nvmm_machine_get(owner, args->machid, &mach, false);
470 if (error) {
471 kmem_free(data, allocsz);
472 return error;
473 }
474
475 error = nvmm_vcpu_get(mach, args->cpuid, &vcpu);
476 if (error) {
477 nvmm_machine_put(mach);
478 kmem_free(data, allocsz);
479 return error;
480 }
481
482 error = copyin(args->conf, data, allocsz);
483 if (error) {
484 goto out;
485 }
486
487 error = (*nvmm_impl->vcpu_configure)(vcpu, op, data);
488
489 out:
490 nvmm_vcpu_put(vcpu);
491 nvmm_machine_put(mach);
492 kmem_free(data, allocsz);
493 return error;
494 }
495
496 static int
497 nvmm_vcpu_setstate(struct nvmm_owner *owner,
498 struct nvmm_ioc_vcpu_setstate *args)
499 {
500 struct nvmm_machine *mach;
501 struct nvmm_cpu *vcpu;
502 int error;
503
504 error = nvmm_machine_get(owner, args->machid, &mach, false);
505 if (error)
506 return error;
507
508 error = nvmm_vcpu_get(mach, args->cpuid, &vcpu);
509 if (error)
510 goto out;
511
512 (*nvmm_impl->vcpu_setstate)(vcpu);
513 nvmm_vcpu_put(vcpu);
514
515 out:
516 nvmm_machine_put(mach);
517 return error;
518 }
519
520 static int
521 nvmm_vcpu_getstate(struct nvmm_owner *owner,
522 struct nvmm_ioc_vcpu_getstate *args)
523 {
524 struct nvmm_machine *mach;
525 struct nvmm_cpu *vcpu;
526 int error;
527
528 error = nvmm_machine_get(owner, args->machid, &mach, false);
529 if (error)
530 return error;
531
532 error = nvmm_vcpu_get(mach, args->cpuid, &vcpu);
533 if (error)
534 goto out;
535
536 (*nvmm_impl->vcpu_getstate)(vcpu);
537 nvmm_vcpu_put(vcpu);
538
539 out:
540 nvmm_machine_put(mach);
541 return error;
542 }
543
544 static int
545 nvmm_vcpu_inject(struct nvmm_owner *owner, struct nvmm_ioc_vcpu_inject *args)
546 {
547 struct nvmm_machine *mach;
548 struct nvmm_cpu *vcpu;
549 int error;
550
551 error = nvmm_machine_get(owner, args->machid, &mach, false);
552 if (error)
553 return error;
554
555 error = nvmm_vcpu_get(mach, args->cpuid, &vcpu);
556 if (error)
557 goto out;
558
559 error = (*nvmm_impl->vcpu_inject)(vcpu);
560 nvmm_vcpu_put(vcpu);
561
562 out:
563 nvmm_machine_put(mach);
564 return error;
565 }
566
567 static int
568 nvmm_do_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
569 struct nvmm_vcpu_exit *exit)
570 {
571 struct vmspace *vm = mach->vm;
572 int ret;
573
574 while (1) {
575 /* Got a signal? Or pending resched? Leave. */
576 if (__predict_false(nvmm_return_needed())) {
577 exit->reason = NVMM_VCPU_EXIT_NONE;
578 return 0;
579 }
580
581 /* Run the VCPU. */
582 ret = (*nvmm_impl->vcpu_run)(mach, vcpu, exit);
583 if (__predict_false(ret != 0)) {
584 return ret;
585 }
586
587 /* Process nested page faults. */
588 if (__predict_true(exit->reason != NVMM_VCPU_EXIT_MEMORY)) {
589 break;
590 }
591 if (exit->u.mem.gpa >= mach->gpa_end) {
592 break;
593 }
594 if (uvm_fault(&vm->vm_map, exit->u.mem.gpa, exit->u.mem.prot)) {
595 break;
596 }
597 }
598
599 return 0;
600 }
601
602 static int
603 nvmm_vcpu_run(struct nvmm_owner *owner, struct nvmm_ioc_vcpu_run *args)
604 {
605 struct nvmm_machine *mach;
606 struct nvmm_cpu *vcpu;
607 int error;
608
609 error = nvmm_machine_get(owner, args->machid, &mach, false);
610 if (error)
611 return error;
612
613 error = nvmm_vcpu_get(mach, args->cpuid, &vcpu);
614 if (error)
615 goto out;
616
617 error = nvmm_do_vcpu_run(mach, vcpu, &args->exit);
618 nvmm_vcpu_put(vcpu);
619
620 out:
621 nvmm_machine_put(mach);
622 return error;
623 }
624
625 /* -------------------------------------------------------------------------- */
626
627 static struct uvm_object *
628 nvmm_hmapping_getuobj(struct nvmm_machine *mach, uintptr_t hva, size_t size,
629 size_t *off)
630 {
631 struct nvmm_hmapping *hmapping;
632 size_t i;
633
634 for (i = 0; i < NVMM_MAX_HMAPPINGS; i++) {
635 hmapping = &mach->hmap[i];
636 if (!hmapping->present) {
637 continue;
638 }
639 if (hva >= hmapping->hva &&
640 hva + size <= hmapping->hva + hmapping->size) {
641 *off = hva - hmapping->hva;
642 return hmapping->uobj;
643 }
644 }
645
646 return NULL;
647 }
648
649 static int
650 nvmm_hmapping_validate(struct nvmm_machine *mach, uintptr_t hva, size_t size)
651 {
652 struct nvmm_hmapping *hmapping;
653 size_t i;
654
655 if ((hva % PAGE_SIZE) != 0 || (size % PAGE_SIZE) != 0) {
656 return EINVAL;
657 }
658 if (hva == 0) {
659 return EINVAL;
660 }
661
662 for (i = 0; i < NVMM_MAX_HMAPPINGS; i++) {
663 hmapping = &mach->hmap[i];
664 if (!hmapping->present) {
665 continue;
666 }
667
668 if (hva >= hmapping->hva &&
669 hva + size <= hmapping->hva + hmapping->size) {
670 break;
671 }
672
673 if (hva >= hmapping->hva &&
674 hva < hmapping->hva + hmapping->size) {
675 return EEXIST;
676 }
677 if (hva + size > hmapping->hva &&
678 hva + size <= hmapping->hva + hmapping->size) {
679 return EEXIST;
680 }
681 if (hva <= hmapping->hva &&
682 hva + size >= hmapping->hva + hmapping->size) {
683 return EEXIST;
684 }
685 }
686
687 return 0;
688 }
689
690 static struct nvmm_hmapping *
691 nvmm_hmapping_alloc(struct nvmm_machine *mach)
692 {
693 struct nvmm_hmapping *hmapping;
694 size_t i;
695
696 for (i = 0; i < NVMM_MAX_HMAPPINGS; i++) {
697 hmapping = &mach->hmap[i];
698 if (!hmapping->present) {
699 hmapping->present = true;
700 return hmapping;
701 }
702 }
703
704 return NULL;
705 }
706
707 static int
708 nvmm_hmapping_free(struct nvmm_machine *mach, uintptr_t hva, size_t size)
709 {
710 struct vmspace *vmspace = curproc->p_vmspace;
711 struct nvmm_hmapping *hmapping;
712 size_t i;
713
714 for (i = 0; i < NVMM_MAX_HMAPPINGS; i++) {
715 hmapping = &mach->hmap[i];
716 if (!hmapping->present || hmapping->hva != hva ||
717 hmapping->size != size) {
718 continue;
719 }
720
721 uvm_unmap(&vmspace->vm_map, hmapping->hva,
722 hmapping->hva + hmapping->size);
723 uao_detach(hmapping->uobj);
724
725 hmapping->uobj = NULL;
726 hmapping->present = false;
727
728 return 0;
729 }
730
731 return ENOENT;
732 }
733
734 static int
735 nvmm_hva_map(struct nvmm_owner *owner, struct nvmm_ioc_hva_map *args)
736 {
737 struct vmspace *vmspace = curproc->p_vmspace;
738 struct nvmm_machine *mach;
739 struct nvmm_hmapping *hmapping;
740 vaddr_t uva;
741 int error;
742
743 error = nvmm_machine_get(owner, args->machid, &mach, true);
744 if (error)
745 return error;
746
747 error = nvmm_hmapping_validate(mach, args->hva, args->size);
748 if (error)
749 goto out;
750
751 hmapping = nvmm_hmapping_alloc(mach);
752 if (hmapping == NULL) {
753 error = ENOBUFS;
754 goto out;
755 }
756
757 hmapping->hva = args->hva;
758 hmapping->size = args->size;
759 hmapping->uobj = uao_create(hmapping->size, 0);
760 uva = hmapping->hva;
761
762 /* Take a reference for the user. */
763 uao_reference(hmapping->uobj);
764
765 /* Map the uobj into the user address space, as pageable. */
766 error = uvm_map(&vmspace->vm_map, &uva, hmapping->size, hmapping->uobj,
767 0, 0, UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_SHARE,
768 UVM_ADV_RANDOM, UVM_FLAG_FIXED|UVM_FLAG_UNMAP));
769 if (error) {
770 uao_detach(hmapping->uobj);
771 }
772
773 out:
774 nvmm_machine_put(mach);
775 return error;
776 }
777
778 static int
779 nvmm_hva_unmap(struct nvmm_owner *owner, struct nvmm_ioc_hva_unmap *args)
780 {
781 struct nvmm_machine *mach;
782 int error;
783
784 error = nvmm_machine_get(owner, args->machid, &mach, true);
785 if (error)
786 return error;
787
788 error = nvmm_hmapping_free(mach, args->hva, args->size);
789
790 nvmm_machine_put(mach);
791 return error;
792 }
793
794 /* -------------------------------------------------------------------------- */
795
796 static int
797 nvmm_gpa_map(struct nvmm_owner *owner, struct nvmm_ioc_gpa_map *args)
798 {
799 struct nvmm_machine *mach;
800 struct uvm_object *uobj;
801 gpaddr_t gpa;
802 size_t off;
803 int error;
804
805 error = nvmm_machine_get(owner, args->machid, &mach, false);
806 if (error)
807 return error;
808
809 if ((args->prot & ~(PROT_READ|PROT_WRITE|PROT_EXEC)) != 0) {
810 error = EINVAL;
811 goto out;
812 }
813
814 if ((args->gpa % PAGE_SIZE) != 0 || (args->size % PAGE_SIZE) != 0 ||
815 (args->hva % PAGE_SIZE) != 0) {
816 error = EINVAL;
817 goto out;
818 }
819 if (args->hva == 0) {
820 error = EINVAL;
821 goto out;
822 }
823 if (args->gpa < mach->gpa_begin || args->gpa >= mach->gpa_end) {
824 error = EINVAL;
825 goto out;
826 }
827 if (args->gpa + args->size <= args->gpa) {
828 error = EINVAL;
829 goto out;
830 }
831 if (args->gpa + args->size > mach->gpa_end) {
832 error = EINVAL;
833 goto out;
834 }
835 gpa = args->gpa;
836
837 uobj = nvmm_hmapping_getuobj(mach, args->hva, args->size, &off);
838 if (uobj == NULL) {
839 error = EINVAL;
840 goto out;
841 }
842
843 /* Take a reference for the machine. */
844 uao_reference(uobj);
845
846 /* Map the uobj into the machine address space, as pageable. */
847 error = uvm_map(&mach->vm->vm_map, &gpa, args->size, uobj, off, 0,
848 UVM_MAPFLAG(args->prot, UVM_PROT_RWX, UVM_INH_NONE,
849 UVM_ADV_RANDOM, UVM_FLAG_FIXED|UVM_FLAG_UNMAP));
850 if (error) {
851 uao_detach(uobj);
852 goto out;
853 }
854 if (gpa != args->gpa) {
855 uao_detach(uobj);
856 printf("[!] uvm_map problem\n");
857 error = EINVAL;
858 goto out;
859 }
860
861 out:
862 nvmm_machine_put(mach);
863 return error;
864 }
865
866 static int
867 nvmm_gpa_unmap(struct nvmm_owner *owner, struct nvmm_ioc_gpa_unmap *args)
868 {
869 struct nvmm_machine *mach;
870 gpaddr_t gpa;
871 int error;
872
873 error = nvmm_machine_get(owner, args->machid, &mach, false);
874 if (error)
875 return error;
876
877 if ((args->gpa % PAGE_SIZE) != 0 || (args->size % PAGE_SIZE) != 0) {
878 error = EINVAL;
879 goto out;
880 }
881 if (args->gpa < mach->gpa_begin || args->gpa >= mach->gpa_end) {
882 error = EINVAL;
883 goto out;
884 }
885 if (args->gpa + args->size <= args->gpa) {
886 error = EINVAL;
887 goto out;
888 }
889 if (args->gpa + args->size >= mach->gpa_end) {
890 error = EINVAL;
891 goto out;
892 }
893 gpa = args->gpa;
894
895 /* Unmap the memory from the machine. */
896 uvm_unmap(&mach->vm->vm_map, gpa, gpa + args->size);
897
898 out:
899 nvmm_machine_put(mach);
900 return error;
901 }
902
903 /* -------------------------------------------------------------------------- */
904
905 static int
906 nvmm_ctl_mach_info(struct nvmm_owner *owner, struct nvmm_ioc_ctl *args)
907 {
908 struct nvmm_ctl_mach_info ctl;
909 struct nvmm_machine *mach;
910 int error;
911 size_t i;
912
913 if (args->size != sizeof(ctl))
914 return EINVAL;
915 error = copyin(args->data, &ctl, sizeof(ctl));
916 if (error)
917 return error;
918
919 error = nvmm_machine_get(owner, ctl.machid, &mach, true);
920 if (error)
921 return error;
922
923 ctl.nvcpus = mach->ncpus;
924
925 ctl.nram = 0;
926 for (i = 0; i < NVMM_MAX_HMAPPINGS; i++) {
927 if (!mach->hmap[i].present)
928 continue;
929 ctl.nram += mach->hmap[i].size;
930 }
931
932 ctl.pid = mach->owner->pid;
933 ctl.time = mach->time;
934
935 nvmm_machine_put(mach);
936
937 error = copyout(&ctl, args->data, sizeof(ctl));
938 if (error)
939 return error;
940
941 return 0;
942 }
943
944 static int
945 nvmm_ctl(struct nvmm_owner *owner, struct nvmm_ioc_ctl *args)
946 {
947 switch (args->op) {
948 case NVMM_CTL_MACH_INFO:
949 return nvmm_ctl_mach_info(owner, args);
950 default:
951 return EINVAL;
952 }
953 }
954
955 /* -------------------------------------------------------------------------- */
956
957 static const struct nvmm_impl *
958 nvmm_ident(void)
959 {
960 size_t i;
961
962 for (i = 0; i < __arraycount(nvmm_impl_list); i++) {
963 if ((*nvmm_impl_list[i]->ident)())
964 return nvmm_impl_list[i];
965 }
966
967 return NULL;
968 }
969
970 static int
971 nvmm_init(void)
972 {
973 size_t i, n;
974
975 nvmm_impl = nvmm_ident();
976 if (nvmm_impl == NULL)
977 return ENOTSUP;
978
979 for (i = 0; i < NVMM_MAX_MACHINES; i++) {
980 machines[i].machid = i;
981 rw_init(&machines[i].lock);
982 for (n = 0; n < NVMM_MAX_VCPUS; n++) {
983 machines[i].cpus[n].present = false;
984 machines[i].cpus[n].cpuid = n;
985 mutex_init(&machines[i].cpus[n].lock, MUTEX_DEFAULT,
986 IPL_NONE);
987 }
988 }
989
990 (*nvmm_impl->init)();
991
992 return 0;
993 }
994
995 static void
996 nvmm_fini(void)
997 {
998 size_t i, n;
999
1000 for (i = 0; i < NVMM_MAX_MACHINES; i++) {
1001 rw_destroy(&machines[i].lock);
1002 for (n = 0; n < NVMM_MAX_VCPUS; n++) {
1003 mutex_destroy(&machines[i].cpus[n].lock);
1004 }
1005 }
1006
1007 (*nvmm_impl->fini)();
1008 nvmm_impl = NULL;
1009 }
1010
1011 /* -------------------------------------------------------------------------- */
1012
1013 static dev_type_open(nvmm_open);
1014
1015 const struct cdevsw nvmm_cdevsw = {
1016 .d_open = nvmm_open,
1017 .d_close = noclose,
1018 .d_read = noread,
1019 .d_write = nowrite,
1020 .d_ioctl = noioctl,
1021 .d_stop = nostop,
1022 .d_tty = notty,
1023 .d_poll = nopoll,
1024 .d_mmap = nommap,
1025 .d_kqfilter = nokqfilter,
1026 .d_discard = nodiscard,
1027 .d_flag = D_OTHER | D_MPSAFE
1028 };
1029
1030 static int nvmm_ioctl(file_t *, u_long, void *);
1031 static int nvmm_close(file_t *);
1032 static int nvmm_mmap(file_t *, off_t *, size_t, int, int *, int *,
1033 struct uvm_object **, int *);
1034
1035 static const struct fileops nvmm_fileops = {
1036 .fo_read = fbadop_read,
1037 .fo_write = fbadop_write,
1038 .fo_ioctl = nvmm_ioctl,
1039 .fo_fcntl = fnullop_fcntl,
1040 .fo_poll = fnullop_poll,
1041 .fo_stat = fbadop_stat,
1042 .fo_close = nvmm_close,
1043 .fo_kqfilter = fnullop_kqfilter,
1044 .fo_restart = fnullop_restart,
1045 .fo_mmap = nvmm_mmap,
1046 };
1047
1048 static int
1049 nvmm_open(dev_t dev, int flags, int type, struct lwp *l)
1050 {
1051 struct nvmm_owner *owner;
1052 struct file *fp;
1053 int error, fd;
1054
1055 if (__predict_false(nvmm_impl == NULL))
1056 return ENXIO;
1057 if (minor(dev) != 0)
1058 return EXDEV;
1059 if (!(flags & O_CLOEXEC))
1060 return EINVAL;
1061 error = fd_allocfile(&fp, &fd);
1062 if (error)
1063 return error;
1064
1065 if (OFLAGS(flags) & O_WRONLY) {
1066 owner = &root_owner;
1067 } else {
1068 owner = kmem_alloc(sizeof(*owner), KM_SLEEP);
1069 owner->pid = l->l_proc->p_pid;
1070 }
1071
1072 return fd_clone(fp, fd, flags, &nvmm_fileops, owner);
1073 }
1074
1075 static int
1076 nvmm_close(file_t *fp)
1077 {
1078 struct nvmm_owner *owner = fp->f_data;
1079
1080 KASSERT(owner != NULL);
1081 nvmm_kill_machines(owner);
1082 if (owner != &root_owner) {
1083 kmem_free(owner, sizeof(*owner));
1084 }
1085 fp->f_data = NULL;
1086
1087 return 0;
1088 }
1089
1090 static int
1091 nvmm_mmap(file_t *fp, off_t *offp, size_t size, int prot, int *flagsp,
1092 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1093 {
1094 struct nvmm_owner *owner = fp->f_data;
1095 struct nvmm_machine *mach;
1096 nvmm_machid_t machid;
1097 nvmm_cpuid_t cpuid;
1098 int error;
1099
1100 if (prot & PROT_EXEC)
1101 return EACCES;
1102 if (size != PAGE_SIZE)
1103 return EINVAL;
1104
1105 cpuid = NVMM_COMM_CPUID(*offp);
1106 if (__predict_false(cpuid >= NVMM_MAX_VCPUS))
1107 return EINVAL;
1108
1109 machid = NVMM_COMM_MACHID(*offp);
1110 error = nvmm_machine_get(owner, machid, &mach, false);
1111 if (error)
1112 return error;
1113
1114 uao_reference(mach->commuobj);
1115 *uobjp = mach->commuobj;
1116 *offp = cpuid * PAGE_SIZE;
1117 *maxprotp = prot;
1118 *advicep = UVM_ADV_RANDOM;
1119
1120 nvmm_machine_put(mach);
1121 return 0;
1122 }
1123
1124 static int
1125 nvmm_ioctl(file_t *fp, u_long cmd, void *data)
1126 {
1127 struct nvmm_owner *owner = fp->f_data;
1128
1129 KASSERT(owner != NULL);
1130
1131 switch (cmd) {
1132 case NVMM_IOC_CAPABILITY:
1133 return nvmm_capability(owner, data);
1134 case NVMM_IOC_MACHINE_CREATE:
1135 return nvmm_machine_create(owner, data);
1136 case NVMM_IOC_MACHINE_DESTROY:
1137 return nvmm_machine_destroy(owner, data);
1138 case NVMM_IOC_MACHINE_CONFIGURE:
1139 return nvmm_machine_configure(owner, data);
1140 case NVMM_IOC_VCPU_CREATE:
1141 return nvmm_vcpu_create(owner, data);
1142 case NVMM_IOC_VCPU_DESTROY:
1143 return nvmm_vcpu_destroy(owner, data);
1144 case NVMM_IOC_VCPU_CONFIGURE:
1145 return nvmm_vcpu_configure(owner, data);
1146 case NVMM_IOC_VCPU_SETSTATE:
1147 return nvmm_vcpu_setstate(owner, data);
1148 case NVMM_IOC_VCPU_GETSTATE:
1149 return nvmm_vcpu_getstate(owner, data);
1150 case NVMM_IOC_VCPU_INJECT:
1151 return nvmm_vcpu_inject(owner, data);
1152 case NVMM_IOC_VCPU_RUN:
1153 return nvmm_vcpu_run(owner, data);
1154 case NVMM_IOC_GPA_MAP:
1155 return nvmm_gpa_map(owner, data);
1156 case NVMM_IOC_GPA_UNMAP:
1157 return nvmm_gpa_unmap(owner, data);
1158 case NVMM_IOC_HVA_MAP:
1159 return nvmm_hva_map(owner, data);
1160 case NVMM_IOC_HVA_UNMAP:
1161 return nvmm_hva_unmap(owner, data);
1162 case NVMM_IOC_CTL:
1163 return nvmm_ctl(owner, data);
1164 default:
1165 return EINVAL;
1166 }
1167 }
1168
1169 /* -------------------------------------------------------------------------- */
1170
1171 static int nvmm_match(device_t, cfdata_t, void *);
1172 static void nvmm_attach(device_t, device_t, void *);
1173 static int nvmm_detach(device_t, int);
1174
1175 extern struct cfdriver nvmm_cd;
1176
1177 CFATTACH_DECL_NEW(nvmm, 0, nvmm_match, nvmm_attach, nvmm_detach, NULL);
1178
1179 static struct cfdata nvmm_cfdata[] = {
1180 {
1181 .cf_name = "nvmm",
1182 .cf_atname = "nvmm",
1183 .cf_unit = 0,
1184 .cf_fstate = FSTATE_STAR,
1185 .cf_loc = NULL,
1186 .cf_flags = 0,
1187 .cf_pspec = NULL,
1188 },
1189 { NULL, NULL, 0, FSTATE_NOTFOUND, NULL, 0, NULL }
1190 };
1191
1192 static int
1193 nvmm_match(device_t self, cfdata_t cfdata, void *arg)
1194 {
1195 return 1;
1196 }
1197
1198 static void
1199 nvmm_attach(device_t parent, device_t self, void *aux)
1200 {
1201 int error;
1202
1203 error = nvmm_init();
1204 if (error)
1205 panic("%s: impossible", __func__);
1206 aprint_normal_dev(self, "attached, using backend %s\n",
1207 nvmm_impl->name);
1208 }
1209
1210 static int
1211 nvmm_detach(device_t self, int flags)
1212 {
1213 if (atomic_load_relaxed(&nmachines) > 0)
1214 return EBUSY;
1215 nvmm_fini();
1216 return 0;
1217 }
1218
1219 void
1220 nvmmattach(int nunits)
1221 {
1222 /* nothing */
1223 }
1224
1225 MODULE(MODULE_CLASS_MISC, nvmm, NULL);
1226
1227 #if defined(_MODULE)
1228 CFDRIVER_DECL(nvmm, DV_VIRTUAL, NULL);
1229 #endif
1230
1231 static int
1232 nvmm_modcmd(modcmd_t cmd, void *arg)
1233 {
1234 #if defined(_MODULE)
1235 devmajor_t bmajor = NODEVMAJOR;
1236 devmajor_t cmajor = 345;
1237 #endif
1238 int error;
1239
1240 switch (cmd) {
1241 case MODULE_CMD_INIT:
1242 if (nvmm_ident() == NULL) {
1243 aprint_error("%s: cpu not supported\n",
1244 nvmm_cd.cd_name);
1245 return ENOTSUP;
1246 }
1247 #if defined(_MODULE)
1248 error = config_cfdriver_attach(&nvmm_cd);
1249 if (error)
1250 return error;
1251 #endif
1252 error = config_cfattach_attach(nvmm_cd.cd_name, &nvmm_ca);
1253 if (error) {
1254 config_cfdriver_detach(&nvmm_cd);
1255 aprint_error("%s: config_cfattach_attach failed\n",
1256 nvmm_cd.cd_name);
1257 return error;
1258 }
1259
1260 error = config_cfdata_attach(nvmm_cfdata, 1);
1261 if (error) {
1262 config_cfattach_detach(nvmm_cd.cd_name, &nvmm_ca);
1263 config_cfdriver_detach(&nvmm_cd);
1264 aprint_error("%s: unable to register cfdata\n",
1265 nvmm_cd.cd_name);
1266 return error;
1267 }
1268
1269 if (config_attach_pseudo(nvmm_cfdata) == NULL) {
1270 aprint_error("%s: config_attach_pseudo failed\n",
1271 nvmm_cd.cd_name);
1272 config_cfattach_detach(nvmm_cd.cd_name, &nvmm_ca);
1273 config_cfdriver_detach(&nvmm_cd);
1274 return ENXIO;
1275 }
1276
1277 #if defined(_MODULE)
1278 /* mknod /dev/nvmm c 345 0 */
1279 error = devsw_attach(nvmm_cd.cd_name, NULL, &bmajor,
1280 &nvmm_cdevsw, &cmajor);
1281 if (error) {
1282 aprint_error("%s: unable to register devsw\n",
1283 nvmm_cd.cd_name);
1284 config_cfattach_detach(nvmm_cd.cd_name, &nvmm_ca);
1285 config_cfdriver_detach(&nvmm_cd);
1286 return error;
1287 }
1288 #endif
1289 return 0;
1290 case MODULE_CMD_FINI:
1291 error = config_cfdata_detach(nvmm_cfdata);
1292 if (error)
1293 return error;
1294 error = config_cfattach_detach(nvmm_cd.cd_name, &nvmm_ca);
1295 if (error)
1296 return error;
1297 #if defined(_MODULE)
1298 config_cfdriver_detach(&nvmm_cd);
1299 devsw_detach(NULL, &nvmm_cdevsw);
1300 #endif
1301 return 0;
1302 case MODULE_CMD_AUTOUNLOAD:
1303 return EBUSY;
1304 default:
1305 return ENOTTY;
1306 }
1307 }
1308