Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.15
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.15 2019/01/13 10:07:50 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.15 2019/01/13 10:07:50 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 
     42 #include <uvm/uvm.h>
     43 #include <uvm/uvm_page.h>
     44 
     45 #include <x86/cputypes.h>
     46 #include <x86/specialreg.h>
     47 #include <x86/pmap.h>
     48 #include <x86/dbregs.h>
     49 #include <machine/cpuvar.h>
     50 
     51 #include <dev/nvmm/nvmm.h>
     52 #include <dev/nvmm/nvmm_internal.h>
     53 #include <dev/nvmm/x86/nvmm_x86.h>
     54 
     55 int svm_vmrun(paddr_t, uint64_t *);
     56 
     57 #define	MSR_VM_HSAVE_PA	0xC0010117
     58 
     59 /* -------------------------------------------------------------------------- */
     60 
     61 #define VMCB_EXITCODE_CR0_READ		0x0000
     62 #define VMCB_EXITCODE_CR1_READ		0x0001
     63 #define VMCB_EXITCODE_CR2_READ		0x0002
     64 #define VMCB_EXITCODE_CR3_READ		0x0003
     65 #define VMCB_EXITCODE_CR4_READ		0x0004
     66 #define VMCB_EXITCODE_CR5_READ		0x0005
     67 #define VMCB_EXITCODE_CR6_READ		0x0006
     68 #define VMCB_EXITCODE_CR7_READ		0x0007
     69 #define VMCB_EXITCODE_CR8_READ		0x0008
     70 #define VMCB_EXITCODE_CR9_READ		0x0009
     71 #define VMCB_EXITCODE_CR10_READ		0x000A
     72 #define VMCB_EXITCODE_CR11_READ		0x000B
     73 #define VMCB_EXITCODE_CR12_READ		0x000C
     74 #define VMCB_EXITCODE_CR13_READ		0x000D
     75 #define VMCB_EXITCODE_CR14_READ		0x000E
     76 #define VMCB_EXITCODE_CR15_READ		0x000F
     77 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     78 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     79 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     80 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     81 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     82 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     83 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     84 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     85 #define VMCB_EXITCODE_CR8_WRITE		0x0018
     86 #define VMCB_EXITCODE_CR9_WRITE		0x0019
     87 #define VMCB_EXITCODE_CR10_WRITE	0x001A
     88 #define VMCB_EXITCODE_CR11_WRITE	0x001B
     89 #define VMCB_EXITCODE_CR12_WRITE	0x001C
     90 #define VMCB_EXITCODE_CR13_WRITE	0x001D
     91 #define VMCB_EXITCODE_CR14_WRITE	0x001E
     92 #define VMCB_EXITCODE_CR15_WRITE	0x001F
     93 #define VMCB_EXITCODE_DR0_READ		0x0020
     94 #define VMCB_EXITCODE_DR1_READ		0x0021
     95 #define VMCB_EXITCODE_DR2_READ		0x0022
     96 #define VMCB_EXITCODE_DR3_READ		0x0023
     97 #define VMCB_EXITCODE_DR4_READ		0x0024
     98 #define VMCB_EXITCODE_DR5_READ		0x0025
     99 #define VMCB_EXITCODE_DR6_READ		0x0026
    100 #define VMCB_EXITCODE_DR7_READ		0x0027
    101 #define VMCB_EXITCODE_DR8_READ		0x0028
    102 #define VMCB_EXITCODE_DR9_READ		0x0029
    103 #define VMCB_EXITCODE_DR10_READ		0x002A
    104 #define VMCB_EXITCODE_DR11_READ		0x002B
    105 #define VMCB_EXITCODE_DR12_READ		0x002C
    106 #define VMCB_EXITCODE_DR13_READ		0x002D
    107 #define VMCB_EXITCODE_DR14_READ		0x002E
    108 #define VMCB_EXITCODE_DR15_READ		0x002F
    109 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    110 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    111 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    112 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    113 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    114 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    115 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    116 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    117 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    118 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    119 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    120 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    121 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    122 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    123 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    124 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    125 #define VMCB_EXITCODE_EXCP0		0x0040
    126 #define VMCB_EXITCODE_EXCP1		0x0041
    127 #define VMCB_EXITCODE_EXCP2		0x0042
    128 #define VMCB_EXITCODE_EXCP3		0x0043
    129 #define VMCB_EXITCODE_EXCP4		0x0044
    130 #define VMCB_EXITCODE_EXCP5		0x0045
    131 #define VMCB_EXITCODE_EXCP6		0x0046
    132 #define VMCB_EXITCODE_EXCP7		0x0047
    133 #define VMCB_EXITCODE_EXCP8		0x0048
    134 #define VMCB_EXITCODE_EXCP9		0x0049
    135 #define VMCB_EXITCODE_EXCP10		0x004A
    136 #define VMCB_EXITCODE_EXCP11		0x004B
    137 #define VMCB_EXITCODE_EXCP12		0x004C
    138 #define VMCB_EXITCODE_EXCP13		0x004D
    139 #define VMCB_EXITCODE_EXCP14		0x004E
    140 #define VMCB_EXITCODE_EXCP15		0x004F
    141 #define VMCB_EXITCODE_EXCP16		0x0050
    142 #define VMCB_EXITCODE_EXCP17		0x0051
    143 #define VMCB_EXITCODE_EXCP18		0x0052
    144 #define VMCB_EXITCODE_EXCP19		0x0053
    145 #define VMCB_EXITCODE_EXCP20		0x0054
    146 #define VMCB_EXITCODE_EXCP21		0x0055
    147 #define VMCB_EXITCODE_EXCP22		0x0056
    148 #define VMCB_EXITCODE_EXCP23		0x0057
    149 #define VMCB_EXITCODE_EXCP24		0x0058
    150 #define VMCB_EXITCODE_EXCP25		0x0059
    151 #define VMCB_EXITCODE_EXCP26		0x005A
    152 #define VMCB_EXITCODE_EXCP27		0x005B
    153 #define VMCB_EXITCODE_EXCP28		0x005C
    154 #define VMCB_EXITCODE_EXCP29		0x005D
    155 #define VMCB_EXITCODE_EXCP30		0x005E
    156 #define VMCB_EXITCODE_EXCP31		0x005F
    157 #define VMCB_EXITCODE_INTR		0x0060
    158 #define VMCB_EXITCODE_NMI		0x0061
    159 #define VMCB_EXITCODE_SMI		0x0062
    160 #define VMCB_EXITCODE_INIT		0x0063
    161 #define VMCB_EXITCODE_VINTR		0x0064
    162 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    163 #define VMCB_EXITCODE_IDTR_READ		0x0066
    164 #define VMCB_EXITCODE_GDTR_READ		0x0067
    165 #define VMCB_EXITCODE_LDTR_READ		0x0068
    166 #define VMCB_EXITCODE_TR_READ		0x0069
    167 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    168 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    169 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    170 #define VMCB_EXITCODE_TR_WRITE		0x006D
    171 #define VMCB_EXITCODE_RDTSC		0x006E
    172 #define VMCB_EXITCODE_RDPMC		0x006F
    173 #define VMCB_EXITCODE_PUSHF		0x0070
    174 #define VMCB_EXITCODE_POPF		0x0071
    175 #define VMCB_EXITCODE_CPUID		0x0072
    176 #define VMCB_EXITCODE_RSM		0x0073
    177 #define VMCB_EXITCODE_IRET		0x0074
    178 #define VMCB_EXITCODE_SWINT		0x0075
    179 #define VMCB_EXITCODE_INVD		0x0076
    180 #define VMCB_EXITCODE_PAUSE		0x0077
    181 #define VMCB_EXITCODE_HLT		0x0078
    182 #define VMCB_EXITCODE_INVLPG		0x0079
    183 #define VMCB_EXITCODE_INVLPGA		0x007A
    184 #define VMCB_EXITCODE_IOIO		0x007B
    185 #define VMCB_EXITCODE_MSR		0x007C
    186 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    187 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    188 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    189 #define VMCB_EXITCODE_VMRUN		0x0080
    190 #define VMCB_EXITCODE_VMMCALL		0x0081
    191 #define VMCB_EXITCODE_VMLOAD		0x0082
    192 #define VMCB_EXITCODE_VMSAVE		0x0083
    193 #define VMCB_EXITCODE_STGI		0x0084
    194 #define VMCB_EXITCODE_CLGI		0x0085
    195 #define VMCB_EXITCODE_SKINIT		0x0086
    196 #define VMCB_EXITCODE_RDTSCP		0x0087
    197 #define VMCB_EXITCODE_ICEBP		0x0088
    198 #define VMCB_EXITCODE_WBINVD		0x0089
    199 #define VMCB_EXITCODE_MONITOR		0x008A
    200 #define VMCB_EXITCODE_MWAIT		0x008B
    201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    202 #define VMCB_EXITCODE_XSETBV		0x008D
    203 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    204 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    205 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    206 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    207 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    208 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    209 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    210 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    211 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    212 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    213 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    214 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    215 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    216 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    217 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    218 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    219 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    220 #define VMCB_EXITCODE_NPF		0x0400
    221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    222 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    223 #define VMCB_EXITCODE_VMGEXIT		0x0403
    224 #define VMCB_EXITCODE_INVALID		-1
    225 
    226 /* -------------------------------------------------------------------------- */
    227 
    228 struct vmcb_ctrl {
    229 	uint32_t intercept_cr;
    230 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    231 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    232 
    233 	uint32_t intercept_dr;
    234 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    235 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    236 
    237 	uint32_t intercept_vec;
    238 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    239 
    240 	uint32_t intercept_misc1;
    241 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    242 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    243 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    244 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    245 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    247 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    248 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    249 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    250 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    251 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    252 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    253 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    254 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    255 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    256 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    257 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    258 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    259 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    260 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    261 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    262 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    263 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    264 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    265 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    266 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    267 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    269 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    270 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    273 
    274 	uint32_t intercept_misc2;
    275 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    276 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    277 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    278 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    279 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    280 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    281 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    282 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    283 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    284 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    285 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    286 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
    287 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    290 
    291 	uint8_t  rsvd1[40];
    292 	uint16_t pause_filt_thresh;
    293 	uint16_t pause_filt_cnt;
    294 	uint64_t iopm_base_pa;
    295 	uint64_t msrpm_base_pa;
    296 	uint64_t tsc_offset;
    297 	uint32_t guest_asid;
    298 
    299 	uint32_t tlb_ctrl;
    300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    303 
    304 	uint64_t v;
    305 #define VMCB_CTRL_V_TPR			__BITS(7,0)
    306 #define VMCB_CTRL_V_IRQ			__BIT(8)
    307 #define VMCB_CTRL_V_VGIF		__BIT(9)
    308 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    309 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    310 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    311 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    312 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    313 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    314 
    315 	uint64_t intr;
    316 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    317 
    318 	uint64_t exitcode;
    319 	uint64_t exitinfo1;
    320 	uint64_t exitinfo2;
    321 
    322 	uint64_t exitintinfo;
    323 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    324 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    325 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    326 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    327 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    328 
    329 	uint64_t enable1;
    330 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    331 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    332 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    333 
    334 	uint64_t avic;
    335 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    336 
    337 	uint64_t ghcb;
    338 
    339 	uint64_t eventinj;
    340 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    341 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    342 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    343 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    344 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    345 
    346 	uint64_t n_cr3;
    347 
    348 	uint64_t enable2;
    349 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    350 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    351 
    352 	uint32_t vmcb_clean;
    353 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    354 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    355 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    356 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    357 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    358 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    359 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    360 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    361 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    362 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    363 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    364 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    365 
    366 	uint32_t rsvd2;
    367 	uint64_t nrip;
    368 	uint8_t	inst_len;
    369 	uint8_t	inst_bytes[15];
    370 	uint64_t avic_abpp;
    371 	uint64_t rsvd3;
    372 	uint64_t avic_ltp;
    373 
    374 	uint64_t avic_phys;
    375 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    376 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    377 
    378 	uint64_t rsvd4;
    379 	uint64_t vmcb_ptr;
    380 
    381 	uint8_t	pad[752];
    382 } __packed;
    383 
    384 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    385 
    386 struct vmcb_segment {
    387 	uint16_t selector;
    388 	uint16_t attrib;	/* hidden */
    389 	uint32_t limit;		/* hidden */
    390 	uint64_t base;		/* hidden */
    391 } __packed;
    392 
    393 CTASSERT(sizeof(struct vmcb_segment) == 16);
    394 
    395 struct vmcb_state {
    396 	struct   vmcb_segment es;
    397 	struct   vmcb_segment cs;
    398 	struct   vmcb_segment ss;
    399 	struct   vmcb_segment ds;
    400 	struct   vmcb_segment fs;
    401 	struct   vmcb_segment gs;
    402 	struct   vmcb_segment gdt;
    403 	struct   vmcb_segment ldt;
    404 	struct   vmcb_segment idt;
    405 	struct   vmcb_segment tr;
    406 	uint8_t	 rsvd1[43];
    407 	uint8_t	 cpl;
    408 	uint8_t  rsvd2[4];
    409 	uint64_t efer;
    410 	uint8_t	 rsvd3[112];
    411 	uint64_t cr4;
    412 	uint64_t cr3;
    413 	uint64_t cr0;
    414 	uint64_t dr7;
    415 	uint64_t dr6;
    416 	uint64_t rflags;
    417 	uint64_t rip;
    418 	uint8_t	 rsvd4[88];
    419 	uint64_t rsp;
    420 	uint8_t	 rsvd5[24];
    421 	uint64_t rax;
    422 	uint64_t star;
    423 	uint64_t lstar;
    424 	uint64_t cstar;
    425 	uint64_t sfmask;
    426 	uint64_t kernelgsbase;
    427 	uint64_t sysenter_cs;
    428 	uint64_t sysenter_esp;
    429 	uint64_t sysenter_eip;
    430 	uint64_t cr2;
    431 	uint8_t	 rsvd6[32];
    432 	uint64_t g_pat;
    433 	uint64_t dbgctl;
    434 	uint64_t br_from;
    435 	uint64_t br_to;
    436 	uint64_t int_from;
    437 	uint64_t int_to;
    438 	uint8_t	 pad[2408];
    439 } __packed;
    440 
    441 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    442 
    443 struct vmcb {
    444 	struct vmcb_ctrl ctrl;
    445 	struct vmcb_state state;
    446 } __packed;
    447 
    448 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    449 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    450 
    451 /* -------------------------------------------------------------------------- */
    452 
    453 struct svm_hsave {
    454 	paddr_t pa;
    455 };
    456 
    457 static struct svm_hsave hsave[MAXCPUS];
    458 
    459 static uint8_t *svm_asidmap __read_mostly;
    460 static uint32_t svm_maxasid __read_mostly;
    461 static kmutex_t svm_asidlock __cacheline_aligned;
    462 
    463 static bool svm_decode_assist __read_mostly;
    464 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    465 
    466 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    467 static uint64_t svm_xcr0_mask __read_mostly;
    468 
    469 #define SVM_NCPUIDS	32
    470 
    471 #define VMCB_NPAGES	1
    472 
    473 #define MSRBM_NPAGES	2
    474 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    475 
    476 #define IOBM_NPAGES	3
    477 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    478 
    479 /* Does not include EFER_LMSLE. */
    480 #define EFER_VALID \
    481 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    482 
    483 #define EFER_TLB_FLUSH \
    484 	(EFER_NXE|EFER_LMA|EFER_LME)
    485 #define CR0_TLB_FLUSH \
    486 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    487 #define CR4_TLB_FLUSH \
    488 	(CR4_PGE|CR4_PAE|CR4_PSE)
    489 
    490 /* -------------------------------------------------------------------------- */
    491 
    492 struct svm_machdata {
    493 	bool cpuidpresent[SVM_NCPUIDS];
    494 	struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
    495 };
    496 
    497 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
    498 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    499 };
    500 
    501 struct svm_cpudata {
    502 	/* General */
    503 	bool shared_asid;
    504 	bool tlb_want_flush;
    505 
    506 	/* VMCB */
    507 	struct vmcb *vmcb;
    508 	paddr_t vmcb_pa;
    509 
    510 	/* I/O bitmap */
    511 	uint8_t *iobm;
    512 	paddr_t iobm_pa;
    513 
    514 	/* MSR bitmap */
    515 	uint8_t *msrbm;
    516 	paddr_t msrbm_pa;
    517 
    518 	/* Host state */
    519 	uint64_t hxcr0;
    520 	uint64_t star;
    521 	uint64_t lstar;
    522 	uint64_t cstar;
    523 	uint64_t sfmask;
    524 	uint64_t fsbase;
    525 	uint64_t kernelgsbase;
    526 	bool ts_set;
    527 	struct xsave_header hfpu __aligned(16);
    528 
    529 	/* Event state */
    530 	bool int_window_exit;
    531 	bool nmi_window_exit;
    532 
    533 	/* Guest state */
    534 	uint64_t gxcr0;
    535 	uint64_t gprs[NVMM_X64_NGPR];
    536 	uint64_t drs[NVMM_X64_NDR];
    537 	uint64_t tsc_offset;
    538 	struct xsave_header gfpu __aligned(16);
    539 };
    540 
    541 static void
    542 svm_vmcb_cache_default(struct vmcb *vmcb)
    543 {
    544 	vmcb->ctrl.vmcb_clean =
    545 	    VMCB_CTRL_VMCB_CLEAN_I |
    546 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    547 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    548 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    549 	    VMCB_CTRL_VMCB_CLEAN_NP |
    550 	    VMCB_CTRL_VMCB_CLEAN_CR |
    551 	    VMCB_CTRL_VMCB_CLEAN_DR |
    552 	    VMCB_CTRL_VMCB_CLEAN_DT |
    553 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    554 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    555 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    556 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    557 }
    558 
    559 static void
    560 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    561 {
    562 	if (flags & NVMM_X64_STATE_SEGS) {
    563 		vmcb->ctrl.vmcb_clean &=
    564 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    565 	}
    566 	if (flags & NVMM_X64_STATE_CRS) {
    567 		vmcb->ctrl.vmcb_clean &=
    568 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    569 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    570 	}
    571 	if (flags & NVMM_X64_STATE_DRS) {
    572 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    573 	}
    574 	if (flags & NVMM_X64_STATE_MSRS) {
    575 		/* CR for EFER, NP for PAT. */
    576 		vmcb->ctrl.vmcb_clean &=
    577 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    578 	}
    579 	if (flags & NVMM_X64_STATE_MISC) {
    580 		/* SEG for CPL. */
    581 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_SEG;
    582 	}
    583 }
    584 
    585 static inline void
    586 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    587 {
    588 	vmcb->ctrl.vmcb_clean &= ~flags;
    589 }
    590 
    591 static inline void
    592 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    593 {
    594 	vmcb->ctrl.vmcb_clean = 0;
    595 }
    596 
    597 #define SVM_EVENT_TYPE_HW_INT	0
    598 #define SVM_EVENT_TYPE_NMI	2
    599 #define SVM_EVENT_TYPE_EXC	3
    600 #define SVM_EVENT_TYPE_SW_INT	4
    601 
    602 static void
    603 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    604 {
    605 	struct svm_cpudata *cpudata = vcpu->cpudata;
    606 	struct vmcb *vmcb = cpudata->vmcb;
    607 
    608 	if (nmi) {
    609 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    610 		cpudata->nmi_window_exit = true;
    611 	} else {
    612 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    613 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    614 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    615 		cpudata->int_window_exit = true;
    616 	}
    617 
    618 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    619 }
    620 
    621 static void
    622 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    623 {
    624 	struct svm_cpudata *cpudata = vcpu->cpudata;
    625 	struct vmcb *vmcb = cpudata->vmcb;
    626 
    627 	if (nmi) {
    628 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    629 		cpudata->nmi_window_exit = false;
    630 	} else {
    631 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    632 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    633 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    634 		cpudata->int_window_exit = false;
    635 	}
    636 
    637 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    638 }
    639 
    640 static inline int
    641 svm_event_has_error(uint64_t vector)
    642 {
    643 	switch (vector) {
    644 	case 8:		/* #DF */
    645 	case 10:	/* #TS */
    646 	case 11:	/* #NP */
    647 	case 12:	/* #SS */
    648 	case 13:	/* #GP */
    649 	case 14:	/* #PF */
    650 	case 17:	/* #AC */
    651 	case 30:	/* #SX */
    652 		return 1;
    653 	default:
    654 		return 0;
    655 	}
    656 }
    657 
    658 static int
    659 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    660     struct nvmm_event *event)
    661 {
    662 	struct svm_cpudata *cpudata = vcpu->cpudata;
    663 	struct vmcb *vmcb = cpudata->vmcb;
    664 	int type = 0, err = 0;
    665 
    666 	if (event->vector >= 256) {
    667 		return EINVAL;
    668 	}
    669 
    670 	switch (event->type) {
    671 	case NVMM_EVENT_INTERRUPT_HW:
    672 		type = SVM_EVENT_TYPE_HW_INT;
    673 		if (event->vector == 2) {
    674 			type = SVM_EVENT_TYPE_NMI;
    675 		}
    676 		if (type == SVM_EVENT_TYPE_NMI) {
    677 			if (cpudata->nmi_window_exit) {
    678 				return EAGAIN;
    679 			}
    680 			svm_event_waitexit_enable(vcpu, true);
    681 		} else {
    682 			if (((vmcb->state.rflags & PSL_I) == 0) ||
    683 			    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
    684 				svm_event_waitexit_enable(vcpu, false);
    685 				return EAGAIN;
    686 			}
    687 		}
    688 		err = 0;
    689 		break;
    690 	case NVMM_EVENT_INTERRUPT_SW:
    691 		type = SVM_EVENT_TYPE_SW_INT;
    692 		err = 0;
    693 		break;
    694 	case NVMM_EVENT_EXCEPTION:
    695 		type = SVM_EVENT_TYPE_EXC;
    696 		if (event->vector == 2 || event->vector >= 32)
    697 			return EINVAL;
    698 		err = svm_event_has_error(event->vector);
    699 		break;
    700 	default:
    701 		return EINVAL;
    702 	}
    703 
    704 	vmcb->ctrl.eventinj =
    705 	    __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    706 	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
    707 	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
    708 	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
    709 	    __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    710 
    711 	return 0;
    712 }
    713 
    714 static void
    715 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    716 {
    717 	struct nvmm_event event;
    718 	int ret __diagused;
    719 
    720 	event.type = NVMM_EVENT_EXCEPTION;
    721 	event.vector = 6;
    722 	event.u.error = 0;
    723 
    724 	ret = svm_vcpu_inject(mach, vcpu, &event);
    725 	KASSERT(ret == 0);
    726 }
    727 
    728 static void
    729 svm_inject_db(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    730 {
    731 	struct nvmm_event event;
    732 	int ret __diagused;
    733 
    734 	event.type = NVMM_EVENT_EXCEPTION;
    735 	event.vector = 1;
    736 	event.u.error = 0;
    737 
    738 	ret = svm_vcpu_inject(mach, vcpu, &event);
    739 	KASSERT(ret == 0);
    740 }
    741 
    742 static void
    743 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    744 {
    745 	struct nvmm_event event;
    746 	int ret __diagused;
    747 
    748 	event.type = NVMM_EVENT_EXCEPTION;
    749 	event.vector = 13;
    750 	event.u.error = 0;
    751 
    752 	ret = svm_vcpu_inject(mach, vcpu, &event);
    753 	KASSERT(ret == 0);
    754 }
    755 
    756 static void
    757 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    758 {
    759 	struct svm_cpudata *cpudata = vcpu->cpudata;
    760 
    761 	switch (eax) {
    762 	case 0x00000001: /* APIC number in RBX. The rest is tunable. */
    763 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    764 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    765 		    CPUID_LOCAL_APIC_ID);
    766 		break;
    767 	case 0x0000000D: /* FPU description. Not tunable. */
    768 		if (ecx != 0 || svm_xcr0_mask == 0) {
    769 			break;
    770 		}
    771 		cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    772 		if (cpudata->gxcr0 & XCR0_SSE) {
    773 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    774 		} else {
    775 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    776 		}
    777 		cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    778 		cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
    779 		cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    780 		break;
    781 	case 0x40000000:
    782 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    783 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    784 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    785 		break;
    786 	case 0x80000001: /* No SVM in ECX. The rest is tunable. */
    787 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
    788 		break;
    789 	default:
    790 		break;
    791 	}
    792 }
    793 
    794 static void
    795 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    796     struct nvmm_exit *exit)
    797 {
    798 	struct svm_machdata *machdata = mach->machdata;
    799 	struct svm_cpudata *cpudata = vcpu->cpudata;
    800 	struct nvmm_x86_conf_cpuid *cpuid;
    801 	uint64_t eax, ecx;
    802 	u_int descs[4];
    803 	size_t i;
    804 
    805 	eax = cpudata->vmcb->state.rax;
    806 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    807 	x86_cpuid2(eax, ecx, descs);
    808 
    809 	cpudata->vmcb->state.rax = descs[0];
    810 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    811 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    812 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    813 
    814 	for (i = 0; i < SVM_NCPUIDS; i++) {
    815 		cpuid = &machdata->cpuid[i];
    816 		if (!machdata->cpuidpresent[i]) {
    817 			continue;
    818 		}
    819 		if (cpuid->leaf != eax) {
    820 			continue;
    821 		}
    822 
    823 		/* del */
    824 		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
    825 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
    826 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
    827 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
    828 
    829 		/* set */
    830 		cpudata->vmcb->state.rax |= cpuid->set.eax;
    831 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
    832 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
    833 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
    834 
    835 		break;
    836 	}
    837 
    838 	/* Overwrite non-tunable leaves. */
    839 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    840 
    841 	/* For now we omit DBREGS. */
    842 	if (__predict_false(cpudata->vmcb->state.rflags & PSL_T)) {
    843 		svm_inject_db(mach, vcpu);
    844 	}
    845 
    846 	cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
    847 	exit->reason = NVMM_EXIT_NONE;
    848 }
    849 
    850 static void
    851 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    852     struct nvmm_exit *exit)
    853 {
    854 	struct svm_cpudata *cpudata = vcpu->cpudata;
    855 
    856 	exit->reason = NVMM_EXIT_HLT;
    857 	exit->u.hlt.npc = cpudata->vmcb->ctrl.nrip;
    858 }
    859 
    860 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    861 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    862 #define SVM_EXIT_IO_A64		__BIT(9)
    863 #define SVM_EXIT_IO_A32		__BIT(8)
    864 #define SVM_EXIT_IO_A16		__BIT(7)
    865 #define SVM_EXIT_IO_SZ32	__BIT(6)
    866 #define SVM_EXIT_IO_SZ16	__BIT(5)
    867 #define SVM_EXIT_IO_SZ8		__BIT(4)
    868 #define SVM_EXIT_IO_REP		__BIT(3)
    869 #define SVM_EXIT_IO_STR		__BIT(2)
    870 #define SVM_EXIT_IO_IN		__BIT(0)
    871 
    872 static const int seg_to_nvmm[] = {
    873 	[0] = NVMM_X64_SEG_ES,
    874 	[1] = NVMM_X64_SEG_CS,
    875 	[2] = NVMM_X64_SEG_SS,
    876 	[3] = NVMM_X64_SEG_DS,
    877 	[4] = NVMM_X64_SEG_FS,
    878 	[5] = NVMM_X64_SEG_GS
    879 };
    880 
    881 static void
    882 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    883     struct nvmm_exit *exit)
    884 {
    885 	struct svm_cpudata *cpudata = vcpu->cpudata;
    886 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    887 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    888 
    889 	exit->reason = NVMM_EXIT_IO;
    890 
    891 	if (info & SVM_EXIT_IO_IN) {
    892 		exit->u.io.type = NVMM_EXIT_IO_IN;
    893 	} else {
    894 		exit->u.io.type = NVMM_EXIT_IO_OUT;
    895 	}
    896 
    897 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
    898 
    899 	if (svm_decode_assist) {
    900 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
    901 		exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
    902 	} else {
    903 		exit->u.io.seg = -1;
    904 	}
    905 
    906 	if (info & SVM_EXIT_IO_A64) {
    907 		exit->u.io.address_size = 8;
    908 	} else if (info & SVM_EXIT_IO_A32) {
    909 		exit->u.io.address_size = 4;
    910 	} else if (info & SVM_EXIT_IO_A16) {
    911 		exit->u.io.address_size = 2;
    912 	}
    913 
    914 	if (info & SVM_EXIT_IO_SZ32) {
    915 		exit->u.io.operand_size = 4;
    916 	} else if (info & SVM_EXIT_IO_SZ16) {
    917 		exit->u.io.operand_size = 2;
    918 	} else if (info & SVM_EXIT_IO_SZ8) {
    919 		exit->u.io.operand_size = 1;
    920 	}
    921 
    922 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
    923 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
    924 	exit->u.io.npc = nextpc;
    925 }
    926 
    927 static const uint64_t msr_ignore_list[] = {
    928 	0xc0010055, /* MSR_CMPHALT */
    929 	MSR_DE_CFG,
    930 	MSR_IC_CFG,
    931 	MSR_UCODE_AMD_PATCHLEVEL
    932 };
    933 
    934 static bool
    935 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    936     struct nvmm_exit *exit)
    937 {
    938 	struct svm_cpudata *cpudata = vcpu->cpudata;
    939 	uint64_t val;
    940 	size_t i;
    941 
    942 	switch (exit->u.msr.type) {
    943 	case NVMM_EXIT_MSR_RDMSR:
    944 		if (exit->u.msr.msr == MSR_CR_PAT) {
    945 			val = cpudata->vmcb->state.g_pat;
    946 			cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
    947 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    948 			goto handled;
    949 		}
    950 		if (exit->u.msr.msr == MSR_NB_CFG) {
    951 			val = NB_CFG_INITAPICCPUIDLO;
    952 			cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
    953 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    954 			goto handled;
    955 		}
    956 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    957 			if (msr_ignore_list[i] != exit->u.msr.msr)
    958 				continue;
    959 			val = 0;
    960 			cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
    961 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    962 			goto handled;
    963 		}
    964 		break;
    965 	case NVMM_EXIT_MSR_WRMSR:
    966 		if (exit->u.msr.msr == MSR_EFER) {
    967 			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
    968 				svm_inject_gp(mach, vcpu);
    969 				goto handled;
    970 			}
    971 			if ((cpudata->vmcb->state.efer ^ exit->u.msr.val) &
    972 			     EFER_TLB_FLUSH) {
    973 				cpudata->tlb_want_flush = true;
    974 			}
    975 			cpudata->vmcb->state.efer = exit->u.msr.val | EFER_SVME;
    976 			goto handled;
    977 		}
    978 		if (exit->u.msr.msr == MSR_CR_PAT) {
    979 			cpudata->vmcb->state.g_pat = exit->u.msr.val;
    980 			goto handled;
    981 		}
    982 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    983 			if (msr_ignore_list[i] != exit->u.msr.msr)
    984 				continue;
    985 			goto handled;
    986 		}
    987 		break;
    988 	}
    989 
    990 	return false;
    991 
    992 handled:
    993 	cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
    994 	return true;
    995 }
    996 
    997 static void
    998 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    999     struct nvmm_exit *exit)
   1000 {
   1001 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1002 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1003 
   1004 	if (info == 0) {
   1005 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1006 	} else {
   1007 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1008 	}
   1009 
   1010 	exit->u.msr.msr = cpudata->gprs[NVMM_X64_GPR_RCX];
   1011 
   1012 	if (info == 1) {
   1013 		uint64_t rdx, rax;
   1014 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1015 		rax = cpudata->vmcb->state.rax;
   1016 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1017 	} else {
   1018 		exit->u.msr.val = 0;
   1019 	}
   1020 
   1021 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1022 		exit->reason = NVMM_EXIT_NONE;
   1023 		return;
   1024 	}
   1025 
   1026 	exit->reason = NVMM_EXIT_MSR;
   1027 	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
   1028 }
   1029 
   1030 static void
   1031 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1032     struct nvmm_exit *exit)
   1033 {
   1034 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1035 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1036 	int error;
   1037 
   1038 	error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
   1039 
   1040 	if (error) {
   1041 		exit->reason = NVMM_EXIT_MEMORY;
   1042 		if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1043 			exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
   1044 		else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1045 			exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
   1046 		else
   1047 			exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
   1048 		exit->u.mem.gpa = gpa;
   1049 		exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1050 		memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1051 		    sizeof(exit->u.mem.inst_bytes));
   1052 		exit->u.mem.npc = cpudata->vmcb->ctrl.nrip;
   1053 	} else {
   1054 		exit->reason = NVMM_EXIT_NONE;
   1055 	}
   1056 }
   1057 
   1058 static void
   1059 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1060     struct nvmm_exit *exit)
   1061 {
   1062 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1063 	struct vmcb *vmcb = cpudata->vmcb;
   1064 	uint64_t val;
   1065 
   1066 	exit->reason = NVMM_EXIT_NONE;
   1067 
   1068 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1069 	    (vmcb->state.rax & 0xFFFFFFFF);
   1070 
   1071 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1072 		goto error;
   1073 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1074 		goto error;
   1075 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1076 		goto error;
   1077 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1078 		goto error;
   1079 	}
   1080 
   1081 	cpudata->gxcr0 = val;
   1082 
   1083 	cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
   1084 	return;
   1085 
   1086 error:
   1087 	svm_inject_gp(mach, vcpu);
   1088 }
   1089 
   1090 static void
   1091 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1092 {
   1093 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1094 
   1095 	if (x86_xsave_features != 0) {
   1096 		cpudata->hxcr0 = rdxcr(0);
   1097 		wrxcr(0, cpudata->gxcr0);
   1098 	}
   1099 
   1100 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1101 
   1102 	fpu_area_save(&cpudata->hfpu);
   1103 	fpu_area_restore(&cpudata->gfpu);
   1104 }
   1105 
   1106 static void
   1107 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1108 {
   1109 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1110 
   1111 	fpu_area_save(&cpudata->gfpu);
   1112 	fpu_area_restore(&cpudata->hfpu);
   1113 
   1114 	if (cpudata->ts_set) {
   1115 		stts();
   1116 	}
   1117 
   1118 	if (x86_xsave_features != 0) {
   1119 		cpudata->gxcr0 = rdxcr(0);
   1120 		wrxcr(0, cpudata->hxcr0);
   1121 	}
   1122 }
   1123 
   1124 static void
   1125 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1126 {
   1127 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1128 
   1129 	x86_dbregs_save(curlwp);
   1130 
   1131 	ldr7(0);
   1132 
   1133 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1134 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1135 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1136 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1137 }
   1138 
   1139 static void
   1140 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1141 {
   1142 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1143 
   1144 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1145 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1146 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1147 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1148 
   1149 	x86_dbregs_restore(curlwp);
   1150 }
   1151 
   1152 static void
   1153 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1154 {
   1155 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1156 
   1157 	cpudata->star = rdmsr(MSR_STAR);
   1158 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1159 	cpudata->cstar = rdmsr(MSR_CSTAR);
   1160 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   1161 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1162 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1163 }
   1164 
   1165 static void
   1166 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1167 {
   1168 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1169 
   1170 	wrmsr(MSR_STAR, cpudata->star);
   1171 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1172 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1173 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1174 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1175 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1176 }
   1177 
   1178 static int
   1179 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1180     struct nvmm_exit *exit)
   1181 {
   1182 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1183 	struct vmcb *vmcb = cpudata->vmcb;
   1184 	bool tlb_need_flush = false;
   1185 	int hcpu, s;
   1186 
   1187 	kpreempt_disable();
   1188 	hcpu = cpu_number();
   1189 
   1190 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1191 		tlb_need_flush = true;
   1192 	}
   1193 
   1194 	if (cpudata->tlb_want_flush || tlb_need_flush) {
   1195 		vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1196 	} else {
   1197 		vmcb->ctrl.tlb_ctrl = 0;
   1198 	}
   1199 
   1200 	if (vcpu->hcpu_last != hcpu) {
   1201 		vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
   1202 		    curcpu()->ci_data.cpu_cc_skew;
   1203 		svm_vmcb_cache_flush_all(vmcb);
   1204 	}
   1205 
   1206 	svm_vcpu_guest_dbregs_enter(vcpu);
   1207 	svm_vcpu_guest_misc_enter(vcpu);
   1208 
   1209 	while (1) {
   1210 		s = splhigh();
   1211 		svm_vcpu_guest_fpu_enter(vcpu);
   1212 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1213 		svm_vcpu_guest_fpu_leave(vcpu);
   1214 		splx(s);
   1215 
   1216 		svm_vmcb_cache_default(vmcb);
   1217 
   1218 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1219 			if (cpudata->tlb_want_flush) {
   1220 				cpudata->tlb_want_flush = false;
   1221 			}
   1222 			vcpu->hcpu_last = hcpu;
   1223 		}
   1224 
   1225 		switch (vmcb->ctrl.exitcode) {
   1226 		case VMCB_EXITCODE_INTR:
   1227 		case VMCB_EXITCODE_NMI:
   1228 			exit->reason = NVMM_EXIT_NONE;
   1229 			break;
   1230 		case VMCB_EXITCODE_VINTR:
   1231 			svm_event_waitexit_disable(vcpu, false);
   1232 			exit->reason = NVMM_EXIT_INT_READY;
   1233 			break;
   1234 		case VMCB_EXITCODE_IRET:
   1235 			svm_event_waitexit_disable(vcpu, true);
   1236 			exit->reason = NVMM_EXIT_NMI_READY;
   1237 			break;
   1238 		case VMCB_EXITCODE_CPUID:
   1239 			svm_exit_cpuid(mach, vcpu, exit);
   1240 			break;
   1241 		case VMCB_EXITCODE_HLT:
   1242 			svm_exit_hlt(mach, vcpu, exit);
   1243 			break;
   1244 		case VMCB_EXITCODE_IOIO:
   1245 			svm_exit_io(mach, vcpu, exit);
   1246 			break;
   1247 		case VMCB_EXITCODE_MSR:
   1248 			svm_exit_msr(mach, vcpu, exit);
   1249 			break;
   1250 		case VMCB_EXITCODE_SHUTDOWN:
   1251 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1252 			break;
   1253 		case VMCB_EXITCODE_RDPMC:
   1254 		case VMCB_EXITCODE_RSM:
   1255 		case VMCB_EXITCODE_INVLPGA:
   1256 		case VMCB_EXITCODE_VMRUN:
   1257 		case VMCB_EXITCODE_VMMCALL:
   1258 		case VMCB_EXITCODE_VMLOAD:
   1259 		case VMCB_EXITCODE_VMSAVE:
   1260 		case VMCB_EXITCODE_STGI:
   1261 		case VMCB_EXITCODE_CLGI:
   1262 		case VMCB_EXITCODE_SKINIT:
   1263 		case VMCB_EXITCODE_RDTSCP:
   1264 			svm_inject_ud(mach, vcpu);
   1265 			exit->reason = NVMM_EXIT_NONE;
   1266 			break;
   1267 		case VMCB_EXITCODE_MONITOR:
   1268 			exit->reason = NVMM_EXIT_MONITOR;
   1269 			break;
   1270 		case VMCB_EXITCODE_MWAIT:
   1271 			exit->reason = NVMM_EXIT_MWAIT;
   1272 			break;
   1273 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1274 			exit->reason = NVMM_EXIT_MWAIT_COND;
   1275 			break;
   1276 		case VMCB_EXITCODE_XSETBV:
   1277 			svm_exit_xsetbv(mach, vcpu, exit);
   1278 			break;
   1279 		case VMCB_EXITCODE_NPF:
   1280 			svm_exit_npf(mach, vcpu, exit);
   1281 			break;
   1282 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1283 		default:
   1284 			exit->reason = NVMM_EXIT_INVALID;
   1285 			break;
   1286 		}
   1287 
   1288 		/* If no reason to return to userland, keep rolling. */
   1289 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1290 			break;
   1291 		}
   1292 		if (curcpu()->ci_data.cpu_softints != 0) {
   1293 			break;
   1294 		}
   1295 		if (curlwp->l_flag & LW_USERRET) {
   1296 			break;
   1297 		}
   1298 		if (exit->reason != NVMM_EXIT_NONE) {
   1299 			break;
   1300 		}
   1301 	}
   1302 
   1303 	svm_vcpu_guest_misc_leave(vcpu);
   1304 	svm_vcpu_guest_dbregs_leave(vcpu);
   1305 
   1306 	kpreempt_enable();
   1307 
   1308 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1309 	    VMCB_CTRL_V_TPR);
   1310 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
   1311 
   1312 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1313 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1314 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1315 	    cpudata->int_window_exit;
   1316 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1317 	    cpudata->nmi_window_exit;
   1318 
   1319 	return 0;
   1320 }
   1321 
   1322 /* -------------------------------------------------------------------------- */
   1323 
   1324 static int
   1325 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1326 {
   1327 	struct pglist pglist;
   1328 	paddr_t _pa;
   1329 	vaddr_t _va;
   1330 	size_t i;
   1331 	int ret;
   1332 
   1333 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1334 	    &pglist, 1, 0);
   1335 	if (ret != 0)
   1336 		return ENOMEM;
   1337 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1338 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1339 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1340 	if (_va == 0)
   1341 		goto error;
   1342 
   1343 	for (i = 0; i < npages; i++) {
   1344 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1345 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1346 	}
   1347 	pmap_update(pmap_kernel());
   1348 
   1349 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1350 
   1351 	*pa = _pa;
   1352 	*va = _va;
   1353 	return 0;
   1354 
   1355 error:
   1356 	for (i = 0; i < npages; i++) {
   1357 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1358 	}
   1359 	return ENOMEM;
   1360 }
   1361 
   1362 static void
   1363 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1364 {
   1365 	size_t i;
   1366 
   1367 	pmap_kremove(va, npages * PAGE_SIZE);
   1368 	pmap_update(pmap_kernel());
   1369 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1370 	for (i = 0; i < npages; i++) {
   1371 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1372 	}
   1373 }
   1374 
   1375 /* -------------------------------------------------------------------------- */
   1376 
   1377 #define SVM_MSRBM_READ	__BIT(0)
   1378 #define SVM_MSRBM_WRITE	__BIT(1)
   1379 
   1380 static void
   1381 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1382 {
   1383 	uint64_t byte;
   1384 	uint8_t bitoff;
   1385 
   1386 	if (msr < 0x00002000) {
   1387 		/* Range 1 */
   1388 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1389 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1390 		/* Range 2 */
   1391 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1392 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1393 		/* Range 3 */
   1394 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1395 	} else {
   1396 		panic("%s: wrong range", __func__);
   1397 	}
   1398 
   1399 	bitoff = (msr & 0x3) << 1;
   1400 
   1401 	if (read) {
   1402 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1403 	}
   1404 	if (write) {
   1405 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1406 	}
   1407 }
   1408 
   1409 static void
   1410 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1411 {
   1412 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1413 	struct vmcb *vmcb = cpudata->vmcb;
   1414 	size_t i, oct, bit;
   1415 
   1416 	mutex_enter(&svm_asidlock);
   1417 
   1418 	for (i = 0; i < svm_maxasid; i++) {
   1419 		oct = i / 8;
   1420 		bit = i % 8;
   1421 
   1422 		if (svm_asidmap[oct] & __BIT(bit)) {
   1423 			continue;
   1424 		}
   1425 
   1426 		svm_asidmap[oct] |= __BIT(bit);
   1427 		vmcb->ctrl.guest_asid = i;
   1428 		mutex_exit(&svm_asidlock);
   1429 		return;
   1430 	}
   1431 
   1432 	/*
   1433 	 * No free ASID. Use the last one, which is shared and requires
   1434 	 * special TLB handling.
   1435 	 */
   1436 	cpudata->shared_asid = true;
   1437 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1438 	mutex_exit(&svm_asidlock);
   1439 }
   1440 
   1441 static void
   1442 svm_asid_free(struct nvmm_cpu *vcpu)
   1443 {
   1444 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1445 	struct vmcb *vmcb = cpudata->vmcb;
   1446 	size_t oct, bit;
   1447 
   1448 	if (cpudata->shared_asid) {
   1449 		return;
   1450 	}
   1451 
   1452 	oct = vmcb->ctrl.guest_asid / 8;
   1453 	bit = vmcb->ctrl.guest_asid % 8;
   1454 
   1455 	mutex_enter(&svm_asidlock);
   1456 	svm_asidmap[oct] &= ~__BIT(bit);
   1457 	mutex_exit(&svm_asidlock);
   1458 }
   1459 
   1460 static void
   1461 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1462 {
   1463 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1464 	struct vmcb *vmcb = cpudata->vmcb;
   1465 
   1466 	/* Allow reads/writes of Control Registers. */
   1467 	vmcb->ctrl.intercept_cr = 0;
   1468 
   1469 	/* Allow reads/writes of Debug Registers. */
   1470 	vmcb->ctrl.intercept_dr = 0;
   1471 
   1472 	/* Allow exceptions 0 to 31. */
   1473 	vmcb->ctrl.intercept_vec = 0;
   1474 
   1475 	/*
   1476 	 * Allow:
   1477 	 *  - SMI [smm interrupts]
   1478 	 *  - VINTR [virtual interrupts]
   1479 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   1480 	 *  - RIDTR [reads of IDTR]
   1481 	 *  - RGDTR [reads of GDTR]
   1482 	 *  - RLDTR [reads of LDTR]
   1483 	 *  - RTR [reads of TR]
   1484 	 *  - WIDTR [writes of IDTR]
   1485 	 *  - WGDTR [writes of GDTR]
   1486 	 *  - WLDTR [writes of LDTR]
   1487 	 *  - WTR [writes of TR]
   1488 	 *  - RDTSC [rdtsc instruction]
   1489 	 *  - PUSHF [pushf instruction]
   1490 	 *  - POPF [popf instruction]
   1491 	 *  - IRET [iret instruction]
   1492 	 *  - INTN [int $n instructions]
   1493 	 *  - INVD [invd instruction]
   1494 	 *  - PAUSE [pause instruction]
   1495 	 *  - INVLPG [invplg instruction]
   1496 	 *  - TASKSW [task switches]
   1497 	 *
   1498 	 * Intercept the rest below.
   1499 	 */
   1500 	vmcb->ctrl.intercept_misc1 =
   1501 	    VMCB_CTRL_INTERCEPT_INTR |
   1502 	    VMCB_CTRL_INTERCEPT_NMI |
   1503 	    VMCB_CTRL_INTERCEPT_INIT |
   1504 	    VMCB_CTRL_INTERCEPT_RDPMC |
   1505 	    VMCB_CTRL_INTERCEPT_CPUID |
   1506 	    VMCB_CTRL_INTERCEPT_RSM |
   1507 	    VMCB_CTRL_INTERCEPT_HLT |
   1508 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   1509 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   1510 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   1511 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   1512 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   1513 
   1514 	/*
   1515 	 * Allow:
   1516 	 *  - ICEBP [icebp instruction]
   1517 	 *  - WBINVD [wbinvd instruction]
   1518 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   1519 	 *
   1520 	 * Intercept the rest below.
   1521 	 */
   1522 	vmcb->ctrl.intercept_misc2 =
   1523 	    VMCB_CTRL_INTERCEPT_VMRUN |
   1524 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   1525 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   1526 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   1527 	    VMCB_CTRL_INTERCEPT_STGI |
   1528 	    VMCB_CTRL_INTERCEPT_CLGI |
   1529 	    VMCB_CTRL_INTERCEPT_SKINIT |
   1530 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   1531 	    VMCB_CTRL_INTERCEPT_MONITOR |
   1532 	    VMCB_CTRL_INTERCEPT_MWAIT |
   1533 	    VMCB_CTRL_INTERCEPT_XSETBV;
   1534 
   1535 	/* Intercept all I/O accesses. */
   1536 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   1537 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   1538 
   1539 	/*
   1540 	 * Allow:
   1541 	 *  - EFER [read]
   1542 	 *  - STAR [read, write]
   1543 	 *  - LSTAR [read, write]
   1544 	 *  - CSTAR [read, write]
   1545 	 *  - SFMASK [read, write]
   1546 	 *  - KERNELGSBASE [read, write]
   1547 	 *  - SYSENTER_CS [read, write]
   1548 	 *  - SYSENTER_ESP [read, write]
   1549 	 *  - SYSENTER_EIP [read, write]
   1550 	 *  - FSBASE [read, write]
   1551 	 *  - GSBASE [read, write]
   1552 	 *  - TSC [read]
   1553 	 *
   1554 	 * Intercept the rest.
   1555 	 */
   1556 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1557 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   1558 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1559 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1560 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1561 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1562 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1563 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1564 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1565 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1566 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1567 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1568 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1569 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   1570 
   1571 	/* Generate ASID. */
   1572 	svm_asid_alloc(vcpu);
   1573 
   1574 	/* Virtual TPR. */
   1575 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   1576 
   1577 	/* Enable Nested Paging. */
   1578 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   1579 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   1580 
   1581 	/* Must always be set. */
   1582 	vmcb->state.efer = EFER_SVME;
   1583 
   1584 	/* Init XSAVE header. */
   1585 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1586 	cpudata->gfpu.xsh_xcomp_bv = 0;
   1587 
   1588 	/* Bluntly hide the host TSC. */
   1589 	cpudata->tsc_offset = rdtsc();
   1590 }
   1591 
   1592 static int
   1593 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1594 {
   1595 	struct svm_cpudata *cpudata;
   1596 	int error;
   1597 
   1598 	/* Allocate the SVM cpudata. */
   1599 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   1600 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   1601 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1602 	vcpu->cpudata = cpudata;
   1603 
   1604 	/* VMCB */
   1605 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   1606 	    VMCB_NPAGES);
   1607 	if (error)
   1608 		goto error;
   1609 
   1610 	/* I/O Bitmap */
   1611 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   1612 	    IOBM_NPAGES);
   1613 	if (error)
   1614 		goto error;
   1615 
   1616 	/* MSR Bitmap */
   1617 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   1618 	    MSRBM_NPAGES);
   1619 	if (error)
   1620 		goto error;
   1621 
   1622 	/* Init the VCPU info. */
   1623 	svm_vcpu_init(mach, vcpu);
   1624 
   1625 	return 0;
   1626 
   1627 error:
   1628 	if (cpudata->vmcb_pa) {
   1629 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   1630 		    VMCB_NPAGES);
   1631 	}
   1632 	if (cpudata->iobm_pa) {
   1633 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   1634 		    IOBM_NPAGES);
   1635 	}
   1636 	if (cpudata->msrbm_pa) {
   1637 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   1638 		    MSRBM_NPAGES);
   1639 	}
   1640 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   1641 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   1642 	return error;
   1643 }
   1644 
   1645 static void
   1646 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1647 {
   1648 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1649 
   1650 	svm_asid_free(vcpu);
   1651 
   1652 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   1653 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   1654 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   1655 
   1656 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   1657 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   1658 }
   1659 
   1660 #define SVM_SEG_ATTRIB_TYPE		__BITS(4,0)
   1661 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1662 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1663 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1664 #define SVM_SEG_ATTRIB_LONG		__BIT(9)
   1665 #define SVM_SEG_ATTRIB_DEF32		__BIT(10)
   1666 #define SVM_SEG_ATTRIB_GRAN		__BIT(11)
   1667 
   1668 static void
   1669 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1670 {
   1671 	vseg->selector = seg->selector;
   1672 	vseg->attrib =
   1673 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1674 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1675 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1676 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1677 	    __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
   1678 	    __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
   1679 	    __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
   1680 	vseg->limit = seg->limit;
   1681 	vseg->base = seg->base;
   1682 }
   1683 
   1684 static void
   1685 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1686 {
   1687 	seg->selector = vseg->selector;
   1688 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1689 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1690 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1691 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1692 	seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
   1693 	seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
   1694 	seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
   1695 	seg->limit = vseg->limit;
   1696 	seg->base = vseg->base;
   1697 }
   1698 
   1699 static inline bool
   1700 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
   1701     uint64_t flags)
   1702 {
   1703 	if (flags & NVMM_X64_STATE_CRS) {
   1704 		if ((vmcb->state.cr0 ^
   1705 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1706 			return true;
   1707 		}
   1708 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1709 			return true;
   1710 		}
   1711 		if ((vmcb->state.cr4 ^
   1712 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1713 			return true;
   1714 		}
   1715 	}
   1716 
   1717 	if (flags & NVMM_X64_STATE_MSRS) {
   1718 		if ((vmcb->state.efer ^
   1719 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1720 			return true;
   1721 		}
   1722 	}
   1723 
   1724 	return false;
   1725 }
   1726 
   1727 static void
   1728 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1729 {
   1730 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1731 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1732 	struct vmcb *vmcb = cpudata->vmcb;
   1733 	struct fxsave *fpustate;
   1734 
   1735 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1736 		cpudata->tlb_want_flush = true;
   1737 	}
   1738 
   1739 	if (flags & NVMM_X64_STATE_SEGS) {
   1740 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1741 		    &vmcb->state.cs);
   1742 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1743 		    &vmcb->state.ds);
   1744 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1745 		    &vmcb->state.es);
   1746 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1747 		    &vmcb->state.fs);
   1748 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1749 		    &vmcb->state.gs);
   1750 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1751 		    &vmcb->state.ss);
   1752 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1753 		    &vmcb->state.gdt);
   1754 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1755 		    &vmcb->state.idt);
   1756 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1757 		    &vmcb->state.ldt);
   1758 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1759 		    &vmcb->state.tr);
   1760 	}
   1761 
   1762 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1763 	if (flags & NVMM_X64_STATE_GPRS) {
   1764 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1765 
   1766 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1767 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1768 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1769 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1770 	}
   1771 
   1772 	if (flags & NVMM_X64_STATE_CRS) {
   1773 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1774 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1775 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1776 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1777 
   1778 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1779 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1780 		    VMCB_CTRL_V_TPR);
   1781 
   1782 		/* Clear unsupported XCR0 bits, set mandatory X87 bit. */
   1783 		if (svm_xcr0_mask != 0) {
   1784 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1785 			cpudata->gxcr0 &= svm_xcr0_mask;
   1786 			cpudata->gxcr0 |= XCR0_X87;
   1787 		} else {
   1788 			cpudata->gxcr0 = 0;
   1789 		}
   1790 	}
   1791 
   1792 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1793 	if (flags & NVMM_X64_STATE_DRS) {
   1794 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1795 
   1796 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1797 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1798 	}
   1799 
   1800 	if (flags & NVMM_X64_STATE_MSRS) {
   1801 		/* Bit EFER_SVME is mandatory. */
   1802 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1803 
   1804 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1805 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1806 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1807 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1808 		vmcb->state.kernelgsbase =
   1809 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1810 		vmcb->state.sysenter_cs =
   1811 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1812 		vmcb->state.sysenter_esp =
   1813 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1814 		vmcb->state.sysenter_eip =
   1815 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1816 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1817 	}
   1818 
   1819 	if (flags & NVMM_X64_STATE_MISC) {
   1820 		vmcb->state.cpl = state->misc[NVMM_X64_MISC_CPL];
   1821 
   1822 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   1823 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1824 		} else {
   1825 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1826 		}
   1827 
   1828 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   1829 			svm_event_waitexit_enable(vcpu, false);
   1830 		} else {
   1831 			svm_event_waitexit_disable(vcpu, false);
   1832 		}
   1833 
   1834 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   1835 			svm_event_waitexit_enable(vcpu, true);
   1836 		} else {
   1837 			svm_event_waitexit_disable(vcpu, true);
   1838 		}
   1839 	}
   1840 
   1841 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1842 	if (flags & NVMM_X64_STATE_FPU) {
   1843 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1844 		    sizeof(state->fpu));
   1845 
   1846 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1847 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1848 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1849 	}
   1850 
   1851 	svm_vmcb_cache_update(vmcb, flags);
   1852 }
   1853 
   1854 static void
   1855 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1856 {
   1857 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1858 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1859 	struct vmcb *vmcb = cpudata->vmcb;
   1860 
   1861 	if (flags & NVMM_X64_STATE_SEGS) {
   1862 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1863 		    &vmcb->state.cs);
   1864 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1865 		    &vmcb->state.ds);
   1866 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1867 		    &vmcb->state.es);
   1868 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1869 		    &vmcb->state.fs);
   1870 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1871 		    &vmcb->state.gs);
   1872 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1873 		    &vmcb->state.ss);
   1874 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1875 		    &vmcb->state.gdt);
   1876 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1877 		    &vmcb->state.idt);
   1878 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1879 		    &vmcb->state.ldt);
   1880 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1881 		    &vmcb->state.tr);
   1882 	}
   1883 
   1884 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1885 	if (flags & NVMM_X64_STATE_GPRS) {
   1886 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1887 
   1888 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1889 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1890 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1891 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1892 	}
   1893 
   1894 	if (flags & NVMM_X64_STATE_CRS) {
   1895 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1896 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1897 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1898 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1899 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1900 		    VMCB_CTRL_V_TPR);
   1901 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1902 	}
   1903 
   1904 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1905 	if (flags & NVMM_X64_STATE_DRS) {
   1906 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1907 
   1908 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1909 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1910 	}
   1911 
   1912 	if (flags & NVMM_X64_STATE_MSRS) {
   1913 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1914 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1915 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1916 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1917 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1918 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1919 		    vmcb->state.kernelgsbase;
   1920 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1921 		    vmcb->state.sysenter_cs;
   1922 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1923 		    vmcb->state.sysenter_esp;
   1924 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1925 		    vmcb->state.sysenter_eip;
   1926 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1927 
   1928 		/* Hide SVME. */
   1929 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1930 	}
   1931 
   1932 	if (flags & NVMM_X64_STATE_MISC) {
   1933 		state->misc[NVMM_X64_MISC_CPL] = vmcb->state.cpl;
   1934 
   1935 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   1936 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1937 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   1938 		    cpudata->int_window_exit;
   1939 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   1940 		    cpudata->nmi_window_exit;
   1941 	}
   1942 
   1943 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1944 	if (flags & NVMM_X64_STATE_FPU) {
   1945 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1946 		    sizeof(state->fpu));
   1947 	}
   1948 }
   1949 
   1950 /* -------------------------------------------------------------------------- */
   1951 
   1952 static void
   1953 svm_tlb_flush(struct pmap *pm)
   1954 {
   1955 	struct nvmm_machine *mach = pm->pm_data;
   1956 	struct svm_cpudata *cpudata;
   1957 	struct nvmm_cpu *vcpu;
   1958 	int error;
   1959 	size_t i;
   1960 
   1961 	/* Request TLB flushes. */
   1962 	for (i = 0; i < NVMM_MAX_VCPUS; i++) {
   1963 		error = nvmm_vcpu_get(mach, i, &vcpu);
   1964 		if (error)
   1965 			continue;
   1966 		cpudata = vcpu->cpudata;
   1967 		cpudata->tlb_want_flush = true;
   1968 		nvmm_vcpu_put(vcpu);
   1969 	}
   1970 }
   1971 
   1972 static void
   1973 svm_machine_create(struct nvmm_machine *mach)
   1974 {
   1975 	/* Fill in pmap info. */
   1976 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   1977 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   1978 
   1979 	mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   1980 }
   1981 
   1982 static void
   1983 svm_machine_destroy(struct nvmm_machine *mach)
   1984 {
   1985 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   1986 }
   1987 
   1988 static int
   1989 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   1990 {
   1991 	struct nvmm_x86_conf_cpuid *cpuid = data;
   1992 	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
   1993 	size_t i;
   1994 
   1995 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   1996 		return EINVAL;
   1997 	}
   1998 
   1999 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2000 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2001 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2002 	    (cpuid->set.edx & cpuid->del.edx))) {
   2003 		return EINVAL;
   2004 	}
   2005 
   2006 	/* If already here, replace. */
   2007 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2008 		if (!machdata->cpuidpresent[i]) {
   2009 			continue;
   2010 		}
   2011 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2012 			memcpy(&machdata->cpuid[i], cpuid,
   2013 			    sizeof(struct nvmm_x86_conf_cpuid));
   2014 			return 0;
   2015 		}
   2016 	}
   2017 
   2018 	/* Not here, insert. */
   2019 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2020 		if (!machdata->cpuidpresent[i]) {
   2021 			machdata->cpuidpresent[i] = true;
   2022 			memcpy(&machdata->cpuid[i], cpuid,
   2023 			    sizeof(struct nvmm_x86_conf_cpuid));
   2024 			return 0;
   2025 		}
   2026 	}
   2027 
   2028 	return ENOBUFS;
   2029 }
   2030 
   2031 /* -------------------------------------------------------------------------- */
   2032 
   2033 static bool
   2034 svm_ident(void)
   2035 {
   2036 	u_int descs[4];
   2037 	uint64_t msr;
   2038 
   2039 	if (cpu_vendor != CPUVENDOR_AMD) {
   2040 		return false;
   2041 	}
   2042 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2043 		return false;
   2044 	}
   2045 
   2046 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2047 		return false;
   2048 	}
   2049 	x86_cpuid(0x8000000a, descs);
   2050 
   2051 	/* Want Nested Paging. */
   2052 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2053 		return false;
   2054 	}
   2055 
   2056 	/* Want nRIP. */
   2057 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2058 		return false;
   2059 	}
   2060 
   2061 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2062 
   2063 	msr = rdmsr(MSR_VMCR);
   2064 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2065 		return false;
   2066 	}
   2067 
   2068 	return true;
   2069 }
   2070 
   2071 static void
   2072 svm_init_asid(uint32_t maxasid)
   2073 {
   2074 	size_t i, j, allocsz;
   2075 
   2076 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2077 
   2078 	/* Arbitrarily limit. */
   2079 	maxasid = uimin(maxasid, 8192);
   2080 
   2081 	svm_maxasid = maxasid;
   2082 	allocsz = roundup(maxasid, 8) / 8;
   2083 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2084 
   2085 	/* ASID 0 is reserved for the host. */
   2086 	svm_asidmap[0] |= __BIT(0);
   2087 
   2088 	/* ASID n-1 is special, we share it. */
   2089 	i = (maxasid - 1) / 8;
   2090 	j = (maxasid - 1) % 8;
   2091 	svm_asidmap[i] |= __BIT(j);
   2092 }
   2093 
   2094 static void
   2095 svm_change_cpu(void *arg1, void *arg2)
   2096 {
   2097 	bool enable = (bool)arg1;
   2098 	uint64_t msr;
   2099 
   2100 	msr = rdmsr(MSR_VMCR);
   2101 	if (msr & VMCR_SVMED) {
   2102 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2103 	}
   2104 
   2105 	if (!enable) {
   2106 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2107 	}
   2108 
   2109 	msr = rdmsr(MSR_EFER);
   2110 	if (enable) {
   2111 		msr |= EFER_SVME;
   2112 	} else {
   2113 		msr &= ~EFER_SVME;
   2114 	}
   2115 	wrmsr(MSR_EFER, msr);
   2116 
   2117 	if (enable) {
   2118 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2119 	}
   2120 }
   2121 
   2122 static void
   2123 svm_init(void)
   2124 {
   2125 	CPU_INFO_ITERATOR cii;
   2126 	struct cpu_info *ci;
   2127 	struct vm_page *pg;
   2128 	u_int descs[4];
   2129 	uint64_t xc;
   2130 
   2131 	x86_cpuid(0x8000000a, descs);
   2132 
   2133 	/* The guest TLB flush command. */
   2134 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2135 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2136 	} else {
   2137 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2138 	}
   2139 
   2140 	/* Init the ASID. */
   2141 	svm_init_asid(descs[1]);
   2142 
   2143 	/* Init the XCR0 mask. */
   2144 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2145 
   2146 	memset(hsave, 0, sizeof(hsave));
   2147 	for (CPU_INFO_FOREACH(cii, ci)) {
   2148 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2149 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2150 	}
   2151 
   2152 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2153 	xc_wait(xc);
   2154 }
   2155 
   2156 static void
   2157 svm_fini_asid(void)
   2158 {
   2159 	size_t allocsz;
   2160 
   2161 	allocsz = roundup(svm_maxasid, 8) / 8;
   2162 	kmem_free(svm_asidmap, allocsz);
   2163 
   2164 	mutex_destroy(&svm_asidlock);
   2165 }
   2166 
   2167 static void
   2168 svm_fini(void)
   2169 {
   2170 	uint64_t xc;
   2171 	size_t i;
   2172 
   2173 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2174 	xc_wait(xc);
   2175 
   2176 	for (i = 0; i < MAXCPUS; i++) {
   2177 		if (hsave[i].pa != 0)
   2178 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2179 	}
   2180 
   2181 	svm_fini_asid();
   2182 }
   2183 
   2184 static void
   2185 svm_capability(struct nvmm_capability *cap)
   2186 {
   2187 	cap->u.x86.xcr0_mask = svm_xcr0_mask;
   2188 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2189 	cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
   2190 }
   2191 
   2192 const struct nvmm_impl nvmm_x86_svm = {
   2193 	.ident = svm_ident,
   2194 	.init = svm_init,
   2195 	.fini = svm_fini,
   2196 	.capability = svm_capability,
   2197 	.conf_max = NVMM_X86_NCONF,
   2198 	.conf_sizes = svm_conf_sizes,
   2199 	.state_size = sizeof(struct nvmm_x64_state),
   2200 	.machine_create = svm_machine_create,
   2201 	.machine_destroy = svm_machine_destroy,
   2202 	.machine_configure = svm_machine_configure,
   2203 	.vcpu_create = svm_vcpu_create,
   2204 	.vcpu_destroy = svm_vcpu_destroy,
   2205 	.vcpu_setstate = svm_vcpu_setstate,
   2206 	.vcpu_getstate = svm_vcpu_getstate,
   2207 	.vcpu_inject = svm_vcpu_inject,
   2208 	.vcpu_run = svm_vcpu_run
   2209 };
   2210