nvmm_x86_svm.c revision 1.18 1 /* $NetBSD: nvmm_x86_svm.c,v 1.18 2019/01/26 15:12:20 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.18 2019/01/26 15:12:20 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <machine/cpuvar.h>
50
51 #include <dev/nvmm/nvmm.h>
52 #include <dev/nvmm/nvmm_internal.h>
53 #include <dev/nvmm/x86/nvmm_x86.h>
54
55 int svm_vmrun(paddr_t, uint64_t *);
56
57 #define MSR_VM_HSAVE_PA 0xC0010117
58
59 /* -------------------------------------------------------------------------- */
60
61 #define VMCB_EXITCODE_CR0_READ 0x0000
62 #define VMCB_EXITCODE_CR1_READ 0x0001
63 #define VMCB_EXITCODE_CR2_READ 0x0002
64 #define VMCB_EXITCODE_CR3_READ 0x0003
65 #define VMCB_EXITCODE_CR4_READ 0x0004
66 #define VMCB_EXITCODE_CR5_READ 0x0005
67 #define VMCB_EXITCODE_CR6_READ 0x0006
68 #define VMCB_EXITCODE_CR7_READ 0x0007
69 #define VMCB_EXITCODE_CR8_READ 0x0008
70 #define VMCB_EXITCODE_CR9_READ 0x0009
71 #define VMCB_EXITCODE_CR10_READ 0x000A
72 #define VMCB_EXITCODE_CR11_READ 0x000B
73 #define VMCB_EXITCODE_CR12_READ 0x000C
74 #define VMCB_EXITCODE_CR13_READ 0x000D
75 #define VMCB_EXITCODE_CR14_READ 0x000E
76 #define VMCB_EXITCODE_CR15_READ 0x000F
77 #define VMCB_EXITCODE_CR0_WRITE 0x0010
78 #define VMCB_EXITCODE_CR1_WRITE 0x0011
79 #define VMCB_EXITCODE_CR2_WRITE 0x0012
80 #define VMCB_EXITCODE_CR3_WRITE 0x0013
81 #define VMCB_EXITCODE_CR4_WRITE 0x0014
82 #define VMCB_EXITCODE_CR5_WRITE 0x0015
83 #define VMCB_EXITCODE_CR6_WRITE 0x0016
84 #define VMCB_EXITCODE_CR7_WRITE 0x0017
85 #define VMCB_EXITCODE_CR8_WRITE 0x0018
86 #define VMCB_EXITCODE_CR9_WRITE 0x0019
87 #define VMCB_EXITCODE_CR10_WRITE 0x001A
88 #define VMCB_EXITCODE_CR11_WRITE 0x001B
89 #define VMCB_EXITCODE_CR12_WRITE 0x001C
90 #define VMCB_EXITCODE_CR13_WRITE 0x001D
91 #define VMCB_EXITCODE_CR14_WRITE 0x001E
92 #define VMCB_EXITCODE_CR15_WRITE 0x001F
93 #define VMCB_EXITCODE_DR0_READ 0x0020
94 #define VMCB_EXITCODE_DR1_READ 0x0021
95 #define VMCB_EXITCODE_DR2_READ 0x0022
96 #define VMCB_EXITCODE_DR3_READ 0x0023
97 #define VMCB_EXITCODE_DR4_READ 0x0024
98 #define VMCB_EXITCODE_DR5_READ 0x0025
99 #define VMCB_EXITCODE_DR6_READ 0x0026
100 #define VMCB_EXITCODE_DR7_READ 0x0027
101 #define VMCB_EXITCODE_DR8_READ 0x0028
102 #define VMCB_EXITCODE_DR9_READ 0x0029
103 #define VMCB_EXITCODE_DR10_READ 0x002A
104 #define VMCB_EXITCODE_DR11_READ 0x002B
105 #define VMCB_EXITCODE_DR12_READ 0x002C
106 #define VMCB_EXITCODE_DR13_READ 0x002D
107 #define VMCB_EXITCODE_DR14_READ 0x002E
108 #define VMCB_EXITCODE_DR15_READ 0x002F
109 #define VMCB_EXITCODE_DR0_WRITE 0x0030
110 #define VMCB_EXITCODE_DR1_WRITE 0x0031
111 #define VMCB_EXITCODE_DR2_WRITE 0x0032
112 #define VMCB_EXITCODE_DR3_WRITE 0x0033
113 #define VMCB_EXITCODE_DR4_WRITE 0x0034
114 #define VMCB_EXITCODE_DR5_WRITE 0x0035
115 #define VMCB_EXITCODE_DR6_WRITE 0x0036
116 #define VMCB_EXITCODE_DR7_WRITE 0x0037
117 #define VMCB_EXITCODE_DR8_WRITE 0x0038
118 #define VMCB_EXITCODE_DR9_WRITE 0x0039
119 #define VMCB_EXITCODE_DR10_WRITE 0x003A
120 #define VMCB_EXITCODE_DR11_WRITE 0x003B
121 #define VMCB_EXITCODE_DR12_WRITE 0x003C
122 #define VMCB_EXITCODE_DR13_WRITE 0x003D
123 #define VMCB_EXITCODE_DR14_WRITE 0x003E
124 #define VMCB_EXITCODE_DR15_WRITE 0x003F
125 #define VMCB_EXITCODE_EXCP0 0x0040
126 #define VMCB_EXITCODE_EXCP1 0x0041
127 #define VMCB_EXITCODE_EXCP2 0x0042
128 #define VMCB_EXITCODE_EXCP3 0x0043
129 #define VMCB_EXITCODE_EXCP4 0x0044
130 #define VMCB_EXITCODE_EXCP5 0x0045
131 #define VMCB_EXITCODE_EXCP6 0x0046
132 #define VMCB_EXITCODE_EXCP7 0x0047
133 #define VMCB_EXITCODE_EXCP8 0x0048
134 #define VMCB_EXITCODE_EXCP9 0x0049
135 #define VMCB_EXITCODE_EXCP10 0x004A
136 #define VMCB_EXITCODE_EXCP11 0x004B
137 #define VMCB_EXITCODE_EXCP12 0x004C
138 #define VMCB_EXITCODE_EXCP13 0x004D
139 #define VMCB_EXITCODE_EXCP14 0x004E
140 #define VMCB_EXITCODE_EXCP15 0x004F
141 #define VMCB_EXITCODE_EXCP16 0x0050
142 #define VMCB_EXITCODE_EXCP17 0x0051
143 #define VMCB_EXITCODE_EXCP18 0x0052
144 #define VMCB_EXITCODE_EXCP19 0x0053
145 #define VMCB_EXITCODE_EXCP20 0x0054
146 #define VMCB_EXITCODE_EXCP21 0x0055
147 #define VMCB_EXITCODE_EXCP22 0x0056
148 #define VMCB_EXITCODE_EXCP23 0x0057
149 #define VMCB_EXITCODE_EXCP24 0x0058
150 #define VMCB_EXITCODE_EXCP25 0x0059
151 #define VMCB_EXITCODE_EXCP26 0x005A
152 #define VMCB_EXITCODE_EXCP27 0x005B
153 #define VMCB_EXITCODE_EXCP28 0x005C
154 #define VMCB_EXITCODE_EXCP29 0x005D
155 #define VMCB_EXITCODE_EXCP30 0x005E
156 #define VMCB_EXITCODE_EXCP31 0x005F
157 #define VMCB_EXITCODE_INTR 0x0060
158 #define VMCB_EXITCODE_NMI 0x0061
159 #define VMCB_EXITCODE_SMI 0x0062
160 #define VMCB_EXITCODE_INIT 0x0063
161 #define VMCB_EXITCODE_VINTR 0x0064
162 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
163 #define VMCB_EXITCODE_IDTR_READ 0x0066
164 #define VMCB_EXITCODE_GDTR_READ 0x0067
165 #define VMCB_EXITCODE_LDTR_READ 0x0068
166 #define VMCB_EXITCODE_TR_READ 0x0069
167 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
168 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
169 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
170 #define VMCB_EXITCODE_TR_WRITE 0x006D
171 #define VMCB_EXITCODE_RDTSC 0x006E
172 #define VMCB_EXITCODE_RDPMC 0x006F
173 #define VMCB_EXITCODE_PUSHF 0x0070
174 #define VMCB_EXITCODE_POPF 0x0071
175 #define VMCB_EXITCODE_CPUID 0x0072
176 #define VMCB_EXITCODE_RSM 0x0073
177 #define VMCB_EXITCODE_IRET 0x0074
178 #define VMCB_EXITCODE_SWINT 0x0075
179 #define VMCB_EXITCODE_INVD 0x0076
180 #define VMCB_EXITCODE_PAUSE 0x0077
181 #define VMCB_EXITCODE_HLT 0x0078
182 #define VMCB_EXITCODE_INVLPG 0x0079
183 #define VMCB_EXITCODE_INVLPGA 0x007A
184 #define VMCB_EXITCODE_IOIO 0x007B
185 #define VMCB_EXITCODE_MSR 0x007C
186 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
187 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
188 #define VMCB_EXITCODE_SHUTDOWN 0x007F
189 #define VMCB_EXITCODE_VMRUN 0x0080
190 #define VMCB_EXITCODE_VMMCALL 0x0081
191 #define VMCB_EXITCODE_VMLOAD 0x0082
192 #define VMCB_EXITCODE_VMSAVE 0x0083
193 #define VMCB_EXITCODE_STGI 0x0084
194 #define VMCB_EXITCODE_CLGI 0x0085
195 #define VMCB_EXITCODE_SKINIT 0x0086
196 #define VMCB_EXITCODE_RDTSCP 0x0087
197 #define VMCB_EXITCODE_ICEBP 0x0088
198 #define VMCB_EXITCODE_WBINVD 0x0089
199 #define VMCB_EXITCODE_MONITOR 0x008A
200 #define VMCB_EXITCODE_MWAIT 0x008B
201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
202 #define VMCB_EXITCODE_XSETBV 0x008D
203 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
204 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
205 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
206 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
207 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
208 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
209 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
210 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
211 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
212 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
213 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
214 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
215 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
216 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
217 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
218 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
219 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
220 #define VMCB_EXITCODE_NPF 0x0400
221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
222 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
223 #define VMCB_EXITCODE_VMGEXIT 0x0403
224 #define VMCB_EXITCODE_INVALID -1
225
226 /* -------------------------------------------------------------------------- */
227
228 struct vmcb_ctrl {
229 uint32_t intercept_cr;
230 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
231 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
232
233 uint32_t intercept_dr;
234 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
236
237 uint32_t intercept_vec;
238 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
239
240 uint32_t intercept_misc1;
241 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
242 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
243 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
244 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
245 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
247 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
248 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
249 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
250 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
251 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
252 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
253 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
254 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
255 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
256 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
257 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
258 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
259 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
260 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
261 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
262 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
263 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
264 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
265 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
266 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
267 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
269 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
270 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
273
274 uint32_t intercept_misc2;
275 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
276 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
277 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
278 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
279 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
280 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
281 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
282 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
283 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
284 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
285 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
286 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
287 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
290
291 uint8_t rsvd1[40];
292 uint16_t pause_filt_thresh;
293 uint16_t pause_filt_cnt;
294 uint64_t iopm_base_pa;
295 uint64_t msrpm_base_pa;
296 uint64_t tsc_offset;
297 uint32_t guest_asid;
298
299 uint32_t tlb_ctrl;
300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
303
304 uint64_t v;
305 #define VMCB_CTRL_V_TPR __BITS(7,0)
306 #define VMCB_CTRL_V_IRQ __BIT(8)
307 #define VMCB_CTRL_V_VGIF __BIT(9)
308 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
309 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
310 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
311 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
312 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
313 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
314
315 uint64_t intr;
316 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
317
318 uint64_t exitcode;
319 uint64_t exitinfo1;
320 uint64_t exitinfo2;
321
322 uint64_t exitintinfo;
323 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
324 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
325 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
326 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
327 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
328
329 uint64_t enable1;
330 #define VMCB_CTRL_ENABLE_NP __BIT(0)
331 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
332 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
333
334 uint64_t avic;
335 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
336
337 uint64_t ghcb;
338
339 uint64_t eventinj;
340 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
341 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
342 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
343 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
344 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
345
346 uint64_t n_cr3;
347
348 uint64_t enable2;
349 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
350 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
351
352 uint32_t vmcb_clean;
353 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
354 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
355 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
356 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
357 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
358 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
359 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
360 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
361 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
362 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
363 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
364 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
365
366 uint32_t rsvd2;
367 uint64_t nrip;
368 uint8_t inst_len;
369 uint8_t inst_bytes[15];
370 uint64_t avic_abpp;
371 uint64_t rsvd3;
372 uint64_t avic_ltp;
373
374 uint64_t avic_phys;
375 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
376 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
377
378 uint64_t rsvd4;
379 uint64_t vmcb_ptr;
380
381 uint8_t pad[752];
382 } __packed;
383
384 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
385
386 struct vmcb_segment {
387 uint16_t selector;
388 uint16_t attrib; /* hidden */
389 uint32_t limit; /* hidden */
390 uint64_t base; /* hidden */
391 } __packed;
392
393 CTASSERT(sizeof(struct vmcb_segment) == 16);
394
395 struct vmcb_state {
396 struct vmcb_segment es;
397 struct vmcb_segment cs;
398 struct vmcb_segment ss;
399 struct vmcb_segment ds;
400 struct vmcb_segment fs;
401 struct vmcb_segment gs;
402 struct vmcb_segment gdt;
403 struct vmcb_segment ldt;
404 struct vmcb_segment idt;
405 struct vmcb_segment tr;
406 uint8_t rsvd1[43];
407 uint8_t cpl;
408 uint8_t rsvd2[4];
409 uint64_t efer;
410 uint8_t rsvd3[112];
411 uint64_t cr4;
412 uint64_t cr3;
413 uint64_t cr0;
414 uint64_t dr7;
415 uint64_t dr6;
416 uint64_t rflags;
417 uint64_t rip;
418 uint8_t rsvd4[88];
419 uint64_t rsp;
420 uint8_t rsvd5[24];
421 uint64_t rax;
422 uint64_t star;
423 uint64_t lstar;
424 uint64_t cstar;
425 uint64_t sfmask;
426 uint64_t kernelgsbase;
427 uint64_t sysenter_cs;
428 uint64_t sysenter_esp;
429 uint64_t sysenter_eip;
430 uint64_t cr2;
431 uint8_t rsvd6[32];
432 uint64_t g_pat;
433 uint64_t dbgctl;
434 uint64_t br_from;
435 uint64_t br_to;
436 uint64_t int_from;
437 uint64_t int_to;
438 uint8_t pad[2408];
439 } __packed;
440
441 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
442
443 struct vmcb {
444 struct vmcb_ctrl ctrl;
445 struct vmcb_state state;
446 } __packed;
447
448 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
449 CTASSERT(offsetof(struct vmcb, state) == 0x400);
450
451 /* -------------------------------------------------------------------------- */
452
453 struct svm_hsave {
454 paddr_t pa;
455 };
456
457 static struct svm_hsave hsave[MAXCPUS];
458
459 static uint8_t *svm_asidmap __read_mostly;
460 static uint32_t svm_maxasid __read_mostly;
461 static kmutex_t svm_asidlock __cacheline_aligned;
462
463 static bool svm_decode_assist __read_mostly;
464 static uint32_t svm_ctrl_tlb_flush __read_mostly;
465
466 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
467 static uint64_t svm_xcr0_mask __read_mostly;
468
469 #define SVM_NCPUIDS 32
470
471 #define VMCB_NPAGES 1
472
473 #define MSRBM_NPAGES 2
474 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
475
476 #define IOBM_NPAGES 3
477 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
478
479 /* Does not include EFER_LMSLE. */
480 #define EFER_VALID \
481 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
482
483 #define EFER_TLB_FLUSH \
484 (EFER_NXE|EFER_LMA|EFER_LME)
485 #define CR0_TLB_FLUSH \
486 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
487 #define CR4_TLB_FLUSH \
488 (CR4_PGE|CR4_PAE|CR4_PSE)
489
490 /* -------------------------------------------------------------------------- */
491
492 struct svm_machdata {
493 bool cpuidpresent[SVM_NCPUIDS];
494 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
495 };
496
497 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
498 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
499 };
500
501 struct svm_cpudata {
502 /* General */
503 bool shared_asid;
504 bool tlb_want_flush;
505
506 /* VMCB */
507 struct vmcb *vmcb;
508 paddr_t vmcb_pa;
509
510 /* I/O bitmap */
511 uint8_t *iobm;
512 paddr_t iobm_pa;
513
514 /* MSR bitmap */
515 uint8_t *msrbm;
516 paddr_t msrbm_pa;
517
518 /* Host state */
519 uint64_t hxcr0;
520 uint64_t star;
521 uint64_t lstar;
522 uint64_t cstar;
523 uint64_t sfmask;
524 uint64_t fsbase;
525 uint64_t kernelgsbase;
526 bool ts_set;
527 struct xsave_header hfpu __aligned(64);
528
529 /* Event state */
530 bool int_window_exit;
531 bool nmi_window_exit;
532
533 /* Guest state */
534 uint64_t gxcr0;
535 uint64_t gprs[NVMM_X64_NGPR];
536 uint64_t drs[NVMM_X64_NDR];
537 uint64_t tsc_offset;
538 struct xsave_header gfpu __aligned(64);
539 };
540
541 static void
542 svm_vmcb_cache_default(struct vmcb *vmcb)
543 {
544 vmcb->ctrl.vmcb_clean =
545 VMCB_CTRL_VMCB_CLEAN_I |
546 VMCB_CTRL_VMCB_CLEAN_IOPM |
547 VMCB_CTRL_VMCB_CLEAN_ASID |
548 VMCB_CTRL_VMCB_CLEAN_TPR |
549 VMCB_CTRL_VMCB_CLEAN_NP |
550 VMCB_CTRL_VMCB_CLEAN_CR |
551 VMCB_CTRL_VMCB_CLEAN_DR |
552 VMCB_CTRL_VMCB_CLEAN_DT |
553 VMCB_CTRL_VMCB_CLEAN_SEG |
554 VMCB_CTRL_VMCB_CLEAN_CR2 |
555 VMCB_CTRL_VMCB_CLEAN_LBR |
556 VMCB_CTRL_VMCB_CLEAN_AVIC;
557 }
558
559 static void
560 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
561 {
562 if (flags & NVMM_X64_STATE_SEGS) {
563 vmcb->ctrl.vmcb_clean &=
564 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
565 }
566 if (flags & NVMM_X64_STATE_CRS) {
567 vmcb->ctrl.vmcb_clean &=
568 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
569 VMCB_CTRL_VMCB_CLEAN_TPR);
570 }
571 if (flags & NVMM_X64_STATE_DRS) {
572 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
573 }
574 if (flags & NVMM_X64_STATE_MSRS) {
575 /* CR for EFER, NP for PAT. */
576 vmcb->ctrl.vmcb_clean &=
577 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
578 }
579 if (flags & NVMM_X64_STATE_MISC) {
580 /* SEG for CPL. */
581 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_SEG;
582 }
583 }
584
585 static inline void
586 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
587 {
588 vmcb->ctrl.vmcb_clean &= ~flags;
589 }
590
591 static inline void
592 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
593 {
594 vmcb->ctrl.vmcb_clean = 0;
595 }
596
597 #define SVM_EVENT_TYPE_HW_INT 0
598 #define SVM_EVENT_TYPE_NMI 2
599 #define SVM_EVENT_TYPE_EXC 3
600 #define SVM_EVENT_TYPE_SW_INT 4
601
602 static void
603 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
604 {
605 struct svm_cpudata *cpudata = vcpu->cpudata;
606 struct vmcb *vmcb = cpudata->vmcb;
607
608 if (nmi) {
609 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
610 cpudata->nmi_window_exit = true;
611 } else {
612 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
613 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
614 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
615 cpudata->int_window_exit = true;
616 }
617
618 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
619 }
620
621 static void
622 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = false;
630 } else {
631 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = false;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static inline int
641 svm_event_has_error(uint64_t vector)
642 {
643 switch (vector) {
644 case 8: /* #DF */
645 case 10: /* #TS */
646 case 11: /* #NP */
647 case 12: /* #SS */
648 case 13: /* #GP */
649 case 14: /* #PF */
650 case 17: /* #AC */
651 case 30: /* #SX */
652 return 1;
653 default:
654 return 0;
655 }
656 }
657
658 static int
659 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
660 struct nvmm_event *event)
661 {
662 struct svm_cpudata *cpudata = vcpu->cpudata;
663 struct vmcb *vmcb = cpudata->vmcb;
664 int type = 0, err = 0;
665
666 if (event->vector >= 256) {
667 return EINVAL;
668 }
669
670 switch (event->type) {
671 case NVMM_EVENT_INTERRUPT_HW:
672 type = SVM_EVENT_TYPE_HW_INT;
673 if (event->vector == 2) {
674 type = SVM_EVENT_TYPE_NMI;
675 }
676 if (type == SVM_EVENT_TYPE_NMI) {
677 if (cpudata->nmi_window_exit) {
678 return EAGAIN;
679 }
680 svm_event_waitexit_enable(vcpu, true);
681 } else {
682 if (((vmcb->state.rflags & PSL_I) == 0) ||
683 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
684 svm_event_waitexit_enable(vcpu, false);
685 return EAGAIN;
686 }
687 }
688 err = 0;
689 break;
690 case NVMM_EVENT_INTERRUPT_SW:
691 type = SVM_EVENT_TYPE_SW_INT;
692 err = 0;
693 break;
694 case NVMM_EVENT_EXCEPTION:
695 type = SVM_EVENT_TYPE_EXC;
696 if (event->vector == 2 || event->vector >= 32)
697 return EINVAL;
698 err = svm_event_has_error(event->vector);
699 break;
700 default:
701 return EINVAL;
702 }
703
704 vmcb->ctrl.eventinj =
705 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
706 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
707 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
708 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
709 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
710
711 return 0;
712 }
713
714 static void
715 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
716 {
717 struct nvmm_event event;
718 int ret __diagused;
719
720 event.type = NVMM_EVENT_EXCEPTION;
721 event.vector = 6;
722 event.u.error = 0;
723
724 ret = svm_vcpu_inject(mach, vcpu, &event);
725 KASSERT(ret == 0);
726 }
727
728 static void
729 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
730 {
731 struct nvmm_event event;
732 int ret __diagused;
733
734 event.type = NVMM_EVENT_EXCEPTION;
735 event.vector = 13;
736 event.u.error = 0;
737
738 ret = svm_vcpu_inject(mach, vcpu, &event);
739 KASSERT(ret == 0);
740 }
741
742 static inline void
743 svm_inkernel_advance(struct vmcb *vmcb)
744 {
745 /*
746 * Maybe we should also apply single-stepping and debug exceptions.
747 * Matters for guest-ring3, because it can execute 'cpuid' under a
748 * debugger.
749 */
750 vmcb->state.rip = vmcb->ctrl.nrip;
751 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
752 }
753
754 static void
755 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
756 {
757 struct svm_cpudata *cpudata = vcpu->cpudata;
758
759 switch (eax) {
760 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
761 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
762 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
763 CPUID_LOCAL_APIC_ID);
764 break;
765 case 0x0000000D: /* FPU description. Not tunable. */
766 if (ecx != 0 || svm_xcr0_mask == 0) {
767 break;
768 }
769 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
770 if (cpudata->gxcr0 & XCR0_SSE) {
771 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
772 } else {
773 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
774 }
775 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
776 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
777 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
778 break;
779 case 0x40000000:
780 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
781 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
782 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
783 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
784 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
785 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
786 break;
787 case 0x80000001: /* No SVM, no RDTSCP. The rest is tunable. */
788 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
789 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
790 break;
791 default:
792 break;
793 }
794 }
795
796 static void
797 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
798 struct nvmm_exit *exit)
799 {
800 struct svm_machdata *machdata = mach->machdata;
801 struct svm_cpudata *cpudata = vcpu->cpudata;
802 struct nvmm_x86_conf_cpuid *cpuid;
803 uint64_t eax, ecx;
804 u_int descs[4];
805 size_t i;
806
807 eax = cpudata->vmcb->state.rax;
808 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
809 x86_cpuid2(eax, ecx, descs);
810
811 cpudata->vmcb->state.rax = descs[0];
812 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
813 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
814 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
815
816 for (i = 0; i < SVM_NCPUIDS; i++) {
817 cpuid = &machdata->cpuid[i];
818 if (!machdata->cpuidpresent[i]) {
819 continue;
820 }
821 if (cpuid->leaf != eax) {
822 continue;
823 }
824
825 /* del */
826 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
827 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
828 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
829 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
830
831 /* set */
832 cpudata->vmcb->state.rax |= cpuid->set.eax;
833 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
834 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
835 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
836
837 break;
838 }
839
840 /* Overwrite non-tunable leaves. */
841 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
842
843 svm_inkernel_advance(cpudata->vmcb);
844 exit->reason = NVMM_EXIT_NONE;
845 }
846
847 static void
848 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
849 struct nvmm_exit *exit)
850 {
851 struct svm_cpudata *cpudata = vcpu->cpudata;
852 struct vmcb *vmcb = cpudata->vmcb;
853
854 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
855 svm_event_waitexit_disable(vcpu, false);
856 }
857
858 svm_inkernel_advance(cpudata->vmcb);
859 exit->reason = NVMM_EXIT_HALTED;
860 }
861
862 #define SVM_EXIT_IO_PORT __BITS(31,16)
863 #define SVM_EXIT_IO_SEG __BITS(12,10)
864 #define SVM_EXIT_IO_A64 __BIT(9)
865 #define SVM_EXIT_IO_A32 __BIT(8)
866 #define SVM_EXIT_IO_A16 __BIT(7)
867 #define SVM_EXIT_IO_SZ32 __BIT(6)
868 #define SVM_EXIT_IO_SZ16 __BIT(5)
869 #define SVM_EXIT_IO_SZ8 __BIT(4)
870 #define SVM_EXIT_IO_REP __BIT(3)
871 #define SVM_EXIT_IO_STR __BIT(2)
872 #define SVM_EXIT_IO_IN __BIT(0)
873
874 static const int seg_to_nvmm[] = {
875 [0] = NVMM_X64_SEG_ES,
876 [1] = NVMM_X64_SEG_CS,
877 [2] = NVMM_X64_SEG_SS,
878 [3] = NVMM_X64_SEG_DS,
879 [4] = NVMM_X64_SEG_FS,
880 [5] = NVMM_X64_SEG_GS
881 };
882
883 static void
884 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
885 struct nvmm_exit *exit)
886 {
887 struct svm_cpudata *cpudata = vcpu->cpudata;
888 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
889 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
890
891 exit->reason = NVMM_EXIT_IO;
892
893 if (info & SVM_EXIT_IO_IN) {
894 exit->u.io.type = NVMM_EXIT_IO_IN;
895 } else {
896 exit->u.io.type = NVMM_EXIT_IO_OUT;
897 }
898
899 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
900
901 if (svm_decode_assist) {
902 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
903 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
904 } else {
905 exit->u.io.seg = -1;
906 }
907
908 if (info & SVM_EXIT_IO_A64) {
909 exit->u.io.address_size = 8;
910 } else if (info & SVM_EXIT_IO_A32) {
911 exit->u.io.address_size = 4;
912 } else if (info & SVM_EXIT_IO_A16) {
913 exit->u.io.address_size = 2;
914 }
915
916 if (info & SVM_EXIT_IO_SZ32) {
917 exit->u.io.operand_size = 4;
918 } else if (info & SVM_EXIT_IO_SZ16) {
919 exit->u.io.operand_size = 2;
920 } else if (info & SVM_EXIT_IO_SZ8) {
921 exit->u.io.operand_size = 1;
922 }
923
924 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
925 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
926 exit->u.io.npc = nextpc;
927 }
928
929 static const uint64_t msr_ignore_list[] = {
930 0xc0010055, /* MSR_CMPHALT */
931 MSR_DE_CFG,
932 MSR_IC_CFG,
933 MSR_UCODE_AMD_PATCHLEVEL
934 };
935
936 static bool
937 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
938 struct nvmm_exit *exit)
939 {
940 struct svm_cpudata *cpudata = vcpu->cpudata;
941 uint64_t val;
942 size_t i;
943
944 switch (exit->u.msr.type) {
945 case NVMM_EXIT_MSR_RDMSR:
946 if (exit->u.msr.msr == MSR_CR_PAT) {
947 val = cpudata->vmcb->state.g_pat;
948 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
949 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
950 goto handled;
951 }
952 if (exit->u.msr.msr == MSR_NB_CFG) {
953 val = NB_CFG_INITAPICCPUIDLO;
954 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
955 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
956 goto handled;
957 }
958 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
959 if (msr_ignore_list[i] != exit->u.msr.msr)
960 continue;
961 val = 0;
962 cpudata->vmcb->state.rax = (val & 0xFFFFFFFF);
963 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
964 goto handled;
965 }
966 break;
967 case NVMM_EXIT_MSR_WRMSR:
968 if (exit->u.msr.msr == MSR_EFER) {
969 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
970 svm_inject_gp(mach, vcpu);
971 goto handled;
972 }
973 if ((cpudata->vmcb->state.efer ^ exit->u.msr.val) &
974 EFER_TLB_FLUSH) {
975 cpudata->tlb_want_flush = true;
976 }
977 cpudata->vmcb->state.efer = exit->u.msr.val | EFER_SVME;
978 goto handled;
979 }
980 if (exit->u.msr.msr == MSR_CR_PAT) {
981 cpudata->vmcb->state.g_pat = exit->u.msr.val;
982 goto handled;
983 }
984 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
985 if (msr_ignore_list[i] != exit->u.msr.msr)
986 continue;
987 goto handled;
988 }
989 break;
990 }
991
992 return false;
993
994 handled:
995 svm_inkernel_advance(cpudata->vmcb);
996 return true;
997 }
998
999 static void
1000 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1001 struct nvmm_exit *exit)
1002 {
1003 struct svm_cpudata *cpudata = vcpu->cpudata;
1004 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1005
1006 if (info == 0) {
1007 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1008 } else {
1009 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1010 }
1011
1012 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1013
1014 if (info == 1) {
1015 uint64_t rdx, rax;
1016 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1017 rax = cpudata->vmcb->state.rax;
1018 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1019 } else {
1020 exit->u.msr.val = 0;
1021 }
1022
1023 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1024 exit->reason = NVMM_EXIT_NONE;
1025 return;
1026 }
1027
1028 exit->reason = NVMM_EXIT_MSR;
1029 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1030 }
1031
1032 static void
1033 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1034 struct nvmm_exit *exit)
1035 {
1036 struct svm_cpudata *cpudata = vcpu->cpudata;
1037 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1038 int error;
1039
1040 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
1041
1042 if (error) {
1043 exit->reason = NVMM_EXIT_MEMORY;
1044 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1045 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1046 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1047 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1048 else
1049 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1050 exit->u.mem.gpa = gpa;
1051 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1052 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1053 sizeof(exit->u.mem.inst_bytes));
1054 } else {
1055 exit->reason = NVMM_EXIT_NONE;
1056 }
1057 }
1058
1059 static void
1060 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1061 {
1062 exit->u.insn.npc = vmcb->ctrl.nrip;
1063 exit->reason = reason;
1064 }
1065
1066 static void
1067 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1068 struct nvmm_exit *exit)
1069 {
1070 struct svm_cpudata *cpudata = vcpu->cpudata;
1071 struct vmcb *vmcb = cpudata->vmcb;
1072 uint64_t val;
1073
1074 exit->reason = NVMM_EXIT_NONE;
1075
1076 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1077 (vmcb->state.rax & 0xFFFFFFFF);
1078
1079 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1080 goto error;
1081 } else if (__predict_false(vmcb->state.cpl != 0)) {
1082 goto error;
1083 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1084 goto error;
1085 } else if (__predict_false((val & XCR0_X87) == 0)) {
1086 goto error;
1087 }
1088
1089 cpudata->gxcr0 = val;
1090
1091 svm_inkernel_advance(cpudata->vmcb);
1092 return;
1093
1094 error:
1095 svm_inject_gp(mach, vcpu);
1096 }
1097
1098 static void
1099 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1100 {
1101 struct svm_cpudata *cpudata = vcpu->cpudata;
1102
1103 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1104
1105 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1106 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1107
1108 if (svm_xcr0_mask != 0) {
1109 cpudata->hxcr0 = rdxcr(0);
1110 wrxcr(0, cpudata->gxcr0);
1111 }
1112 }
1113
1114 static void
1115 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1116 {
1117 struct svm_cpudata *cpudata = vcpu->cpudata;
1118
1119 if (svm_xcr0_mask != 0) {
1120 cpudata->gxcr0 = rdxcr(0);
1121 wrxcr(0, cpudata->hxcr0);
1122 }
1123
1124 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1125 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1126
1127 if (cpudata->ts_set) {
1128 stts();
1129 }
1130 }
1131
1132 static void
1133 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1134 {
1135 struct svm_cpudata *cpudata = vcpu->cpudata;
1136
1137 x86_dbregs_save(curlwp);
1138
1139 ldr7(0);
1140
1141 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1142 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1143 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1144 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1145 }
1146
1147 static void
1148 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1149 {
1150 struct svm_cpudata *cpudata = vcpu->cpudata;
1151
1152 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1153 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1154 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1155 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1156
1157 x86_dbregs_restore(curlwp);
1158 }
1159
1160 static void
1161 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1162 {
1163 struct svm_cpudata *cpudata = vcpu->cpudata;
1164
1165 cpudata->star = rdmsr(MSR_STAR);
1166 cpudata->lstar = rdmsr(MSR_LSTAR);
1167 cpudata->cstar = rdmsr(MSR_CSTAR);
1168 cpudata->sfmask = rdmsr(MSR_SFMASK);
1169 cpudata->fsbase = rdmsr(MSR_FSBASE);
1170 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1171 }
1172
1173 static void
1174 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1175 {
1176 struct svm_cpudata *cpudata = vcpu->cpudata;
1177
1178 wrmsr(MSR_STAR, cpudata->star);
1179 wrmsr(MSR_LSTAR, cpudata->lstar);
1180 wrmsr(MSR_CSTAR, cpudata->cstar);
1181 wrmsr(MSR_SFMASK, cpudata->sfmask);
1182 wrmsr(MSR_FSBASE, cpudata->fsbase);
1183 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1184 }
1185
1186 static int
1187 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1188 struct nvmm_exit *exit)
1189 {
1190 struct svm_cpudata *cpudata = vcpu->cpudata;
1191 struct vmcb *vmcb = cpudata->vmcb;
1192 bool tlb_need_flush = false;
1193 int hcpu, s;
1194
1195 kpreempt_disable();
1196 hcpu = cpu_number();
1197
1198 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1199 tlb_need_flush = true;
1200 }
1201
1202 if (cpudata->tlb_want_flush || tlb_need_flush) {
1203 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1204 } else {
1205 vmcb->ctrl.tlb_ctrl = 0;
1206 }
1207
1208 if (vcpu->hcpu_last != hcpu) {
1209 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1210 curcpu()->ci_data.cpu_cc_skew;
1211 svm_vmcb_cache_flush_all(vmcb);
1212 }
1213
1214 svm_vcpu_guest_dbregs_enter(vcpu);
1215 svm_vcpu_guest_misc_enter(vcpu);
1216
1217 while (1) {
1218 s = splhigh();
1219 svm_vcpu_guest_fpu_enter(vcpu);
1220 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1221 svm_vcpu_guest_fpu_leave(vcpu);
1222 splx(s);
1223
1224 svm_vmcb_cache_default(vmcb);
1225
1226 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1227 if (cpudata->tlb_want_flush) {
1228 cpudata->tlb_want_flush = false;
1229 }
1230 vcpu->hcpu_last = hcpu;
1231 }
1232
1233 switch (vmcb->ctrl.exitcode) {
1234 case VMCB_EXITCODE_INTR:
1235 case VMCB_EXITCODE_NMI:
1236 exit->reason = NVMM_EXIT_NONE;
1237 break;
1238 case VMCB_EXITCODE_VINTR:
1239 svm_event_waitexit_disable(vcpu, false);
1240 exit->reason = NVMM_EXIT_INT_READY;
1241 break;
1242 case VMCB_EXITCODE_IRET:
1243 svm_event_waitexit_disable(vcpu, true);
1244 exit->reason = NVMM_EXIT_NMI_READY;
1245 break;
1246 case VMCB_EXITCODE_CPUID:
1247 svm_exit_cpuid(mach, vcpu, exit);
1248 break;
1249 case VMCB_EXITCODE_HLT:
1250 svm_exit_hlt(mach, vcpu, exit);
1251 break;
1252 case VMCB_EXITCODE_IOIO:
1253 svm_exit_io(mach, vcpu, exit);
1254 break;
1255 case VMCB_EXITCODE_MSR:
1256 svm_exit_msr(mach, vcpu, exit);
1257 break;
1258 case VMCB_EXITCODE_SHUTDOWN:
1259 exit->reason = NVMM_EXIT_SHUTDOWN;
1260 break;
1261 case VMCB_EXITCODE_RDPMC:
1262 case VMCB_EXITCODE_RSM:
1263 case VMCB_EXITCODE_INVLPGA:
1264 case VMCB_EXITCODE_VMRUN:
1265 case VMCB_EXITCODE_VMMCALL:
1266 case VMCB_EXITCODE_VMLOAD:
1267 case VMCB_EXITCODE_VMSAVE:
1268 case VMCB_EXITCODE_STGI:
1269 case VMCB_EXITCODE_CLGI:
1270 case VMCB_EXITCODE_SKINIT:
1271 case VMCB_EXITCODE_RDTSCP:
1272 svm_inject_ud(mach, vcpu);
1273 exit->reason = NVMM_EXIT_NONE;
1274 break;
1275 case VMCB_EXITCODE_MONITOR:
1276 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1277 break;
1278 case VMCB_EXITCODE_MWAIT:
1279 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1280 break;
1281 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1282 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1283 break;
1284 case VMCB_EXITCODE_XSETBV:
1285 svm_exit_xsetbv(mach, vcpu, exit);
1286 break;
1287 case VMCB_EXITCODE_NPF:
1288 svm_exit_npf(mach, vcpu, exit);
1289 break;
1290 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1291 default:
1292 exit->reason = NVMM_EXIT_INVALID;
1293 break;
1294 }
1295
1296 /* If no reason to return to userland, keep rolling. */
1297 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1298 break;
1299 }
1300 if (curcpu()->ci_data.cpu_softints != 0) {
1301 break;
1302 }
1303 if (curlwp->l_flag & LW_USERRET) {
1304 break;
1305 }
1306 if (exit->reason != NVMM_EXIT_NONE) {
1307 break;
1308 }
1309 }
1310
1311 svm_vcpu_guest_misc_leave(vcpu);
1312 svm_vcpu_guest_dbregs_leave(vcpu);
1313
1314 kpreempt_enable();
1315
1316 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1317 VMCB_CTRL_V_TPR);
1318 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1319
1320 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1321 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1322 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1323 cpudata->int_window_exit;
1324 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1325 cpudata->nmi_window_exit;
1326
1327 return 0;
1328 }
1329
1330 /* -------------------------------------------------------------------------- */
1331
1332 static int
1333 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1334 {
1335 struct pglist pglist;
1336 paddr_t _pa;
1337 vaddr_t _va;
1338 size_t i;
1339 int ret;
1340
1341 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1342 &pglist, 1, 0);
1343 if (ret != 0)
1344 return ENOMEM;
1345 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1346 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1347 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1348 if (_va == 0)
1349 goto error;
1350
1351 for (i = 0; i < npages; i++) {
1352 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1353 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1354 }
1355 pmap_update(pmap_kernel());
1356
1357 memset((void *)_va, 0, npages * PAGE_SIZE);
1358
1359 *pa = _pa;
1360 *va = _va;
1361 return 0;
1362
1363 error:
1364 for (i = 0; i < npages; i++) {
1365 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1366 }
1367 return ENOMEM;
1368 }
1369
1370 static void
1371 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1372 {
1373 size_t i;
1374
1375 pmap_kremove(va, npages * PAGE_SIZE);
1376 pmap_update(pmap_kernel());
1377 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1378 for (i = 0; i < npages; i++) {
1379 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1380 }
1381 }
1382
1383 /* -------------------------------------------------------------------------- */
1384
1385 #define SVM_MSRBM_READ __BIT(0)
1386 #define SVM_MSRBM_WRITE __BIT(1)
1387
1388 static void
1389 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1390 {
1391 uint64_t byte;
1392 uint8_t bitoff;
1393
1394 if (msr < 0x00002000) {
1395 /* Range 1 */
1396 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1397 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1398 /* Range 2 */
1399 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1400 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1401 /* Range 3 */
1402 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1403 } else {
1404 panic("%s: wrong range", __func__);
1405 }
1406
1407 bitoff = (msr & 0x3) << 1;
1408
1409 if (read) {
1410 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1411 }
1412 if (write) {
1413 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1414 }
1415 }
1416
1417 static void
1418 svm_asid_alloc(struct nvmm_cpu *vcpu)
1419 {
1420 struct svm_cpudata *cpudata = vcpu->cpudata;
1421 struct vmcb *vmcb = cpudata->vmcb;
1422 size_t i, oct, bit;
1423
1424 mutex_enter(&svm_asidlock);
1425
1426 for (i = 0; i < svm_maxasid; i++) {
1427 oct = i / 8;
1428 bit = i % 8;
1429
1430 if (svm_asidmap[oct] & __BIT(bit)) {
1431 continue;
1432 }
1433
1434 svm_asidmap[oct] |= __BIT(bit);
1435 vmcb->ctrl.guest_asid = i;
1436 mutex_exit(&svm_asidlock);
1437 return;
1438 }
1439
1440 /*
1441 * No free ASID. Use the last one, which is shared and requires
1442 * special TLB handling.
1443 */
1444 cpudata->shared_asid = true;
1445 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1446 mutex_exit(&svm_asidlock);
1447 }
1448
1449 static void
1450 svm_asid_free(struct nvmm_cpu *vcpu)
1451 {
1452 struct svm_cpudata *cpudata = vcpu->cpudata;
1453 struct vmcb *vmcb = cpudata->vmcb;
1454 size_t oct, bit;
1455
1456 if (cpudata->shared_asid) {
1457 return;
1458 }
1459
1460 oct = vmcb->ctrl.guest_asid / 8;
1461 bit = vmcb->ctrl.guest_asid % 8;
1462
1463 mutex_enter(&svm_asidlock);
1464 svm_asidmap[oct] &= ~__BIT(bit);
1465 mutex_exit(&svm_asidlock);
1466 }
1467
1468 static void
1469 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1470 {
1471 struct svm_cpudata *cpudata = vcpu->cpudata;
1472 struct vmcb *vmcb = cpudata->vmcb;
1473
1474 /* Allow reads/writes of Control Registers. */
1475 vmcb->ctrl.intercept_cr = 0;
1476
1477 /* Allow reads/writes of Debug Registers. */
1478 vmcb->ctrl.intercept_dr = 0;
1479
1480 /* Allow exceptions 0 to 31. */
1481 vmcb->ctrl.intercept_vec = 0;
1482
1483 /*
1484 * Allow:
1485 * - SMI [smm interrupts]
1486 * - VINTR [virtual interrupts]
1487 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1488 * - RIDTR [reads of IDTR]
1489 * - RGDTR [reads of GDTR]
1490 * - RLDTR [reads of LDTR]
1491 * - RTR [reads of TR]
1492 * - WIDTR [writes of IDTR]
1493 * - WGDTR [writes of GDTR]
1494 * - WLDTR [writes of LDTR]
1495 * - WTR [writes of TR]
1496 * - RDTSC [rdtsc instruction]
1497 * - PUSHF [pushf instruction]
1498 * - POPF [popf instruction]
1499 * - IRET [iret instruction]
1500 * - INTN [int $n instructions]
1501 * - INVD [invd instruction]
1502 * - PAUSE [pause instruction]
1503 * - INVLPG [invplg instruction]
1504 * - TASKSW [task switches]
1505 *
1506 * Intercept the rest below.
1507 */
1508 vmcb->ctrl.intercept_misc1 =
1509 VMCB_CTRL_INTERCEPT_INTR |
1510 VMCB_CTRL_INTERCEPT_NMI |
1511 VMCB_CTRL_INTERCEPT_INIT |
1512 VMCB_CTRL_INTERCEPT_RDPMC |
1513 VMCB_CTRL_INTERCEPT_CPUID |
1514 VMCB_CTRL_INTERCEPT_RSM |
1515 VMCB_CTRL_INTERCEPT_HLT |
1516 VMCB_CTRL_INTERCEPT_INVLPGA |
1517 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1518 VMCB_CTRL_INTERCEPT_MSR_PROT |
1519 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1520 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1521
1522 /*
1523 * Allow:
1524 * - ICEBP [icebp instruction]
1525 * - WBINVD [wbinvd instruction]
1526 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1527 *
1528 * Intercept the rest below.
1529 */
1530 vmcb->ctrl.intercept_misc2 =
1531 VMCB_CTRL_INTERCEPT_VMRUN |
1532 VMCB_CTRL_INTERCEPT_VMMCALL |
1533 VMCB_CTRL_INTERCEPT_VMLOAD |
1534 VMCB_CTRL_INTERCEPT_VMSAVE |
1535 VMCB_CTRL_INTERCEPT_STGI |
1536 VMCB_CTRL_INTERCEPT_CLGI |
1537 VMCB_CTRL_INTERCEPT_SKINIT |
1538 VMCB_CTRL_INTERCEPT_RDTSCP |
1539 VMCB_CTRL_INTERCEPT_MONITOR |
1540 VMCB_CTRL_INTERCEPT_MWAIT |
1541 VMCB_CTRL_INTERCEPT_XSETBV;
1542
1543 /* Intercept all I/O accesses. */
1544 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1545 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1546
1547 /*
1548 * Allow:
1549 * - EFER [read]
1550 * - STAR [read, write]
1551 * - LSTAR [read, write]
1552 * - CSTAR [read, write]
1553 * - SFMASK [read, write]
1554 * - KERNELGSBASE [read, write]
1555 * - SYSENTER_CS [read, write]
1556 * - SYSENTER_ESP [read, write]
1557 * - SYSENTER_EIP [read, write]
1558 * - FSBASE [read, write]
1559 * - GSBASE [read, write]
1560 * - TSC [read]
1561 *
1562 * Intercept the rest.
1563 */
1564 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1565 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1566 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1567 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1568 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1569 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1570 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1571 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1572 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1573 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1574 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1575 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1576 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1577 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1578
1579 /* Generate ASID. */
1580 svm_asid_alloc(vcpu);
1581
1582 /* Virtual TPR. */
1583 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1584
1585 /* Enable Nested Paging. */
1586 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1587 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1588
1589 /* Must always be set. */
1590 vmcb->state.efer = EFER_SVME;
1591 cpudata->gxcr0 = XCR0_X87;
1592
1593 /* Init XSAVE header. */
1594 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1595 cpudata->gfpu.xsh_xcomp_bv = 0;
1596
1597 /* Bluntly hide the host TSC. */
1598 cpudata->tsc_offset = rdtsc();
1599 }
1600
1601 static int
1602 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1603 {
1604 struct svm_cpudata *cpudata;
1605 int error;
1606
1607 /* Allocate the SVM cpudata. */
1608 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1609 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1610 UVM_KMF_WIRED|UVM_KMF_ZERO);
1611 vcpu->cpudata = cpudata;
1612
1613 /* VMCB */
1614 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1615 VMCB_NPAGES);
1616 if (error)
1617 goto error;
1618
1619 /* I/O Bitmap */
1620 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1621 IOBM_NPAGES);
1622 if (error)
1623 goto error;
1624
1625 /* MSR Bitmap */
1626 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1627 MSRBM_NPAGES);
1628 if (error)
1629 goto error;
1630
1631 /* Init the VCPU info. */
1632 svm_vcpu_init(mach, vcpu);
1633
1634 return 0;
1635
1636 error:
1637 if (cpudata->vmcb_pa) {
1638 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1639 VMCB_NPAGES);
1640 }
1641 if (cpudata->iobm_pa) {
1642 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1643 IOBM_NPAGES);
1644 }
1645 if (cpudata->msrbm_pa) {
1646 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1647 MSRBM_NPAGES);
1648 }
1649 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1650 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1651 return error;
1652 }
1653
1654 static void
1655 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1656 {
1657 struct svm_cpudata *cpudata = vcpu->cpudata;
1658
1659 svm_asid_free(vcpu);
1660
1661 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1662 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1663 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1664
1665 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1666 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1667 }
1668
1669 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1670 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1671 #define SVM_SEG_ATTRIB_P __BIT(7)
1672 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1673 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1674 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1675 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1676
1677 static void
1678 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1679 {
1680 vseg->selector = seg->selector;
1681 vseg->attrib =
1682 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1683 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1684 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1685 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1686 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1687 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1688 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1689 vseg->limit = seg->limit;
1690 vseg->base = seg->base;
1691 }
1692
1693 static void
1694 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1695 {
1696 seg->selector = vseg->selector;
1697 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1698 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1699 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1700 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1701 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1702 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1703 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1704 seg->limit = vseg->limit;
1705 seg->base = vseg->base;
1706 }
1707
1708 static inline bool
1709 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
1710 uint64_t flags)
1711 {
1712 if (flags & NVMM_X64_STATE_CRS) {
1713 if ((vmcb->state.cr0 ^
1714 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1715 return true;
1716 }
1717 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1718 return true;
1719 }
1720 if ((vmcb->state.cr4 ^
1721 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1722 return true;
1723 }
1724 }
1725
1726 if (flags & NVMM_X64_STATE_MSRS) {
1727 if ((vmcb->state.efer ^
1728 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1729 return true;
1730 }
1731 }
1732
1733 return false;
1734 }
1735
1736 static void
1737 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1738 {
1739 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1740 struct svm_cpudata *cpudata = vcpu->cpudata;
1741 struct vmcb *vmcb = cpudata->vmcb;
1742 struct fxsave *fpustate;
1743
1744 if (svm_state_tlb_flush(vmcb, state, flags)) {
1745 cpudata->tlb_want_flush = true;
1746 }
1747
1748 if (flags & NVMM_X64_STATE_SEGS) {
1749 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1750 &vmcb->state.cs);
1751 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1752 &vmcb->state.ds);
1753 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1754 &vmcb->state.es);
1755 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1756 &vmcb->state.fs);
1757 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1758 &vmcb->state.gs);
1759 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1760 &vmcb->state.ss);
1761 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1762 &vmcb->state.gdt);
1763 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1764 &vmcb->state.idt);
1765 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1766 &vmcb->state.ldt);
1767 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1768 &vmcb->state.tr);
1769 }
1770
1771 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1772 if (flags & NVMM_X64_STATE_GPRS) {
1773 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1774
1775 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1776 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1777 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1778 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1779 }
1780
1781 if (flags & NVMM_X64_STATE_CRS) {
1782 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1783 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1784 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1785 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1786
1787 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1788 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1789 VMCB_CTRL_V_TPR);
1790
1791 if (svm_xcr0_mask != 0) {
1792 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1793 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1794 cpudata->gxcr0 &= svm_xcr0_mask;
1795 cpudata->gxcr0 |= XCR0_X87;
1796 }
1797 }
1798
1799 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1800 if (flags & NVMM_X64_STATE_DRS) {
1801 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1802
1803 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1804 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1805 }
1806
1807 if (flags & NVMM_X64_STATE_MSRS) {
1808 /* Bit EFER_SVME is mandatory. */
1809 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1810
1811 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1812 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1813 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1814 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1815 vmcb->state.kernelgsbase =
1816 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1817 vmcb->state.sysenter_cs =
1818 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1819 vmcb->state.sysenter_esp =
1820 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1821 vmcb->state.sysenter_eip =
1822 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1823 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1824 }
1825
1826 if (flags & NVMM_X64_STATE_MISC) {
1827 vmcb->state.cpl = state->misc[NVMM_X64_MISC_CPL];
1828
1829 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1830 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1831 } else {
1832 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1833 }
1834
1835 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1836 svm_event_waitexit_enable(vcpu, false);
1837 } else {
1838 svm_event_waitexit_disable(vcpu, false);
1839 }
1840
1841 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1842 svm_event_waitexit_enable(vcpu, true);
1843 } else {
1844 svm_event_waitexit_disable(vcpu, true);
1845 }
1846 }
1847
1848 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1849 if (flags & NVMM_X64_STATE_FPU) {
1850 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1851 sizeof(state->fpu));
1852
1853 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1854 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1855 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1856
1857 if (svm_xcr0_mask != 0) {
1858 /* Reset XSTATE_BV, to force a reload. */
1859 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1860 }
1861 }
1862
1863 svm_vmcb_cache_update(vmcb, flags);
1864 }
1865
1866 static void
1867 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1868 {
1869 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1870 struct svm_cpudata *cpudata = vcpu->cpudata;
1871 struct vmcb *vmcb = cpudata->vmcb;
1872
1873 if (flags & NVMM_X64_STATE_SEGS) {
1874 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1875 &vmcb->state.cs);
1876 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1877 &vmcb->state.ds);
1878 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1879 &vmcb->state.es);
1880 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1881 &vmcb->state.fs);
1882 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1883 &vmcb->state.gs);
1884 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1885 &vmcb->state.ss);
1886 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1887 &vmcb->state.gdt);
1888 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1889 &vmcb->state.idt);
1890 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1891 &vmcb->state.ldt);
1892 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1893 &vmcb->state.tr);
1894 }
1895
1896 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1897 if (flags & NVMM_X64_STATE_GPRS) {
1898 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1899
1900 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1901 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1902 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1903 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1904 }
1905
1906 if (flags & NVMM_X64_STATE_CRS) {
1907 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1908 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1909 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1910 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1911 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1912 VMCB_CTRL_V_TPR);
1913 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1914 }
1915
1916 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1917 if (flags & NVMM_X64_STATE_DRS) {
1918 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1919
1920 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1921 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1922 }
1923
1924 if (flags & NVMM_X64_STATE_MSRS) {
1925 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1926 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1927 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1928 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1929 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1930 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1931 vmcb->state.kernelgsbase;
1932 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1933 vmcb->state.sysenter_cs;
1934 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1935 vmcb->state.sysenter_esp;
1936 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1937 vmcb->state.sysenter_eip;
1938 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1939
1940 /* Hide SVME. */
1941 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1942 }
1943
1944 if (flags & NVMM_X64_STATE_MISC) {
1945 state->misc[NVMM_X64_MISC_CPL] = vmcb->state.cpl;
1946
1947 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1948 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1949 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1950 cpudata->int_window_exit;
1951 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1952 cpudata->nmi_window_exit;
1953 }
1954
1955 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1956 if (flags & NVMM_X64_STATE_FPU) {
1957 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1958 sizeof(state->fpu));
1959 }
1960 }
1961
1962 /* -------------------------------------------------------------------------- */
1963
1964 static void
1965 svm_tlb_flush(struct pmap *pm)
1966 {
1967 struct nvmm_machine *mach = pm->pm_data;
1968 struct svm_cpudata *cpudata;
1969 struct nvmm_cpu *vcpu;
1970 int error;
1971 size_t i;
1972
1973 /* Request TLB flushes. */
1974 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1975 error = nvmm_vcpu_get(mach, i, &vcpu);
1976 if (error)
1977 continue;
1978 cpudata = vcpu->cpudata;
1979 cpudata->tlb_want_flush = true;
1980 nvmm_vcpu_put(vcpu);
1981 }
1982 }
1983
1984 static void
1985 svm_machine_create(struct nvmm_machine *mach)
1986 {
1987 /* Fill in pmap info. */
1988 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1989 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1990
1991 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1992 }
1993
1994 static void
1995 svm_machine_destroy(struct nvmm_machine *mach)
1996 {
1997 kmem_free(mach->machdata, sizeof(struct svm_machdata));
1998 }
1999
2000 static int
2001 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2002 {
2003 struct nvmm_x86_conf_cpuid *cpuid = data;
2004 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2005 size_t i;
2006
2007 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2008 return EINVAL;
2009 }
2010
2011 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2012 (cpuid->set.ebx & cpuid->del.ebx) ||
2013 (cpuid->set.ecx & cpuid->del.ecx) ||
2014 (cpuid->set.edx & cpuid->del.edx))) {
2015 return EINVAL;
2016 }
2017
2018 /* If already here, replace. */
2019 for (i = 0; i < SVM_NCPUIDS; i++) {
2020 if (!machdata->cpuidpresent[i]) {
2021 continue;
2022 }
2023 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2024 memcpy(&machdata->cpuid[i], cpuid,
2025 sizeof(struct nvmm_x86_conf_cpuid));
2026 return 0;
2027 }
2028 }
2029
2030 /* Not here, insert. */
2031 for (i = 0; i < SVM_NCPUIDS; i++) {
2032 if (!machdata->cpuidpresent[i]) {
2033 machdata->cpuidpresent[i] = true;
2034 memcpy(&machdata->cpuid[i], cpuid,
2035 sizeof(struct nvmm_x86_conf_cpuid));
2036 return 0;
2037 }
2038 }
2039
2040 return ENOBUFS;
2041 }
2042
2043 /* -------------------------------------------------------------------------- */
2044
2045 static bool
2046 svm_ident(void)
2047 {
2048 u_int descs[4];
2049 uint64_t msr;
2050
2051 if (cpu_vendor != CPUVENDOR_AMD) {
2052 return false;
2053 }
2054 if (!(cpu_feature[3] & CPUID_SVM)) {
2055 return false;
2056 }
2057
2058 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2059 return false;
2060 }
2061 x86_cpuid(0x8000000a, descs);
2062
2063 /* Want Nested Paging. */
2064 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2065 return false;
2066 }
2067
2068 /* Want nRIP. */
2069 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2070 return false;
2071 }
2072
2073 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2074
2075 msr = rdmsr(MSR_VMCR);
2076 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2077 return false;
2078 }
2079
2080 return true;
2081 }
2082
2083 static void
2084 svm_init_asid(uint32_t maxasid)
2085 {
2086 size_t i, j, allocsz;
2087
2088 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2089
2090 /* Arbitrarily limit. */
2091 maxasid = uimin(maxasid, 8192);
2092
2093 svm_maxasid = maxasid;
2094 allocsz = roundup(maxasid, 8) / 8;
2095 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2096
2097 /* ASID 0 is reserved for the host. */
2098 svm_asidmap[0] |= __BIT(0);
2099
2100 /* ASID n-1 is special, we share it. */
2101 i = (maxasid - 1) / 8;
2102 j = (maxasid - 1) % 8;
2103 svm_asidmap[i] |= __BIT(j);
2104 }
2105
2106 static void
2107 svm_change_cpu(void *arg1, void *arg2)
2108 {
2109 bool enable = (bool)arg1;
2110 uint64_t msr;
2111
2112 msr = rdmsr(MSR_VMCR);
2113 if (msr & VMCR_SVMED) {
2114 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2115 }
2116
2117 if (!enable) {
2118 wrmsr(MSR_VM_HSAVE_PA, 0);
2119 }
2120
2121 msr = rdmsr(MSR_EFER);
2122 if (enable) {
2123 msr |= EFER_SVME;
2124 } else {
2125 msr &= ~EFER_SVME;
2126 }
2127 wrmsr(MSR_EFER, msr);
2128
2129 if (enable) {
2130 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2131 }
2132 }
2133
2134 static void
2135 svm_init(void)
2136 {
2137 CPU_INFO_ITERATOR cii;
2138 struct cpu_info *ci;
2139 struct vm_page *pg;
2140 u_int descs[4];
2141 uint64_t xc;
2142
2143 x86_cpuid(0x8000000a, descs);
2144
2145 /* The guest TLB flush command. */
2146 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2147 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2148 } else {
2149 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2150 }
2151
2152 /* Init the ASID. */
2153 svm_init_asid(descs[1]);
2154
2155 /* Init the XCR0 mask. */
2156 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2157
2158 memset(hsave, 0, sizeof(hsave));
2159 for (CPU_INFO_FOREACH(cii, ci)) {
2160 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2161 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2162 }
2163
2164 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2165 xc_wait(xc);
2166 }
2167
2168 static void
2169 svm_fini_asid(void)
2170 {
2171 size_t allocsz;
2172
2173 allocsz = roundup(svm_maxasid, 8) / 8;
2174 kmem_free(svm_asidmap, allocsz);
2175
2176 mutex_destroy(&svm_asidlock);
2177 }
2178
2179 static void
2180 svm_fini(void)
2181 {
2182 uint64_t xc;
2183 size_t i;
2184
2185 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2186 xc_wait(xc);
2187
2188 for (i = 0; i < MAXCPUS; i++) {
2189 if (hsave[i].pa != 0)
2190 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2191 }
2192
2193 svm_fini_asid();
2194 }
2195
2196 static void
2197 svm_capability(struct nvmm_capability *cap)
2198 {
2199 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2200 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2201 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2202 }
2203
2204 const struct nvmm_impl nvmm_x86_svm = {
2205 .ident = svm_ident,
2206 .init = svm_init,
2207 .fini = svm_fini,
2208 .capability = svm_capability,
2209 .conf_max = NVMM_X86_NCONF,
2210 .conf_sizes = svm_conf_sizes,
2211 .state_size = sizeof(struct nvmm_x64_state),
2212 .machine_create = svm_machine_create,
2213 .machine_destroy = svm_machine_destroy,
2214 .machine_configure = svm_machine_configure,
2215 .vcpu_create = svm_vcpu_create,
2216 .vcpu_destroy = svm_vcpu_destroy,
2217 .vcpu_setstate = svm_vcpu_setstate,
2218 .vcpu_getstate = svm_vcpu_getstate,
2219 .vcpu_inject = svm_vcpu_inject,
2220 .vcpu_run = svm_vcpu_run
2221 };
2222