nvmm_x86_svm.c revision 1.10 1 /* $NetBSD: nvmm_x86_svm.c,v 1.10 2019/01/06 16:10:51 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.10 2019/01/06 16:10:51 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <machine/cpuvar.h>
50
51 #include <dev/nvmm/nvmm.h>
52 #include <dev/nvmm/nvmm_internal.h>
53 #include <dev/nvmm/x86/nvmm_x86.h>
54
55 int svm_vmrun(paddr_t, uint64_t *);
56
57 #define MSR_VM_HSAVE_PA 0xC0010117
58
59 /* -------------------------------------------------------------------------- */
60
61 #define VMCB_EXITCODE_CR0_READ 0x0000
62 #define VMCB_EXITCODE_CR1_READ 0x0001
63 #define VMCB_EXITCODE_CR2_READ 0x0002
64 #define VMCB_EXITCODE_CR3_READ 0x0003
65 #define VMCB_EXITCODE_CR4_READ 0x0004
66 #define VMCB_EXITCODE_CR5_READ 0x0005
67 #define VMCB_EXITCODE_CR6_READ 0x0006
68 #define VMCB_EXITCODE_CR7_READ 0x0007
69 #define VMCB_EXITCODE_CR8_READ 0x0008
70 #define VMCB_EXITCODE_CR9_READ 0x0009
71 #define VMCB_EXITCODE_CR10_READ 0x000A
72 #define VMCB_EXITCODE_CR11_READ 0x000B
73 #define VMCB_EXITCODE_CR12_READ 0x000C
74 #define VMCB_EXITCODE_CR13_READ 0x000D
75 #define VMCB_EXITCODE_CR14_READ 0x000E
76 #define VMCB_EXITCODE_CR15_READ 0x000F
77 #define VMCB_EXITCODE_CR0_WRITE 0x0010
78 #define VMCB_EXITCODE_CR1_WRITE 0x0011
79 #define VMCB_EXITCODE_CR2_WRITE 0x0012
80 #define VMCB_EXITCODE_CR3_WRITE 0x0013
81 #define VMCB_EXITCODE_CR4_WRITE 0x0014
82 #define VMCB_EXITCODE_CR5_WRITE 0x0015
83 #define VMCB_EXITCODE_CR6_WRITE 0x0016
84 #define VMCB_EXITCODE_CR7_WRITE 0x0017
85 #define VMCB_EXITCODE_CR8_WRITE 0x0018
86 #define VMCB_EXITCODE_CR9_WRITE 0x0019
87 #define VMCB_EXITCODE_CR10_WRITE 0x001A
88 #define VMCB_EXITCODE_CR11_WRITE 0x001B
89 #define VMCB_EXITCODE_CR12_WRITE 0x001C
90 #define VMCB_EXITCODE_CR13_WRITE 0x001D
91 #define VMCB_EXITCODE_CR14_WRITE 0x001E
92 #define VMCB_EXITCODE_CR15_WRITE 0x001F
93 #define VMCB_EXITCODE_DR0_READ 0x0020
94 #define VMCB_EXITCODE_DR1_READ 0x0021
95 #define VMCB_EXITCODE_DR2_READ 0x0022
96 #define VMCB_EXITCODE_DR3_READ 0x0023
97 #define VMCB_EXITCODE_DR4_READ 0x0024
98 #define VMCB_EXITCODE_DR5_READ 0x0025
99 #define VMCB_EXITCODE_DR6_READ 0x0026
100 #define VMCB_EXITCODE_DR7_READ 0x0027
101 #define VMCB_EXITCODE_DR8_READ 0x0028
102 #define VMCB_EXITCODE_DR9_READ 0x0029
103 #define VMCB_EXITCODE_DR10_READ 0x002A
104 #define VMCB_EXITCODE_DR11_READ 0x002B
105 #define VMCB_EXITCODE_DR12_READ 0x002C
106 #define VMCB_EXITCODE_DR13_READ 0x002D
107 #define VMCB_EXITCODE_DR14_READ 0x002E
108 #define VMCB_EXITCODE_DR15_READ 0x002F
109 #define VMCB_EXITCODE_DR0_WRITE 0x0030
110 #define VMCB_EXITCODE_DR1_WRITE 0x0031
111 #define VMCB_EXITCODE_DR2_WRITE 0x0032
112 #define VMCB_EXITCODE_DR3_WRITE 0x0033
113 #define VMCB_EXITCODE_DR4_WRITE 0x0034
114 #define VMCB_EXITCODE_DR5_WRITE 0x0035
115 #define VMCB_EXITCODE_DR6_WRITE 0x0036
116 #define VMCB_EXITCODE_DR7_WRITE 0x0037
117 #define VMCB_EXITCODE_DR8_WRITE 0x0038
118 #define VMCB_EXITCODE_DR9_WRITE 0x0039
119 #define VMCB_EXITCODE_DR10_WRITE 0x003A
120 #define VMCB_EXITCODE_DR11_WRITE 0x003B
121 #define VMCB_EXITCODE_DR12_WRITE 0x003C
122 #define VMCB_EXITCODE_DR13_WRITE 0x003D
123 #define VMCB_EXITCODE_DR14_WRITE 0x003E
124 #define VMCB_EXITCODE_DR15_WRITE 0x003F
125 #define VMCB_EXITCODE_EXCP0 0x0040
126 #define VMCB_EXITCODE_EXCP1 0x0041
127 #define VMCB_EXITCODE_EXCP2 0x0042
128 #define VMCB_EXITCODE_EXCP3 0x0043
129 #define VMCB_EXITCODE_EXCP4 0x0044
130 #define VMCB_EXITCODE_EXCP5 0x0045
131 #define VMCB_EXITCODE_EXCP6 0x0046
132 #define VMCB_EXITCODE_EXCP7 0x0047
133 #define VMCB_EXITCODE_EXCP8 0x0048
134 #define VMCB_EXITCODE_EXCP9 0x0049
135 #define VMCB_EXITCODE_EXCP10 0x004A
136 #define VMCB_EXITCODE_EXCP11 0x004B
137 #define VMCB_EXITCODE_EXCP12 0x004C
138 #define VMCB_EXITCODE_EXCP13 0x004D
139 #define VMCB_EXITCODE_EXCP14 0x004E
140 #define VMCB_EXITCODE_EXCP15 0x004F
141 #define VMCB_EXITCODE_EXCP16 0x0050
142 #define VMCB_EXITCODE_EXCP17 0x0051
143 #define VMCB_EXITCODE_EXCP18 0x0052
144 #define VMCB_EXITCODE_EXCP19 0x0053
145 #define VMCB_EXITCODE_EXCP20 0x0054
146 #define VMCB_EXITCODE_EXCP21 0x0055
147 #define VMCB_EXITCODE_EXCP22 0x0056
148 #define VMCB_EXITCODE_EXCP23 0x0057
149 #define VMCB_EXITCODE_EXCP24 0x0058
150 #define VMCB_EXITCODE_EXCP25 0x0059
151 #define VMCB_EXITCODE_EXCP26 0x005A
152 #define VMCB_EXITCODE_EXCP27 0x005B
153 #define VMCB_EXITCODE_EXCP28 0x005C
154 #define VMCB_EXITCODE_EXCP29 0x005D
155 #define VMCB_EXITCODE_EXCP30 0x005E
156 #define VMCB_EXITCODE_EXCP31 0x005F
157 #define VMCB_EXITCODE_INTR 0x0060
158 #define VMCB_EXITCODE_NMI 0x0061
159 #define VMCB_EXITCODE_SMI 0x0062
160 #define VMCB_EXITCODE_INIT 0x0063
161 #define VMCB_EXITCODE_VINTR 0x0064
162 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
163 #define VMCB_EXITCODE_IDTR_READ 0x0066
164 #define VMCB_EXITCODE_GDTR_READ 0x0067
165 #define VMCB_EXITCODE_LDTR_READ 0x0068
166 #define VMCB_EXITCODE_TR_READ 0x0069
167 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
168 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
169 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
170 #define VMCB_EXITCODE_TR_WRITE 0x006D
171 #define VMCB_EXITCODE_RDTSC 0x006E
172 #define VMCB_EXITCODE_RDPMC 0x006F
173 #define VMCB_EXITCODE_PUSHF 0x0070
174 #define VMCB_EXITCODE_POPF 0x0071
175 #define VMCB_EXITCODE_CPUID 0x0072
176 #define VMCB_EXITCODE_RSM 0x0073
177 #define VMCB_EXITCODE_IRET 0x0074
178 #define VMCB_EXITCODE_SWINT 0x0075
179 #define VMCB_EXITCODE_INVD 0x0076
180 #define VMCB_EXITCODE_PAUSE 0x0077
181 #define VMCB_EXITCODE_HLT 0x0078
182 #define VMCB_EXITCODE_INVLPG 0x0079
183 #define VMCB_EXITCODE_INVLPGA 0x007A
184 #define VMCB_EXITCODE_IOIO 0x007B
185 #define VMCB_EXITCODE_MSR 0x007C
186 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
187 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
188 #define VMCB_EXITCODE_SHUTDOWN 0x007F
189 #define VMCB_EXITCODE_VMRUN 0x0080
190 #define VMCB_EXITCODE_VMMCALL 0x0081
191 #define VMCB_EXITCODE_VMLOAD 0x0082
192 #define VMCB_EXITCODE_VMSAVE 0x0083
193 #define VMCB_EXITCODE_STGI 0x0084
194 #define VMCB_EXITCODE_CLGI 0x0085
195 #define VMCB_EXITCODE_SKINIT 0x0086
196 #define VMCB_EXITCODE_RDTSCP 0x0087
197 #define VMCB_EXITCODE_ICEBP 0x0088
198 #define VMCB_EXITCODE_WBINVD 0x0089
199 #define VMCB_EXITCODE_MONITOR 0x008A
200 #define VMCB_EXITCODE_MWAIT 0x008B
201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
202 #define VMCB_EXITCODE_XSETBV 0x008D
203 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
204 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
205 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
206 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
207 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
208 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
209 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
210 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
211 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
212 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
213 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
214 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
215 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
216 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
217 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
218 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
219 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
220 #define VMCB_EXITCODE_NPF 0x0400
221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
222 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
223 #define VMCB_EXITCODE_VMGEXIT 0x0403
224 #define VMCB_EXITCODE_INVALID -1
225
226 /* -------------------------------------------------------------------------- */
227
228 struct vmcb_ctrl {
229 uint32_t intercept_cr;
230 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
231 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
232
233 uint32_t intercept_dr;
234 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
236
237 uint32_t intercept_vec;
238 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
239
240 uint32_t intercept_misc1;
241 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
242 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
243 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
244 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
245 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
247 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
248 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
249 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
250 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
251 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
252 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
253 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
254 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
255 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
256 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
257 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
258 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
259 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
260 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
261 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
262 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
263 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
264 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
265 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
266 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
267 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
269 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
270 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
273
274 uint32_t intercept_misc2;
275 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
276 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
277 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
278 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
279 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
280 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
281 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
282 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
283 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
284 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
285 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
286 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
287 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
290
291 uint8_t rsvd1[40];
292 uint16_t pause_filt_thresh;
293 uint16_t pause_filt_cnt;
294 uint64_t iopm_base_pa;
295 uint64_t msrpm_base_pa;
296 uint64_t tsc_offset;
297 uint32_t guest_asid;
298
299 uint32_t tlb_ctrl;
300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
303
304 uint64_t v;
305 #define VMCB_CTRL_V_TPR __BITS(7,0)
306 #define VMCB_CTRL_V_IRQ __BIT(8)
307 #define VMCB_CTRL_V_VGIF __BIT(9)
308 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
309 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
310 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
311 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
312 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
313 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
314
315 uint64_t intr;
316 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
317 #define VMCB_CTRL_GUEST_INTR_MASK __BIT(1)
318
319 uint64_t exitcode;
320 uint64_t exitinfo1;
321 uint64_t exitinfo2;
322
323 uint64_t exitintinfo;
324 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
325 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
326 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
327 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
328 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
329
330 uint64_t enable1;
331 #define VMCB_CTRL_ENABLE_NP __BIT(0)
332 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
333 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
334
335 uint64_t avic;
336 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
337
338 uint64_t ghcb;
339
340 uint64_t eventinj;
341 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
342 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
343 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
344 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
345 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
346
347 uint64_t n_cr3;
348
349 uint64_t enable2;
350 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
351 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
352
353 uint32_t vmcb_clean;
354 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
355 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
356 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
357 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
358 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
359 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
360 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
361 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
362 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
363 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
364 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
365 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
366
367 uint32_t rsvd2;
368 uint64_t nrip;
369 uint8_t inst_len;
370 uint8_t inst_bytes[15];
371 uint8_t pad[800];
372 } __packed;
373
374 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
375
376 struct vmcb_segment {
377 uint16_t selector;
378 uint16_t attrib; /* hidden */
379 uint32_t limit; /* hidden */
380 uint64_t base; /* hidden */
381 } __packed;
382
383 CTASSERT(sizeof(struct vmcb_segment) == 16);
384
385 struct vmcb_state {
386 struct vmcb_segment es;
387 struct vmcb_segment cs;
388 struct vmcb_segment ss;
389 struct vmcb_segment ds;
390 struct vmcb_segment fs;
391 struct vmcb_segment gs;
392 struct vmcb_segment gdt;
393 struct vmcb_segment ldt;
394 struct vmcb_segment idt;
395 struct vmcb_segment tr;
396 uint8_t rsvd1[43];
397 uint8_t cpl;
398 uint8_t rsvd2[4];
399 uint64_t efer;
400 uint8_t rsvd3[112];
401 uint64_t cr4;
402 uint64_t cr3;
403 uint64_t cr0;
404 uint64_t dr7;
405 uint64_t dr6;
406 uint64_t rflags;
407 uint64_t rip;
408 uint8_t rsvd4[88];
409 uint64_t rsp;
410 uint8_t rsvd5[24];
411 uint64_t rax;
412 uint64_t star;
413 uint64_t lstar;
414 uint64_t cstar;
415 uint64_t sfmask;
416 uint64_t kernelgsbase;
417 uint64_t sysenter_cs;
418 uint64_t sysenter_esp;
419 uint64_t sysenter_eip;
420 uint64_t cr2;
421 uint8_t rsvd6[32];
422 uint64_t g_pat;
423 uint64_t dbgctl;
424 uint64_t br_from;
425 uint64_t br_to;
426 uint64_t int_from;
427 uint64_t int_to;
428 uint8_t pad[2408];
429 } __packed;
430
431 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
432
433 struct vmcb {
434 struct vmcb_ctrl ctrl;
435 struct vmcb_state state;
436 } __packed;
437
438 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
439 CTASSERT(offsetof(struct vmcb, state) == 0x400);
440
441 /* -------------------------------------------------------------------------- */
442
443 struct svm_hsave {
444 paddr_t pa;
445 };
446
447 static struct svm_hsave hsave[MAXCPUS];
448
449 static uint8_t *svm_asidmap __read_mostly;
450 static uint32_t svm_maxasid __read_mostly;
451 static kmutex_t svm_asidlock __cacheline_aligned;
452
453 static bool svm_decode_assist __read_mostly;
454 static uint32_t svm_ctrl_tlb_flush __read_mostly;
455
456 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
457 static uint64_t svm_xcr0_mask __read_mostly;
458
459 #define SVM_NCPUIDS 32
460
461 #define VMCB_NPAGES 1
462
463 #define MSRBM_NPAGES 2
464 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
465
466 #define IOBM_NPAGES 3
467 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
468
469 /* Does not include EFER_LMSLE. */
470 #define EFER_VALID \
471 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
472
473 #define EFER_TLB_FLUSH \
474 (EFER_NXE|EFER_LMA|EFER_LME)
475 #define CR0_TLB_FLUSH \
476 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
477 #define CR4_TLB_FLUSH \
478 (CR4_PGE|CR4_PAE|CR4_PSE)
479
480 /* -------------------------------------------------------------------------- */
481
482 struct svm_machdata {
483 bool cpuidpresent[SVM_NCPUIDS];
484 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
485 };
486
487 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
488 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
489 };
490
491 struct svm_cpudata {
492 /* x64-specific */
493 struct nvmm_x64_state state;
494
495 /* General */
496 bool shared_asid;
497 bool tlb_want_flush;
498
499 /* VMCB */
500 struct vmcb *vmcb;
501 paddr_t vmcb_pa;
502
503 /* I/O bitmap */
504 uint8_t *iobm;
505 paddr_t iobm_pa;
506
507 /* MSR bitmap */
508 uint8_t *msrbm;
509 paddr_t msrbm_pa;
510
511 /* Host state */
512 uint64_t xcr0;
513 uint64_t star;
514 uint64_t lstar;
515 uint64_t cstar;
516 uint64_t sfmask;
517 uint64_t cr2;
518 bool ts_set;
519 struct xsave_header hfpu __aligned(16);
520
521 /* Event state */
522 bool int_window_exit;
523 bool nmi_window_exit;
524
525 /* Guest state */
526 uint64_t tsc_offset;
527 struct xsave_header gfpu __aligned(16);
528 };
529
530 #define SVM_EVENT_TYPE_HW_INT 0
531 #define SVM_EVENT_TYPE_NMI 2
532 #define SVM_EVENT_TYPE_EXC 3
533 #define SVM_EVENT_TYPE_SW_INT 4
534
535 static void
536 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
537 {
538 struct svm_cpudata *cpudata = vcpu->cpudata;
539 struct vmcb *vmcb = cpudata->vmcb;
540
541 if (nmi) {
542 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
543 cpudata->nmi_window_exit = true;
544 } else {
545 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
546 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
547 cpudata->int_window_exit = true;
548 }
549 }
550
551 static void
552 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
553 {
554 struct svm_cpudata *cpudata = vcpu->cpudata;
555 struct vmcb *vmcb = cpudata->vmcb;
556
557 if (nmi) {
558 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
559 cpudata->nmi_window_exit = false;
560 } else {
561 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
562 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
563 cpudata->int_window_exit = false;
564 }
565 }
566
567 static inline int
568 svm_event_has_error(uint64_t vector)
569 {
570 switch (vector) {
571 case 8: /* #DF */
572 case 10: /* #TS */
573 case 11: /* #NP */
574 case 12: /* #SS */
575 case 13: /* #GP */
576 case 14: /* #PF */
577 case 17: /* #AC */
578 case 30: /* #SX */
579 return 1;
580 default:
581 return 0;
582 }
583 }
584
585 static int
586 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
587 struct nvmm_event *event)
588 {
589 struct svm_cpudata *cpudata = vcpu->cpudata;
590 struct vmcb *vmcb = cpudata->vmcb;
591 int type = 0, err = 0;
592
593 if (event->vector >= 256) {
594 return EINVAL;
595 }
596
597 switch (event->type) {
598 case NVMM_EVENT_INTERRUPT_HW:
599 type = SVM_EVENT_TYPE_HW_INT;
600 if (event->vector == 2) {
601 type = SVM_EVENT_TYPE_NMI;
602 }
603 if (type == SVM_EVENT_TYPE_NMI) {
604 if (cpudata->nmi_window_exit) {
605 return EAGAIN;
606 }
607 svm_event_waitexit_enable(vcpu, true);
608 } else {
609 if (((vmcb->state.rflags & PSL_I) == 0) ||
610 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
611 svm_event_waitexit_enable(vcpu, false);
612 return EAGAIN;
613 }
614 }
615 err = 0;
616 break;
617 case NVMM_EVENT_INTERRUPT_SW:
618 type = SVM_EVENT_TYPE_SW_INT;
619 err = 0;
620 break;
621 case NVMM_EVENT_EXCEPTION:
622 type = SVM_EVENT_TYPE_EXC;
623 if (event->vector == 2 || event->vector >= 32)
624 return EINVAL;
625 err = svm_event_has_error(event->vector);
626 break;
627 default:
628 return EINVAL;
629 }
630
631 vmcb->ctrl.eventinj =
632 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
633 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
634 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
635 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
636 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
637
638 return 0;
639 }
640
641 static void
642 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
643 {
644 struct nvmm_event event;
645 int ret __diagused;
646
647 event.type = NVMM_EVENT_EXCEPTION;
648 event.vector = 6;
649 event.u.error = 0;
650
651 ret = svm_vcpu_inject(mach, vcpu, &event);
652 KASSERT(ret == 0);
653 }
654
655 static void
656 svm_inject_db(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
657 {
658 struct nvmm_event event;
659 int ret __diagused;
660
661 event.type = NVMM_EVENT_EXCEPTION;
662 event.vector = 1;
663 event.u.error = 0;
664
665 ret = svm_vcpu_inject(mach, vcpu, &event);
666 KASSERT(ret == 0);
667 }
668
669 static void
670 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
671 {
672 struct nvmm_event event;
673 int ret __diagused;
674
675 event.type = NVMM_EVENT_EXCEPTION;
676 event.vector = 13;
677 event.u.error = 0;
678
679 ret = svm_vcpu_inject(mach, vcpu, &event);
680 KASSERT(ret == 0);
681 }
682
683 static void
684 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
685 {
686 struct svm_cpudata *cpudata = vcpu->cpudata;
687 struct nvmm_x64_state *state = &cpudata->state;
688
689 switch (eax) {
690 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
691 state->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
692 state->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
693 CPUID_LOCAL_APIC_ID);
694 break;
695 case 0x0000000D: /* FPU description. Not tunable. */
696 if (ecx != 0 || svm_xcr0_mask == 0) {
697 break;
698 }
699 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
700 if (state->crs[NVMM_X64_CR_XCR0] & XCR0_SSE) {
701 state->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
702 } else {
703 state->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
704 }
705 state->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
706 state->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
707 state->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
708 break;
709 case 0x40000000:
710 memcpy(&state->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
711 memcpy(&state->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
712 memcpy(&state->gprs[NVMM_X64_GPR_RDX], " ___", 4);
713 break;
714 case 0x80000001: /* No SVM in ECX. The rest is tunable. */
715 state->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
716 break;
717 default:
718 break;
719 }
720 }
721
722 static void
723 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
724 struct nvmm_exit *exit)
725 {
726 struct svm_machdata *machdata = mach->machdata;
727 struct svm_cpudata *cpudata = vcpu->cpudata;
728 struct nvmm_x64_state *state = &cpudata->state;
729 struct nvmm_x86_conf_cpuid *cpuid;
730 uint64_t eax, ecx;
731 u_int descs[4];
732 size_t i;
733
734 eax = cpudata->vmcb->state.rax;
735 ecx = state->gprs[NVMM_X64_GPR_RCX];
736 x86_cpuid2(eax, ecx, descs);
737
738 cpudata->vmcb->state.rax = descs[0];
739 state->gprs[NVMM_X64_GPR_RBX] = descs[1];
740 state->gprs[NVMM_X64_GPR_RCX] = descs[2];
741 state->gprs[NVMM_X64_GPR_RDX] = descs[3];
742
743 for (i = 0; i < SVM_NCPUIDS; i++) {
744 cpuid = &machdata->cpuid[i];
745 if (!machdata->cpuidpresent[i]) {
746 continue;
747 }
748 if (cpuid->leaf != eax) {
749 continue;
750 }
751
752 /* del */
753 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
754 state->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
755 state->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
756 state->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
757
758 /* set */
759 cpudata->vmcb->state.rax |= cpuid->set.eax;
760 state->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
761 state->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
762 state->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
763
764 break;
765 }
766
767 /* Overwrite non-tunable leaves. */
768 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
769
770 /* For now we omit DBREGS. */
771 if (__predict_false(cpudata->vmcb->state.rflags & PSL_T)) {
772 svm_inject_db(mach, vcpu);
773 }
774
775 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
776 exit->reason = NVMM_EXIT_NONE;
777 }
778
779 static void
780 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
781 struct nvmm_exit *exit)
782 {
783 struct svm_cpudata *cpudata = vcpu->cpudata;
784
785 exit->reason = NVMM_EXIT_HLT;
786 exit->u.hlt.npc = cpudata->vmcb->ctrl.nrip;
787 }
788
789 #define SVM_EXIT_IO_PORT __BITS(31,16)
790 #define SVM_EXIT_IO_SEG __BITS(12,10)
791 #define SVM_EXIT_IO_A64 __BIT(9)
792 #define SVM_EXIT_IO_A32 __BIT(8)
793 #define SVM_EXIT_IO_A16 __BIT(7)
794 #define SVM_EXIT_IO_SZ32 __BIT(6)
795 #define SVM_EXIT_IO_SZ16 __BIT(5)
796 #define SVM_EXIT_IO_SZ8 __BIT(4)
797 #define SVM_EXIT_IO_REP __BIT(3)
798 #define SVM_EXIT_IO_STR __BIT(2)
799 #define SVM_EXIT_IO_IN __BIT(0)
800
801 static const int seg_to_nvmm[] = {
802 [0] = NVMM_X64_SEG_ES,
803 [1] = NVMM_X64_SEG_CS,
804 [2] = NVMM_X64_SEG_SS,
805 [3] = NVMM_X64_SEG_DS,
806 [4] = NVMM_X64_SEG_FS,
807 [5] = NVMM_X64_SEG_GS
808 };
809
810 static void
811 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
812 struct nvmm_exit *exit)
813 {
814 struct svm_cpudata *cpudata = vcpu->cpudata;
815 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
816 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
817
818 exit->reason = NVMM_EXIT_IO;
819
820 if (info & SVM_EXIT_IO_IN) {
821 exit->u.io.type = NVMM_EXIT_IO_IN;
822 } else {
823 exit->u.io.type = NVMM_EXIT_IO_OUT;
824 }
825
826 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
827
828 if (svm_decode_assist) {
829 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
830 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
831 } else {
832 exit->u.io.seg = -1;
833 }
834
835 if (info & SVM_EXIT_IO_A64) {
836 exit->u.io.address_size = 8;
837 } else if (info & SVM_EXIT_IO_A32) {
838 exit->u.io.address_size = 4;
839 } else if (info & SVM_EXIT_IO_A16) {
840 exit->u.io.address_size = 2;
841 }
842
843 if (info & SVM_EXIT_IO_SZ32) {
844 exit->u.io.operand_size = 4;
845 } else if (info & SVM_EXIT_IO_SZ16) {
846 exit->u.io.operand_size = 2;
847 } else if (info & SVM_EXIT_IO_SZ8) {
848 exit->u.io.operand_size = 1;
849 }
850
851 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
852 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
853 exit->u.io.npc = nextpc;
854 }
855
856 static const uint64_t msr_ignore_list[] = {
857 0xc0010055, /* MSR_CMPHALT */
858 MSR_DE_CFG,
859 MSR_IC_CFG,
860 MSR_UCODE_AMD_PATCHLEVEL
861 };
862
863 static bool
864 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
865 struct nvmm_exit *exit)
866 {
867 struct svm_cpudata *cpudata = vcpu->cpudata;
868 struct nvmm_x64_state *state = &cpudata->state;
869 uint64_t val;
870 size_t i;
871
872 switch (exit->u.msr.type) {
873 case NVMM_EXIT_MSR_RDMSR:
874 if (exit->u.msr.msr == MSR_CR_PAT) {
875 val = cpudata->vmcb->state.g_pat;
876 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
877 state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
878 goto handled;
879 }
880 if (exit->u.msr.msr == MSR_NB_CFG) {
881 val = NB_CFG_INITAPICCPUIDLO;
882 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
883 state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
884 goto handled;
885 }
886 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
887 if (msr_ignore_list[i] != exit->u.msr.msr)
888 continue;
889 val = 0;
890 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
891 state->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
892 goto handled;
893 }
894 break;
895 case NVMM_EXIT_MSR_WRMSR:
896 if (exit->u.msr.msr == MSR_EFER) {
897 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
898 svm_inject_gp(mach, vcpu);
899 goto handled;
900 }
901 if ((cpudata->vmcb->state.efer ^ exit->u.msr.val) &
902 EFER_TLB_FLUSH) {
903 cpudata->tlb_want_flush = true;
904 }
905 cpudata->vmcb->state.efer = exit->u.msr.val | EFER_SVME;
906 goto handled;
907 }
908 if (exit->u.msr.msr == MSR_CR_PAT) {
909 cpudata->vmcb->state.g_pat = exit->u.msr.val;
910 goto handled;
911 }
912 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
913 if (msr_ignore_list[i] != exit->u.msr.msr)
914 continue;
915 goto handled;
916 }
917 break;
918 }
919
920 return false;
921
922 handled:
923 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
924 return true;
925 }
926
927 static void
928 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
929 struct nvmm_exit *exit)
930 {
931 struct svm_cpudata *cpudata = vcpu->cpudata;
932 struct nvmm_x64_state *state = &cpudata->state;
933 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
934
935 if (info == 0) {
936 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
937 } else {
938 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
939 }
940
941 exit->u.msr.msr = state->gprs[NVMM_X64_GPR_RCX];
942
943 if (info == 1) {
944 uint64_t rdx, rax;
945 rdx = state->gprs[NVMM_X64_GPR_RDX];
946 rax = cpudata->vmcb->state.rax;
947 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
948 } else {
949 exit->u.msr.val = 0;
950 }
951
952 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
953 exit->reason = NVMM_EXIT_NONE;
954 return;
955 }
956
957 exit->reason = NVMM_EXIT_MSR;
958 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
959 }
960
961 static void
962 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
963 struct nvmm_exit *exit)
964 {
965 struct svm_cpudata *cpudata = vcpu->cpudata;
966 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
967 int error;
968
969 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
970
971 if (error) {
972 exit->reason = NVMM_EXIT_MEMORY;
973 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
974 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
975 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
976 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
977 else
978 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
979 exit->u.mem.gpa = gpa;
980 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
981 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
982 sizeof(exit->u.mem.inst_bytes));
983 exit->u.mem.npc = cpudata->vmcb->ctrl.nrip;
984 } else {
985 exit->reason = NVMM_EXIT_NONE;
986 }
987 }
988
989 static void
990 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
991 struct nvmm_exit *exit)
992 {
993 struct svm_cpudata *cpudata = vcpu->cpudata;
994 struct nvmm_x64_state *state = &cpudata->state;
995 struct vmcb *vmcb = cpudata->vmcb;
996 uint64_t val;
997
998 exit->reason = NVMM_EXIT_NONE;
999
1000 val = (state->gprs[NVMM_X64_GPR_RDX] << 32) |
1001 (vmcb->state.rax & 0xFFFFFFFF);
1002
1003 if (__predict_false(state->gprs[NVMM_X64_GPR_RCX] != 0)) {
1004 goto error;
1005 } else if (__predict_false(vmcb->state.cpl != 0)) {
1006 goto error;
1007 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1008 goto error;
1009 } else if (__predict_false((val & XCR0_X87) == 0)) {
1010 goto error;
1011 }
1012
1013 state->crs[NVMM_X64_CR_XCR0] = val;
1014
1015 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
1016 return;
1017
1018 error:
1019 svm_inject_gp(mach, vcpu);
1020 }
1021
1022 static void
1023 svm_vmcb_cache_default(struct vmcb *vmcb)
1024 {
1025 vmcb->ctrl.vmcb_clean =
1026 VMCB_CTRL_VMCB_CLEAN_I |
1027 VMCB_CTRL_VMCB_CLEAN_IOPM |
1028 VMCB_CTRL_VMCB_CLEAN_ASID |
1029 VMCB_CTRL_VMCB_CLEAN_LBR |
1030 VMCB_CTRL_VMCB_CLEAN_AVIC;
1031 }
1032
1033 static void
1034 svm_vmcb_cache_flush(struct vmcb *vmcb)
1035 {
1036 vmcb->ctrl.vmcb_clean = 0;
1037 }
1038
1039 static void
1040 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1041 {
1042 struct svm_cpudata *cpudata = vcpu->cpudata;
1043
1044 if (x86_xsave_features != 0) {
1045 cpudata->xcr0 = rdxcr(0);
1046 wrxcr(0, cpudata->state.crs[NVMM_X64_CR_XCR0]);
1047 }
1048
1049 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1050
1051 fpu_area_save(&cpudata->hfpu);
1052 fpu_area_restore(&cpudata->gfpu);
1053 }
1054
1055 static void
1056 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1057 {
1058 struct svm_cpudata *cpudata = vcpu->cpudata;
1059
1060 fpu_area_save(&cpudata->gfpu);
1061 fpu_area_restore(&cpudata->hfpu);
1062
1063 if (cpudata->ts_set) {
1064 stts();
1065 }
1066
1067 if (x86_xsave_features != 0) {
1068 cpudata->state.crs[NVMM_X64_CR_XCR0] = rdxcr(0);
1069 wrxcr(0, cpudata->xcr0);
1070 }
1071 }
1072
1073 static void
1074 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1075 {
1076 struct svm_cpudata *cpudata = vcpu->cpudata;
1077 struct nvmm_x64_state *state = &cpudata->state;
1078
1079 x86_dbregs_save(curlwp);
1080
1081 ldr0(state->drs[NVMM_X64_DR_DR0]);
1082 ldr1(state->drs[NVMM_X64_DR_DR1]);
1083 ldr2(state->drs[NVMM_X64_DR_DR2]);
1084 ldr3(state->drs[NVMM_X64_DR_DR3]);
1085 }
1086
1087 static void
1088 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1089 {
1090 struct svm_cpudata *cpudata = vcpu->cpudata;
1091 struct nvmm_x64_state *state = &cpudata->state;
1092
1093 state->drs[NVMM_X64_DR_DR0] = rdr0();
1094 state->drs[NVMM_X64_DR_DR1] = rdr1();
1095 state->drs[NVMM_X64_DR_DR2] = rdr2();
1096 state->drs[NVMM_X64_DR_DR3] = rdr3();
1097
1098 x86_dbregs_restore(curlwp);
1099 }
1100
1101 static void
1102 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1103 {
1104 struct svm_cpudata *cpudata = vcpu->cpudata;
1105
1106 /* Save the fixed Host MSRs. */
1107 cpudata->star = rdmsr(MSR_STAR);
1108 cpudata->lstar = rdmsr(MSR_LSTAR);
1109 cpudata->cstar = rdmsr(MSR_CSTAR);
1110 cpudata->sfmask = rdmsr(MSR_SFMASK);
1111
1112 /* Save the Host CR2. */
1113 cpudata->cr2 = rcr2();
1114 }
1115
1116 static void
1117 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1118 {
1119 struct svm_cpudata *cpudata = vcpu->cpudata;
1120
1121 /* Restore the fixed Host MSRs. */
1122 wrmsr(MSR_STAR, cpudata->star);
1123 wrmsr(MSR_LSTAR, cpudata->lstar);
1124 wrmsr(MSR_CSTAR, cpudata->cstar);
1125 wrmsr(MSR_SFMASK, cpudata->sfmask);
1126
1127 /* Restore the Host CR2. */
1128 lcr2(cpudata->cr2);
1129 }
1130
1131 static int
1132 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1133 struct nvmm_exit *exit)
1134 {
1135 struct svm_cpudata *cpudata = vcpu->cpudata;
1136 struct vmcb *vmcb = cpudata->vmcb;
1137 bool tlb_need_flush = false;
1138 int hcpu, s;
1139
1140 kpreempt_disable();
1141 hcpu = cpu_number();
1142
1143 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1144 tlb_need_flush = true;
1145 }
1146
1147 if (cpudata->tlb_want_flush || tlb_need_flush) {
1148 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1149 } else {
1150 vmcb->ctrl.tlb_ctrl = 0;
1151 }
1152
1153 if (vcpu->hcpu_last != hcpu) {
1154 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1155 curcpu()->ci_data.cpu_cc_skew;
1156 svm_vmcb_cache_flush(vmcb);
1157 }
1158
1159 svm_vcpu_guest_dbregs_enter(vcpu);
1160 svm_vcpu_guest_misc_enter(vcpu);
1161
1162 while (1) {
1163 s = splhigh();
1164 svm_vcpu_guest_fpu_enter(vcpu);
1165 svm_vmrun(cpudata->vmcb_pa, cpudata->state.gprs);
1166 svm_vcpu_guest_fpu_leave(vcpu);
1167 splx(s);
1168
1169 svm_vmcb_cache_default(vmcb);
1170
1171 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1172 if (cpudata->tlb_want_flush) {
1173 cpudata->tlb_want_flush = false;
1174 }
1175 vcpu->hcpu_last = hcpu;
1176 }
1177
1178 switch (vmcb->ctrl.exitcode) {
1179 case VMCB_EXITCODE_INTR:
1180 case VMCB_EXITCODE_NMI:
1181 exit->reason = NVMM_EXIT_NONE;
1182 break;
1183 case VMCB_EXITCODE_VINTR:
1184 svm_event_waitexit_disable(vcpu, false);
1185 exit->reason = NVMM_EXIT_INT_READY;
1186 break;
1187 case VMCB_EXITCODE_IRET:
1188 svm_event_waitexit_disable(vcpu, true);
1189 exit->reason = NVMM_EXIT_NMI_READY;
1190 break;
1191 case VMCB_EXITCODE_CPUID:
1192 svm_exit_cpuid(mach, vcpu, exit);
1193 break;
1194 case VMCB_EXITCODE_HLT:
1195 svm_exit_hlt(mach, vcpu, exit);
1196 break;
1197 case VMCB_EXITCODE_IOIO:
1198 svm_exit_io(mach, vcpu, exit);
1199 break;
1200 case VMCB_EXITCODE_MSR:
1201 svm_exit_msr(mach, vcpu, exit);
1202 break;
1203 case VMCB_EXITCODE_SHUTDOWN:
1204 exit->reason = NVMM_EXIT_SHUTDOWN;
1205 break;
1206 case VMCB_EXITCODE_RDPMC:
1207 case VMCB_EXITCODE_RSM:
1208 case VMCB_EXITCODE_INVLPGA:
1209 case VMCB_EXITCODE_VMRUN:
1210 case VMCB_EXITCODE_VMMCALL:
1211 case VMCB_EXITCODE_VMLOAD:
1212 case VMCB_EXITCODE_VMSAVE:
1213 case VMCB_EXITCODE_STGI:
1214 case VMCB_EXITCODE_CLGI:
1215 case VMCB_EXITCODE_SKINIT:
1216 case VMCB_EXITCODE_RDTSCP:
1217 svm_inject_ud(mach, vcpu);
1218 exit->reason = NVMM_EXIT_NONE;
1219 break;
1220 case VMCB_EXITCODE_MONITOR:
1221 exit->reason = NVMM_EXIT_MONITOR;
1222 break;
1223 case VMCB_EXITCODE_MWAIT:
1224 exit->reason = NVMM_EXIT_MWAIT;
1225 break;
1226 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1227 exit->reason = NVMM_EXIT_MWAIT_COND;
1228 break;
1229 case VMCB_EXITCODE_XSETBV:
1230 svm_exit_xsetbv(mach, vcpu, exit);
1231 break;
1232 case VMCB_EXITCODE_NPF:
1233 svm_exit_npf(mach, vcpu, exit);
1234 break;
1235 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1236 default:
1237 exit->reason = NVMM_EXIT_INVALID;
1238 break;
1239 }
1240
1241 if (vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V) {
1242 printf("WAS PROCESSING!\n");
1243 }
1244
1245 /* If no reason to return to userland, keep rolling. */
1246 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1247 break;
1248 }
1249 if (curcpu()->ci_data.cpu_softints != 0) {
1250 break;
1251 }
1252 if (curlwp->l_flag & LW_USERRET) {
1253 break;
1254 }
1255 if (exit->reason != NVMM_EXIT_NONE) {
1256 break;
1257 }
1258 }
1259
1260 svm_vcpu_guest_misc_leave(vcpu);
1261 svm_vcpu_guest_dbregs_leave(vcpu);
1262
1263 kpreempt_enable();
1264
1265 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1266 VMCB_CTRL_V_TPR);
1267 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1268
1269 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1270 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1271 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1272 cpudata->int_window_exit;
1273 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1274 cpudata->nmi_window_exit;
1275
1276 return 0;
1277 }
1278
1279 /* -------------------------------------------------------------------------- */
1280
1281 static int
1282 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1283 {
1284 struct pglist pglist;
1285 paddr_t _pa;
1286 vaddr_t _va;
1287 size_t i;
1288 int ret;
1289
1290 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1291 &pglist, 1, 0);
1292 if (ret != 0)
1293 return ENOMEM;
1294 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1295 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1296 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1297 if (_va == 0)
1298 goto error;
1299
1300 for (i = 0; i < npages; i++) {
1301 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1302 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1303 }
1304 pmap_update(pmap_kernel());
1305
1306 memset((void *)_va, 0, npages * PAGE_SIZE);
1307
1308 *pa = _pa;
1309 *va = _va;
1310 return 0;
1311
1312 error:
1313 for (i = 0; i < npages; i++) {
1314 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1315 }
1316 return ENOMEM;
1317 }
1318
1319 static void
1320 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1321 {
1322 size_t i;
1323
1324 pmap_kremove(va, npages * PAGE_SIZE);
1325 pmap_update(pmap_kernel());
1326 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1327 for (i = 0; i < npages; i++) {
1328 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1329 }
1330 }
1331
1332 /* -------------------------------------------------------------------------- */
1333
1334 #define SVM_MSRBM_READ __BIT(0)
1335 #define SVM_MSRBM_WRITE __BIT(1)
1336
1337 static void
1338 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1339 {
1340 uint64_t byte;
1341 uint8_t bitoff;
1342
1343 if (msr < 0x00002000) {
1344 /* Range 1 */
1345 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1346 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1347 /* Range 2 */
1348 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1349 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1350 /* Range 3 */
1351 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1352 } else {
1353 panic("%s: wrong range", __func__);
1354 }
1355
1356 bitoff = (msr & 0x3) << 1;
1357
1358 if (read) {
1359 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1360 }
1361 if (write) {
1362 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1363 }
1364 }
1365
1366 static void
1367 svm_asid_alloc(struct nvmm_cpu *vcpu)
1368 {
1369 struct svm_cpudata *cpudata = vcpu->cpudata;
1370 struct vmcb *vmcb = cpudata->vmcb;
1371 size_t i, oct, bit;
1372
1373 mutex_enter(&svm_asidlock);
1374
1375 for (i = 0; i < svm_maxasid; i++) {
1376 oct = i / 8;
1377 bit = i % 8;
1378
1379 if (svm_asidmap[oct] & __BIT(bit)) {
1380 continue;
1381 }
1382
1383 svm_asidmap[oct] |= __BIT(bit);
1384 vmcb->ctrl.guest_asid = i;
1385 mutex_exit(&svm_asidlock);
1386 return;
1387 }
1388
1389 /*
1390 * No free ASID. Use the last one, which is shared and requires
1391 * special TLB handling.
1392 */
1393 cpudata->shared_asid = true;
1394 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1395 mutex_exit(&svm_asidlock);
1396 }
1397
1398 static void
1399 svm_asid_free(struct nvmm_cpu *vcpu)
1400 {
1401 struct svm_cpudata *cpudata = vcpu->cpudata;
1402 struct vmcb *vmcb = cpudata->vmcb;
1403 size_t oct, bit;
1404
1405 if (cpudata->shared_asid) {
1406 return;
1407 }
1408
1409 oct = vmcb->ctrl.guest_asid / 8;
1410 bit = vmcb->ctrl.guest_asid % 8;
1411
1412 mutex_enter(&svm_asidlock);
1413 svm_asidmap[oct] &= ~__BIT(bit);
1414 mutex_exit(&svm_asidlock);
1415 }
1416
1417 static void
1418 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1419 {
1420 struct svm_cpudata *cpudata = vcpu->cpudata;
1421 struct vmcb *vmcb = cpudata->vmcb;
1422
1423 /* Allow reads/writes of Control Registers. */
1424 vmcb->ctrl.intercept_cr = 0;
1425
1426 /* Allow reads/writes of Debug Registers. */
1427 vmcb->ctrl.intercept_dr = 0;
1428
1429 /* Allow exceptions 0 to 31. */
1430 vmcb->ctrl.intercept_vec = 0;
1431
1432 /*
1433 * Allow:
1434 * - SMI [smm interrupts]
1435 * - VINTR [virtual interrupts]
1436 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1437 * - RIDTR [reads of IDTR]
1438 * - RGDTR [reads of GDTR]
1439 * - RLDTR [reads of LDTR]
1440 * - RTR [reads of TR]
1441 * - WIDTR [writes of IDTR]
1442 * - WGDTR [writes of GDTR]
1443 * - WLDTR [writes of LDTR]
1444 * - WTR [writes of TR]
1445 * - RDTSC [rdtsc instruction]
1446 * - PUSHF [pushf instruction]
1447 * - POPF [popf instruction]
1448 * - IRET [iret instruction]
1449 * - INTN [int $n instructions]
1450 * - INVD [invd instruction]
1451 * - PAUSE [pause instruction]
1452 * - INVLPG [invplg instruction]
1453 * - TASKSW [task switches]
1454 *
1455 * Intercept the rest below.
1456 */
1457 vmcb->ctrl.intercept_misc1 =
1458 VMCB_CTRL_INTERCEPT_INTR |
1459 VMCB_CTRL_INTERCEPT_NMI |
1460 VMCB_CTRL_INTERCEPT_INIT |
1461 VMCB_CTRL_INTERCEPT_RDPMC |
1462 VMCB_CTRL_INTERCEPT_CPUID |
1463 VMCB_CTRL_INTERCEPT_RSM |
1464 VMCB_CTRL_INTERCEPT_HLT |
1465 VMCB_CTRL_INTERCEPT_INVLPGA |
1466 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1467 VMCB_CTRL_INTERCEPT_MSR_PROT |
1468 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1469 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1470
1471 /*
1472 * Allow:
1473 * - ICEBP [icebp instruction]
1474 * - WBINVD [wbinvd instruction]
1475 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1476 *
1477 * Intercept the rest below.
1478 */
1479 vmcb->ctrl.intercept_misc2 =
1480 VMCB_CTRL_INTERCEPT_VMRUN |
1481 VMCB_CTRL_INTERCEPT_VMMCALL |
1482 VMCB_CTRL_INTERCEPT_VMLOAD |
1483 VMCB_CTRL_INTERCEPT_VMSAVE |
1484 VMCB_CTRL_INTERCEPT_STGI |
1485 VMCB_CTRL_INTERCEPT_CLGI |
1486 VMCB_CTRL_INTERCEPT_SKINIT |
1487 VMCB_CTRL_INTERCEPT_RDTSCP |
1488 VMCB_CTRL_INTERCEPT_MONITOR |
1489 VMCB_CTRL_INTERCEPT_MWAIT |
1490 VMCB_CTRL_INTERCEPT_XSETBV;
1491
1492 /* Intercept all I/O accesses. */
1493 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1494 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1495
1496 /*
1497 * Allow:
1498 * - EFER [read]
1499 * - STAR [read, write]
1500 * - LSTAR [read, write]
1501 * - CSTAR [read, write]
1502 * - SFMASK [read, write]
1503 * - KERNELGSBASE [read, write]
1504 * - SYSENTER_CS [read, write]
1505 * - SYSENTER_ESP [read, write]
1506 * - SYSENTER_EIP [read, write]
1507 * - FSBASE [read, write]
1508 * - GSBASE [read, write]
1509 * - TSC [read]
1510 *
1511 * Intercept the rest.
1512 */
1513 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1514 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1515 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1516 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1517 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1518 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1519 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1520 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1521 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1522 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1523 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1524 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1525 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1526 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1527
1528 /* Generate ASID. */
1529 svm_asid_alloc(vcpu);
1530
1531 /* Virtual TPR. */
1532 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1533
1534 /* Enable Nested Paging. */
1535 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1536 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1537
1538 /* Must always be set. */
1539 vmcb->state.efer = EFER_SVME;
1540
1541 /* Init XSAVE header. */
1542 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1543 cpudata->gfpu.xsh_xcomp_bv = 0;
1544
1545 /* Bluntly hide the host TSC. */
1546 cpudata->tsc_offset = rdtsc();
1547 }
1548
1549 static int
1550 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1551 {
1552 struct svm_cpudata *cpudata;
1553 int error;
1554
1555 /* Allocate the SVM cpudata. */
1556 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1557 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1558 UVM_KMF_WIRED|UVM_KMF_ZERO);
1559 vcpu->cpudata = cpudata;
1560
1561 /* VMCB */
1562 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1563 VMCB_NPAGES);
1564 if (error)
1565 goto error;
1566
1567 /* I/O Bitmap */
1568 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1569 IOBM_NPAGES);
1570 if (error)
1571 goto error;
1572
1573 /* MSR Bitmap */
1574 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1575 MSRBM_NPAGES);
1576 if (error)
1577 goto error;
1578
1579 /* Init the VCPU info. */
1580 svm_vcpu_init(mach, vcpu);
1581
1582 return 0;
1583
1584 error:
1585 if (cpudata->vmcb_pa) {
1586 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1587 VMCB_NPAGES);
1588 }
1589 if (cpudata->iobm_pa) {
1590 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1591 IOBM_NPAGES);
1592 }
1593 if (cpudata->msrbm_pa) {
1594 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1595 MSRBM_NPAGES);
1596 }
1597 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1598 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1599 return error;
1600 }
1601
1602 static void
1603 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1604 {
1605 struct svm_cpudata *cpudata = vcpu->cpudata;
1606
1607 svm_asid_free(vcpu);
1608
1609 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1610 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1611 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1612
1613 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1614 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1615 }
1616
1617 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1618 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1619 #define SVM_SEG_ATTRIB_P __BIT(7)
1620 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1621 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1622 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1623 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1624
1625 static void
1626 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1627 {
1628 vseg->selector = seg->selector;
1629 vseg->attrib =
1630 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1631 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1632 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1633 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1634 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1635 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1636 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1637 vseg->limit = seg->limit;
1638 vseg->base = seg->base;
1639 }
1640
1641 static void
1642 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1643 {
1644 seg->selector = vseg->selector;
1645 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1646 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1647 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1648 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1649 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1650 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1651 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1652 seg->limit = vseg->limit;
1653 seg->base = vseg->base;
1654 }
1655
1656 static bool
1657 svm_state_tlb_flush(struct nvmm_x64_state *cstate,
1658 struct nvmm_x64_state *nstate, uint64_t flags)
1659 {
1660 if (flags & NVMM_X64_STATE_CRS) {
1661 if ((cstate->crs[NVMM_X64_CR_CR0] ^
1662 nstate->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1663 return true;
1664 }
1665 if (cstate->crs[NVMM_X64_CR_CR3] !=
1666 nstate->crs[NVMM_X64_CR_CR3]) {
1667 return true;
1668 }
1669 if ((cstate->crs[NVMM_X64_CR_CR4] ^
1670 nstate->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1671 return true;
1672 }
1673 }
1674
1675 if (flags & NVMM_X64_STATE_MSRS) {
1676 if ((cstate->msrs[NVMM_X64_MSR_EFER] ^
1677 nstate->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1678 return true;
1679 }
1680 }
1681
1682 return false;
1683 }
1684
1685 static void
1686 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1687 {
1688 struct svm_cpudata *cpudata = vcpu->cpudata;
1689 struct nvmm_x64_state *cstate = &cpudata->state;
1690 struct nvmm_x64_state *nstate = (struct nvmm_x64_state *)data;
1691 struct vmcb *vmcb = cpudata->vmcb;
1692 struct fxsave *fpustate;
1693
1694 if (svm_state_tlb_flush(cstate, nstate, flags)) {
1695 cpudata->tlb_want_flush = true;
1696 }
1697
1698 if (flags & NVMM_X64_STATE_SEGS) {
1699 memcpy(cstate->segs, nstate->segs, sizeof(nstate->segs));
1700
1701 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_CS],
1702 &vmcb->state.cs);
1703 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_DS],
1704 &vmcb->state.ds);
1705 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_ES],
1706 &vmcb->state.es);
1707 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_FS],
1708 &vmcb->state.fs);
1709 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_GS],
1710 &vmcb->state.gs);
1711 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_SS],
1712 &vmcb->state.ss);
1713 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_GDT],
1714 &vmcb->state.gdt);
1715 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_IDT],
1716 &vmcb->state.idt);
1717 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_LDT],
1718 &vmcb->state.ldt);
1719 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_TR],
1720 &vmcb->state.tr);
1721 }
1722
1723 if (flags & NVMM_X64_STATE_GPRS) {
1724 memcpy(cstate->gprs, nstate->gprs, sizeof(nstate->gprs));
1725
1726 vmcb->state.rip = cstate->gprs[NVMM_X64_GPR_RIP];
1727 vmcb->state.rsp = cstate->gprs[NVMM_X64_GPR_RSP];
1728 vmcb->state.rax = cstate->gprs[NVMM_X64_GPR_RAX];
1729 vmcb->state.rflags = cstate->gprs[NVMM_X64_GPR_RFLAGS];
1730 }
1731
1732 if (flags & NVMM_X64_STATE_CRS) {
1733 memcpy(cstate->crs, nstate->crs, sizeof(nstate->crs));
1734
1735 vmcb->state.cr0 = cstate->crs[NVMM_X64_CR_CR0];
1736 vmcb->state.cr2 = cstate->crs[NVMM_X64_CR_CR2];
1737 vmcb->state.cr3 = cstate->crs[NVMM_X64_CR_CR3];
1738 vmcb->state.cr4 = cstate->crs[NVMM_X64_CR_CR4];
1739
1740 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1741 vmcb->ctrl.v |= __SHIFTIN(cstate->crs[NVMM_X64_CR_CR8],
1742 VMCB_CTRL_V_TPR);
1743
1744 /* Clear unsupported XCR0 bits, set mandatory X87 bit. */
1745 if (svm_xcr0_mask != 0) {
1746 cstate->crs[NVMM_X64_CR_XCR0] &= svm_xcr0_mask;
1747 cstate->crs[NVMM_X64_CR_XCR0] |= XCR0_X87;
1748 } else {
1749 cstate->crs[NVMM_X64_CR_XCR0] = 0;
1750 }
1751 }
1752
1753 if (flags & NVMM_X64_STATE_DRS) {
1754 memcpy(cstate->drs, nstate->drs, sizeof(nstate->drs));
1755
1756 vmcb->state.dr6 = cstate->drs[NVMM_X64_DR_DR6];
1757 vmcb->state.dr7 = cstate->drs[NVMM_X64_DR_DR7];
1758 }
1759
1760 if (flags & NVMM_X64_STATE_MSRS) {
1761 memcpy(cstate->msrs, nstate->msrs, sizeof(nstate->msrs));
1762
1763 /* Bit EFER_SVME is mandatory. */
1764 cstate->msrs[NVMM_X64_MSR_EFER] |= EFER_SVME;
1765
1766 vmcb->state.efer = cstate->msrs[NVMM_X64_MSR_EFER];
1767 vmcb->state.star = cstate->msrs[NVMM_X64_MSR_STAR];
1768 vmcb->state.lstar = cstate->msrs[NVMM_X64_MSR_LSTAR];
1769 vmcb->state.cstar = cstate->msrs[NVMM_X64_MSR_CSTAR];
1770 vmcb->state.sfmask = cstate->msrs[NVMM_X64_MSR_SFMASK];
1771 vmcb->state.kernelgsbase =
1772 cstate->msrs[NVMM_X64_MSR_KERNELGSBASE];
1773 vmcb->state.sysenter_cs =
1774 cstate->msrs[NVMM_X64_MSR_SYSENTER_CS];
1775 vmcb->state.sysenter_esp =
1776 cstate->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1777 vmcb->state.sysenter_eip =
1778 cstate->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1779 vmcb->state.g_pat = cstate->msrs[NVMM_X64_MSR_PAT];
1780 }
1781
1782 if (flags & NVMM_X64_STATE_MISC) {
1783 memcpy(cstate->misc, nstate->misc, sizeof(nstate->misc));
1784
1785 vmcb->state.cpl = cstate->misc[NVMM_X64_MISC_CPL];
1786
1787 if (cstate->misc[NVMM_X64_MISC_INT_SHADOW]) {
1788 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1789 } else {
1790 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1791 }
1792
1793 if (cstate->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1794 svm_event_waitexit_enable(vcpu, false);
1795 } else {
1796 svm_event_waitexit_disable(vcpu, false);
1797 }
1798
1799 if (cstate->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1800 svm_event_waitexit_enable(vcpu, true);
1801 } else {
1802 svm_event_waitexit_disable(vcpu, true);
1803 }
1804 }
1805
1806 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(cstate->fpu));
1807 if (flags & NVMM_X64_STATE_FPU) {
1808 memcpy(&cstate->fpu, &nstate->fpu, sizeof(nstate->fpu));
1809
1810 memcpy(cpudata->gfpu.xsh_fxsave, &cstate->fpu,
1811 sizeof(cstate->fpu));
1812
1813 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1814 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1815 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1816 }
1817 }
1818
1819 static void
1820 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1821 {
1822 struct svm_cpudata *cpudata = vcpu->cpudata;
1823 struct nvmm_x64_state *cstate = &cpudata->state;
1824 struct nvmm_x64_state *nstate = (struct nvmm_x64_state *)data;
1825 struct vmcb *vmcb = cpudata->vmcb;
1826
1827 if (flags & NVMM_X64_STATE_SEGS) {
1828 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_CS],
1829 &vmcb->state.cs);
1830 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_DS],
1831 &vmcb->state.ds);
1832 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_ES],
1833 &vmcb->state.es);
1834 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_FS],
1835 &vmcb->state.fs);
1836 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_GS],
1837 &vmcb->state.gs);
1838 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_SS],
1839 &vmcb->state.ss);
1840 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_GDT],
1841 &vmcb->state.gdt);
1842 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_IDT],
1843 &vmcb->state.idt);
1844 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_LDT],
1845 &vmcb->state.ldt);
1846 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_TR],
1847 &vmcb->state.tr);
1848
1849 memcpy(nstate->segs, cstate->segs, sizeof(cstate->segs));
1850 }
1851
1852 if (flags & NVMM_X64_STATE_GPRS) {
1853 cstate->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1854 cstate->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1855 cstate->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1856 cstate->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1857
1858 memcpy(nstate->gprs, cstate->gprs, sizeof(cstate->gprs));
1859 }
1860
1861 if (flags & NVMM_X64_STATE_CRS) {
1862 cstate->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1863 cstate->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1864 cstate->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1865 cstate->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1866 cstate->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1867 VMCB_CTRL_V_TPR);
1868
1869 memcpy(nstate->crs, cstate->crs, sizeof(cstate->crs));
1870 }
1871
1872 if (flags & NVMM_X64_STATE_DRS) {
1873 cstate->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1874 cstate->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1875
1876 memcpy(nstate->drs, cstate->drs, sizeof(cstate->drs));
1877 }
1878
1879 if (flags & NVMM_X64_STATE_MSRS) {
1880 cstate->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1881 cstate->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1882 cstate->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1883 cstate->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1884 cstate->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1885 cstate->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1886 vmcb->state.kernelgsbase;
1887 cstate->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1888 vmcb->state.sysenter_cs;
1889 cstate->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1890 vmcb->state.sysenter_esp;
1891 cstate->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1892 vmcb->state.sysenter_eip;
1893 cstate->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1894
1895 memcpy(nstate->msrs, cstate->msrs, sizeof(cstate->msrs));
1896
1897 /* Hide SVME. */
1898 nstate->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1899 }
1900
1901 if (flags & NVMM_X64_STATE_MISC) {
1902 cstate->misc[NVMM_X64_MISC_CPL] = vmcb->state.cpl;
1903
1904 cstate->misc[NVMM_X64_MISC_INT_SHADOW] =
1905 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1906 cstate->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1907 cpudata->int_window_exit;
1908 cstate->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1909 cpudata->nmi_window_exit;
1910
1911 memcpy(nstate->misc, cstate->misc, sizeof(cstate->misc));
1912 }
1913
1914 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(cstate->fpu));
1915 if (flags & NVMM_X64_STATE_FPU) {
1916 memcpy(&cstate->fpu, cpudata->gfpu.xsh_fxsave,
1917 sizeof(cstate->fpu));
1918
1919 memcpy(&nstate->fpu, &cstate->fpu, sizeof(cstate->fpu));
1920 }
1921 }
1922
1923 /* -------------------------------------------------------------------------- */
1924
1925 static void
1926 svm_tlb_flush(struct pmap *pm)
1927 {
1928 struct nvmm_machine *mach = pm->pm_data;
1929 struct svm_cpudata *cpudata;
1930 struct nvmm_cpu *vcpu;
1931 int error;
1932 size_t i;
1933
1934 /* Request TLB flushes. */
1935 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1936 error = nvmm_vcpu_get(mach, i, &vcpu);
1937 if (error)
1938 continue;
1939 cpudata = vcpu->cpudata;
1940 cpudata->tlb_want_flush = true;
1941 nvmm_vcpu_put(vcpu);
1942 }
1943 }
1944
1945 static void
1946 svm_machine_create(struct nvmm_machine *mach)
1947 {
1948 /* Fill in pmap info. */
1949 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1950 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1951
1952 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1953 }
1954
1955 static void
1956 svm_machine_destroy(struct nvmm_machine *mach)
1957 {
1958 kmem_free(mach->machdata, sizeof(struct svm_machdata));
1959 }
1960
1961 static int
1962 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
1963 {
1964 struct nvmm_x86_conf_cpuid *cpuid = data;
1965 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
1966 size_t i;
1967
1968 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
1969 return EINVAL;
1970 }
1971
1972 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
1973 (cpuid->set.ebx & cpuid->del.ebx) ||
1974 (cpuid->set.ecx & cpuid->del.ecx) ||
1975 (cpuid->set.edx & cpuid->del.edx))) {
1976 return EINVAL;
1977 }
1978
1979 /* If already here, replace. */
1980 for (i = 0; i < SVM_NCPUIDS; i++) {
1981 if (!machdata->cpuidpresent[i]) {
1982 continue;
1983 }
1984 if (machdata->cpuid[i].leaf == cpuid->leaf) {
1985 memcpy(&machdata->cpuid[i], cpuid,
1986 sizeof(struct nvmm_x86_conf_cpuid));
1987 return 0;
1988 }
1989 }
1990
1991 /* Not here, insert. */
1992 for (i = 0; i < SVM_NCPUIDS; i++) {
1993 if (!machdata->cpuidpresent[i]) {
1994 machdata->cpuidpresent[i] = true;
1995 memcpy(&machdata->cpuid[i], cpuid,
1996 sizeof(struct nvmm_x86_conf_cpuid));
1997 return 0;
1998 }
1999 }
2000
2001 return ENOBUFS;
2002 }
2003
2004 /* -------------------------------------------------------------------------- */
2005
2006 static bool
2007 svm_ident(void)
2008 {
2009 u_int descs[4];
2010 uint64_t msr;
2011
2012 if (cpu_vendor != CPUVENDOR_AMD) {
2013 return false;
2014 }
2015 if (!(cpu_feature[3] & CPUID_SVM)) {
2016 return false;
2017 }
2018
2019 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2020 return false;
2021 }
2022 x86_cpuid(0x8000000a, descs);
2023
2024 /* Want Nested Paging. */
2025 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2026 return false;
2027 }
2028
2029 /* Want nRIP. */
2030 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2031 return false;
2032 }
2033
2034 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2035
2036 msr = rdmsr(MSR_VMCR);
2037 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2038 return false;
2039 }
2040
2041 return true;
2042 }
2043
2044 static void
2045 svm_init_asid(uint32_t maxasid)
2046 {
2047 size_t i, j, allocsz;
2048
2049 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2050
2051 /* Arbitrarily limit. */
2052 maxasid = uimin(maxasid, 8192);
2053
2054 svm_maxasid = maxasid;
2055 allocsz = roundup(maxasid, 8) / 8;
2056 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2057
2058 /* ASID 0 is reserved for the host. */
2059 svm_asidmap[0] |= __BIT(0);
2060
2061 /* ASID n-1 is special, we share it. */
2062 i = (maxasid - 1) / 8;
2063 j = (maxasid - 1) % 8;
2064 svm_asidmap[i] |= __BIT(j);
2065 }
2066
2067 static void
2068 svm_change_cpu(void *arg1, void *arg2)
2069 {
2070 bool enable = (bool)arg1;
2071 uint64_t msr;
2072
2073 msr = rdmsr(MSR_VMCR);
2074 if (msr & VMCR_SVMED) {
2075 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2076 }
2077
2078 if (!enable) {
2079 wrmsr(MSR_VM_HSAVE_PA, 0);
2080 }
2081
2082 msr = rdmsr(MSR_EFER);
2083 if (enable) {
2084 msr |= EFER_SVME;
2085 } else {
2086 msr &= ~EFER_SVME;
2087 }
2088 wrmsr(MSR_EFER, msr);
2089
2090 if (enable) {
2091 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2092 }
2093 }
2094
2095 static void
2096 svm_init(void)
2097 {
2098 CPU_INFO_ITERATOR cii;
2099 struct cpu_info *ci;
2100 struct vm_page *pg;
2101 u_int descs[4];
2102 uint64_t xc;
2103
2104 x86_cpuid(0x8000000a, descs);
2105
2106 /* The guest TLB flush command. */
2107 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2108 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2109 } else {
2110 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2111 }
2112
2113 /* Init the ASID. */
2114 svm_init_asid(descs[1]);
2115
2116 /* Init the XCR0 mask. */
2117 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2118
2119 memset(hsave, 0, sizeof(hsave));
2120 for (CPU_INFO_FOREACH(cii, ci)) {
2121 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2122 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2123 }
2124
2125 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2126 xc_wait(xc);
2127 }
2128
2129 static void
2130 svm_fini_asid(void)
2131 {
2132 size_t allocsz;
2133
2134 allocsz = roundup(svm_maxasid, 8) / 8;
2135 kmem_free(svm_asidmap, allocsz);
2136
2137 mutex_destroy(&svm_asidlock);
2138 }
2139
2140 static void
2141 svm_fini(void)
2142 {
2143 uint64_t xc;
2144 size_t i;
2145
2146 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2147 xc_wait(xc);
2148
2149 for (i = 0; i < MAXCPUS; i++) {
2150 if (hsave[i].pa != 0)
2151 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2152 }
2153
2154 svm_fini_asid();
2155 }
2156
2157 static void
2158 svm_capability(struct nvmm_capability *cap)
2159 {
2160 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2161 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2162 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2163 }
2164
2165 const struct nvmm_impl nvmm_x86_svm = {
2166 .ident = svm_ident,
2167 .init = svm_init,
2168 .fini = svm_fini,
2169 .capability = svm_capability,
2170 .conf_max = NVMM_X86_NCONF,
2171 .conf_sizes = svm_conf_sizes,
2172 .state_size = sizeof(struct nvmm_x64_state),
2173 .machine_create = svm_machine_create,
2174 .machine_destroy = svm_machine_destroy,
2175 .machine_configure = svm_machine_configure,
2176 .vcpu_create = svm_vcpu_create,
2177 .vcpu_destroy = svm_vcpu_destroy,
2178 .vcpu_setstate = svm_vcpu_setstate,
2179 .vcpu_getstate = svm_vcpu_getstate,
2180 .vcpu_inject = svm_vcpu_inject,
2181 .vcpu_run = svm_vcpu_run
2182 };
2183