nvmm_x86_svm.c revision 1.15 1 /* $NetBSD: nvmm_x86_svm.c,v 1.15 2019/01/13 10:07:50 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.15 2019/01/13 10:07:50 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <machine/cpuvar.h>
50
51 #include <dev/nvmm/nvmm.h>
52 #include <dev/nvmm/nvmm_internal.h>
53 #include <dev/nvmm/x86/nvmm_x86.h>
54
55 int svm_vmrun(paddr_t, uint64_t *);
56
57 #define MSR_VM_HSAVE_PA 0xC0010117
58
59 /* -------------------------------------------------------------------------- */
60
61 #define VMCB_EXITCODE_CR0_READ 0x0000
62 #define VMCB_EXITCODE_CR1_READ 0x0001
63 #define VMCB_EXITCODE_CR2_READ 0x0002
64 #define VMCB_EXITCODE_CR3_READ 0x0003
65 #define VMCB_EXITCODE_CR4_READ 0x0004
66 #define VMCB_EXITCODE_CR5_READ 0x0005
67 #define VMCB_EXITCODE_CR6_READ 0x0006
68 #define VMCB_EXITCODE_CR7_READ 0x0007
69 #define VMCB_EXITCODE_CR8_READ 0x0008
70 #define VMCB_EXITCODE_CR9_READ 0x0009
71 #define VMCB_EXITCODE_CR10_READ 0x000A
72 #define VMCB_EXITCODE_CR11_READ 0x000B
73 #define VMCB_EXITCODE_CR12_READ 0x000C
74 #define VMCB_EXITCODE_CR13_READ 0x000D
75 #define VMCB_EXITCODE_CR14_READ 0x000E
76 #define VMCB_EXITCODE_CR15_READ 0x000F
77 #define VMCB_EXITCODE_CR0_WRITE 0x0010
78 #define VMCB_EXITCODE_CR1_WRITE 0x0011
79 #define VMCB_EXITCODE_CR2_WRITE 0x0012
80 #define VMCB_EXITCODE_CR3_WRITE 0x0013
81 #define VMCB_EXITCODE_CR4_WRITE 0x0014
82 #define VMCB_EXITCODE_CR5_WRITE 0x0015
83 #define VMCB_EXITCODE_CR6_WRITE 0x0016
84 #define VMCB_EXITCODE_CR7_WRITE 0x0017
85 #define VMCB_EXITCODE_CR8_WRITE 0x0018
86 #define VMCB_EXITCODE_CR9_WRITE 0x0019
87 #define VMCB_EXITCODE_CR10_WRITE 0x001A
88 #define VMCB_EXITCODE_CR11_WRITE 0x001B
89 #define VMCB_EXITCODE_CR12_WRITE 0x001C
90 #define VMCB_EXITCODE_CR13_WRITE 0x001D
91 #define VMCB_EXITCODE_CR14_WRITE 0x001E
92 #define VMCB_EXITCODE_CR15_WRITE 0x001F
93 #define VMCB_EXITCODE_DR0_READ 0x0020
94 #define VMCB_EXITCODE_DR1_READ 0x0021
95 #define VMCB_EXITCODE_DR2_READ 0x0022
96 #define VMCB_EXITCODE_DR3_READ 0x0023
97 #define VMCB_EXITCODE_DR4_READ 0x0024
98 #define VMCB_EXITCODE_DR5_READ 0x0025
99 #define VMCB_EXITCODE_DR6_READ 0x0026
100 #define VMCB_EXITCODE_DR7_READ 0x0027
101 #define VMCB_EXITCODE_DR8_READ 0x0028
102 #define VMCB_EXITCODE_DR9_READ 0x0029
103 #define VMCB_EXITCODE_DR10_READ 0x002A
104 #define VMCB_EXITCODE_DR11_READ 0x002B
105 #define VMCB_EXITCODE_DR12_READ 0x002C
106 #define VMCB_EXITCODE_DR13_READ 0x002D
107 #define VMCB_EXITCODE_DR14_READ 0x002E
108 #define VMCB_EXITCODE_DR15_READ 0x002F
109 #define VMCB_EXITCODE_DR0_WRITE 0x0030
110 #define VMCB_EXITCODE_DR1_WRITE 0x0031
111 #define VMCB_EXITCODE_DR2_WRITE 0x0032
112 #define VMCB_EXITCODE_DR3_WRITE 0x0033
113 #define VMCB_EXITCODE_DR4_WRITE 0x0034
114 #define VMCB_EXITCODE_DR5_WRITE 0x0035
115 #define VMCB_EXITCODE_DR6_WRITE 0x0036
116 #define VMCB_EXITCODE_DR7_WRITE 0x0037
117 #define VMCB_EXITCODE_DR8_WRITE 0x0038
118 #define VMCB_EXITCODE_DR9_WRITE 0x0039
119 #define VMCB_EXITCODE_DR10_WRITE 0x003A
120 #define VMCB_EXITCODE_DR11_WRITE 0x003B
121 #define VMCB_EXITCODE_DR12_WRITE 0x003C
122 #define VMCB_EXITCODE_DR13_WRITE 0x003D
123 #define VMCB_EXITCODE_DR14_WRITE 0x003E
124 #define VMCB_EXITCODE_DR15_WRITE 0x003F
125 #define VMCB_EXITCODE_EXCP0 0x0040
126 #define VMCB_EXITCODE_EXCP1 0x0041
127 #define VMCB_EXITCODE_EXCP2 0x0042
128 #define VMCB_EXITCODE_EXCP3 0x0043
129 #define VMCB_EXITCODE_EXCP4 0x0044
130 #define VMCB_EXITCODE_EXCP5 0x0045
131 #define VMCB_EXITCODE_EXCP6 0x0046
132 #define VMCB_EXITCODE_EXCP7 0x0047
133 #define VMCB_EXITCODE_EXCP8 0x0048
134 #define VMCB_EXITCODE_EXCP9 0x0049
135 #define VMCB_EXITCODE_EXCP10 0x004A
136 #define VMCB_EXITCODE_EXCP11 0x004B
137 #define VMCB_EXITCODE_EXCP12 0x004C
138 #define VMCB_EXITCODE_EXCP13 0x004D
139 #define VMCB_EXITCODE_EXCP14 0x004E
140 #define VMCB_EXITCODE_EXCP15 0x004F
141 #define VMCB_EXITCODE_EXCP16 0x0050
142 #define VMCB_EXITCODE_EXCP17 0x0051
143 #define VMCB_EXITCODE_EXCP18 0x0052
144 #define VMCB_EXITCODE_EXCP19 0x0053
145 #define VMCB_EXITCODE_EXCP20 0x0054
146 #define VMCB_EXITCODE_EXCP21 0x0055
147 #define VMCB_EXITCODE_EXCP22 0x0056
148 #define VMCB_EXITCODE_EXCP23 0x0057
149 #define VMCB_EXITCODE_EXCP24 0x0058
150 #define VMCB_EXITCODE_EXCP25 0x0059
151 #define VMCB_EXITCODE_EXCP26 0x005A
152 #define VMCB_EXITCODE_EXCP27 0x005B
153 #define VMCB_EXITCODE_EXCP28 0x005C
154 #define VMCB_EXITCODE_EXCP29 0x005D
155 #define VMCB_EXITCODE_EXCP30 0x005E
156 #define VMCB_EXITCODE_EXCP31 0x005F
157 #define VMCB_EXITCODE_INTR 0x0060
158 #define VMCB_EXITCODE_NMI 0x0061
159 #define VMCB_EXITCODE_SMI 0x0062
160 #define VMCB_EXITCODE_INIT 0x0063
161 #define VMCB_EXITCODE_VINTR 0x0064
162 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
163 #define VMCB_EXITCODE_IDTR_READ 0x0066
164 #define VMCB_EXITCODE_GDTR_READ 0x0067
165 #define VMCB_EXITCODE_LDTR_READ 0x0068
166 #define VMCB_EXITCODE_TR_READ 0x0069
167 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
168 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
169 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
170 #define VMCB_EXITCODE_TR_WRITE 0x006D
171 #define VMCB_EXITCODE_RDTSC 0x006E
172 #define VMCB_EXITCODE_RDPMC 0x006F
173 #define VMCB_EXITCODE_PUSHF 0x0070
174 #define VMCB_EXITCODE_POPF 0x0071
175 #define VMCB_EXITCODE_CPUID 0x0072
176 #define VMCB_EXITCODE_RSM 0x0073
177 #define VMCB_EXITCODE_IRET 0x0074
178 #define VMCB_EXITCODE_SWINT 0x0075
179 #define VMCB_EXITCODE_INVD 0x0076
180 #define VMCB_EXITCODE_PAUSE 0x0077
181 #define VMCB_EXITCODE_HLT 0x0078
182 #define VMCB_EXITCODE_INVLPG 0x0079
183 #define VMCB_EXITCODE_INVLPGA 0x007A
184 #define VMCB_EXITCODE_IOIO 0x007B
185 #define VMCB_EXITCODE_MSR 0x007C
186 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
187 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
188 #define VMCB_EXITCODE_SHUTDOWN 0x007F
189 #define VMCB_EXITCODE_VMRUN 0x0080
190 #define VMCB_EXITCODE_VMMCALL 0x0081
191 #define VMCB_EXITCODE_VMLOAD 0x0082
192 #define VMCB_EXITCODE_VMSAVE 0x0083
193 #define VMCB_EXITCODE_STGI 0x0084
194 #define VMCB_EXITCODE_CLGI 0x0085
195 #define VMCB_EXITCODE_SKINIT 0x0086
196 #define VMCB_EXITCODE_RDTSCP 0x0087
197 #define VMCB_EXITCODE_ICEBP 0x0088
198 #define VMCB_EXITCODE_WBINVD 0x0089
199 #define VMCB_EXITCODE_MONITOR 0x008A
200 #define VMCB_EXITCODE_MWAIT 0x008B
201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
202 #define VMCB_EXITCODE_XSETBV 0x008D
203 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
204 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
205 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
206 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
207 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
208 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
209 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
210 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
211 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
212 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
213 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
214 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
215 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
216 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
217 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
218 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
219 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
220 #define VMCB_EXITCODE_NPF 0x0400
221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
222 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
223 #define VMCB_EXITCODE_VMGEXIT 0x0403
224 #define VMCB_EXITCODE_INVALID -1
225
226 /* -------------------------------------------------------------------------- */
227
228 struct vmcb_ctrl {
229 uint32_t intercept_cr;
230 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
231 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
232
233 uint32_t intercept_dr;
234 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
236
237 uint32_t intercept_vec;
238 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
239
240 uint32_t intercept_misc1;
241 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
242 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
243 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
244 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
245 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
247 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
248 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
249 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
250 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
251 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
252 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
253 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
254 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
255 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
256 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
257 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
258 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
259 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
260 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
261 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
262 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
263 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
264 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
265 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
266 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
267 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
269 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
270 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
273
274 uint32_t intercept_misc2;
275 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
276 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
277 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
278 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
279 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
280 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
281 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
282 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
283 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
284 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
285 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
286 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
287 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
290
291 uint8_t rsvd1[40];
292 uint16_t pause_filt_thresh;
293 uint16_t pause_filt_cnt;
294 uint64_t iopm_base_pa;
295 uint64_t msrpm_base_pa;
296 uint64_t tsc_offset;
297 uint32_t guest_asid;
298
299 uint32_t tlb_ctrl;
300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
303
304 uint64_t v;
305 #define VMCB_CTRL_V_TPR __BITS(7,0)
306 #define VMCB_CTRL_V_IRQ __BIT(8)
307 #define VMCB_CTRL_V_VGIF __BIT(9)
308 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
309 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
310 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
311 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
312 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
313 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
314
315 uint64_t intr;
316 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
317
318 uint64_t exitcode;
319 uint64_t exitinfo1;
320 uint64_t exitinfo2;
321
322 uint64_t exitintinfo;
323 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
324 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
325 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
326 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
327 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
328
329 uint64_t enable1;
330 #define VMCB_CTRL_ENABLE_NP __BIT(0)
331 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
332 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
333
334 uint64_t avic;
335 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
336
337 uint64_t ghcb;
338
339 uint64_t eventinj;
340 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
341 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
342 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
343 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
344 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
345
346 uint64_t n_cr3;
347
348 uint64_t enable2;
349 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
350 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
351
352 uint32_t vmcb_clean;
353 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
354 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
355 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
356 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
357 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
358 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
359 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
360 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
361 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
362 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
363 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
364 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
365
366 uint32_t rsvd2;
367 uint64_t nrip;
368 uint8_t inst_len;
369 uint8_t inst_bytes[15];
370 uint64_t avic_abpp;
371 uint64_t rsvd3;
372 uint64_t avic_ltp;
373
374 uint64_t avic_phys;
375 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
376 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
377
378 uint64_t rsvd4;
379 uint64_t vmcb_ptr;
380
381 uint8_t pad[752];
382 } __packed;
383
384 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
385
386 struct vmcb_segment {
387 uint16_t selector;
388 uint16_t attrib; /* hidden */
389 uint32_t limit; /* hidden */
390 uint64_t base; /* hidden */
391 } __packed;
392
393 CTASSERT(sizeof(struct vmcb_segment) == 16);
394
395 struct vmcb_state {
396 struct vmcb_segment es;
397 struct vmcb_segment cs;
398 struct vmcb_segment ss;
399 struct vmcb_segment ds;
400 struct vmcb_segment fs;
401 struct vmcb_segment gs;
402 struct vmcb_segment gdt;
403 struct vmcb_segment ldt;
404 struct vmcb_segment idt;
405 struct vmcb_segment tr;
406 uint8_t rsvd1[43];
407 uint8_t cpl;
408 uint8_t rsvd2[4];
409 uint64_t efer;
410 uint8_t rsvd3[112];
411 uint64_t cr4;
412 uint64_t cr3;
413 uint64_t cr0;
414 uint64_t dr7;
415 uint64_t dr6;
416 uint64_t rflags;
417 uint64_t rip;
418 uint8_t rsvd4[88];
419 uint64_t rsp;
420 uint8_t rsvd5[24];
421 uint64_t rax;
422 uint64_t star;
423 uint64_t lstar;
424 uint64_t cstar;
425 uint64_t sfmask;
426 uint64_t kernelgsbase;
427 uint64_t sysenter_cs;
428 uint64_t sysenter_esp;
429 uint64_t sysenter_eip;
430 uint64_t cr2;
431 uint8_t rsvd6[32];
432 uint64_t g_pat;
433 uint64_t dbgctl;
434 uint64_t br_from;
435 uint64_t br_to;
436 uint64_t int_from;
437 uint64_t int_to;
438 uint8_t pad[2408];
439 } __packed;
440
441 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
442
443 struct vmcb {
444 struct vmcb_ctrl ctrl;
445 struct vmcb_state state;
446 } __packed;
447
448 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
449 CTASSERT(offsetof(struct vmcb, state) == 0x400);
450
451 /* -------------------------------------------------------------------------- */
452
453 struct svm_hsave {
454 paddr_t pa;
455 };
456
457 static struct svm_hsave hsave[MAXCPUS];
458
459 static uint8_t *svm_asidmap __read_mostly;
460 static uint32_t svm_maxasid __read_mostly;
461 static kmutex_t svm_asidlock __cacheline_aligned;
462
463 static bool svm_decode_assist __read_mostly;
464 static uint32_t svm_ctrl_tlb_flush __read_mostly;
465
466 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
467 static uint64_t svm_xcr0_mask __read_mostly;
468
469 #define SVM_NCPUIDS 32
470
471 #define VMCB_NPAGES 1
472
473 #define MSRBM_NPAGES 2
474 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
475
476 #define IOBM_NPAGES 3
477 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
478
479 /* Does not include EFER_LMSLE. */
480 #define EFER_VALID \
481 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
482
483 #define EFER_TLB_FLUSH \
484 (EFER_NXE|EFER_LMA|EFER_LME)
485 #define CR0_TLB_FLUSH \
486 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
487 #define CR4_TLB_FLUSH \
488 (CR4_PGE|CR4_PAE|CR4_PSE)
489
490 /* -------------------------------------------------------------------------- */
491
492 struct svm_machdata {
493 bool cpuidpresent[SVM_NCPUIDS];
494 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
495 };
496
497 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
498 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
499 };
500
501 struct svm_cpudata {
502 /* General */
503 bool shared_asid;
504 bool tlb_want_flush;
505
506 /* VMCB */
507 struct vmcb *vmcb;
508 paddr_t vmcb_pa;
509
510 /* I/O bitmap */
511 uint8_t *iobm;
512 paddr_t iobm_pa;
513
514 /* MSR bitmap */
515 uint8_t *msrbm;
516 paddr_t msrbm_pa;
517
518 /* Host state */
519 uint64_t hxcr0;
520 uint64_t star;
521 uint64_t lstar;
522 uint64_t cstar;
523 uint64_t sfmask;
524 uint64_t fsbase;
525 uint64_t kernelgsbase;
526 bool ts_set;
527 struct xsave_header hfpu __aligned(16);
528
529 /* Event state */
530 bool int_window_exit;
531 bool nmi_window_exit;
532
533 /* Guest state */
534 uint64_t gxcr0;
535 uint64_t gprs[NVMM_X64_NGPR];
536 uint64_t drs[NVMM_X64_NDR];
537 uint64_t tsc_offset;
538 struct xsave_header gfpu __aligned(16);
539 };
540
541 static void
542 svm_vmcb_cache_default(struct vmcb *vmcb)
543 {
544 vmcb->ctrl.vmcb_clean =
545 VMCB_CTRL_VMCB_CLEAN_I |
546 VMCB_CTRL_VMCB_CLEAN_IOPM |
547 VMCB_CTRL_VMCB_CLEAN_ASID |
548 VMCB_CTRL_VMCB_CLEAN_TPR |
549 VMCB_CTRL_VMCB_CLEAN_NP |
550 VMCB_CTRL_VMCB_CLEAN_CR |
551 VMCB_CTRL_VMCB_CLEAN_DR |
552 VMCB_CTRL_VMCB_CLEAN_DT |
553 VMCB_CTRL_VMCB_CLEAN_SEG |
554 VMCB_CTRL_VMCB_CLEAN_CR2 |
555 VMCB_CTRL_VMCB_CLEAN_LBR |
556 VMCB_CTRL_VMCB_CLEAN_AVIC;
557 }
558
559 static void
560 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
561 {
562 if (flags & NVMM_X64_STATE_SEGS) {
563 vmcb->ctrl.vmcb_clean &=
564 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
565 }
566 if (flags & NVMM_X64_STATE_CRS) {
567 vmcb->ctrl.vmcb_clean &=
568 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
569 VMCB_CTRL_VMCB_CLEAN_TPR);
570 }
571 if (flags & NVMM_X64_STATE_DRS) {
572 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
573 }
574 if (flags & NVMM_X64_STATE_MSRS) {
575 /* CR for EFER, NP for PAT. */
576 vmcb->ctrl.vmcb_clean &=
577 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
578 }
579 if (flags & NVMM_X64_STATE_MISC) {
580 /* SEG for CPL. */
581 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_SEG;
582 }
583 }
584
585 static inline void
586 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
587 {
588 vmcb->ctrl.vmcb_clean &= ~flags;
589 }
590
591 static inline void
592 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
593 {
594 vmcb->ctrl.vmcb_clean = 0;
595 }
596
597 #define SVM_EVENT_TYPE_HW_INT 0
598 #define SVM_EVENT_TYPE_NMI 2
599 #define SVM_EVENT_TYPE_EXC 3
600 #define SVM_EVENT_TYPE_SW_INT 4
601
602 static void
603 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
604 {
605 struct svm_cpudata *cpudata = vcpu->cpudata;
606 struct vmcb *vmcb = cpudata->vmcb;
607
608 if (nmi) {
609 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
610 cpudata->nmi_window_exit = true;
611 } else {
612 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
613 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
614 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
615 cpudata->int_window_exit = true;
616 }
617
618 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
619 }
620
621 static void
622 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = false;
630 } else {
631 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = false;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static inline int
641 svm_event_has_error(uint64_t vector)
642 {
643 switch (vector) {
644 case 8: /* #DF */
645 case 10: /* #TS */
646 case 11: /* #NP */
647 case 12: /* #SS */
648 case 13: /* #GP */
649 case 14: /* #PF */
650 case 17: /* #AC */
651 case 30: /* #SX */
652 return 1;
653 default:
654 return 0;
655 }
656 }
657
658 static int
659 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
660 struct nvmm_event *event)
661 {
662 struct svm_cpudata *cpudata = vcpu->cpudata;
663 struct vmcb *vmcb = cpudata->vmcb;
664 int type = 0, err = 0;
665
666 if (event->vector >= 256) {
667 return EINVAL;
668 }
669
670 switch (event->type) {
671 case NVMM_EVENT_INTERRUPT_HW:
672 type = SVM_EVENT_TYPE_HW_INT;
673 if (event->vector == 2) {
674 type = SVM_EVENT_TYPE_NMI;
675 }
676 if (type == SVM_EVENT_TYPE_NMI) {
677 if (cpudata->nmi_window_exit) {
678 return EAGAIN;
679 }
680 svm_event_waitexit_enable(vcpu, true);
681 } else {
682 if (((vmcb->state.rflags & PSL_I) == 0) ||
683 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
684 svm_event_waitexit_enable(vcpu, false);
685 return EAGAIN;
686 }
687 }
688 err = 0;
689 break;
690 case NVMM_EVENT_INTERRUPT_SW:
691 type = SVM_EVENT_TYPE_SW_INT;
692 err = 0;
693 break;
694 case NVMM_EVENT_EXCEPTION:
695 type = SVM_EVENT_TYPE_EXC;
696 if (event->vector == 2 || event->vector >= 32)
697 return EINVAL;
698 err = svm_event_has_error(event->vector);
699 break;
700 default:
701 return EINVAL;
702 }
703
704 vmcb->ctrl.eventinj =
705 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
706 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
707 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
708 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
709 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
710
711 return 0;
712 }
713
714 static void
715 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
716 {
717 struct nvmm_event event;
718 int ret __diagused;
719
720 event.type = NVMM_EVENT_EXCEPTION;
721 event.vector = 6;
722 event.u.error = 0;
723
724 ret = svm_vcpu_inject(mach, vcpu, &event);
725 KASSERT(ret == 0);
726 }
727
728 static void
729 svm_inject_db(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
730 {
731 struct nvmm_event event;
732 int ret __diagused;
733
734 event.type = NVMM_EVENT_EXCEPTION;
735 event.vector = 1;
736 event.u.error = 0;
737
738 ret = svm_vcpu_inject(mach, vcpu, &event);
739 KASSERT(ret == 0);
740 }
741
742 static void
743 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
744 {
745 struct nvmm_event event;
746 int ret __diagused;
747
748 event.type = NVMM_EVENT_EXCEPTION;
749 event.vector = 13;
750 event.u.error = 0;
751
752 ret = svm_vcpu_inject(mach, vcpu, &event);
753 KASSERT(ret == 0);
754 }
755
756 static void
757 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
758 {
759 struct svm_cpudata *cpudata = vcpu->cpudata;
760
761 switch (eax) {
762 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
763 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
764 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
765 CPUID_LOCAL_APIC_ID);
766 break;
767 case 0x0000000D: /* FPU description. Not tunable. */
768 if (ecx != 0 || svm_xcr0_mask == 0) {
769 break;
770 }
771 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
772 if (cpudata->gxcr0 & XCR0_SSE) {
773 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
774 } else {
775 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
776 }
777 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
778 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
779 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
780 break;
781 case 0x40000000:
782 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
783 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
784 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
785 break;
786 case 0x80000001: /* No SVM in ECX. The rest is tunable. */
787 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
788 break;
789 default:
790 break;
791 }
792 }
793
794 static void
795 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
796 struct nvmm_exit *exit)
797 {
798 struct svm_machdata *machdata = mach->machdata;
799 struct svm_cpudata *cpudata = vcpu->cpudata;
800 struct nvmm_x86_conf_cpuid *cpuid;
801 uint64_t eax, ecx;
802 u_int descs[4];
803 size_t i;
804
805 eax = cpudata->vmcb->state.rax;
806 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
807 x86_cpuid2(eax, ecx, descs);
808
809 cpudata->vmcb->state.rax = descs[0];
810 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
811 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
812 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
813
814 for (i = 0; i < SVM_NCPUIDS; i++) {
815 cpuid = &machdata->cpuid[i];
816 if (!machdata->cpuidpresent[i]) {
817 continue;
818 }
819 if (cpuid->leaf != eax) {
820 continue;
821 }
822
823 /* del */
824 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
825 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
826 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
827 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
828
829 /* set */
830 cpudata->vmcb->state.rax |= cpuid->set.eax;
831 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
832 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
833 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
834
835 break;
836 }
837
838 /* Overwrite non-tunable leaves. */
839 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
840
841 /* For now we omit DBREGS. */
842 if (__predict_false(cpudata->vmcb->state.rflags & PSL_T)) {
843 svm_inject_db(mach, vcpu);
844 }
845
846 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
847 exit->reason = NVMM_EXIT_NONE;
848 }
849
850 static void
851 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
852 struct nvmm_exit *exit)
853 {
854 struct svm_cpudata *cpudata = vcpu->cpudata;
855
856 exit->reason = NVMM_EXIT_HLT;
857 exit->u.hlt.npc = cpudata->vmcb->ctrl.nrip;
858 }
859
860 #define SVM_EXIT_IO_PORT __BITS(31,16)
861 #define SVM_EXIT_IO_SEG __BITS(12,10)
862 #define SVM_EXIT_IO_A64 __BIT(9)
863 #define SVM_EXIT_IO_A32 __BIT(8)
864 #define SVM_EXIT_IO_A16 __BIT(7)
865 #define SVM_EXIT_IO_SZ32 __BIT(6)
866 #define SVM_EXIT_IO_SZ16 __BIT(5)
867 #define SVM_EXIT_IO_SZ8 __BIT(4)
868 #define SVM_EXIT_IO_REP __BIT(3)
869 #define SVM_EXIT_IO_STR __BIT(2)
870 #define SVM_EXIT_IO_IN __BIT(0)
871
872 static const int seg_to_nvmm[] = {
873 [0] = NVMM_X64_SEG_ES,
874 [1] = NVMM_X64_SEG_CS,
875 [2] = NVMM_X64_SEG_SS,
876 [3] = NVMM_X64_SEG_DS,
877 [4] = NVMM_X64_SEG_FS,
878 [5] = NVMM_X64_SEG_GS
879 };
880
881 static void
882 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
883 struct nvmm_exit *exit)
884 {
885 struct svm_cpudata *cpudata = vcpu->cpudata;
886 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
887 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
888
889 exit->reason = NVMM_EXIT_IO;
890
891 if (info & SVM_EXIT_IO_IN) {
892 exit->u.io.type = NVMM_EXIT_IO_IN;
893 } else {
894 exit->u.io.type = NVMM_EXIT_IO_OUT;
895 }
896
897 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
898
899 if (svm_decode_assist) {
900 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
901 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
902 } else {
903 exit->u.io.seg = -1;
904 }
905
906 if (info & SVM_EXIT_IO_A64) {
907 exit->u.io.address_size = 8;
908 } else if (info & SVM_EXIT_IO_A32) {
909 exit->u.io.address_size = 4;
910 } else if (info & SVM_EXIT_IO_A16) {
911 exit->u.io.address_size = 2;
912 }
913
914 if (info & SVM_EXIT_IO_SZ32) {
915 exit->u.io.operand_size = 4;
916 } else if (info & SVM_EXIT_IO_SZ16) {
917 exit->u.io.operand_size = 2;
918 } else if (info & SVM_EXIT_IO_SZ8) {
919 exit->u.io.operand_size = 1;
920 }
921
922 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
923 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
924 exit->u.io.npc = nextpc;
925 }
926
927 static const uint64_t msr_ignore_list[] = {
928 0xc0010055, /* MSR_CMPHALT */
929 MSR_DE_CFG,
930 MSR_IC_CFG,
931 MSR_UCODE_AMD_PATCHLEVEL
932 };
933
934 static bool
935 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
936 struct nvmm_exit *exit)
937 {
938 struct svm_cpudata *cpudata = vcpu->cpudata;
939 uint64_t val;
940 size_t i;
941
942 switch (exit->u.msr.type) {
943 case NVMM_EXIT_MSR_RDMSR:
944 if (exit->u.msr.msr == MSR_CR_PAT) {
945 val = cpudata->vmcb->state.g_pat;
946 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
947 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
948 goto handled;
949 }
950 if (exit->u.msr.msr == MSR_NB_CFG) {
951 val = NB_CFG_INITAPICCPUIDLO;
952 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
953 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
954 goto handled;
955 }
956 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
957 if (msr_ignore_list[i] != exit->u.msr.msr)
958 continue;
959 val = 0;
960 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
961 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
962 goto handled;
963 }
964 break;
965 case NVMM_EXIT_MSR_WRMSR:
966 if (exit->u.msr.msr == MSR_EFER) {
967 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
968 svm_inject_gp(mach, vcpu);
969 goto handled;
970 }
971 if ((cpudata->vmcb->state.efer ^ exit->u.msr.val) &
972 EFER_TLB_FLUSH) {
973 cpudata->tlb_want_flush = true;
974 }
975 cpudata->vmcb->state.efer = exit->u.msr.val | EFER_SVME;
976 goto handled;
977 }
978 if (exit->u.msr.msr == MSR_CR_PAT) {
979 cpudata->vmcb->state.g_pat = exit->u.msr.val;
980 goto handled;
981 }
982 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
983 if (msr_ignore_list[i] != exit->u.msr.msr)
984 continue;
985 goto handled;
986 }
987 break;
988 }
989
990 return false;
991
992 handled:
993 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
994 return true;
995 }
996
997 static void
998 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
999 struct nvmm_exit *exit)
1000 {
1001 struct svm_cpudata *cpudata = vcpu->cpudata;
1002 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1003
1004 if (info == 0) {
1005 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1006 } else {
1007 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1008 }
1009
1010 exit->u.msr.msr = cpudata->gprs[NVMM_X64_GPR_RCX];
1011
1012 if (info == 1) {
1013 uint64_t rdx, rax;
1014 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1015 rax = cpudata->vmcb->state.rax;
1016 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1017 } else {
1018 exit->u.msr.val = 0;
1019 }
1020
1021 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1022 exit->reason = NVMM_EXIT_NONE;
1023 return;
1024 }
1025
1026 exit->reason = NVMM_EXIT_MSR;
1027 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1028 }
1029
1030 static void
1031 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1032 struct nvmm_exit *exit)
1033 {
1034 struct svm_cpudata *cpudata = vcpu->cpudata;
1035 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1036 int error;
1037
1038 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
1039
1040 if (error) {
1041 exit->reason = NVMM_EXIT_MEMORY;
1042 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1043 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1044 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1045 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1046 else
1047 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1048 exit->u.mem.gpa = gpa;
1049 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1050 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1051 sizeof(exit->u.mem.inst_bytes));
1052 exit->u.mem.npc = cpudata->vmcb->ctrl.nrip;
1053 } else {
1054 exit->reason = NVMM_EXIT_NONE;
1055 }
1056 }
1057
1058 static void
1059 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1060 struct nvmm_exit *exit)
1061 {
1062 struct svm_cpudata *cpudata = vcpu->cpudata;
1063 struct vmcb *vmcb = cpudata->vmcb;
1064 uint64_t val;
1065
1066 exit->reason = NVMM_EXIT_NONE;
1067
1068 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1069 (vmcb->state.rax & 0xFFFFFFFF);
1070
1071 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1072 goto error;
1073 } else if (__predict_false(vmcb->state.cpl != 0)) {
1074 goto error;
1075 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1076 goto error;
1077 } else if (__predict_false((val & XCR0_X87) == 0)) {
1078 goto error;
1079 }
1080
1081 cpudata->gxcr0 = val;
1082
1083 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
1084 return;
1085
1086 error:
1087 svm_inject_gp(mach, vcpu);
1088 }
1089
1090 static void
1091 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1092 {
1093 struct svm_cpudata *cpudata = vcpu->cpudata;
1094
1095 if (x86_xsave_features != 0) {
1096 cpudata->hxcr0 = rdxcr(0);
1097 wrxcr(0, cpudata->gxcr0);
1098 }
1099
1100 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1101
1102 fpu_area_save(&cpudata->hfpu);
1103 fpu_area_restore(&cpudata->gfpu);
1104 }
1105
1106 static void
1107 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1108 {
1109 struct svm_cpudata *cpudata = vcpu->cpudata;
1110
1111 fpu_area_save(&cpudata->gfpu);
1112 fpu_area_restore(&cpudata->hfpu);
1113
1114 if (cpudata->ts_set) {
1115 stts();
1116 }
1117
1118 if (x86_xsave_features != 0) {
1119 cpudata->gxcr0 = rdxcr(0);
1120 wrxcr(0, cpudata->hxcr0);
1121 }
1122 }
1123
1124 static void
1125 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1126 {
1127 struct svm_cpudata *cpudata = vcpu->cpudata;
1128
1129 x86_dbregs_save(curlwp);
1130
1131 ldr7(0);
1132
1133 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1134 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1135 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1136 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1137 }
1138
1139 static void
1140 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1141 {
1142 struct svm_cpudata *cpudata = vcpu->cpudata;
1143
1144 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1145 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1146 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1147 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1148
1149 x86_dbregs_restore(curlwp);
1150 }
1151
1152 static void
1153 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1154 {
1155 struct svm_cpudata *cpudata = vcpu->cpudata;
1156
1157 cpudata->star = rdmsr(MSR_STAR);
1158 cpudata->lstar = rdmsr(MSR_LSTAR);
1159 cpudata->cstar = rdmsr(MSR_CSTAR);
1160 cpudata->sfmask = rdmsr(MSR_SFMASK);
1161 cpudata->fsbase = rdmsr(MSR_FSBASE);
1162 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1163 }
1164
1165 static void
1166 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1167 {
1168 struct svm_cpudata *cpudata = vcpu->cpudata;
1169
1170 wrmsr(MSR_STAR, cpudata->star);
1171 wrmsr(MSR_LSTAR, cpudata->lstar);
1172 wrmsr(MSR_CSTAR, cpudata->cstar);
1173 wrmsr(MSR_SFMASK, cpudata->sfmask);
1174 wrmsr(MSR_FSBASE, cpudata->fsbase);
1175 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1176 }
1177
1178 static int
1179 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1180 struct nvmm_exit *exit)
1181 {
1182 struct svm_cpudata *cpudata = vcpu->cpudata;
1183 struct vmcb *vmcb = cpudata->vmcb;
1184 bool tlb_need_flush = false;
1185 int hcpu, s;
1186
1187 kpreempt_disable();
1188 hcpu = cpu_number();
1189
1190 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1191 tlb_need_flush = true;
1192 }
1193
1194 if (cpudata->tlb_want_flush || tlb_need_flush) {
1195 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1196 } else {
1197 vmcb->ctrl.tlb_ctrl = 0;
1198 }
1199
1200 if (vcpu->hcpu_last != hcpu) {
1201 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1202 curcpu()->ci_data.cpu_cc_skew;
1203 svm_vmcb_cache_flush_all(vmcb);
1204 }
1205
1206 svm_vcpu_guest_dbregs_enter(vcpu);
1207 svm_vcpu_guest_misc_enter(vcpu);
1208
1209 while (1) {
1210 s = splhigh();
1211 svm_vcpu_guest_fpu_enter(vcpu);
1212 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1213 svm_vcpu_guest_fpu_leave(vcpu);
1214 splx(s);
1215
1216 svm_vmcb_cache_default(vmcb);
1217
1218 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1219 if (cpudata->tlb_want_flush) {
1220 cpudata->tlb_want_flush = false;
1221 }
1222 vcpu->hcpu_last = hcpu;
1223 }
1224
1225 switch (vmcb->ctrl.exitcode) {
1226 case VMCB_EXITCODE_INTR:
1227 case VMCB_EXITCODE_NMI:
1228 exit->reason = NVMM_EXIT_NONE;
1229 break;
1230 case VMCB_EXITCODE_VINTR:
1231 svm_event_waitexit_disable(vcpu, false);
1232 exit->reason = NVMM_EXIT_INT_READY;
1233 break;
1234 case VMCB_EXITCODE_IRET:
1235 svm_event_waitexit_disable(vcpu, true);
1236 exit->reason = NVMM_EXIT_NMI_READY;
1237 break;
1238 case VMCB_EXITCODE_CPUID:
1239 svm_exit_cpuid(mach, vcpu, exit);
1240 break;
1241 case VMCB_EXITCODE_HLT:
1242 svm_exit_hlt(mach, vcpu, exit);
1243 break;
1244 case VMCB_EXITCODE_IOIO:
1245 svm_exit_io(mach, vcpu, exit);
1246 break;
1247 case VMCB_EXITCODE_MSR:
1248 svm_exit_msr(mach, vcpu, exit);
1249 break;
1250 case VMCB_EXITCODE_SHUTDOWN:
1251 exit->reason = NVMM_EXIT_SHUTDOWN;
1252 break;
1253 case VMCB_EXITCODE_RDPMC:
1254 case VMCB_EXITCODE_RSM:
1255 case VMCB_EXITCODE_INVLPGA:
1256 case VMCB_EXITCODE_VMRUN:
1257 case VMCB_EXITCODE_VMMCALL:
1258 case VMCB_EXITCODE_VMLOAD:
1259 case VMCB_EXITCODE_VMSAVE:
1260 case VMCB_EXITCODE_STGI:
1261 case VMCB_EXITCODE_CLGI:
1262 case VMCB_EXITCODE_SKINIT:
1263 case VMCB_EXITCODE_RDTSCP:
1264 svm_inject_ud(mach, vcpu);
1265 exit->reason = NVMM_EXIT_NONE;
1266 break;
1267 case VMCB_EXITCODE_MONITOR:
1268 exit->reason = NVMM_EXIT_MONITOR;
1269 break;
1270 case VMCB_EXITCODE_MWAIT:
1271 exit->reason = NVMM_EXIT_MWAIT;
1272 break;
1273 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1274 exit->reason = NVMM_EXIT_MWAIT_COND;
1275 break;
1276 case VMCB_EXITCODE_XSETBV:
1277 svm_exit_xsetbv(mach, vcpu, exit);
1278 break;
1279 case VMCB_EXITCODE_NPF:
1280 svm_exit_npf(mach, vcpu, exit);
1281 break;
1282 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1283 default:
1284 exit->reason = NVMM_EXIT_INVALID;
1285 break;
1286 }
1287
1288 /* If no reason to return to userland, keep rolling. */
1289 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1290 break;
1291 }
1292 if (curcpu()->ci_data.cpu_softints != 0) {
1293 break;
1294 }
1295 if (curlwp->l_flag & LW_USERRET) {
1296 break;
1297 }
1298 if (exit->reason != NVMM_EXIT_NONE) {
1299 break;
1300 }
1301 }
1302
1303 svm_vcpu_guest_misc_leave(vcpu);
1304 svm_vcpu_guest_dbregs_leave(vcpu);
1305
1306 kpreempt_enable();
1307
1308 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1309 VMCB_CTRL_V_TPR);
1310 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1311
1312 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1313 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1314 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1315 cpudata->int_window_exit;
1316 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1317 cpudata->nmi_window_exit;
1318
1319 return 0;
1320 }
1321
1322 /* -------------------------------------------------------------------------- */
1323
1324 static int
1325 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1326 {
1327 struct pglist pglist;
1328 paddr_t _pa;
1329 vaddr_t _va;
1330 size_t i;
1331 int ret;
1332
1333 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1334 &pglist, 1, 0);
1335 if (ret != 0)
1336 return ENOMEM;
1337 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1338 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1339 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1340 if (_va == 0)
1341 goto error;
1342
1343 for (i = 0; i < npages; i++) {
1344 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1345 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1346 }
1347 pmap_update(pmap_kernel());
1348
1349 memset((void *)_va, 0, npages * PAGE_SIZE);
1350
1351 *pa = _pa;
1352 *va = _va;
1353 return 0;
1354
1355 error:
1356 for (i = 0; i < npages; i++) {
1357 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1358 }
1359 return ENOMEM;
1360 }
1361
1362 static void
1363 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1364 {
1365 size_t i;
1366
1367 pmap_kremove(va, npages * PAGE_SIZE);
1368 pmap_update(pmap_kernel());
1369 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1370 for (i = 0; i < npages; i++) {
1371 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1372 }
1373 }
1374
1375 /* -------------------------------------------------------------------------- */
1376
1377 #define SVM_MSRBM_READ __BIT(0)
1378 #define SVM_MSRBM_WRITE __BIT(1)
1379
1380 static void
1381 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1382 {
1383 uint64_t byte;
1384 uint8_t bitoff;
1385
1386 if (msr < 0x00002000) {
1387 /* Range 1 */
1388 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1389 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1390 /* Range 2 */
1391 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1392 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1393 /* Range 3 */
1394 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1395 } else {
1396 panic("%s: wrong range", __func__);
1397 }
1398
1399 bitoff = (msr & 0x3) << 1;
1400
1401 if (read) {
1402 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1403 }
1404 if (write) {
1405 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1406 }
1407 }
1408
1409 static void
1410 svm_asid_alloc(struct nvmm_cpu *vcpu)
1411 {
1412 struct svm_cpudata *cpudata = vcpu->cpudata;
1413 struct vmcb *vmcb = cpudata->vmcb;
1414 size_t i, oct, bit;
1415
1416 mutex_enter(&svm_asidlock);
1417
1418 for (i = 0; i < svm_maxasid; i++) {
1419 oct = i / 8;
1420 bit = i % 8;
1421
1422 if (svm_asidmap[oct] & __BIT(bit)) {
1423 continue;
1424 }
1425
1426 svm_asidmap[oct] |= __BIT(bit);
1427 vmcb->ctrl.guest_asid = i;
1428 mutex_exit(&svm_asidlock);
1429 return;
1430 }
1431
1432 /*
1433 * No free ASID. Use the last one, which is shared and requires
1434 * special TLB handling.
1435 */
1436 cpudata->shared_asid = true;
1437 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1438 mutex_exit(&svm_asidlock);
1439 }
1440
1441 static void
1442 svm_asid_free(struct nvmm_cpu *vcpu)
1443 {
1444 struct svm_cpudata *cpudata = vcpu->cpudata;
1445 struct vmcb *vmcb = cpudata->vmcb;
1446 size_t oct, bit;
1447
1448 if (cpudata->shared_asid) {
1449 return;
1450 }
1451
1452 oct = vmcb->ctrl.guest_asid / 8;
1453 bit = vmcb->ctrl.guest_asid % 8;
1454
1455 mutex_enter(&svm_asidlock);
1456 svm_asidmap[oct] &= ~__BIT(bit);
1457 mutex_exit(&svm_asidlock);
1458 }
1459
1460 static void
1461 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1462 {
1463 struct svm_cpudata *cpudata = vcpu->cpudata;
1464 struct vmcb *vmcb = cpudata->vmcb;
1465
1466 /* Allow reads/writes of Control Registers. */
1467 vmcb->ctrl.intercept_cr = 0;
1468
1469 /* Allow reads/writes of Debug Registers. */
1470 vmcb->ctrl.intercept_dr = 0;
1471
1472 /* Allow exceptions 0 to 31. */
1473 vmcb->ctrl.intercept_vec = 0;
1474
1475 /*
1476 * Allow:
1477 * - SMI [smm interrupts]
1478 * - VINTR [virtual interrupts]
1479 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1480 * - RIDTR [reads of IDTR]
1481 * - RGDTR [reads of GDTR]
1482 * - RLDTR [reads of LDTR]
1483 * - RTR [reads of TR]
1484 * - WIDTR [writes of IDTR]
1485 * - WGDTR [writes of GDTR]
1486 * - WLDTR [writes of LDTR]
1487 * - WTR [writes of TR]
1488 * - RDTSC [rdtsc instruction]
1489 * - PUSHF [pushf instruction]
1490 * - POPF [popf instruction]
1491 * - IRET [iret instruction]
1492 * - INTN [int $n instructions]
1493 * - INVD [invd instruction]
1494 * - PAUSE [pause instruction]
1495 * - INVLPG [invplg instruction]
1496 * - TASKSW [task switches]
1497 *
1498 * Intercept the rest below.
1499 */
1500 vmcb->ctrl.intercept_misc1 =
1501 VMCB_CTRL_INTERCEPT_INTR |
1502 VMCB_CTRL_INTERCEPT_NMI |
1503 VMCB_CTRL_INTERCEPT_INIT |
1504 VMCB_CTRL_INTERCEPT_RDPMC |
1505 VMCB_CTRL_INTERCEPT_CPUID |
1506 VMCB_CTRL_INTERCEPT_RSM |
1507 VMCB_CTRL_INTERCEPT_HLT |
1508 VMCB_CTRL_INTERCEPT_INVLPGA |
1509 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1510 VMCB_CTRL_INTERCEPT_MSR_PROT |
1511 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1512 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1513
1514 /*
1515 * Allow:
1516 * - ICEBP [icebp instruction]
1517 * - WBINVD [wbinvd instruction]
1518 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1519 *
1520 * Intercept the rest below.
1521 */
1522 vmcb->ctrl.intercept_misc2 =
1523 VMCB_CTRL_INTERCEPT_VMRUN |
1524 VMCB_CTRL_INTERCEPT_VMMCALL |
1525 VMCB_CTRL_INTERCEPT_VMLOAD |
1526 VMCB_CTRL_INTERCEPT_VMSAVE |
1527 VMCB_CTRL_INTERCEPT_STGI |
1528 VMCB_CTRL_INTERCEPT_CLGI |
1529 VMCB_CTRL_INTERCEPT_SKINIT |
1530 VMCB_CTRL_INTERCEPT_RDTSCP |
1531 VMCB_CTRL_INTERCEPT_MONITOR |
1532 VMCB_CTRL_INTERCEPT_MWAIT |
1533 VMCB_CTRL_INTERCEPT_XSETBV;
1534
1535 /* Intercept all I/O accesses. */
1536 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1537 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1538
1539 /*
1540 * Allow:
1541 * - EFER [read]
1542 * - STAR [read, write]
1543 * - LSTAR [read, write]
1544 * - CSTAR [read, write]
1545 * - SFMASK [read, write]
1546 * - KERNELGSBASE [read, write]
1547 * - SYSENTER_CS [read, write]
1548 * - SYSENTER_ESP [read, write]
1549 * - SYSENTER_EIP [read, write]
1550 * - FSBASE [read, write]
1551 * - GSBASE [read, write]
1552 * - TSC [read]
1553 *
1554 * Intercept the rest.
1555 */
1556 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1557 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1558 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1559 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1560 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1561 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1562 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1563 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1564 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1565 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1566 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1567 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1568 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1569 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1570
1571 /* Generate ASID. */
1572 svm_asid_alloc(vcpu);
1573
1574 /* Virtual TPR. */
1575 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1576
1577 /* Enable Nested Paging. */
1578 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1579 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1580
1581 /* Must always be set. */
1582 vmcb->state.efer = EFER_SVME;
1583
1584 /* Init XSAVE header. */
1585 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1586 cpudata->gfpu.xsh_xcomp_bv = 0;
1587
1588 /* Bluntly hide the host TSC. */
1589 cpudata->tsc_offset = rdtsc();
1590 }
1591
1592 static int
1593 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1594 {
1595 struct svm_cpudata *cpudata;
1596 int error;
1597
1598 /* Allocate the SVM cpudata. */
1599 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1600 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1601 UVM_KMF_WIRED|UVM_KMF_ZERO);
1602 vcpu->cpudata = cpudata;
1603
1604 /* VMCB */
1605 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1606 VMCB_NPAGES);
1607 if (error)
1608 goto error;
1609
1610 /* I/O Bitmap */
1611 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1612 IOBM_NPAGES);
1613 if (error)
1614 goto error;
1615
1616 /* MSR Bitmap */
1617 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1618 MSRBM_NPAGES);
1619 if (error)
1620 goto error;
1621
1622 /* Init the VCPU info. */
1623 svm_vcpu_init(mach, vcpu);
1624
1625 return 0;
1626
1627 error:
1628 if (cpudata->vmcb_pa) {
1629 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1630 VMCB_NPAGES);
1631 }
1632 if (cpudata->iobm_pa) {
1633 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1634 IOBM_NPAGES);
1635 }
1636 if (cpudata->msrbm_pa) {
1637 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1638 MSRBM_NPAGES);
1639 }
1640 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1641 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1642 return error;
1643 }
1644
1645 static void
1646 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1647 {
1648 struct svm_cpudata *cpudata = vcpu->cpudata;
1649
1650 svm_asid_free(vcpu);
1651
1652 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1653 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1654 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1655
1656 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1657 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1658 }
1659
1660 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1661 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1662 #define SVM_SEG_ATTRIB_P __BIT(7)
1663 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1664 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1665 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1666 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1667
1668 static void
1669 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1670 {
1671 vseg->selector = seg->selector;
1672 vseg->attrib =
1673 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1674 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1675 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1676 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1677 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1678 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1679 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1680 vseg->limit = seg->limit;
1681 vseg->base = seg->base;
1682 }
1683
1684 static void
1685 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1686 {
1687 seg->selector = vseg->selector;
1688 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1689 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1690 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1691 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1692 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1693 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1694 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1695 seg->limit = vseg->limit;
1696 seg->base = vseg->base;
1697 }
1698
1699 static inline bool
1700 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
1701 uint64_t flags)
1702 {
1703 if (flags & NVMM_X64_STATE_CRS) {
1704 if ((vmcb->state.cr0 ^
1705 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1706 return true;
1707 }
1708 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1709 return true;
1710 }
1711 if ((vmcb->state.cr4 ^
1712 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1713 return true;
1714 }
1715 }
1716
1717 if (flags & NVMM_X64_STATE_MSRS) {
1718 if ((vmcb->state.efer ^
1719 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1720 return true;
1721 }
1722 }
1723
1724 return false;
1725 }
1726
1727 static void
1728 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1729 {
1730 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1731 struct svm_cpudata *cpudata = vcpu->cpudata;
1732 struct vmcb *vmcb = cpudata->vmcb;
1733 struct fxsave *fpustate;
1734
1735 if (svm_state_tlb_flush(vmcb, state, flags)) {
1736 cpudata->tlb_want_flush = true;
1737 }
1738
1739 if (flags & NVMM_X64_STATE_SEGS) {
1740 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1741 &vmcb->state.cs);
1742 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1743 &vmcb->state.ds);
1744 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1745 &vmcb->state.es);
1746 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1747 &vmcb->state.fs);
1748 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1749 &vmcb->state.gs);
1750 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1751 &vmcb->state.ss);
1752 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1753 &vmcb->state.gdt);
1754 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1755 &vmcb->state.idt);
1756 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1757 &vmcb->state.ldt);
1758 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1759 &vmcb->state.tr);
1760 }
1761
1762 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1763 if (flags & NVMM_X64_STATE_GPRS) {
1764 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1765
1766 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1767 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1768 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1769 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1770 }
1771
1772 if (flags & NVMM_X64_STATE_CRS) {
1773 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1774 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1775 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1776 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1777
1778 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1779 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1780 VMCB_CTRL_V_TPR);
1781
1782 /* Clear unsupported XCR0 bits, set mandatory X87 bit. */
1783 if (svm_xcr0_mask != 0) {
1784 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1785 cpudata->gxcr0 &= svm_xcr0_mask;
1786 cpudata->gxcr0 |= XCR0_X87;
1787 } else {
1788 cpudata->gxcr0 = 0;
1789 }
1790 }
1791
1792 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1793 if (flags & NVMM_X64_STATE_DRS) {
1794 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1795
1796 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1797 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1798 }
1799
1800 if (flags & NVMM_X64_STATE_MSRS) {
1801 /* Bit EFER_SVME is mandatory. */
1802 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1803
1804 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1805 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1806 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1807 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1808 vmcb->state.kernelgsbase =
1809 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1810 vmcb->state.sysenter_cs =
1811 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1812 vmcb->state.sysenter_esp =
1813 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1814 vmcb->state.sysenter_eip =
1815 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1816 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1817 }
1818
1819 if (flags & NVMM_X64_STATE_MISC) {
1820 vmcb->state.cpl = state->misc[NVMM_X64_MISC_CPL];
1821
1822 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1823 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1824 } else {
1825 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1826 }
1827
1828 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1829 svm_event_waitexit_enable(vcpu, false);
1830 } else {
1831 svm_event_waitexit_disable(vcpu, false);
1832 }
1833
1834 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1835 svm_event_waitexit_enable(vcpu, true);
1836 } else {
1837 svm_event_waitexit_disable(vcpu, true);
1838 }
1839 }
1840
1841 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1842 if (flags & NVMM_X64_STATE_FPU) {
1843 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1844 sizeof(state->fpu));
1845
1846 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1847 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1848 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1849 }
1850
1851 svm_vmcb_cache_update(vmcb, flags);
1852 }
1853
1854 static void
1855 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1856 {
1857 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1858 struct svm_cpudata *cpudata = vcpu->cpudata;
1859 struct vmcb *vmcb = cpudata->vmcb;
1860
1861 if (flags & NVMM_X64_STATE_SEGS) {
1862 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1863 &vmcb->state.cs);
1864 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1865 &vmcb->state.ds);
1866 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1867 &vmcb->state.es);
1868 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1869 &vmcb->state.fs);
1870 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1871 &vmcb->state.gs);
1872 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1873 &vmcb->state.ss);
1874 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1875 &vmcb->state.gdt);
1876 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1877 &vmcb->state.idt);
1878 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1879 &vmcb->state.ldt);
1880 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1881 &vmcb->state.tr);
1882 }
1883
1884 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1885 if (flags & NVMM_X64_STATE_GPRS) {
1886 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1887
1888 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1889 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1890 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1891 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1892 }
1893
1894 if (flags & NVMM_X64_STATE_CRS) {
1895 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1896 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1897 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1898 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1899 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1900 VMCB_CTRL_V_TPR);
1901 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1902 }
1903
1904 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1905 if (flags & NVMM_X64_STATE_DRS) {
1906 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1907
1908 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1909 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1910 }
1911
1912 if (flags & NVMM_X64_STATE_MSRS) {
1913 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1914 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1915 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1916 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1917 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1918 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1919 vmcb->state.kernelgsbase;
1920 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1921 vmcb->state.sysenter_cs;
1922 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1923 vmcb->state.sysenter_esp;
1924 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1925 vmcb->state.sysenter_eip;
1926 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1927
1928 /* Hide SVME. */
1929 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1930 }
1931
1932 if (flags & NVMM_X64_STATE_MISC) {
1933 state->misc[NVMM_X64_MISC_CPL] = vmcb->state.cpl;
1934
1935 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1936 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1937 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1938 cpudata->int_window_exit;
1939 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1940 cpudata->nmi_window_exit;
1941 }
1942
1943 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1944 if (flags & NVMM_X64_STATE_FPU) {
1945 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1946 sizeof(state->fpu));
1947 }
1948 }
1949
1950 /* -------------------------------------------------------------------------- */
1951
1952 static void
1953 svm_tlb_flush(struct pmap *pm)
1954 {
1955 struct nvmm_machine *mach = pm->pm_data;
1956 struct svm_cpudata *cpudata;
1957 struct nvmm_cpu *vcpu;
1958 int error;
1959 size_t i;
1960
1961 /* Request TLB flushes. */
1962 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1963 error = nvmm_vcpu_get(mach, i, &vcpu);
1964 if (error)
1965 continue;
1966 cpudata = vcpu->cpudata;
1967 cpudata->tlb_want_flush = true;
1968 nvmm_vcpu_put(vcpu);
1969 }
1970 }
1971
1972 static void
1973 svm_machine_create(struct nvmm_machine *mach)
1974 {
1975 /* Fill in pmap info. */
1976 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1977 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1978
1979 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1980 }
1981
1982 static void
1983 svm_machine_destroy(struct nvmm_machine *mach)
1984 {
1985 kmem_free(mach->machdata, sizeof(struct svm_machdata));
1986 }
1987
1988 static int
1989 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
1990 {
1991 struct nvmm_x86_conf_cpuid *cpuid = data;
1992 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
1993 size_t i;
1994
1995 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
1996 return EINVAL;
1997 }
1998
1999 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2000 (cpuid->set.ebx & cpuid->del.ebx) ||
2001 (cpuid->set.ecx & cpuid->del.ecx) ||
2002 (cpuid->set.edx & cpuid->del.edx))) {
2003 return EINVAL;
2004 }
2005
2006 /* If already here, replace. */
2007 for (i = 0; i < SVM_NCPUIDS; i++) {
2008 if (!machdata->cpuidpresent[i]) {
2009 continue;
2010 }
2011 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2012 memcpy(&machdata->cpuid[i], cpuid,
2013 sizeof(struct nvmm_x86_conf_cpuid));
2014 return 0;
2015 }
2016 }
2017
2018 /* Not here, insert. */
2019 for (i = 0; i < SVM_NCPUIDS; i++) {
2020 if (!machdata->cpuidpresent[i]) {
2021 machdata->cpuidpresent[i] = true;
2022 memcpy(&machdata->cpuid[i], cpuid,
2023 sizeof(struct nvmm_x86_conf_cpuid));
2024 return 0;
2025 }
2026 }
2027
2028 return ENOBUFS;
2029 }
2030
2031 /* -------------------------------------------------------------------------- */
2032
2033 static bool
2034 svm_ident(void)
2035 {
2036 u_int descs[4];
2037 uint64_t msr;
2038
2039 if (cpu_vendor != CPUVENDOR_AMD) {
2040 return false;
2041 }
2042 if (!(cpu_feature[3] & CPUID_SVM)) {
2043 return false;
2044 }
2045
2046 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2047 return false;
2048 }
2049 x86_cpuid(0x8000000a, descs);
2050
2051 /* Want Nested Paging. */
2052 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2053 return false;
2054 }
2055
2056 /* Want nRIP. */
2057 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2058 return false;
2059 }
2060
2061 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2062
2063 msr = rdmsr(MSR_VMCR);
2064 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2065 return false;
2066 }
2067
2068 return true;
2069 }
2070
2071 static void
2072 svm_init_asid(uint32_t maxasid)
2073 {
2074 size_t i, j, allocsz;
2075
2076 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2077
2078 /* Arbitrarily limit. */
2079 maxasid = uimin(maxasid, 8192);
2080
2081 svm_maxasid = maxasid;
2082 allocsz = roundup(maxasid, 8) / 8;
2083 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2084
2085 /* ASID 0 is reserved for the host. */
2086 svm_asidmap[0] |= __BIT(0);
2087
2088 /* ASID n-1 is special, we share it. */
2089 i = (maxasid - 1) / 8;
2090 j = (maxasid - 1) % 8;
2091 svm_asidmap[i] |= __BIT(j);
2092 }
2093
2094 static void
2095 svm_change_cpu(void *arg1, void *arg2)
2096 {
2097 bool enable = (bool)arg1;
2098 uint64_t msr;
2099
2100 msr = rdmsr(MSR_VMCR);
2101 if (msr & VMCR_SVMED) {
2102 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2103 }
2104
2105 if (!enable) {
2106 wrmsr(MSR_VM_HSAVE_PA, 0);
2107 }
2108
2109 msr = rdmsr(MSR_EFER);
2110 if (enable) {
2111 msr |= EFER_SVME;
2112 } else {
2113 msr &= ~EFER_SVME;
2114 }
2115 wrmsr(MSR_EFER, msr);
2116
2117 if (enable) {
2118 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2119 }
2120 }
2121
2122 static void
2123 svm_init(void)
2124 {
2125 CPU_INFO_ITERATOR cii;
2126 struct cpu_info *ci;
2127 struct vm_page *pg;
2128 u_int descs[4];
2129 uint64_t xc;
2130
2131 x86_cpuid(0x8000000a, descs);
2132
2133 /* The guest TLB flush command. */
2134 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2135 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2136 } else {
2137 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2138 }
2139
2140 /* Init the ASID. */
2141 svm_init_asid(descs[1]);
2142
2143 /* Init the XCR0 mask. */
2144 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2145
2146 memset(hsave, 0, sizeof(hsave));
2147 for (CPU_INFO_FOREACH(cii, ci)) {
2148 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2149 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2150 }
2151
2152 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2153 xc_wait(xc);
2154 }
2155
2156 static void
2157 svm_fini_asid(void)
2158 {
2159 size_t allocsz;
2160
2161 allocsz = roundup(svm_maxasid, 8) / 8;
2162 kmem_free(svm_asidmap, allocsz);
2163
2164 mutex_destroy(&svm_asidlock);
2165 }
2166
2167 static void
2168 svm_fini(void)
2169 {
2170 uint64_t xc;
2171 size_t i;
2172
2173 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2174 xc_wait(xc);
2175
2176 for (i = 0; i < MAXCPUS; i++) {
2177 if (hsave[i].pa != 0)
2178 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2179 }
2180
2181 svm_fini_asid();
2182 }
2183
2184 static void
2185 svm_capability(struct nvmm_capability *cap)
2186 {
2187 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2188 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2189 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2190 }
2191
2192 const struct nvmm_impl nvmm_x86_svm = {
2193 .ident = svm_ident,
2194 .init = svm_init,
2195 .fini = svm_fini,
2196 .capability = svm_capability,
2197 .conf_max = NVMM_X86_NCONF,
2198 .conf_sizes = svm_conf_sizes,
2199 .state_size = sizeof(struct nvmm_x64_state),
2200 .machine_create = svm_machine_create,
2201 .machine_destroy = svm_machine_destroy,
2202 .machine_configure = svm_machine_configure,
2203 .vcpu_create = svm_vcpu_create,
2204 .vcpu_destroy = svm_vcpu_destroy,
2205 .vcpu_setstate = svm_vcpu_setstate,
2206 .vcpu_getstate = svm_vcpu_getstate,
2207 .vcpu_inject = svm_vcpu_inject,
2208 .vcpu_run = svm_vcpu_run
2209 };
2210