nvmm_x86_svm.c revision 1.19 1 /* $NetBSD: nvmm_x86_svm.c,v 1.19 2019/02/04 12:11:18 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.19 2019/02/04 12:11:18 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <machine/cpuvar.h>
50
51 #include <dev/nvmm/nvmm.h>
52 #include <dev/nvmm/nvmm_internal.h>
53 #include <dev/nvmm/x86/nvmm_x86.h>
54
55 int svm_vmrun(paddr_t, uint64_t *);
56
57 #define MSR_VM_HSAVE_PA 0xC0010117
58
59 /* -------------------------------------------------------------------------- */
60
61 #define VMCB_EXITCODE_CR0_READ 0x0000
62 #define VMCB_EXITCODE_CR1_READ 0x0001
63 #define VMCB_EXITCODE_CR2_READ 0x0002
64 #define VMCB_EXITCODE_CR3_READ 0x0003
65 #define VMCB_EXITCODE_CR4_READ 0x0004
66 #define VMCB_EXITCODE_CR5_READ 0x0005
67 #define VMCB_EXITCODE_CR6_READ 0x0006
68 #define VMCB_EXITCODE_CR7_READ 0x0007
69 #define VMCB_EXITCODE_CR8_READ 0x0008
70 #define VMCB_EXITCODE_CR9_READ 0x0009
71 #define VMCB_EXITCODE_CR10_READ 0x000A
72 #define VMCB_EXITCODE_CR11_READ 0x000B
73 #define VMCB_EXITCODE_CR12_READ 0x000C
74 #define VMCB_EXITCODE_CR13_READ 0x000D
75 #define VMCB_EXITCODE_CR14_READ 0x000E
76 #define VMCB_EXITCODE_CR15_READ 0x000F
77 #define VMCB_EXITCODE_CR0_WRITE 0x0010
78 #define VMCB_EXITCODE_CR1_WRITE 0x0011
79 #define VMCB_EXITCODE_CR2_WRITE 0x0012
80 #define VMCB_EXITCODE_CR3_WRITE 0x0013
81 #define VMCB_EXITCODE_CR4_WRITE 0x0014
82 #define VMCB_EXITCODE_CR5_WRITE 0x0015
83 #define VMCB_EXITCODE_CR6_WRITE 0x0016
84 #define VMCB_EXITCODE_CR7_WRITE 0x0017
85 #define VMCB_EXITCODE_CR8_WRITE 0x0018
86 #define VMCB_EXITCODE_CR9_WRITE 0x0019
87 #define VMCB_EXITCODE_CR10_WRITE 0x001A
88 #define VMCB_EXITCODE_CR11_WRITE 0x001B
89 #define VMCB_EXITCODE_CR12_WRITE 0x001C
90 #define VMCB_EXITCODE_CR13_WRITE 0x001D
91 #define VMCB_EXITCODE_CR14_WRITE 0x001E
92 #define VMCB_EXITCODE_CR15_WRITE 0x001F
93 #define VMCB_EXITCODE_DR0_READ 0x0020
94 #define VMCB_EXITCODE_DR1_READ 0x0021
95 #define VMCB_EXITCODE_DR2_READ 0x0022
96 #define VMCB_EXITCODE_DR3_READ 0x0023
97 #define VMCB_EXITCODE_DR4_READ 0x0024
98 #define VMCB_EXITCODE_DR5_READ 0x0025
99 #define VMCB_EXITCODE_DR6_READ 0x0026
100 #define VMCB_EXITCODE_DR7_READ 0x0027
101 #define VMCB_EXITCODE_DR8_READ 0x0028
102 #define VMCB_EXITCODE_DR9_READ 0x0029
103 #define VMCB_EXITCODE_DR10_READ 0x002A
104 #define VMCB_EXITCODE_DR11_READ 0x002B
105 #define VMCB_EXITCODE_DR12_READ 0x002C
106 #define VMCB_EXITCODE_DR13_READ 0x002D
107 #define VMCB_EXITCODE_DR14_READ 0x002E
108 #define VMCB_EXITCODE_DR15_READ 0x002F
109 #define VMCB_EXITCODE_DR0_WRITE 0x0030
110 #define VMCB_EXITCODE_DR1_WRITE 0x0031
111 #define VMCB_EXITCODE_DR2_WRITE 0x0032
112 #define VMCB_EXITCODE_DR3_WRITE 0x0033
113 #define VMCB_EXITCODE_DR4_WRITE 0x0034
114 #define VMCB_EXITCODE_DR5_WRITE 0x0035
115 #define VMCB_EXITCODE_DR6_WRITE 0x0036
116 #define VMCB_EXITCODE_DR7_WRITE 0x0037
117 #define VMCB_EXITCODE_DR8_WRITE 0x0038
118 #define VMCB_EXITCODE_DR9_WRITE 0x0039
119 #define VMCB_EXITCODE_DR10_WRITE 0x003A
120 #define VMCB_EXITCODE_DR11_WRITE 0x003B
121 #define VMCB_EXITCODE_DR12_WRITE 0x003C
122 #define VMCB_EXITCODE_DR13_WRITE 0x003D
123 #define VMCB_EXITCODE_DR14_WRITE 0x003E
124 #define VMCB_EXITCODE_DR15_WRITE 0x003F
125 #define VMCB_EXITCODE_EXCP0 0x0040
126 #define VMCB_EXITCODE_EXCP1 0x0041
127 #define VMCB_EXITCODE_EXCP2 0x0042
128 #define VMCB_EXITCODE_EXCP3 0x0043
129 #define VMCB_EXITCODE_EXCP4 0x0044
130 #define VMCB_EXITCODE_EXCP5 0x0045
131 #define VMCB_EXITCODE_EXCP6 0x0046
132 #define VMCB_EXITCODE_EXCP7 0x0047
133 #define VMCB_EXITCODE_EXCP8 0x0048
134 #define VMCB_EXITCODE_EXCP9 0x0049
135 #define VMCB_EXITCODE_EXCP10 0x004A
136 #define VMCB_EXITCODE_EXCP11 0x004B
137 #define VMCB_EXITCODE_EXCP12 0x004C
138 #define VMCB_EXITCODE_EXCP13 0x004D
139 #define VMCB_EXITCODE_EXCP14 0x004E
140 #define VMCB_EXITCODE_EXCP15 0x004F
141 #define VMCB_EXITCODE_EXCP16 0x0050
142 #define VMCB_EXITCODE_EXCP17 0x0051
143 #define VMCB_EXITCODE_EXCP18 0x0052
144 #define VMCB_EXITCODE_EXCP19 0x0053
145 #define VMCB_EXITCODE_EXCP20 0x0054
146 #define VMCB_EXITCODE_EXCP21 0x0055
147 #define VMCB_EXITCODE_EXCP22 0x0056
148 #define VMCB_EXITCODE_EXCP23 0x0057
149 #define VMCB_EXITCODE_EXCP24 0x0058
150 #define VMCB_EXITCODE_EXCP25 0x0059
151 #define VMCB_EXITCODE_EXCP26 0x005A
152 #define VMCB_EXITCODE_EXCP27 0x005B
153 #define VMCB_EXITCODE_EXCP28 0x005C
154 #define VMCB_EXITCODE_EXCP29 0x005D
155 #define VMCB_EXITCODE_EXCP30 0x005E
156 #define VMCB_EXITCODE_EXCP31 0x005F
157 #define VMCB_EXITCODE_INTR 0x0060
158 #define VMCB_EXITCODE_NMI 0x0061
159 #define VMCB_EXITCODE_SMI 0x0062
160 #define VMCB_EXITCODE_INIT 0x0063
161 #define VMCB_EXITCODE_VINTR 0x0064
162 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
163 #define VMCB_EXITCODE_IDTR_READ 0x0066
164 #define VMCB_EXITCODE_GDTR_READ 0x0067
165 #define VMCB_EXITCODE_LDTR_READ 0x0068
166 #define VMCB_EXITCODE_TR_READ 0x0069
167 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
168 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
169 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
170 #define VMCB_EXITCODE_TR_WRITE 0x006D
171 #define VMCB_EXITCODE_RDTSC 0x006E
172 #define VMCB_EXITCODE_RDPMC 0x006F
173 #define VMCB_EXITCODE_PUSHF 0x0070
174 #define VMCB_EXITCODE_POPF 0x0071
175 #define VMCB_EXITCODE_CPUID 0x0072
176 #define VMCB_EXITCODE_RSM 0x0073
177 #define VMCB_EXITCODE_IRET 0x0074
178 #define VMCB_EXITCODE_SWINT 0x0075
179 #define VMCB_EXITCODE_INVD 0x0076
180 #define VMCB_EXITCODE_PAUSE 0x0077
181 #define VMCB_EXITCODE_HLT 0x0078
182 #define VMCB_EXITCODE_INVLPG 0x0079
183 #define VMCB_EXITCODE_INVLPGA 0x007A
184 #define VMCB_EXITCODE_IOIO 0x007B
185 #define VMCB_EXITCODE_MSR 0x007C
186 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
187 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
188 #define VMCB_EXITCODE_SHUTDOWN 0x007F
189 #define VMCB_EXITCODE_VMRUN 0x0080
190 #define VMCB_EXITCODE_VMMCALL 0x0081
191 #define VMCB_EXITCODE_VMLOAD 0x0082
192 #define VMCB_EXITCODE_VMSAVE 0x0083
193 #define VMCB_EXITCODE_STGI 0x0084
194 #define VMCB_EXITCODE_CLGI 0x0085
195 #define VMCB_EXITCODE_SKINIT 0x0086
196 #define VMCB_EXITCODE_RDTSCP 0x0087
197 #define VMCB_EXITCODE_ICEBP 0x0088
198 #define VMCB_EXITCODE_WBINVD 0x0089
199 #define VMCB_EXITCODE_MONITOR 0x008A
200 #define VMCB_EXITCODE_MWAIT 0x008B
201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
202 #define VMCB_EXITCODE_XSETBV 0x008D
203 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
204 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
205 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
206 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
207 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
208 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
209 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
210 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
211 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
212 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
213 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
214 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
215 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
216 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
217 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
218 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
219 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
220 #define VMCB_EXITCODE_NPF 0x0400
221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
222 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
223 #define VMCB_EXITCODE_VMGEXIT 0x0403
224 #define VMCB_EXITCODE_INVALID -1
225
226 /* -------------------------------------------------------------------------- */
227
228 struct vmcb_ctrl {
229 uint32_t intercept_cr;
230 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
231 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
232
233 uint32_t intercept_dr;
234 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
236
237 uint32_t intercept_vec;
238 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
239
240 uint32_t intercept_misc1;
241 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
242 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
243 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
244 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
245 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
247 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
248 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
249 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
250 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
251 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
252 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
253 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
254 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
255 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
256 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
257 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
258 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
259 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
260 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
261 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
262 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
263 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
264 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
265 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
266 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
267 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
269 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
270 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
273
274 uint32_t intercept_misc2;
275 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
276 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
277 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
278 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
279 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
280 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
281 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
282 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
283 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
284 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
285 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
286 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
287 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
290
291 uint8_t rsvd1[40];
292 uint16_t pause_filt_thresh;
293 uint16_t pause_filt_cnt;
294 uint64_t iopm_base_pa;
295 uint64_t msrpm_base_pa;
296 uint64_t tsc_offset;
297 uint32_t guest_asid;
298
299 uint32_t tlb_ctrl;
300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
303
304 uint64_t v;
305 #define VMCB_CTRL_V_TPR __BITS(7,0)
306 #define VMCB_CTRL_V_IRQ __BIT(8)
307 #define VMCB_CTRL_V_VGIF __BIT(9)
308 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
309 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
310 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
311 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
312 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
313 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
314
315 uint64_t intr;
316 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
317
318 uint64_t exitcode;
319 uint64_t exitinfo1;
320 uint64_t exitinfo2;
321
322 uint64_t exitintinfo;
323 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
324 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
325 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
326 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
327 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
328
329 uint64_t enable1;
330 #define VMCB_CTRL_ENABLE_NP __BIT(0)
331 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
332 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
333
334 uint64_t avic;
335 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
336
337 uint64_t ghcb;
338
339 uint64_t eventinj;
340 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
341 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
342 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
343 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
344 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
345
346 uint64_t n_cr3;
347
348 uint64_t enable2;
349 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
350 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
351
352 uint32_t vmcb_clean;
353 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
354 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
355 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
356 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
357 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
358 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
359 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
360 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
361 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
362 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
363 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
364 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
365
366 uint32_t rsvd2;
367 uint64_t nrip;
368 uint8_t inst_len;
369 uint8_t inst_bytes[15];
370 uint64_t avic_abpp;
371 uint64_t rsvd3;
372 uint64_t avic_ltp;
373
374 uint64_t avic_phys;
375 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
376 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
377
378 uint64_t rsvd4;
379 uint64_t vmcb_ptr;
380
381 uint8_t pad[752];
382 } __packed;
383
384 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
385
386 struct vmcb_segment {
387 uint16_t selector;
388 uint16_t attrib; /* hidden */
389 uint32_t limit; /* hidden */
390 uint64_t base; /* hidden */
391 } __packed;
392
393 CTASSERT(sizeof(struct vmcb_segment) == 16);
394
395 struct vmcb_state {
396 struct vmcb_segment es;
397 struct vmcb_segment cs;
398 struct vmcb_segment ss;
399 struct vmcb_segment ds;
400 struct vmcb_segment fs;
401 struct vmcb_segment gs;
402 struct vmcb_segment gdt;
403 struct vmcb_segment ldt;
404 struct vmcb_segment idt;
405 struct vmcb_segment tr;
406 uint8_t rsvd1[43];
407 uint8_t cpl;
408 uint8_t rsvd2[4];
409 uint64_t efer;
410 uint8_t rsvd3[112];
411 uint64_t cr4;
412 uint64_t cr3;
413 uint64_t cr0;
414 uint64_t dr7;
415 uint64_t dr6;
416 uint64_t rflags;
417 uint64_t rip;
418 uint8_t rsvd4[88];
419 uint64_t rsp;
420 uint8_t rsvd5[24];
421 uint64_t rax;
422 uint64_t star;
423 uint64_t lstar;
424 uint64_t cstar;
425 uint64_t sfmask;
426 uint64_t kernelgsbase;
427 uint64_t sysenter_cs;
428 uint64_t sysenter_esp;
429 uint64_t sysenter_eip;
430 uint64_t cr2;
431 uint8_t rsvd6[32];
432 uint64_t g_pat;
433 uint64_t dbgctl;
434 uint64_t br_from;
435 uint64_t br_to;
436 uint64_t int_from;
437 uint64_t int_to;
438 uint8_t pad[2408];
439 } __packed;
440
441 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
442
443 struct vmcb {
444 struct vmcb_ctrl ctrl;
445 struct vmcb_state state;
446 } __packed;
447
448 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
449 CTASSERT(offsetof(struct vmcb, state) == 0x400);
450
451 /* -------------------------------------------------------------------------- */
452
453 struct svm_hsave {
454 paddr_t pa;
455 };
456
457 static struct svm_hsave hsave[MAXCPUS];
458
459 static uint8_t *svm_asidmap __read_mostly;
460 static uint32_t svm_maxasid __read_mostly;
461 static kmutex_t svm_asidlock __cacheline_aligned;
462
463 static bool svm_decode_assist __read_mostly;
464 static uint32_t svm_ctrl_tlb_flush __read_mostly;
465
466 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
467 static uint64_t svm_xcr0_mask __read_mostly;
468
469 #define SVM_NCPUIDS 32
470
471 #define VMCB_NPAGES 1
472
473 #define MSRBM_NPAGES 2
474 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
475
476 #define IOBM_NPAGES 3
477 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
478
479 /* Does not include EFER_LMSLE. */
480 #define EFER_VALID \
481 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
482
483 #define EFER_TLB_FLUSH \
484 (EFER_NXE|EFER_LMA|EFER_LME)
485 #define CR0_TLB_FLUSH \
486 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
487 #define CR4_TLB_FLUSH \
488 (CR4_PGE|CR4_PAE|CR4_PSE)
489
490 /* -------------------------------------------------------------------------- */
491
492 struct svm_machdata {
493 bool cpuidpresent[SVM_NCPUIDS];
494 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
495 };
496
497 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
498 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
499 };
500
501 struct svm_cpudata {
502 /* General */
503 bool shared_asid;
504 bool tlb_want_flush;
505
506 /* VMCB */
507 struct vmcb *vmcb;
508 paddr_t vmcb_pa;
509
510 /* I/O bitmap */
511 uint8_t *iobm;
512 paddr_t iobm_pa;
513
514 /* MSR bitmap */
515 uint8_t *msrbm;
516 paddr_t msrbm_pa;
517
518 /* Host state */
519 uint64_t hxcr0;
520 uint64_t star;
521 uint64_t lstar;
522 uint64_t cstar;
523 uint64_t sfmask;
524 uint64_t fsbase;
525 uint64_t kernelgsbase;
526 bool ts_set;
527 struct xsave_header hfpu __aligned(64);
528
529 /* Event state */
530 bool int_window_exit;
531 bool nmi_window_exit;
532
533 /* Guest state */
534 uint64_t gxcr0;
535 uint64_t gprs[NVMM_X64_NGPR];
536 uint64_t drs[NVMM_X64_NDR];
537 uint64_t tsc_offset;
538 struct xsave_header gfpu __aligned(64);
539 };
540
541 static void
542 svm_vmcb_cache_default(struct vmcb *vmcb)
543 {
544 vmcb->ctrl.vmcb_clean =
545 VMCB_CTRL_VMCB_CLEAN_I |
546 VMCB_CTRL_VMCB_CLEAN_IOPM |
547 VMCB_CTRL_VMCB_CLEAN_ASID |
548 VMCB_CTRL_VMCB_CLEAN_TPR |
549 VMCB_CTRL_VMCB_CLEAN_NP |
550 VMCB_CTRL_VMCB_CLEAN_CR |
551 VMCB_CTRL_VMCB_CLEAN_DR |
552 VMCB_CTRL_VMCB_CLEAN_DT |
553 VMCB_CTRL_VMCB_CLEAN_SEG |
554 VMCB_CTRL_VMCB_CLEAN_CR2 |
555 VMCB_CTRL_VMCB_CLEAN_LBR |
556 VMCB_CTRL_VMCB_CLEAN_AVIC;
557 }
558
559 static void
560 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
561 {
562 if (flags & NVMM_X64_STATE_SEGS) {
563 vmcb->ctrl.vmcb_clean &=
564 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
565 }
566 if (flags & NVMM_X64_STATE_CRS) {
567 vmcb->ctrl.vmcb_clean &=
568 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
569 VMCB_CTRL_VMCB_CLEAN_TPR);
570 }
571 if (flags & NVMM_X64_STATE_DRS) {
572 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
573 }
574 if (flags & NVMM_X64_STATE_MSRS) {
575 /* CR for EFER, NP for PAT. */
576 vmcb->ctrl.vmcb_clean &=
577 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
578 }
579 if (flags & NVMM_X64_STATE_MISC) {
580 /* SEG for CPL. */
581 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_SEG;
582 }
583 }
584
585 static inline void
586 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
587 {
588 vmcb->ctrl.vmcb_clean &= ~flags;
589 }
590
591 static inline void
592 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
593 {
594 vmcb->ctrl.vmcb_clean = 0;
595 }
596
597 #define SVM_EVENT_TYPE_HW_INT 0
598 #define SVM_EVENT_TYPE_NMI 2
599 #define SVM_EVENT_TYPE_EXC 3
600 #define SVM_EVENT_TYPE_SW_INT 4
601
602 static void
603 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
604 {
605 struct svm_cpudata *cpudata = vcpu->cpudata;
606 struct vmcb *vmcb = cpudata->vmcb;
607
608 if (nmi) {
609 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
610 cpudata->nmi_window_exit = true;
611 } else {
612 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
613 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
614 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
615 cpudata->int_window_exit = true;
616 }
617
618 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
619 }
620
621 static void
622 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = false;
630 } else {
631 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = false;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static inline int
641 svm_event_has_error(uint64_t vector)
642 {
643 switch (vector) {
644 case 8: /* #DF */
645 case 10: /* #TS */
646 case 11: /* #NP */
647 case 12: /* #SS */
648 case 13: /* #GP */
649 case 14: /* #PF */
650 case 17: /* #AC */
651 case 30: /* #SX */
652 return 1;
653 default:
654 return 0;
655 }
656 }
657
658 static int
659 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
660 struct nvmm_event *event)
661 {
662 struct svm_cpudata *cpudata = vcpu->cpudata;
663 struct vmcb *vmcb = cpudata->vmcb;
664 int type = 0, err = 0;
665
666 if (event->vector >= 256) {
667 return EINVAL;
668 }
669
670 switch (event->type) {
671 case NVMM_EVENT_INTERRUPT_HW:
672 type = SVM_EVENT_TYPE_HW_INT;
673 if (event->vector == 2) {
674 type = SVM_EVENT_TYPE_NMI;
675 }
676 if (type == SVM_EVENT_TYPE_NMI) {
677 if (cpudata->nmi_window_exit) {
678 return EAGAIN;
679 }
680 svm_event_waitexit_enable(vcpu, true);
681 } else {
682 if (((vmcb->state.rflags & PSL_I) == 0) ||
683 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
684 svm_event_waitexit_enable(vcpu, false);
685 return EAGAIN;
686 }
687 }
688 err = 0;
689 break;
690 case NVMM_EVENT_INTERRUPT_SW:
691 type = SVM_EVENT_TYPE_SW_INT;
692 err = 0;
693 break;
694 case NVMM_EVENT_EXCEPTION:
695 type = SVM_EVENT_TYPE_EXC;
696 if (event->vector == 2 || event->vector >= 32)
697 return EINVAL;
698 err = svm_event_has_error(event->vector);
699 break;
700 default:
701 return EINVAL;
702 }
703
704 vmcb->ctrl.eventinj =
705 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
706 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
707 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
708 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
709 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
710
711 return 0;
712 }
713
714 static void
715 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
716 {
717 struct nvmm_event event;
718 int ret __diagused;
719
720 event.type = NVMM_EVENT_EXCEPTION;
721 event.vector = 6;
722 event.u.error = 0;
723
724 ret = svm_vcpu_inject(mach, vcpu, &event);
725 KASSERT(ret == 0);
726 }
727
728 static void
729 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
730 {
731 struct nvmm_event event;
732 int ret __diagused;
733
734 event.type = NVMM_EVENT_EXCEPTION;
735 event.vector = 13;
736 event.u.error = 0;
737
738 ret = svm_vcpu_inject(mach, vcpu, &event);
739 KASSERT(ret == 0);
740 }
741
742 static inline void
743 svm_inkernel_advance(struct vmcb *vmcb)
744 {
745 /*
746 * Maybe we should also apply single-stepping and debug exceptions.
747 * Matters for guest-ring3, because it can execute 'cpuid' under a
748 * debugger.
749 */
750 vmcb->state.rip = vmcb->ctrl.nrip;
751 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
752 }
753
754 static void
755 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
756 {
757 struct svm_cpudata *cpudata = vcpu->cpudata;
758
759 switch (eax) {
760 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
761 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
762 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
763 CPUID_LOCAL_APIC_ID);
764 break;
765 case 0x0000000D: /* FPU description. Not tunable. */
766 if (ecx != 0 || svm_xcr0_mask == 0) {
767 break;
768 }
769 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
770 if (cpudata->gxcr0 & XCR0_SSE) {
771 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
772 } else {
773 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
774 }
775 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
776 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
777 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
778 break;
779 case 0x40000000:
780 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
781 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
782 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
783 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
784 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
785 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
786 break;
787 case 0x80000001: /* No SVM, no RDTSCP. The rest is tunable. */
788 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
789 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
790 break;
791 default:
792 break;
793 }
794 }
795
796 static void
797 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
798 struct nvmm_exit *exit)
799 {
800 struct svm_machdata *machdata = mach->machdata;
801 struct svm_cpudata *cpudata = vcpu->cpudata;
802 struct nvmm_x86_conf_cpuid *cpuid;
803 uint64_t eax, ecx;
804 u_int descs[4];
805 size_t i;
806
807 eax = cpudata->vmcb->state.rax;
808 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
809 x86_cpuid2(eax, ecx, descs);
810
811 cpudata->vmcb->state.rax = descs[0];
812 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
813 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
814 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
815
816 for (i = 0; i < SVM_NCPUIDS; i++) {
817 cpuid = &machdata->cpuid[i];
818 if (!machdata->cpuidpresent[i]) {
819 continue;
820 }
821 if (cpuid->leaf != eax) {
822 continue;
823 }
824
825 /* del */
826 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
827 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
828 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
829 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
830
831 /* set */
832 cpudata->vmcb->state.rax |= cpuid->set.eax;
833 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
834 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
835 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
836
837 break;
838 }
839
840 /* Overwrite non-tunable leaves. */
841 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
842
843 svm_inkernel_advance(cpudata->vmcb);
844 exit->reason = NVMM_EXIT_NONE;
845 }
846
847 static void
848 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
849 struct nvmm_exit *exit)
850 {
851 struct svm_cpudata *cpudata = vcpu->cpudata;
852 struct vmcb *vmcb = cpudata->vmcb;
853
854 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
855 svm_event_waitexit_disable(vcpu, false);
856 }
857
858 svm_inkernel_advance(cpudata->vmcb);
859 exit->reason = NVMM_EXIT_HALTED;
860 }
861
862 #define SVM_EXIT_IO_PORT __BITS(31,16)
863 #define SVM_EXIT_IO_SEG __BITS(12,10)
864 #define SVM_EXIT_IO_A64 __BIT(9)
865 #define SVM_EXIT_IO_A32 __BIT(8)
866 #define SVM_EXIT_IO_A16 __BIT(7)
867 #define SVM_EXIT_IO_SZ32 __BIT(6)
868 #define SVM_EXIT_IO_SZ16 __BIT(5)
869 #define SVM_EXIT_IO_SZ8 __BIT(4)
870 #define SVM_EXIT_IO_REP __BIT(3)
871 #define SVM_EXIT_IO_STR __BIT(2)
872 #define SVM_EXIT_IO_IN __BIT(0)
873
874 static const int seg_to_nvmm[] = {
875 [0] = NVMM_X64_SEG_ES,
876 [1] = NVMM_X64_SEG_CS,
877 [2] = NVMM_X64_SEG_SS,
878 [3] = NVMM_X64_SEG_DS,
879 [4] = NVMM_X64_SEG_FS,
880 [5] = NVMM_X64_SEG_GS
881 };
882
883 static void
884 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
885 struct nvmm_exit *exit)
886 {
887 struct svm_cpudata *cpudata = vcpu->cpudata;
888 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
889 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
890
891 exit->reason = NVMM_EXIT_IO;
892
893 if (info & SVM_EXIT_IO_IN) {
894 exit->u.io.type = NVMM_EXIT_IO_IN;
895 } else {
896 exit->u.io.type = NVMM_EXIT_IO_OUT;
897 }
898
899 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
900
901 if (svm_decode_assist) {
902 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
903 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
904 } else {
905 exit->u.io.seg = -1;
906 }
907
908 if (info & SVM_EXIT_IO_A64) {
909 exit->u.io.address_size = 8;
910 } else if (info & SVM_EXIT_IO_A32) {
911 exit->u.io.address_size = 4;
912 } else if (info & SVM_EXIT_IO_A16) {
913 exit->u.io.address_size = 2;
914 }
915
916 if (info & SVM_EXIT_IO_SZ32) {
917 exit->u.io.operand_size = 4;
918 } else if (info & SVM_EXIT_IO_SZ16) {
919 exit->u.io.operand_size = 2;
920 } else if (info & SVM_EXIT_IO_SZ8) {
921 exit->u.io.operand_size = 1;
922 }
923
924 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
925 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
926 exit->u.io.npc = nextpc;
927 }
928
929 static const uint64_t msr_ignore_list[] = {
930 0xc0010055, /* MSR_CMPHALT */
931 MSR_DE_CFG,
932 MSR_IC_CFG,
933 MSR_UCODE_AMD_PATCHLEVEL
934 };
935
936 static bool
937 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
938 struct nvmm_exit *exit)
939 {
940 struct svm_cpudata *cpudata = vcpu->cpudata;
941 struct vmcb *vmcb = cpudata->vmcb;
942 uint64_t val;
943 size_t i;
944
945 switch (exit->u.msr.type) {
946 case NVMM_EXIT_MSR_RDMSR:
947 if (exit->u.msr.msr == MSR_NB_CFG) {
948 val = NB_CFG_INITAPICCPUIDLO;
949 vmcb->state.rax = (val & 0xFFFFFFFF);
950 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
951 goto handled;
952 }
953 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
954 if (msr_ignore_list[i] != exit->u.msr.msr)
955 continue;
956 val = 0;
957 vmcb->state.rax = (val & 0xFFFFFFFF);
958 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
959 goto handled;
960 }
961 break;
962 case NVMM_EXIT_MSR_WRMSR:
963 if (exit->u.msr.msr == MSR_EFER) {
964 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
965 goto error;
966 }
967 if ((vmcb->state.efer ^ exit->u.msr.val) &
968 EFER_TLB_FLUSH) {
969 cpudata->tlb_want_flush = true;
970 }
971 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
972 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_CR;
973 goto handled;
974 }
975 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
976 if (msr_ignore_list[i] != exit->u.msr.msr)
977 continue;
978 goto handled;
979 }
980 break;
981 }
982
983 return false;
984
985 handled:
986 svm_inkernel_advance(cpudata->vmcb);
987 return true;
988
989 error:
990 svm_inject_gp(mach, vcpu);
991 return true;
992 }
993
994 static void
995 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
996 struct nvmm_exit *exit)
997 {
998 struct svm_cpudata *cpudata = vcpu->cpudata;
999 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1000
1001 if (info == 0) {
1002 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1003 } else {
1004 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1005 }
1006
1007 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1008
1009 if (info == 1) {
1010 uint64_t rdx, rax;
1011 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1012 rax = cpudata->vmcb->state.rax;
1013 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1014 } else {
1015 exit->u.msr.val = 0;
1016 }
1017
1018 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1019 exit->reason = NVMM_EXIT_NONE;
1020 return;
1021 }
1022
1023 exit->reason = NVMM_EXIT_MSR;
1024 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1025 }
1026
1027 static void
1028 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1029 struct nvmm_exit *exit)
1030 {
1031 struct svm_cpudata *cpudata = vcpu->cpudata;
1032 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1033 int error;
1034
1035 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
1036
1037 if (error) {
1038 exit->reason = NVMM_EXIT_MEMORY;
1039 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1040 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1041 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1042 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1043 else
1044 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1045 exit->u.mem.gpa = gpa;
1046 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1047 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1048 sizeof(exit->u.mem.inst_bytes));
1049 } else {
1050 exit->reason = NVMM_EXIT_NONE;
1051 }
1052 }
1053
1054 static void
1055 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1056 {
1057 exit->u.insn.npc = vmcb->ctrl.nrip;
1058 exit->reason = reason;
1059 }
1060
1061 static void
1062 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1063 struct nvmm_exit *exit)
1064 {
1065 struct svm_cpudata *cpudata = vcpu->cpudata;
1066 struct vmcb *vmcb = cpudata->vmcb;
1067 uint64_t val;
1068
1069 exit->reason = NVMM_EXIT_NONE;
1070
1071 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1072 (vmcb->state.rax & 0xFFFFFFFF);
1073
1074 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1075 goto error;
1076 } else if (__predict_false(vmcb->state.cpl != 0)) {
1077 goto error;
1078 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1079 goto error;
1080 } else if (__predict_false((val & XCR0_X87) == 0)) {
1081 goto error;
1082 }
1083
1084 cpudata->gxcr0 = val;
1085
1086 svm_inkernel_advance(cpudata->vmcb);
1087 return;
1088
1089 error:
1090 svm_inject_gp(mach, vcpu);
1091 }
1092
1093 static void
1094 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1095 {
1096 struct svm_cpudata *cpudata = vcpu->cpudata;
1097
1098 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1099
1100 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1101 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1102
1103 if (svm_xcr0_mask != 0) {
1104 cpudata->hxcr0 = rdxcr(0);
1105 wrxcr(0, cpudata->gxcr0);
1106 }
1107 }
1108
1109 static void
1110 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1111 {
1112 struct svm_cpudata *cpudata = vcpu->cpudata;
1113
1114 if (svm_xcr0_mask != 0) {
1115 cpudata->gxcr0 = rdxcr(0);
1116 wrxcr(0, cpudata->hxcr0);
1117 }
1118
1119 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1120 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1121
1122 if (cpudata->ts_set) {
1123 stts();
1124 }
1125 }
1126
1127 static void
1128 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1129 {
1130 struct svm_cpudata *cpudata = vcpu->cpudata;
1131
1132 x86_dbregs_save(curlwp);
1133
1134 ldr7(0);
1135
1136 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1137 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1138 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1139 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1140 }
1141
1142 static void
1143 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1144 {
1145 struct svm_cpudata *cpudata = vcpu->cpudata;
1146
1147 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1148 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1149 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1150 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1151
1152 x86_dbregs_restore(curlwp);
1153 }
1154
1155 static void
1156 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1157 {
1158 struct svm_cpudata *cpudata = vcpu->cpudata;
1159
1160 cpudata->star = rdmsr(MSR_STAR);
1161 cpudata->lstar = rdmsr(MSR_LSTAR);
1162 cpudata->cstar = rdmsr(MSR_CSTAR);
1163 cpudata->sfmask = rdmsr(MSR_SFMASK);
1164 cpudata->fsbase = rdmsr(MSR_FSBASE);
1165 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1166 }
1167
1168 static void
1169 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1170 {
1171 struct svm_cpudata *cpudata = vcpu->cpudata;
1172
1173 wrmsr(MSR_STAR, cpudata->star);
1174 wrmsr(MSR_LSTAR, cpudata->lstar);
1175 wrmsr(MSR_CSTAR, cpudata->cstar);
1176 wrmsr(MSR_SFMASK, cpudata->sfmask);
1177 wrmsr(MSR_FSBASE, cpudata->fsbase);
1178 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1179 }
1180
1181 static int
1182 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1183 struct nvmm_exit *exit)
1184 {
1185 struct svm_cpudata *cpudata = vcpu->cpudata;
1186 struct vmcb *vmcb = cpudata->vmcb;
1187 bool tlb_need_flush = false;
1188 int hcpu, s;
1189
1190 kpreempt_disable();
1191 hcpu = cpu_number();
1192
1193 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1194 tlb_need_flush = true;
1195 }
1196
1197 if (cpudata->tlb_want_flush || tlb_need_flush) {
1198 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1199 } else {
1200 vmcb->ctrl.tlb_ctrl = 0;
1201 }
1202
1203 if (vcpu->hcpu_last != hcpu) {
1204 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1205 curcpu()->ci_data.cpu_cc_skew;
1206 svm_vmcb_cache_flush_all(vmcb);
1207 }
1208
1209 svm_vcpu_guest_dbregs_enter(vcpu);
1210 svm_vcpu_guest_misc_enter(vcpu);
1211
1212 while (1) {
1213 s = splhigh();
1214 svm_vcpu_guest_fpu_enter(vcpu);
1215 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1216 svm_vcpu_guest_fpu_leave(vcpu);
1217 splx(s);
1218
1219 svm_vmcb_cache_default(vmcb);
1220
1221 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1222 if (cpudata->tlb_want_flush) {
1223 cpudata->tlb_want_flush = false;
1224 }
1225 vcpu->hcpu_last = hcpu;
1226 }
1227
1228 switch (vmcb->ctrl.exitcode) {
1229 case VMCB_EXITCODE_INTR:
1230 case VMCB_EXITCODE_NMI:
1231 exit->reason = NVMM_EXIT_NONE;
1232 break;
1233 case VMCB_EXITCODE_VINTR:
1234 svm_event_waitexit_disable(vcpu, false);
1235 exit->reason = NVMM_EXIT_INT_READY;
1236 break;
1237 case VMCB_EXITCODE_IRET:
1238 svm_event_waitexit_disable(vcpu, true);
1239 exit->reason = NVMM_EXIT_NMI_READY;
1240 break;
1241 case VMCB_EXITCODE_CPUID:
1242 svm_exit_cpuid(mach, vcpu, exit);
1243 break;
1244 case VMCB_EXITCODE_HLT:
1245 svm_exit_hlt(mach, vcpu, exit);
1246 break;
1247 case VMCB_EXITCODE_IOIO:
1248 svm_exit_io(mach, vcpu, exit);
1249 break;
1250 case VMCB_EXITCODE_MSR:
1251 svm_exit_msr(mach, vcpu, exit);
1252 break;
1253 case VMCB_EXITCODE_SHUTDOWN:
1254 exit->reason = NVMM_EXIT_SHUTDOWN;
1255 break;
1256 case VMCB_EXITCODE_RDPMC:
1257 case VMCB_EXITCODE_RSM:
1258 case VMCB_EXITCODE_INVLPGA:
1259 case VMCB_EXITCODE_VMRUN:
1260 case VMCB_EXITCODE_VMMCALL:
1261 case VMCB_EXITCODE_VMLOAD:
1262 case VMCB_EXITCODE_VMSAVE:
1263 case VMCB_EXITCODE_STGI:
1264 case VMCB_EXITCODE_CLGI:
1265 case VMCB_EXITCODE_SKINIT:
1266 case VMCB_EXITCODE_RDTSCP:
1267 svm_inject_ud(mach, vcpu);
1268 exit->reason = NVMM_EXIT_NONE;
1269 break;
1270 case VMCB_EXITCODE_MONITOR:
1271 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1272 break;
1273 case VMCB_EXITCODE_MWAIT:
1274 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1275 break;
1276 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1277 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1278 break;
1279 case VMCB_EXITCODE_XSETBV:
1280 svm_exit_xsetbv(mach, vcpu, exit);
1281 break;
1282 case VMCB_EXITCODE_NPF:
1283 svm_exit_npf(mach, vcpu, exit);
1284 break;
1285 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1286 default:
1287 exit->reason = NVMM_EXIT_INVALID;
1288 break;
1289 }
1290
1291 /* If no reason to return to userland, keep rolling. */
1292 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1293 break;
1294 }
1295 if (curcpu()->ci_data.cpu_softints != 0) {
1296 break;
1297 }
1298 if (curlwp->l_flag & LW_USERRET) {
1299 break;
1300 }
1301 if (exit->reason != NVMM_EXIT_NONE) {
1302 break;
1303 }
1304 }
1305
1306 svm_vcpu_guest_misc_leave(vcpu);
1307 svm_vcpu_guest_dbregs_leave(vcpu);
1308
1309 kpreempt_enable();
1310
1311 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1312 VMCB_CTRL_V_TPR);
1313 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1314
1315 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1316 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1317 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1318 cpudata->int_window_exit;
1319 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1320 cpudata->nmi_window_exit;
1321
1322 return 0;
1323 }
1324
1325 /* -------------------------------------------------------------------------- */
1326
1327 static int
1328 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1329 {
1330 struct pglist pglist;
1331 paddr_t _pa;
1332 vaddr_t _va;
1333 size_t i;
1334 int ret;
1335
1336 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1337 &pglist, 1, 0);
1338 if (ret != 0)
1339 return ENOMEM;
1340 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1341 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1342 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1343 if (_va == 0)
1344 goto error;
1345
1346 for (i = 0; i < npages; i++) {
1347 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1348 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1349 }
1350 pmap_update(pmap_kernel());
1351
1352 memset((void *)_va, 0, npages * PAGE_SIZE);
1353
1354 *pa = _pa;
1355 *va = _va;
1356 return 0;
1357
1358 error:
1359 for (i = 0; i < npages; i++) {
1360 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1361 }
1362 return ENOMEM;
1363 }
1364
1365 static void
1366 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1367 {
1368 size_t i;
1369
1370 pmap_kremove(va, npages * PAGE_SIZE);
1371 pmap_update(pmap_kernel());
1372 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1373 for (i = 0; i < npages; i++) {
1374 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1375 }
1376 }
1377
1378 /* -------------------------------------------------------------------------- */
1379
1380 #define SVM_MSRBM_READ __BIT(0)
1381 #define SVM_MSRBM_WRITE __BIT(1)
1382
1383 static void
1384 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1385 {
1386 uint64_t byte;
1387 uint8_t bitoff;
1388
1389 if (msr < 0x00002000) {
1390 /* Range 1 */
1391 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1392 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1393 /* Range 2 */
1394 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1395 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1396 /* Range 3 */
1397 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1398 } else {
1399 panic("%s: wrong range", __func__);
1400 }
1401
1402 bitoff = (msr & 0x3) << 1;
1403
1404 if (read) {
1405 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1406 }
1407 if (write) {
1408 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1409 }
1410 }
1411
1412 static void
1413 svm_asid_alloc(struct nvmm_cpu *vcpu)
1414 {
1415 struct svm_cpudata *cpudata = vcpu->cpudata;
1416 struct vmcb *vmcb = cpudata->vmcb;
1417 size_t i, oct, bit;
1418
1419 mutex_enter(&svm_asidlock);
1420
1421 for (i = 0; i < svm_maxasid; i++) {
1422 oct = i / 8;
1423 bit = i % 8;
1424
1425 if (svm_asidmap[oct] & __BIT(bit)) {
1426 continue;
1427 }
1428
1429 svm_asidmap[oct] |= __BIT(bit);
1430 vmcb->ctrl.guest_asid = i;
1431 mutex_exit(&svm_asidlock);
1432 return;
1433 }
1434
1435 /*
1436 * No free ASID. Use the last one, which is shared and requires
1437 * special TLB handling.
1438 */
1439 cpudata->shared_asid = true;
1440 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1441 mutex_exit(&svm_asidlock);
1442 }
1443
1444 static void
1445 svm_asid_free(struct nvmm_cpu *vcpu)
1446 {
1447 struct svm_cpudata *cpudata = vcpu->cpudata;
1448 struct vmcb *vmcb = cpudata->vmcb;
1449 size_t oct, bit;
1450
1451 if (cpudata->shared_asid) {
1452 return;
1453 }
1454
1455 oct = vmcb->ctrl.guest_asid / 8;
1456 bit = vmcb->ctrl.guest_asid % 8;
1457
1458 mutex_enter(&svm_asidlock);
1459 svm_asidmap[oct] &= ~__BIT(bit);
1460 mutex_exit(&svm_asidlock);
1461 }
1462
1463 static void
1464 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1465 {
1466 struct svm_cpudata *cpudata = vcpu->cpudata;
1467 struct vmcb *vmcb = cpudata->vmcb;
1468
1469 /* Allow reads/writes of Control Registers. */
1470 vmcb->ctrl.intercept_cr = 0;
1471
1472 /* Allow reads/writes of Debug Registers. */
1473 vmcb->ctrl.intercept_dr = 0;
1474
1475 /* Allow exceptions 0 to 31. */
1476 vmcb->ctrl.intercept_vec = 0;
1477
1478 /*
1479 * Allow:
1480 * - SMI [smm interrupts]
1481 * - VINTR [virtual interrupts]
1482 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1483 * - RIDTR [reads of IDTR]
1484 * - RGDTR [reads of GDTR]
1485 * - RLDTR [reads of LDTR]
1486 * - RTR [reads of TR]
1487 * - WIDTR [writes of IDTR]
1488 * - WGDTR [writes of GDTR]
1489 * - WLDTR [writes of LDTR]
1490 * - WTR [writes of TR]
1491 * - RDTSC [rdtsc instruction]
1492 * - PUSHF [pushf instruction]
1493 * - POPF [popf instruction]
1494 * - IRET [iret instruction]
1495 * - INTN [int $n instructions]
1496 * - INVD [invd instruction]
1497 * - PAUSE [pause instruction]
1498 * - INVLPG [invplg instruction]
1499 * - TASKSW [task switches]
1500 *
1501 * Intercept the rest below.
1502 */
1503 vmcb->ctrl.intercept_misc1 =
1504 VMCB_CTRL_INTERCEPT_INTR |
1505 VMCB_CTRL_INTERCEPT_NMI |
1506 VMCB_CTRL_INTERCEPT_INIT |
1507 VMCB_CTRL_INTERCEPT_RDPMC |
1508 VMCB_CTRL_INTERCEPT_CPUID |
1509 VMCB_CTRL_INTERCEPT_RSM |
1510 VMCB_CTRL_INTERCEPT_HLT |
1511 VMCB_CTRL_INTERCEPT_INVLPGA |
1512 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1513 VMCB_CTRL_INTERCEPT_MSR_PROT |
1514 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1515 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1516
1517 /*
1518 * Allow:
1519 * - ICEBP [icebp instruction]
1520 * - WBINVD [wbinvd instruction]
1521 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1522 *
1523 * Intercept the rest below.
1524 */
1525 vmcb->ctrl.intercept_misc2 =
1526 VMCB_CTRL_INTERCEPT_VMRUN |
1527 VMCB_CTRL_INTERCEPT_VMMCALL |
1528 VMCB_CTRL_INTERCEPT_VMLOAD |
1529 VMCB_CTRL_INTERCEPT_VMSAVE |
1530 VMCB_CTRL_INTERCEPT_STGI |
1531 VMCB_CTRL_INTERCEPT_CLGI |
1532 VMCB_CTRL_INTERCEPT_SKINIT |
1533 VMCB_CTRL_INTERCEPT_RDTSCP |
1534 VMCB_CTRL_INTERCEPT_MONITOR |
1535 VMCB_CTRL_INTERCEPT_MWAIT |
1536 VMCB_CTRL_INTERCEPT_XSETBV;
1537
1538 /* Intercept all I/O accesses. */
1539 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1540 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1541
1542 /*
1543 * Allow:
1544 * - EFER [read]
1545 * - STAR [read, write]
1546 * - LSTAR [read, write]
1547 * - CSTAR [read, write]
1548 * - SFMASK [read, write]
1549 * - KERNELGSBASE [read, write]
1550 * - SYSENTER_CS [read, write]
1551 * - SYSENTER_ESP [read, write]
1552 * - SYSENTER_EIP [read, write]
1553 * - FSBASE [read, write]
1554 * - GSBASE [read, write]
1555 * - PAT [read, write]
1556 * - TSC [read]
1557 *
1558 * Intercept the rest.
1559 */
1560 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1561 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1562 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1563 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1564 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1565 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1566 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1567 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1568 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1569 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1570 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1571 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1572 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1573 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1574 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1575
1576 /* Generate ASID. */
1577 svm_asid_alloc(vcpu);
1578
1579 /* Virtual TPR. */
1580 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1581
1582 /* Enable Nested Paging. */
1583 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1584 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1585
1586 /* Must always be set. */
1587 vmcb->state.efer = EFER_SVME;
1588 cpudata->gxcr0 = XCR0_X87;
1589
1590 /* Init XSAVE header. */
1591 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1592 cpudata->gfpu.xsh_xcomp_bv = 0;
1593
1594 /* Bluntly hide the host TSC. */
1595 cpudata->tsc_offset = rdtsc();
1596 }
1597
1598 static int
1599 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1600 {
1601 struct svm_cpudata *cpudata;
1602 int error;
1603
1604 /* Allocate the SVM cpudata. */
1605 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1606 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1607 UVM_KMF_WIRED|UVM_KMF_ZERO);
1608 vcpu->cpudata = cpudata;
1609
1610 /* VMCB */
1611 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1612 VMCB_NPAGES);
1613 if (error)
1614 goto error;
1615
1616 /* I/O Bitmap */
1617 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1618 IOBM_NPAGES);
1619 if (error)
1620 goto error;
1621
1622 /* MSR Bitmap */
1623 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1624 MSRBM_NPAGES);
1625 if (error)
1626 goto error;
1627
1628 /* Init the VCPU info. */
1629 svm_vcpu_init(mach, vcpu);
1630
1631 return 0;
1632
1633 error:
1634 if (cpudata->vmcb_pa) {
1635 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1636 VMCB_NPAGES);
1637 }
1638 if (cpudata->iobm_pa) {
1639 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1640 IOBM_NPAGES);
1641 }
1642 if (cpudata->msrbm_pa) {
1643 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1644 MSRBM_NPAGES);
1645 }
1646 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1647 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1648 return error;
1649 }
1650
1651 static void
1652 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1653 {
1654 struct svm_cpudata *cpudata = vcpu->cpudata;
1655
1656 svm_asid_free(vcpu);
1657
1658 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1659 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1660 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1661
1662 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1663 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1664 }
1665
1666 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1667 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1668 #define SVM_SEG_ATTRIB_P __BIT(7)
1669 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1670 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1671 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1672 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1673
1674 static void
1675 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1676 {
1677 vseg->selector = seg->selector;
1678 vseg->attrib =
1679 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1680 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1681 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1682 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1683 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1684 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1685 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1686 vseg->limit = seg->limit;
1687 vseg->base = seg->base;
1688 }
1689
1690 static void
1691 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1692 {
1693 seg->selector = vseg->selector;
1694 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1695 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1696 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1697 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1698 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1699 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1700 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1701 seg->limit = vseg->limit;
1702 seg->base = vseg->base;
1703 }
1704
1705 static inline bool
1706 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
1707 uint64_t flags)
1708 {
1709 if (flags & NVMM_X64_STATE_CRS) {
1710 if ((vmcb->state.cr0 ^
1711 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1712 return true;
1713 }
1714 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1715 return true;
1716 }
1717 if ((vmcb->state.cr4 ^
1718 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1719 return true;
1720 }
1721 }
1722
1723 if (flags & NVMM_X64_STATE_MSRS) {
1724 if ((vmcb->state.efer ^
1725 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1726 return true;
1727 }
1728 }
1729
1730 return false;
1731 }
1732
1733 static void
1734 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1735 {
1736 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1737 struct svm_cpudata *cpudata = vcpu->cpudata;
1738 struct vmcb *vmcb = cpudata->vmcb;
1739 struct fxsave *fpustate;
1740
1741 if (svm_state_tlb_flush(vmcb, state, flags)) {
1742 cpudata->tlb_want_flush = true;
1743 }
1744
1745 if (flags & NVMM_X64_STATE_SEGS) {
1746 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1747 &vmcb->state.cs);
1748 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1749 &vmcb->state.ds);
1750 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1751 &vmcb->state.es);
1752 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1753 &vmcb->state.fs);
1754 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1755 &vmcb->state.gs);
1756 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1757 &vmcb->state.ss);
1758 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1759 &vmcb->state.gdt);
1760 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1761 &vmcb->state.idt);
1762 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1763 &vmcb->state.ldt);
1764 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1765 &vmcb->state.tr);
1766 }
1767
1768 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1769 if (flags & NVMM_X64_STATE_GPRS) {
1770 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1771
1772 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1773 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1774 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1775 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1776 }
1777
1778 if (flags & NVMM_X64_STATE_CRS) {
1779 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1780 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1781 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1782 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1783
1784 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1785 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1786 VMCB_CTRL_V_TPR);
1787
1788 if (svm_xcr0_mask != 0) {
1789 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1790 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1791 cpudata->gxcr0 &= svm_xcr0_mask;
1792 cpudata->gxcr0 |= XCR0_X87;
1793 }
1794 }
1795
1796 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1797 if (flags & NVMM_X64_STATE_DRS) {
1798 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1799
1800 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1801 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1802 }
1803
1804 if (flags & NVMM_X64_STATE_MSRS) {
1805 /* Bit EFER_SVME is mandatory. */
1806 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1807
1808 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1809 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1810 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1811 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1812 vmcb->state.kernelgsbase =
1813 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1814 vmcb->state.sysenter_cs =
1815 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1816 vmcb->state.sysenter_esp =
1817 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1818 vmcb->state.sysenter_eip =
1819 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1820 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1821 }
1822
1823 if (flags & NVMM_X64_STATE_MISC) {
1824 vmcb->state.cpl = state->misc[NVMM_X64_MISC_CPL];
1825
1826 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1827 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1828 } else {
1829 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1830 }
1831
1832 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1833 svm_event_waitexit_enable(vcpu, false);
1834 } else {
1835 svm_event_waitexit_disable(vcpu, false);
1836 }
1837
1838 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1839 svm_event_waitexit_enable(vcpu, true);
1840 } else {
1841 svm_event_waitexit_disable(vcpu, true);
1842 }
1843 }
1844
1845 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1846 if (flags & NVMM_X64_STATE_FPU) {
1847 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1848 sizeof(state->fpu));
1849
1850 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1851 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1852 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1853
1854 if (svm_xcr0_mask != 0) {
1855 /* Reset XSTATE_BV, to force a reload. */
1856 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1857 }
1858 }
1859
1860 svm_vmcb_cache_update(vmcb, flags);
1861 }
1862
1863 static void
1864 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1865 {
1866 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1867 struct svm_cpudata *cpudata = vcpu->cpudata;
1868 struct vmcb *vmcb = cpudata->vmcb;
1869
1870 if (flags & NVMM_X64_STATE_SEGS) {
1871 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1872 &vmcb->state.cs);
1873 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1874 &vmcb->state.ds);
1875 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1876 &vmcb->state.es);
1877 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1878 &vmcb->state.fs);
1879 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1880 &vmcb->state.gs);
1881 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1882 &vmcb->state.ss);
1883 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1884 &vmcb->state.gdt);
1885 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1886 &vmcb->state.idt);
1887 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1888 &vmcb->state.ldt);
1889 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1890 &vmcb->state.tr);
1891 }
1892
1893 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1894 if (flags & NVMM_X64_STATE_GPRS) {
1895 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1896
1897 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1898 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1899 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1900 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1901 }
1902
1903 if (flags & NVMM_X64_STATE_CRS) {
1904 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1905 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1906 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1907 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1908 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1909 VMCB_CTRL_V_TPR);
1910 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1911 }
1912
1913 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1914 if (flags & NVMM_X64_STATE_DRS) {
1915 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1916
1917 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1918 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1919 }
1920
1921 if (flags & NVMM_X64_STATE_MSRS) {
1922 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1923 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1924 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1925 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1926 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1927 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1928 vmcb->state.kernelgsbase;
1929 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1930 vmcb->state.sysenter_cs;
1931 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1932 vmcb->state.sysenter_esp;
1933 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1934 vmcb->state.sysenter_eip;
1935 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1936
1937 /* Hide SVME. */
1938 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1939 }
1940
1941 if (flags & NVMM_X64_STATE_MISC) {
1942 state->misc[NVMM_X64_MISC_CPL] = vmcb->state.cpl;
1943
1944 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1945 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1946 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1947 cpudata->int_window_exit;
1948 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1949 cpudata->nmi_window_exit;
1950 }
1951
1952 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1953 if (flags & NVMM_X64_STATE_FPU) {
1954 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1955 sizeof(state->fpu));
1956 }
1957 }
1958
1959 /* -------------------------------------------------------------------------- */
1960
1961 static void
1962 svm_tlb_flush(struct pmap *pm)
1963 {
1964 struct nvmm_machine *mach = pm->pm_data;
1965 struct svm_cpudata *cpudata;
1966 struct nvmm_cpu *vcpu;
1967 int error;
1968 size_t i;
1969
1970 /* Request TLB flushes. */
1971 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1972 error = nvmm_vcpu_get(mach, i, &vcpu);
1973 if (error)
1974 continue;
1975 cpudata = vcpu->cpudata;
1976 cpudata->tlb_want_flush = true;
1977 nvmm_vcpu_put(vcpu);
1978 }
1979 }
1980
1981 static void
1982 svm_machine_create(struct nvmm_machine *mach)
1983 {
1984 /* Fill in pmap info. */
1985 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1986 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1987
1988 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1989 }
1990
1991 static void
1992 svm_machine_destroy(struct nvmm_machine *mach)
1993 {
1994 kmem_free(mach->machdata, sizeof(struct svm_machdata));
1995 }
1996
1997 static int
1998 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
1999 {
2000 struct nvmm_x86_conf_cpuid *cpuid = data;
2001 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2002 size_t i;
2003
2004 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2005 return EINVAL;
2006 }
2007
2008 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2009 (cpuid->set.ebx & cpuid->del.ebx) ||
2010 (cpuid->set.ecx & cpuid->del.ecx) ||
2011 (cpuid->set.edx & cpuid->del.edx))) {
2012 return EINVAL;
2013 }
2014
2015 /* If already here, replace. */
2016 for (i = 0; i < SVM_NCPUIDS; i++) {
2017 if (!machdata->cpuidpresent[i]) {
2018 continue;
2019 }
2020 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2021 memcpy(&machdata->cpuid[i], cpuid,
2022 sizeof(struct nvmm_x86_conf_cpuid));
2023 return 0;
2024 }
2025 }
2026
2027 /* Not here, insert. */
2028 for (i = 0; i < SVM_NCPUIDS; i++) {
2029 if (!machdata->cpuidpresent[i]) {
2030 machdata->cpuidpresent[i] = true;
2031 memcpy(&machdata->cpuid[i], cpuid,
2032 sizeof(struct nvmm_x86_conf_cpuid));
2033 return 0;
2034 }
2035 }
2036
2037 return ENOBUFS;
2038 }
2039
2040 /* -------------------------------------------------------------------------- */
2041
2042 static bool
2043 svm_ident(void)
2044 {
2045 u_int descs[4];
2046 uint64_t msr;
2047
2048 if (cpu_vendor != CPUVENDOR_AMD) {
2049 return false;
2050 }
2051 if (!(cpu_feature[3] & CPUID_SVM)) {
2052 return false;
2053 }
2054
2055 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2056 return false;
2057 }
2058 x86_cpuid(0x8000000a, descs);
2059
2060 /* Want Nested Paging. */
2061 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2062 return false;
2063 }
2064
2065 /* Want nRIP. */
2066 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2067 return false;
2068 }
2069
2070 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2071
2072 msr = rdmsr(MSR_VMCR);
2073 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2074 return false;
2075 }
2076
2077 return true;
2078 }
2079
2080 static void
2081 svm_init_asid(uint32_t maxasid)
2082 {
2083 size_t i, j, allocsz;
2084
2085 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2086
2087 /* Arbitrarily limit. */
2088 maxasid = uimin(maxasid, 8192);
2089
2090 svm_maxasid = maxasid;
2091 allocsz = roundup(maxasid, 8) / 8;
2092 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2093
2094 /* ASID 0 is reserved for the host. */
2095 svm_asidmap[0] |= __BIT(0);
2096
2097 /* ASID n-1 is special, we share it. */
2098 i = (maxasid - 1) / 8;
2099 j = (maxasid - 1) % 8;
2100 svm_asidmap[i] |= __BIT(j);
2101 }
2102
2103 static void
2104 svm_change_cpu(void *arg1, void *arg2)
2105 {
2106 bool enable = (bool)arg1;
2107 uint64_t msr;
2108
2109 msr = rdmsr(MSR_VMCR);
2110 if (msr & VMCR_SVMED) {
2111 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2112 }
2113
2114 if (!enable) {
2115 wrmsr(MSR_VM_HSAVE_PA, 0);
2116 }
2117
2118 msr = rdmsr(MSR_EFER);
2119 if (enable) {
2120 msr |= EFER_SVME;
2121 } else {
2122 msr &= ~EFER_SVME;
2123 }
2124 wrmsr(MSR_EFER, msr);
2125
2126 if (enable) {
2127 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2128 }
2129 }
2130
2131 static void
2132 svm_init(void)
2133 {
2134 CPU_INFO_ITERATOR cii;
2135 struct cpu_info *ci;
2136 struct vm_page *pg;
2137 u_int descs[4];
2138 uint64_t xc;
2139
2140 x86_cpuid(0x8000000a, descs);
2141
2142 /* The guest TLB flush command. */
2143 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2144 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2145 } else {
2146 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2147 }
2148
2149 /* Init the ASID. */
2150 svm_init_asid(descs[1]);
2151
2152 /* Init the XCR0 mask. */
2153 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2154
2155 memset(hsave, 0, sizeof(hsave));
2156 for (CPU_INFO_FOREACH(cii, ci)) {
2157 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2158 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2159 }
2160
2161 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2162 xc_wait(xc);
2163 }
2164
2165 static void
2166 svm_fini_asid(void)
2167 {
2168 size_t allocsz;
2169
2170 allocsz = roundup(svm_maxasid, 8) / 8;
2171 kmem_free(svm_asidmap, allocsz);
2172
2173 mutex_destroy(&svm_asidlock);
2174 }
2175
2176 static void
2177 svm_fini(void)
2178 {
2179 uint64_t xc;
2180 size_t i;
2181
2182 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2183 xc_wait(xc);
2184
2185 for (i = 0; i < MAXCPUS; i++) {
2186 if (hsave[i].pa != 0)
2187 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2188 }
2189
2190 svm_fini_asid();
2191 }
2192
2193 static void
2194 svm_capability(struct nvmm_capability *cap)
2195 {
2196 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2197 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2198 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2199 }
2200
2201 const struct nvmm_impl nvmm_x86_svm = {
2202 .ident = svm_ident,
2203 .init = svm_init,
2204 .fini = svm_fini,
2205 .capability = svm_capability,
2206 .conf_max = NVMM_X86_NCONF,
2207 .conf_sizes = svm_conf_sizes,
2208 .state_size = sizeof(struct nvmm_x64_state),
2209 .machine_create = svm_machine_create,
2210 .machine_destroy = svm_machine_destroy,
2211 .machine_configure = svm_machine_configure,
2212 .vcpu_create = svm_vcpu_create,
2213 .vcpu_destroy = svm_vcpu_destroy,
2214 .vcpu_setstate = svm_vcpu_setstate,
2215 .vcpu_getstate = svm_vcpu_getstate,
2216 .vcpu_inject = svm_vcpu_inject,
2217 .vcpu_run = svm_vcpu_run
2218 };
2219