nvmm_x86_svm.c revision 1.23 1 /* $NetBSD: nvmm_x86_svm.c,v 1.23 2019/02/14 14:30:20 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.23 2019/02/14 14:30:20 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <machine/cpuvar.h>
50
51 #include <dev/nvmm/nvmm.h>
52 #include <dev/nvmm/nvmm_internal.h>
53 #include <dev/nvmm/x86/nvmm_x86.h>
54
55 int svm_vmrun(paddr_t, uint64_t *);
56
57 #define MSR_VM_HSAVE_PA 0xC0010117
58
59 /* -------------------------------------------------------------------------- */
60
61 #define VMCB_EXITCODE_CR0_READ 0x0000
62 #define VMCB_EXITCODE_CR1_READ 0x0001
63 #define VMCB_EXITCODE_CR2_READ 0x0002
64 #define VMCB_EXITCODE_CR3_READ 0x0003
65 #define VMCB_EXITCODE_CR4_READ 0x0004
66 #define VMCB_EXITCODE_CR5_READ 0x0005
67 #define VMCB_EXITCODE_CR6_READ 0x0006
68 #define VMCB_EXITCODE_CR7_READ 0x0007
69 #define VMCB_EXITCODE_CR8_READ 0x0008
70 #define VMCB_EXITCODE_CR9_READ 0x0009
71 #define VMCB_EXITCODE_CR10_READ 0x000A
72 #define VMCB_EXITCODE_CR11_READ 0x000B
73 #define VMCB_EXITCODE_CR12_READ 0x000C
74 #define VMCB_EXITCODE_CR13_READ 0x000D
75 #define VMCB_EXITCODE_CR14_READ 0x000E
76 #define VMCB_EXITCODE_CR15_READ 0x000F
77 #define VMCB_EXITCODE_CR0_WRITE 0x0010
78 #define VMCB_EXITCODE_CR1_WRITE 0x0011
79 #define VMCB_EXITCODE_CR2_WRITE 0x0012
80 #define VMCB_EXITCODE_CR3_WRITE 0x0013
81 #define VMCB_EXITCODE_CR4_WRITE 0x0014
82 #define VMCB_EXITCODE_CR5_WRITE 0x0015
83 #define VMCB_EXITCODE_CR6_WRITE 0x0016
84 #define VMCB_EXITCODE_CR7_WRITE 0x0017
85 #define VMCB_EXITCODE_CR8_WRITE 0x0018
86 #define VMCB_EXITCODE_CR9_WRITE 0x0019
87 #define VMCB_EXITCODE_CR10_WRITE 0x001A
88 #define VMCB_EXITCODE_CR11_WRITE 0x001B
89 #define VMCB_EXITCODE_CR12_WRITE 0x001C
90 #define VMCB_EXITCODE_CR13_WRITE 0x001D
91 #define VMCB_EXITCODE_CR14_WRITE 0x001E
92 #define VMCB_EXITCODE_CR15_WRITE 0x001F
93 #define VMCB_EXITCODE_DR0_READ 0x0020
94 #define VMCB_EXITCODE_DR1_READ 0x0021
95 #define VMCB_EXITCODE_DR2_READ 0x0022
96 #define VMCB_EXITCODE_DR3_READ 0x0023
97 #define VMCB_EXITCODE_DR4_READ 0x0024
98 #define VMCB_EXITCODE_DR5_READ 0x0025
99 #define VMCB_EXITCODE_DR6_READ 0x0026
100 #define VMCB_EXITCODE_DR7_READ 0x0027
101 #define VMCB_EXITCODE_DR8_READ 0x0028
102 #define VMCB_EXITCODE_DR9_READ 0x0029
103 #define VMCB_EXITCODE_DR10_READ 0x002A
104 #define VMCB_EXITCODE_DR11_READ 0x002B
105 #define VMCB_EXITCODE_DR12_READ 0x002C
106 #define VMCB_EXITCODE_DR13_READ 0x002D
107 #define VMCB_EXITCODE_DR14_READ 0x002E
108 #define VMCB_EXITCODE_DR15_READ 0x002F
109 #define VMCB_EXITCODE_DR0_WRITE 0x0030
110 #define VMCB_EXITCODE_DR1_WRITE 0x0031
111 #define VMCB_EXITCODE_DR2_WRITE 0x0032
112 #define VMCB_EXITCODE_DR3_WRITE 0x0033
113 #define VMCB_EXITCODE_DR4_WRITE 0x0034
114 #define VMCB_EXITCODE_DR5_WRITE 0x0035
115 #define VMCB_EXITCODE_DR6_WRITE 0x0036
116 #define VMCB_EXITCODE_DR7_WRITE 0x0037
117 #define VMCB_EXITCODE_DR8_WRITE 0x0038
118 #define VMCB_EXITCODE_DR9_WRITE 0x0039
119 #define VMCB_EXITCODE_DR10_WRITE 0x003A
120 #define VMCB_EXITCODE_DR11_WRITE 0x003B
121 #define VMCB_EXITCODE_DR12_WRITE 0x003C
122 #define VMCB_EXITCODE_DR13_WRITE 0x003D
123 #define VMCB_EXITCODE_DR14_WRITE 0x003E
124 #define VMCB_EXITCODE_DR15_WRITE 0x003F
125 #define VMCB_EXITCODE_EXCP0 0x0040
126 #define VMCB_EXITCODE_EXCP1 0x0041
127 #define VMCB_EXITCODE_EXCP2 0x0042
128 #define VMCB_EXITCODE_EXCP3 0x0043
129 #define VMCB_EXITCODE_EXCP4 0x0044
130 #define VMCB_EXITCODE_EXCP5 0x0045
131 #define VMCB_EXITCODE_EXCP6 0x0046
132 #define VMCB_EXITCODE_EXCP7 0x0047
133 #define VMCB_EXITCODE_EXCP8 0x0048
134 #define VMCB_EXITCODE_EXCP9 0x0049
135 #define VMCB_EXITCODE_EXCP10 0x004A
136 #define VMCB_EXITCODE_EXCP11 0x004B
137 #define VMCB_EXITCODE_EXCP12 0x004C
138 #define VMCB_EXITCODE_EXCP13 0x004D
139 #define VMCB_EXITCODE_EXCP14 0x004E
140 #define VMCB_EXITCODE_EXCP15 0x004F
141 #define VMCB_EXITCODE_EXCP16 0x0050
142 #define VMCB_EXITCODE_EXCP17 0x0051
143 #define VMCB_EXITCODE_EXCP18 0x0052
144 #define VMCB_EXITCODE_EXCP19 0x0053
145 #define VMCB_EXITCODE_EXCP20 0x0054
146 #define VMCB_EXITCODE_EXCP21 0x0055
147 #define VMCB_EXITCODE_EXCP22 0x0056
148 #define VMCB_EXITCODE_EXCP23 0x0057
149 #define VMCB_EXITCODE_EXCP24 0x0058
150 #define VMCB_EXITCODE_EXCP25 0x0059
151 #define VMCB_EXITCODE_EXCP26 0x005A
152 #define VMCB_EXITCODE_EXCP27 0x005B
153 #define VMCB_EXITCODE_EXCP28 0x005C
154 #define VMCB_EXITCODE_EXCP29 0x005D
155 #define VMCB_EXITCODE_EXCP30 0x005E
156 #define VMCB_EXITCODE_EXCP31 0x005F
157 #define VMCB_EXITCODE_INTR 0x0060
158 #define VMCB_EXITCODE_NMI 0x0061
159 #define VMCB_EXITCODE_SMI 0x0062
160 #define VMCB_EXITCODE_INIT 0x0063
161 #define VMCB_EXITCODE_VINTR 0x0064
162 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
163 #define VMCB_EXITCODE_IDTR_READ 0x0066
164 #define VMCB_EXITCODE_GDTR_READ 0x0067
165 #define VMCB_EXITCODE_LDTR_READ 0x0068
166 #define VMCB_EXITCODE_TR_READ 0x0069
167 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
168 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
169 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
170 #define VMCB_EXITCODE_TR_WRITE 0x006D
171 #define VMCB_EXITCODE_RDTSC 0x006E
172 #define VMCB_EXITCODE_RDPMC 0x006F
173 #define VMCB_EXITCODE_PUSHF 0x0070
174 #define VMCB_EXITCODE_POPF 0x0071
175 #define VMCB_EXITCODE_CPUID 0x0072
176 #define VMCB_EXITCODE_RSM 0x0073
177 #define VMCB_EXITCODE_IRET 0x0074
178 #define VMCB_EXITCODE_SWINT 0x0075
179 #define VMCB_EXITCODE_INVD 0x0076
180 #define VMCB_EXITCODE_PAUSE 0x0077
181 #define VMCB_EXITCODE_HLT 0x0078
182 #define VMCB_EXITCODE_INVLPG 0x0079
183 #define VMCB_EXITCODE_INVLPGA 0x007A
184 #define VMCB_EXITCODE_IOIO 0x007B
185 #define VMCB_EXITCODE_MSR 0x007C
186 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
187 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
188 #define VMCB_EXITCODE_SHUTDOWN 0x007F
189 #define VMCB_EXITCODE_VMRUN 0x0080
190 #define VMCB_EXITCODE_VMMCALL 0x0081
191 #define VMCB_EXITCODE_VMLOAD 0x0082
192 #define VMCB_EXITCODE_VMSAVE 0x0083
193 #define VMCB_EXITCODE_STGI 0x0084
194 #define VMCB_EXITCODE_CLGI 0x0085
195 #define VMCB_EXITCODE_SKINIT 0x0086
196 #define VMCB_EXITCODE_RDTSCP 0x0087
197 #define VMCB_EXITCODE_ICEBP 0x0088
198 #define VMCB_EXITCODE_WBINVD 0x0089
199 #define VMCB_EXITCODE_MONITOR 0x008A
200 #define VMCB_EXITCODE_MWAIT 0x008B
201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
202 #define VMCB_EXITCODE_XSETBV 0x008D
203 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
204 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
205 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
206 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
207 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
208 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
209 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
210 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
211 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
212 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
213 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
214 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
215 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
216 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
217 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
218 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
219 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
220 #define VMCB_EXITCODE_NPF 0x0400
221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
222 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
223 #define VMCB_EXITCODE_VMGEXIT 0x0403
224 #define VMCB_EXITCODE_INVALID -1
225
226 /* -------------------------------------------------------------------------- */
227
228 struct vmcb_ctrl {
229 uint32_t intercept_cr;
230 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
231 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
232
233 uint32_t intercept_dr;
234 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
236
237 uint32_t intercept_vec;
238 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
239
240 uint32_t intercept_misc1;
241 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
242 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
243 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
244 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
245 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
247 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
248 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
249 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
250 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
251 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
252 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
253 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
254 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
255 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
256 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
257 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
258 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
259 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
260 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
261 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
262 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
263 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
264 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
265 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
266 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
267 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
269 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
270 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
273
274 uint32_t intercept_misc2;
275 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
276 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
277 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
278 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
279 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
280 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
281 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
282 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
283 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
284 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
285 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
286 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
287 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
290
291 uint8_t rsvd1[40];
292 uint16_t pause_filt_thresh;
293 uint16_t pause_filt_cnt;
294 uint64_t iopm_base_pa;
295 uint64_t msrpm_base_pa;
296 uint64_t tsc_offset;
297 uint32_t guest_asid;
298
299 uint32_t tlb_ctrl;
300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
303
304 uint64_t v;
305 #define VMCB_CTRL_V_TPR __BITS(7,0)
306 #define VMCB_CTRL_V_IRQ __BIT(8)
307 #define VMCB_CTRL_V_VGIF __BIT(9)
308 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
309 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
310 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
311 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
312 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
313 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
314
315 uint64_t intr;
316 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
317
318 uint64_t exitcode;
319 uint64_t exitinfo1;
320 uint64_t exitinfo2;
321
322 uint64_t exitintinfo;
323 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
324 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
325 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
326 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
327 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
328
329 uint64_t enable1;
330 #define VMCB_CTRL_ENABLE_NP __BIT(0)
331 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
332 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
333
334 uint64_t avic;
335 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
336
337 uint64_t ghcb;
338
339 uint64_t eventinj;
340 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
341 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
342 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
343 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
344 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
345
346 uint64_t n_cr3;
347
348 uint64_t enable2;
349 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
350 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
351
352 uint32_t vmcb_clean;
353 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
354 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
355 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
356 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
357 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
358 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
359 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
360 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
361 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
362 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
363 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
364 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
365
366 uint32_t rsvd2;
367 uint64_t nrip;
368 uint8_t inst_len;
369 uint8_t inst_bytes[15];
370 uint64_t avic_abpp;
371 uint64_t rsvd3;
372 uint64_t avic_ltp;
373
374 uint64_t avic_phys;
375 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
376 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
377
378 uint64_t rsvd4;
379 uint64_t vmcb_ptr;
380
381 uint8_t pad[752];
382 } __packed;
383
384 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
385
386 struct vmcb_segment {
387 uint16_t selector;
388 uint16_t attrib; /* hidden */
389 uint32_t limit; /* hidden */
390 uint64_t base; /* hidden */
391 } __packed;
392
393 CTASSERT(sizeof(struct vmcb_segment) == 16);
394
395 struct vmcb_state {
396 struct vmcb_segment es;
397 struct vmcb_segment cs;
398 struct vmcb_segment ss;
399 struct vmcb_segment ds;
400 struct vmcb_segment fs;
401 struct vmcb_segment gs;
402 struct vmcb_segment gdt;
403 struct vmcb_segment ldt;
404 struct vmcb_segment idt;
405 struct vmcb_segment tr;
406 uint8_t rsvd1[43];
407 uint8_t cpl;
408 uint8_t rsvd2[4];
409 uint64_t efer;
410 uint8_t rsvd3[112];
411 uint64_t cr4;
412 uint64_t cr3;
413 uint64_t cr0;
414 uint64_t dr7;
415 uint64_t dr6;
416 uint64_t rflags;
417 uint64_t rip;
418 uint8_t rsvd4[88];
419 uint64_t rsp;
420 uint8_t rsvd5[24];
421 uint64_t rax;
422 uint64_t star;
423 uint64_t lstar;
424 uint64_t cstar;
425 uint64_t sfmask;
426 uint64_t kernelgsbase;
427 uint64_t sysenter_cs;
428 uint64_t sysenter_esp;
429 uint64_t sysenter_eip;
430 uint64_t cr2;
431 uint8_t rsvd6[32];
432 uint64_t g_pat;
433 uint64_t dbgctl;
434 uint64_t br_from;
435 uint64_t br_to;
436 uint64_t int_from;
437 uint64_t int_to;
438 uint8_t pad[2408];
439 } __packed;
440
441 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
442
443 struct vmcb {
444 struct vmcb_ctrl ctrl;
445 struct vmcb_state state;
446 } __packed;
447
448 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
449 CTASSERT(offsetof(struct vmcb, state) == 0x400);
450
451 /* -------------------------------------------------------------------------- */
452
453 struct svm_hsave {
454 paddr_t pa;
455 };
456
457 static struct svm_hsave hsave[MAXCPUS];
458
459 static uint8_t *svm_asidmap __read_mostly;
460 static uint32_t svm_maxasid __read_mostly;
461 static kmutex_t svm_asidlock __cacheline_aligned;
462
463 static bool svm_decode_assist __read_mostly;
464 static uint32_t svm_ctrl_tlb_flush __read_mostly;
465
466 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
467 static uint64_t svm_xcr0_mask __read_mostly;
468
469 #define SVM_NCPUIDS 32
470
471 #define VMCB_NPAGES 1
472
473 #define MSRBM_NPAGES 2
474 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
475
476 #define IOBM_NPAGES 3
477 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
478
479 /* Does not include EFER_LMSLE. */
480 #define EFER_VALID \
481 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
482
483 #define EFER_TLB_FLUSH \
484 (EFER_NXE|EFER_LMA|EFER_LME)
485 #define CR0_TLB_FLUSH \
486 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
487 #define CR4_TLB_FLUSH \
488 (CR4_PGE|CR4_PAE|CR4_PSE)
489
490 /* -------------------------------------------------------------------------- */
491
492 struct svm_machdata {
493 bool cpuidpresent[SVM_NCPUIDS];
494 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
495 };
496
497 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
498 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
499 };
500
501 struct svm_cpudata {
502 /* General */
503 bool shared_asid;
504 bool tlb_want_flush;
505
506 /* VMCB */
507 struct vmcb *vmcb;
508 paddr_t vmcb_pa;
509
510 /* I/O bitmap */
511 uint8_t *iobm;
512 paddr_t iobm_pa;
513
514 /* MSR bitmap */
515 uint8_t *msrbm;
516 paddr_t msrbm_pa;
517
518 /* Host state */
519 uint64_t hxcr0;
520 uint64_t star;
521 uint64_t lstar;
522 uint64_t cstar;
523 uint64_t sfmask;
524 uint64_t fsbase;
525 uint64_t kernelgsbase;
526 bool ts_set;
527 struct xsave_header hfpu __aligned(64);
528
529 /* Event state */
530 bool int_window_exit;
531 bool nmi_window_exit;
532
533 /* Guest state */
534 uint64_t gxcr0;
535 uint64_t gprs[NVMM_X64_NGPR];
536 uint64_t drs[NVMM_X64_NDR];
537 uint64_t tsc_offset;
538 struct xsave_header gfpu __aligned(64);
539 };
540
541 static void
542 svm_vmcb_cache_default(struct vmcb *vmcb)
543 {
544 vmcb->ctrl.vmcb_clean =
545 VMCB_CTRL_VMCB_CLEAN_I |
546 VMCB_CTRL_VMCB_CLEAN_IOPM |
547 VMCB_CTRL_VMCB_CLEAN_ASID |
548 VMCB_CTRL_VMCB_CLEAN_TPR |
549 VMCB_CTRL_VMCB_CLEAN_NP |
550 VMCB_CTRL_VMCB_CLEAN_CR |
551 VMCB_CTRL_VMCB_CLEAN_DR |
552 VMCB_CTRL_VMCB_CLEAN_DT |
553 VMCB_CTRL_VMCB_CLEAN_SEG |
554 VMCB_CTRL_VMCB_CLEAN_CR2 |
555 VMCB_CTRL_VMCB_CLEAN_LBR |
556 VMCB_CTRL_VMCB_CLEAN_AVIC;
557 }
558
559 static void
560 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
561 {
562 if (flags & NVMM_X64_STATE_SEGS) {
563 vmcb->ctrl.vmcb_clean &=
564 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
565 }
566 if (flags & NVMM_X64_STATE_CRS) {
567 vmcb->ctrl.vmcb_clean &=
568 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
569 VMCB_CTRL_VMCB_CLEAN_TPR);
570 }
571 if (flags & NVMM_X64_STATE_DRS) {
572 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
573 }
574 if (flags & NVMM_X64_STATE_MSRS) {
575 /* CR for EFER, NP for PAT. */
576 vmcb->ctrl.vmcb_clean &=
577 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
578 }
579 }
580
581 static inline void
582 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
583 {
584 vmcb->ctrl.vmcb_clean &= ~flags;
585 }
586
587 static inline void
588 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
589 {
590 vmcb->ctrl.vmcb_clean = 0;
591 }
592
593 #define SVM_EVENT_TYPE_HW_INT 0
594 #define SVM_EVENT_TYPE_NMI 2
595 #define SVM_EVENT_TYPE_EXC 3
596 #define SVM_EVENT_TYPE_SW_INT 4
597
598 static void
599 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
600 {
601 struct svm_cpudata *cpudata = vcpu->cpudata;
602 struct vmcb *vmcb = cpudata->vmcb;
603
604 if (nmi) {
605 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
606 cpudata->nmi_window_exit = true;
607 } else {
608 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
609 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
610 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
611 cpudata->int_window_exit = true;
612 }
613
614 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
615 }
616
617 static void
618 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
619 {
620 struct svm_cpudata *cpudata = vcpu->cpudata;
621 struct vmcb *vmcb = cpudata->vmcb;
622
623 if (nmi) {
624 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
625 cpudata->nmi_window_exit = false;
626 } else {
627 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
628 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
629 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
630 cpudata->int_window_exit = false;
631 }
632
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
634 }
635
636 static inline int
637 svm_event_has_error(uint64_t vector)
638 {
639 switch (vector) {
640 case 8: /* #DF */
641 case 10: /* #TS */
642 case 11: /* #NP */
643 case 12: /* #SS */
644 case 13: /* #GP */
645 case 14: /* #PF */
646 case 17: /* #AC */
647 case 30: /* #SX */
648 return 1;
649 default:
650 return 0;
651 }
652 }
653
654 static int
655 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
656 struct nvmm_event *event)
657 {
658 struct svm_cpudata *cpudata = vcpu->cpudata;
659 struct vmcb *vmcb = cpudata->vmcb;
660 int type = 0, err = 0;
661
662 if (event->vector >= 256) {
663 return EINVAL;
664 }
665
666 switch (event->type) {
667 case NVMM_EVENT_INTERRUPT_HW:
668 type = SVM_EVENT_TYPE_HW_INT;
669 if (event->vector == 2) {
670 type = SVM_EVENT_TYPE_NMI;
671 }
672 if (type == SVM_EVENT_TYPE_NMI) {
673 if (cpudata->nmi_window_exit) {
674 return EAGAIN;
675 }
676 svm_event_waitexit_enable(vcpu, true);
677 } else {
678 if (((vmcb->state.rflags & PSL_I) == 0) ||
679 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
680 svm_event_waitexit_enable(vcpu, false);
681 return EAGAIN;
682 }
683 }
684 err = 0;
685 break;
686 case NVMM_EVENT_INTERRUPT_SW:
687 return EINVAL;
688 case NVMM_EVENT_EXCEPTION:
689 type = SVM_EVENT_TYPE_EXC;
690 if (event->vector == 2 || event->vector >= 32)
691 return EINVAL;
692 if (event->vector == 3 || event->vector == 0)
693 return EINVAL;
694 err = svm_event_has_error(event->vector);
695 break;
696 default:
697 return EINVAL;
698 }
699
700 vmcb->ctrl.eventinj =
701 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
702 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
703 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
704 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
705 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
706
707 return 0;
708 }
709
710 static void
711 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
712 {
713 struct nvmm_event event;
714 int ret __diagused;
715
716 event.type = NVMM_EVENT_EXCEPTION;
717 event.vector = 6;
718 event.u.error = 0;
719
720 ret = svm_vcpu_inject(mach, vcpu, &event);
721 KASSERT(ret == 0);
722 }
723
724 static void
725 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
726 {
727 struct nvmm_event event;
728 int ret __diagused;
729
730 event.type = NVMM_EVENT_EXCEPTION;
731 event.vector = 13;
732 event.u.error = 0;
733
734 ret = svm_vcpu_inject(mach, vcpu, &event);
735 KASSERT(ret == 0);
736 }
737
738 static inline void
739 svm_inkernel_advance(struct vmcb *vmcb)
740 {
741 /*
742 * Maybe we should also apply single-stepping and debug exceptions.
743 * Matters for guest-ring3, because it can execute 'cpuid' under a
744 * debugger.
745 */
746 vmcb->state.rip = vmcb->ctrl.nrip;
747 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
748 }
749
750 static void
751 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
752 {
753 struct svm_cpudata *cpudata = vcpu->cpudata;
754
755 switch (eax) {
756 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
757 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
758 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
759 CPUID_LOCAL_APIC_ID);
760 break;
761 case 0x0000000D: /* FPU description. Not tunable. */
762 if (ecx != 0 || svm_xcr0_mask == 0) {
763 break;
764 }
765 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
766 if (cpudata->gxcr0 & XCR0_SSE) {
767 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
768 } else {
769 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
770 }
771 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
772 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
773 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
774 break;
775 case 0x40000000:
776 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
777 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
778 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
779 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
780 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
781 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
782 break;
783 case 0x80000001: /* No SVM, no RDTSCP. The rest is tunable. */
784 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
785 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
786 break;
787 default:
788 break;
789 }
790 }
791
792 static void
793 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
794 struct nvmm_exit *exit)
795 {
796 struct svm_machdata *machdata = mach->machdata;
797 struct svm_cpudata *cpudata = vcpu->cpudata;
798 struct nvmm_x86_conf_cpuid *cpuid;
799 uint64_t eax, ecx;
800 u_int descs[4];
801 size_t i;
802
803 eax = cpudata->vmcb->state.rax;
804 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
805 x86_cpuid2(eax, ecx, descs);
806
807 cpudata->vmcb->state.rax = descs[0];
808 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
809 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
810 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
811
812 for (i = 0; i < SVM_NCPUIDS; i++) {
813 cpuid = &machdata->cpuid[i];
814 if (!machdata->cpuidpresent[i]) {
815 continue;
816 }
817 if (cpuid->leaf != eax) {
818 continue;
819 }
820
821 /* del */
822 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
823 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
824 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
825 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
826
827 /* set */
828 cpudata->vmcb->state.rax |= cpuid->set.eax;
829 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
830 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
831 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
832
833 break;
834 }
835
836 /* Overwrite non-tunable leaves. */
837 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
838
839 svm_inkernel_advance(cpudata->vmcb);
840 exit->reason = NVMM_EXIT_NONE;
841 }
842
843 static void
844 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
845 struct nvmm_exit *exit)
846 {
847 struct svm_cpudata *cpudata = vcpu->cpudata;
848 struct vmcb *vmcb = cpudata->vmcb;
849
850 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
851 svm_event_waitexit_disable(vcpu, false);
852 }
853
854 svm_inkernel_advance(cpudata->vmcb);
855 exit->reason = NVMM_EXIT_HALTED;
856 }
857
858 #define SVM_EXIT_IO_PORT __BITS(31,16)
859 #define SVM_EXIT_IO_SEG __BITS(12,10)
860 #define SVM_EXIT_IO_A64 __BIT(9)
861 #define SVM_EXIT_IO_A32 __BIT(8)
862 #define SVM_EXIT_IO_A16 __BIT(7)
863 #define SVM_EXIT_IO_SZ32 __BIT(6)
864 #define SVM_EXIT_IO_SZ16 __BIT(5)
865 #define SVM_EXIT_IO_SZ8 __BIT(4)
866 #define SVM_EXIT_IO_REP __BIT(3)
867 #define SVM_EXIT_IO_STR __BIT(2)
868 #define SVM_EXIT_IO_IN __BIT(0)
869
870 static const int seg_to_nvmm[] = {
871 [0] = NVMM_X64_SEG_ES,
872 [1] = NVMM_X64_SEG_CS,
873 [2] = NVMM_X64_SEG_SS,
874 [3] = NVMM_X64_SEG_DS,
875 [4] = NVMM_X64_SEG_FS,
876 [5] = NVMM_X64_SEG_GS
877 };
878
879 static void
880 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
881 struct nvmm_exit *exit)
882 {
883 struct svm_cpudata *cpudata = vcpu->cpudata;
884 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
885 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
886
887 exit->reason = NVMM_EXIT_IO;
888
889 if (info & SVM_EXIT_IO_IN) {
890 exit->u.io.type = NVMM_EXIT_IO_IN;
891 } else {
892 exit->u.io.type = NVMM_EXIT_IO_OUT;
893 }
894
895 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
896
897 if (svm_decode_assist) {
898 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
899 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
900 } else {
901 exit->u.io.seg = -1;
902 }
903
904 if (info & SVM_EXIT_IO_A64) {
905 exit->u.io.address_size = 8;
906 } else if (info & SVM_EXIT_IO_A32) {
907 exit->u.io.address_size = 4;
908 } else if (info & SVM_EXIT_IO_A16) {
909 exit->u.io.address_size = 2;
910 }
911
912 if (info & SVM_EXIT_IO_SZ32) {
913 exit->u.io.operand_size = 4;
914 } else if (info & SVM_EXIT_IO_SZ16) {
915 exit->u.io.operand_size = 2;
916 } else if (info & SVM_EXIT_IO_SZ8) {
917 exit->u.io.operand_size = 1;
918 }
919
920 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
921 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
922 exit->u.io.npc = nextpc;
923 }
924
925 static const uint64_t msr_ignore_list[] = {
926 0xc0010055, /* MSR_CMPHALT */
927 MSR_DE_CFG,
928 MSR_IC_CFG,
929 MSR_UCODE_AMD_PATCHLEVEL
930 };
931
932 static bool
933 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
934 struct nvmm_exit *exit)
935 {
936 struct svm_cpudata *cpudata = vcpu->cpudata;
937 struct vmcb *vmcb = cpudata->vmcb;
938 uint64_t val;
939 size_t i;
940
941 switch (exit->u.msr.type) {
942 case NVMM_EXIT_MSR_RDMSR:
943 if (exit->u.msr.msr == MSR_NB_CFG) {
944 val = NB_CFG_INITAPICCPUIDLO;
945 vmcb->state.rax = (val & 0xFFFFFFFF);
946 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
947 goto handled;
948 }
949 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
950 if (msr_ignore_list[i] != exit->u.msr.msr)
951 continue;
952 val = 0;
953 vmcb->state.rax = (val & 0xFFFFFFFF);
954 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
955 goto handled;
956 }
957 break;
958 case NVMM_EXIT_MSR_WRMSR:
959 if (exit->u.msr.msr == MSR_EFER) {
960 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
961 goto error;
962 }
963 if ((vmcb->state.efer ^ exit->u.msr.val) &
964 EFER_TLB_FLUSH) {
965 cpudata->tlb_want_flush = true;
966 }
967 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
968 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_CR;
969 goto handled;
970 }
971 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
972 if (msr_ignore_list[i] != exit->u.msr.msr)
973 continue;
974 goto handled;
975 }
976 break;
977 }
978
979 return false;
980
981 handled:
982 svm_inkernel_advance(cpudata->vmcb);
983 return true;
984
985 error:
986 svm_inject_gp(mach, vcpu);
987 return true;
988 }
989
990 static void
991 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
992 struct nvmm_exit *exit)
993 {
994 struct svm_cpudata *cpudata = vcpu->cpudata;
995 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
996
997 if (info == 0) {
998 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
999 } else {
1000 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1001 }
1002
1003 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1004
1005 if (info == 1) {
1006 uint64_t rdx, rax;
1007 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1008 rax = cpudata->vmcb->state.rax;
1009 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1010 } else {
1011 exit->u.msr.val = 0;
1012 }
1013
1014 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1015 exit->reason = NVMM_EXIT_NONE;
1016 return;
1017 }
1018
1019 exit->reason = NVMM_EXIT_MSR;
1020 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1021 }
1022
1023 static void
1024 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1025 struct nvmm_exit *exit)
1026 {
1027 struct svm_cpudata *cpudata = vcpu->cpudata;
1028 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1029 int error;
1030
1031 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
1032
1033 if (error) {
1034 exit->reason = NVMM_EXIT_MEMORY;
1035 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1036 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1037 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1038 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1039 else
1040 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1041 exit->u.mem.gpa = gpa;
1042 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1043 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1044 sizeof(exit->u.mem.inst_bytes));
1045 } else {
1046 exit->reason = NVMM_EXIT_NONE;
1047 }
1048 }
1049
1050 static void
1051 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1052 {
1053 exit->u.insn.npc = vmcb->ctrl.nrip;
1054 exit->reason = reason;
1055 }
1056
1057 static void
1058 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1059 struct nvmm_exit *exit)
1060 {
1061 struct svm_cpudata *cpudata = vcpu->cpudata;
1062 struct vmcb *vmcb = cpudata->vmcb;
1063 uint64_t val;
1064
1065 exit->reason = NVMM_EXIT_NONE;
1066
1067 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1068 (vmcb->state.rax & 0xFFFFFFFF);
1069
1070 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1071 goto error;
1072 } else if (__predict_false(vmcb->state.cpl != 0)) {
1073 goto error;
1074 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1075 goto error;
1076 } else if (__predict_false((val & XCR0_X87) == 0)) {
1077 goto error;
1078 }
1079
1080 cpudata->gxcr0 = val;
1081
1082 svm_inkernel_advance(cpudata->vmcb);
1083 return;
1084
1085 error:
1086 svm_inject_gp(mach, vcpu);
1087 }
1088
1089 static void
1090 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1091 {
1092 struct svm_cpudata *cpudata = vcpu->cpudata;
1093
1094 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1095
1096 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1097 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1098
1099 if (svm_xcr0_mask != 0) {
1100 cpudata->hxcr0 = rdxcr(0);
1101 wrxcr(0, cpudata->gxcr0);
1102 }
1103 }
1104
1105 static void
1106 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1107 {
1108 struct svm_cpudata *cpudata = vcpu->cpudata;
1109
1110 if (svm_xcr0_mask != 0) {
1111 cpudata->gxcr0 = rdxcr(0);
1112 wrxcr(0, cpudata->hxcr0);
1113 }
1114
1115 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1116 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1117
1118 if (cpudata->ts_set) {
1119 stts();
1120 }
1121 }
1122
1123 static void
1124 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1125 {
1126 struct svm_cpudata *cpudata = vcpu->cpudata;
1127
1128 x86_dbregs_save(curlwp);
1129
1130 ldr7(0);
1131
1132 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1133 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1134 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1135 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1136 }
1137
1138 static void
1139 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1140 {
1141 struct svm_cpudata *cpudata = vcpu->cpudata;
1142
1143 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1144 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1145 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1146 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1147
1148 x86_dbregs_restore(curlwp);
1149 }
1150
1151 static void
1152 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1153 {
1154 struct svm_cpudata *cpudata = vcpu->cpudata;
1155
1156 cpudata->fsbase = rdmsr(MSR_FSBASE);
1157 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1158 }
1159
1160 static void
1161 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1162 {
1163 struct svm_cpudata *cpudata = vcpu->cpudata;
1164
1165 wrmsr(MSR_STAR, cpudata->star);
1166 wrmsr(MSR_LSTAR, cpudata->lstar);
1167 wrmsr(MSR_CSTAR, cpudata->cstar);
1168 wrmsr(MSR_SFMASK, cpudata->sfmask);
1169 wrmsr(MSR_FSBASE, cpudata->fsbase);
1170 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1171 }
1172
1173 static int
1174 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1175 struct nvmm_exit *exit)
1176 {
1177 struct svm_cpudata *cpudata = vcpu->cpudata;
1178 struct vmcb *vmcb = cpudata->vmcb;
1179 bool tlb_need_flush = false;
1180 int hcpu, s;
1181
1182 kpreempt_disable();
1183 hcpu = cpu_number();
1184
1185 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1186 tlb_need_flush = true;
1187 }
1188
1189 if (vcpu->hcpu_last != hcpu) {
1190 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1191 curcpu()->ci_data.cpu_cc_skew;
1192 svm_vmcb_cache_flush_all(vmcb);
1193 }
1194
1195 svm_vcpu_guest_dbregs_enter(vcpu);
1196 svm_vcpu_guest_misc_enter(vcpu);
1197
1198 while (1) {
1199 if (cpudata->tlb_want_flush || tlb_need_flush) {
1200 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1201 } else {
1202 vmcb->ctrl.tlb_ctrl = 0;
1203 }
1204
1205 s = splhigh();
1206 svm_vcpu_guest_fpu_enter(vcpu);
1207 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1208 svm_vcpu_guest_fpu_leave(vcpu);
1209 splx(s);
1210
1211 svm_vmcb_cache_default(vmcb);
1212
1213 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1214 cpudata->tlb_want_flush = false;
1215 tlb_need_flush = false;
1216 vcpu->hcpu_last = hcpu;
1217 }
1218
1219 switch (vmcb->ctrl.exitcode) {
1220 case VMCB_EXITCODE_INTR:
1221 case VMCB_EXITCODE_NMI:
1222 exit->reason = NVMM_EXIT_NONE;
1223 break;
1224 case VMCB_EXITCODE_VINTR:
1225 svm_event_waitexit_disable(vcpu, false);
1226 exit->reason = NVMM_EXIT_INT_READY;
1227 break;
1228 case VMCB_EXITCODE_IRET:
1229 svm_event_waitexit_disable(vcpu, true);
1230 exit->reason = NVMM_EXIT_NMI_READY;
1231 break;
1232 case VMCB_EXITCODE_CPUID:
1233 svm_exit_cpuid(mach, vcpu, exit);
1234 break;
1235 case VMCB_EXITCODE_HLT:
1236 svm_exit_hlt(mach, vcpu, exit);
1237 break;
1238 case VMCB_EXITCODE_IOIO:
1239 svm_exit_io(mach, vcpu, exit);
1240 break;
1241 case VMCB_EXITCODE_MSR:
1242 svm_exit_msr(mach, vcpu, exit);
1243 break;
1244 case VMCB_EXITCODE_SHUTDOWN:
1245 exit->reason = NVMM_EXIT_SHUTDOWN;
1246 break;
1247 case VMCB_EXITCODE_RDPMC:
1248 case VMCB_EXITCODE_RSM:
1249 case VMCB_EXITCODE_INVLPGA:
1250 case VMCB_EXITCODE_VMRUN:
1251 case VMCB_EXITCODE_VMMCALL:
1252 case VMCB_EXITCODE_VMLOAD:
1253 case VMCB_EXITCODE_VMSAVE:
1254 case VMCB_EXITCODE_STGI:
1255 case VMCB_EXITCODE_CLGI:
1256 case VMCB_EXITCODE_SKINIT:
1257 case VMCB_EXITCODE_RDTSCP:
1258 svm_inject_ud(mach, vcpu);
1259 exit->reason = NVMM_EXIT_NONE;
1260 break;
1261 case VMCB_EXITCODE_MONITOR:
1262 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1263 break;
1264 case VMCB_EXITCODE_MWAIT:
1265 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1266 break;
1267 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1268 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1269 break;
1270 case VMCB_EXITCODE_XSETBV:
1271 svm_exit_xsetbv(mach, vcpu, exit);
1272 break;
1273 case VMCB_EXITCODE_NPF:
1274 svm_exit_npf(mach, vcpu, exit);
1275 break;
1276 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1277 default:
1278 exit->reason = NVMM_EXIT_INVALID;
1279 break;
1280 }
1281
1282 /* If no reason to return to userland, keep rolling. */
1283 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1284 break;
1285 }
1286 if (curcpu()->ci_data.cpu_softints != 0) {
1287 break;
1288 }
1289 if (curlwp->l_flag & LW_USERRET) {
1290 break;
1291 }
1292 if (exit->reason != NVMM_EXIT_NONE) {
1293 break;
1294 }
1295 }
1296
1297 svm_vcpu_guest_misc_leave(vcpu);
1298 svm_vcpu_guest_dbregs_leave(vcpu);
1299
1300 kpreempt_enable();
1301
1302 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1303 VMCB_CTRL_V_TPR);
1304 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1305
1306 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1307 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1308 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1309 cpudata->int_window_exit;
1310 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1311 cpudata->nmi_window_exit;
1312
1313 return 0;
1314 }
1315
1316 /* -------------------------------------------------------------------------- */
1317
1318 static int
1319 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1320 {
1321 struct pglist pglist;
1322 paddr_t _pa;
1323 vaddr_t _va;
1324 size_t i;
1325 int ret;
1326
1327 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1328 &pglist, 1, 0);
1329 if (ret != 0)
1330 return ENOMEM;
1331 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1332 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1333 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1334 if (_va == 0)
1335 goto error;
1336
1337 for (i = 0; i < npages; i++) {
1338 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1339 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1340 }
1341 pmap_update(pmap_kernel());
1342
1343 memset((void *)_va, 0, npages * PAGE_SIZE);
1344
1345 *pa = _pa;
1346 *va = _va;
1347 return 0;
1348
1349 error:
1350 for (i = 0; i < npages; i++) {
1351 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1352 }
1353 return ENOMEM;
1354 }
1355
1356 static void
1357 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1358 {
1359 size_t i;
1360
1361 pmap_kremove(va, npages * PAGE_SIZE);
1362 pmap_update(pmap_kernel());
1363 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1364 for (i = 0; i < npages; i++) {
1365 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1366 }
1367 }
1368
1369 /* -------------------------------------------------------------------------- */
1370
1371 #define SVM_MSRBM_READ __BIT(0)
1372 #define SVM_MSRBM_WRITE __BIT(1)
1373
1374 static void
1375 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1376 {
1377 uint64_t byte;
1378 uint8_t bitoff;
1379
1380 if (msr < 0x00002000) {
1381 /* Range 1 */
1382 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1383 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1384 /* Range 2 */
1385 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1386 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1387 /* Range 3 */
1388 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1389 } else {
1390 panic("%s: wrong range", __func__);
1391 }
1392
1393 bitoff = (msr & 0x3) << 1;
1394
1395 if (read) {
1396 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1397 }
1398 if (write) {
1399 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1400 }
1401 }
1402
1403 static void
1404 svm_asid_alloc(struct nvmm_cpu *vcpu)
1405 {
1406 struct svm_cpudata *cpudata = vcpu->cpudata;
1407 struct vmcb *vmcb = cpudata->vmcb;
1408 size_t i, oct, bit;
1409
1410 mutex_enter(&svm_asidlock);
1411
1412 for (i = 0; i < svm_maxasid; i++) {
1413 oct = i / 8;
1414 bit = i % 8;
1415
1416 if (svm_asidmap[oct] & __BIT(bit)) {
1417 continue;
1418 }
1419
1420 svm_asidmap[oct] |= __BIT(bit);
1421 vmcb->ctrl.guest_asid = i;
1422 mutex_exit(&svm_asidlock);
1423 return;
1424 }
1425
1426 /*
1427 * No free ASID. Use the last one, which is shared and requires
1428 * special TLB handling.
1429 */
1430 cpudata->shared_asid = true;
1431 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1432 mutex_exit(&svm_asidlock);
1433 }
1434
1435 static void
1436 svm_asid_free(struct nvmm_cpu *vcpu)
1437 {
1438 struct svm_cpudata *cpudata = vcpu->cpudata;
1439 struct vmcb *vmcb = cpudata->vmcb;
1440 size_t oct, bit;
1441
1442 if (cpudata->shared_asid) {
1443 return;
1444 }
1445
1446 oct = vmcb->ctrl.guest_asid / 8;
1447 bit = vmcb->ctrl.guest_asid % 8;
1448
1449 mutex_enter(&svm_asidlock);
1450 svm_asidmap[oct] &= ~__BIT(bit);
1451 mutex_exit(&svm_asidlock);
1452 }
1453
1454 static void
1455 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1456 {
1457 struct svm_cpudata *cpudata = vcpu->cpudata;
1458 struct vmcb *vmcb = cpudata->vmcb;
1459
1460 /* Allow reads/writes of Control Registers. */
1461 vmcb->ctrl.intercept_cr = 0;
1462
1463 /* Allow reads/writes of Debug Registers. */
1464 vmcb->ctrl.intercept_dr = 0;
1465
1466 /* Allow exceptions 0 to 31. */
1467 vmcb->ctrl.intercept_vec = 0;
1468
1469 /*
1470 * Allow:
1471 * - SMI [smm interrupts]
1472 * - VINTR [virtual interrupts]
1473 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1474 * - RIDTR [reads of IDTR]
1475 * - RGDTR [reads of GDTR]
1476 * - RLDTR [reads of LDTR]
1477 * - RTR [reads of TR]
1478 * - WIDTR [writes of IDTR]
1479 * - WGDTR [writes of GDTR]
1480 * - WLDTR [writes of LDTR]
1481 * - WTR [writes of TR]
1482 * - RDTSC [rdtsc instruction]
1483 * - PUSHF [pushf instruction]
1484 * - POPF [popf instruction]
1485 * - IRET [iret instruction]
1486 * - INTN [int $n instructions]
1487 * - INVD [invd instruction]
1488 * - PAUSE [pause instruction]
1489 * - INVLPG [invplg instruction]
1490 * - TASKSW [task switches]
1491 *
1492 * Intercept the rest below.
1493 */
1494 vmcb->ctrl.intercept_misc1 =
1495 VMCB_CTRL_INTERCEPT_INTR |
1496 VMCB_CTRL_INTERCEPT_NMI |
1497 VMCB_CTRL_INTERCEPT_INIT |
1498 VMCB_CTRL_INTERCEPT_RDPMC |
1499 VMCB_CTRL_INTERCEPT_CPUID |
1500 VMCB_CTRL_INTERCEPT_RSM |
1501 VMCB_CTRL_INTERCEPT_HLT |
1502 VMCB_CTRL_INTERCEPT_INVLPGA |
1503 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1504 VMCB_CTRL_INTERCEPT_MSR_PROT |
1505 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1506 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1507
1508 /*
1509 * Allow:
1510 * - ICEBP [icebp instruction]
1511 * - WBINVD [wbinvd instruction]
1512 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1513 *
1514 * Intercept the rest below.
1515 */
1516 vmcb->ctrl.intercept_misc2 =
1517 VMCB_CTRL_INTERCEPT_VMRUN |
1518 VMCB_CTRL_INTERCEPT_VMMCALL |
1519 VMCB_CTRL_INTERCEPT_VMLOAD |
1520 VMCB_CTRL_INTERCEPT_VMSAVE |
1521 VMCB_CTRL_INTERCEPT_STGI |
1522 VMCB_CTRL_INTERCEPT_CLGI |
1523 VMCB_CTRL_INTERCEPT_SKINIT |
1524 VMCB_CTRL_INTERCEPT_RDTSCP |
1525 VMCB_CTRL_INTERCEPT_MONITOR |
1526 VMCB_CTRL_INTERCEPT_MWAIT |
1527 VMCB_CTRL_INTERCEPT_XSETBV;
1528
1529 /* Intercept all I/O accesses. */
1530 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1531 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1532
1533 /*
1534 * Allow:
1535 * - EFER [read]
1536 * - STAR [read, write]
1537 * - LSTAR [read, write]
1538 * - CSTAR [read, write]
1539 * - SFMASK [read, write]
1540 * - KERNELGSBASE [read, write]
1541 * - SYSENTER_CS [read, write]
1542 * - SYSENTER_ESP [read, write]
1543 * - SYSENTER_EIP [read, write]
1544 * - FSBASE [read, write]
1545 * - GSBASE [read, write]
1546 * - PAT [read, write]
1547 * - TSC [read]
1548 *
1549 * Intercept the rest.
1550 */
1551 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1552 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1553 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1554 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1555 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1556 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1557 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1558 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1559 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1560 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1561 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1562 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1563 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1564 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1565 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1566
1567 /* Generate ASID. */
1568 svm_asid_alloc(vcpu);
1569
1570 /* Virtual TPR. */
1571 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1572
1573 /* Enable Nested Paging. */
1574 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1575 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1576
1577 /* Must always be set. */
1578 vmcb->state.efer = EFER_SVME;
1579 cpudata->gxcr0 = XCR0_X87;
1580
1581 /* Init XSAVE header. */
1582 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1583 cpudata->gfpu.xsh_xcomp_bv = 0;
1584
1585 /* Bluntly hide the host TSC. */
1586 cpudata->tsc_offset = rdtsc();
1587
1588 /* These MSRs are static. */
1589 cpudata->star = rdmsr(MSR_STAR);
1590 cpudata->lstar = rdmsr(MSR_LSTAR);
1591 cpudata->cstar = rdmsr(MSR_CSTAR);
1592 cpudata->sfmask = rdmsr(MSR_SFMASK);
1593 }
1594
1595 static int
1596 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1597 {
1598 struct svm_cpudata *cpudata;
1599 int error;
1600
1601 /* Allocate the SVM cpudata. */
1602 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1603 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1604 UVM_KMF_WIRED|UVM_KMF_ZERO);
1605 vcpu->cpudata = cpudata;
1606
1607 /* VMCB */
1608 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1609 VMCB_NPAGES);
1610 if (error)
1611 goto error;
1612
1613 /* I/O Bitmap */
1614 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1615 IOBM_NPAGES);
1616 if (error)
1617 goto error;
1618
1619 /* MSR Bitmap */
1620 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1621 MSRBM_NPAGES);
1622 if (error)
1623 goto error;
1624
1625 /* Init the VCPU info. */
1626 svm_vcpu_init(mach, vcpu);
1627
1628 return 0;
1629
1630 error:
1631 if (cpudata->vmcb_pa) {
1632 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1633 VMCB_NPAGES);
1634 }
1635 if (cpudata->iobm_pa) {
1636 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1637 IOBM_NPAGES);
1638 }
1639 if (cpudata->msrbm_pa) {
1640 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1641 MSRBM_NPAGES);
1642 }
1643 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1644 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1645 return error;
1646 }
1647
1648 static void
1649 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1650 {
1651 struct svm_cpudata *cpudata = vcpu->cpudata;
1652
1653 svm_asid_free(vcpu);
1654
1655 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1656 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1657 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1658
1659 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1660 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1661 }
1662
1663 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1664 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1665 #define SVM_SEG_ATTRIB_P __BIT(7)
1666 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1667 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1668 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1669 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1670
1671 static void
1672 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1673 {
1674 vseg->selector = seg->selector;
1675 vseg->attrib =
1676 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1677 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1678 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1679 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1680 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1681 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1682 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1683 vseg->limit = seg->limit;
1684 vseg->base = seg->base;
1685 }
1686
1687 static void
1688 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1689 {
1690 seg->selector = vseg->selector;
1691 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1692 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1693 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1694 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1695 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1696 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1697 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1698 seg->limit = vseg->limit;
1699 seg->base = vseg->base;
1700 }
1701
1702 static inline bool
1703 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
1704 uint64_t flags)
1705 {
1706 if (flags & NVMM_X64_STATE_CRS) {
1707 if ((vmcb->state.cr0 ^
1708 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1709 return true;
1710 }
1711 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1712 return true;
1713 }
1714 if ((vmcb->state.cr4 ^
1715 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1716 return true;
1717 }
1718 }
1719
1720 if (flags & NVMM_X64_STATE_MSRS) {
1721 if ((vmcb->state.efer ^
1722 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1723 return true;
1724 }
1725 }
1726
1727 return false;
1728 }
1729
1730 static void
1731 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1732 {
1733 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1734 struct svm_cpudata *cpudata = vcpu->cpudata;
1735 struct vmcb *vmcb = cpudata->vmcb;
1736 struct fxsave *fpustate;
1737
1738 if (svm_state_tlb_flush(vmcb, state, flags)) {
1739 cpudata->tlb_want_flush = true;
1740 }
1741
1742 if (flags & NVMM_X64_STATE_SEGS) {
1743 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1744 &vmcb->state.cs);
1745 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1746 &vmcb->state.ds);
1747 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1748 &vmcb->state.es);
1749 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1750 &vmcb->state.fs);
1751 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1752 &vmcb->state.gs);
1753 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1754 &vmcb->state.ss);
1755 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1756 &vmcb->state.gdt);
1757 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1758 &vmcb->state.idt);
1759 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1760 &vmcb->state.ldt);
1761 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1762 &vmcb->state.tr);
1763
1764 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1765 }
1766
1767 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1768 if (flags & NVMM_X64_STATE_GPRS) {
1769 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1770
1771 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1772 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1773 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1774 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1775 }
1776
1777 if (flags & NVMM_X64_STATE_CRS) {
1778 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1779 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1780 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1781 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1782
1783 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1784 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1785 VMCB_CTRL_V_TPR);
1786
1787 if (svm_xcr0_mask != 0) {
1788 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1789 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1790 cpudata->gxcr0 &= svm_xcr0_mask;
1791 cpudata->gxcr0 |= XCR0_X87;
1792 }
1793 }
1794
1795 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1796 if (flags & NVMM_X64_STATE_DRS) {
1797 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1798
1799 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1800 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1801 }
1802
1803 if (flags & NVMM_X64_STATE_MSRS) {
1804 /* Bit EFER_SVME is mandatory. */
1805 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1806
1807 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1808 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1809 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1810 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1811 vmcb->state.kernelgsbase =
1812 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1813 vmcb->state.sysenter_cs =
1814 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1815 vmcb->state.sysenter_esp =
1816 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1817 vmcb->state.sysenter_eip =
1818 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1819 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1820 }
1821
1822 if (flags & NVMM_X64_STATE_MISC) {
1823 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1824 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1825 } else {
1826 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1827 }
1828
1829 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1830 svm_event_waitexit_enable(vcpu, false);
1831 } else {
1832 svm_event_waitexit_disable(vcpu, false);
1833 }
1834
1835 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1836 svm_event_waitexit_enable(vcpu, true);
1837 } else {
1838 svm_event_waitexit_disable(vcpu, true);
1839 }
1840 }
1841
1842 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1843 if (flags & NVMM_X64_STATE_FPU) {
1844 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1845 sizeof(state->fpu));
1846
1847 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1848 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1849 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1850
1851 if (svm_xcr0_mask != 0) {
1852 /* Reset XSTATE_BV, to force a reload. */
1853 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1854 }
1855 }
1856
1857 svm_vmcb_cache_update(vmcb, flags);
1858 }
1859
1860 static void
1861 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1862 {
1863 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1864 struct svm_cpudata *cpudata = vcpu->cpudata;
1865 struct vmcb *vmcb = cpudata->vmcb;
1866
1867 if (flags & NVMM_X64_STATE_SEGS) {
1868 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1869 &vmcb->state.cs);
1870 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1871 &vmcb->state.ds);
1872 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1873 &vmcb->state.es);
1874 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1875 &vmcb->state.fs);
1876 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1877 &vmcb->state.gs);
1878 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1879 &vmcb->state.ss);
1880 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1881 &vmcb->state.gdt);
1882 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1883 &vmcb->state.idt);
1884 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1885 &vmcb->state.ldt);
1886 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1887 &vmcb->state.tr);
1888
1889 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1890 }
1891
1892 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1893 if (flags & NVMM_X64_STATE_GPRS) {
1894 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1895
1896 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1897 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1898 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1899 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1900 }
1901
1902 if (flags & NVMM_X64_STATE_CRS) {
1903 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1904 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1905 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1906 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1907 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1908 VMCB_CTRL_V_TPR);
1909 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1910 }
1911
1912 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1913 if (flags & NVMM_X64_STATE_DRS) {
1914 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1915
1916 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1917 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1918 }
1919
1920 if (flags & NVMM_X64_STATE_MSRS) {
1921 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1922 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1923 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1924 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1925 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1926 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1927 vmcb->state.kernelgsbase;
1928 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1929 vmcb->state.sysenter_cs;
1930 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1931 vmcb->state.sysenter_esp;
1932 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1933 vmcb->state.sysenter_eip;
1934 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1935
1936 /* Hide SVME. */
1937 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1938 }
1939
1940 if (flags & NVMM_X64_STATE_MISC) {
1941 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1942 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1943 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1944 cpudata->int_window_exit;
1945 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1946 cpudata->nmi_window_exit;
1947 }
1948
1949 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1950 if (flags & NVMM_X64_STATE_FPU) {
1951 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1952 sizeof(state->fpu));
1953 }
1954 }
1955
1956 /* -------------------------------------------------------------------------- */
1957
1958 static void
1959 svm_tlb_flush(struct pmap *pm)
1960 {
1961 struct nvmm_machine *mach = pm->pm_data;
1962 struct svm_cpudata *cpudata;
1963 struct nvmm_cpu *vcpu;
1964 int error;
1965 size_t i;
1966
1967 /* Request TLB flushes. */
1968 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1969 error = nvmm_vcpu_get(mach, i, &vcpu);
1970 if (error)
1971 continue;
1972 cpudata = vcpu->cpudata;
1973 cpudata->tlb_want_flush = true;
1974 nvmm_vcpu_put(vcpu);
1975 }
1976 }
1977
1978 static void
1979 svm_machine_create(struct nvmm_machine *mach)
1980 {
1981 /* Fill in pmap info. */
1982 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1983 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1984
1985 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1986 }
1987
1988 static void
1989 svm_machine_destroy(struct nvmm_machine *mach)
1990 {
1991 kmem_free(mach->machdata, sizeof(struct svm_machdata));
1992 }
1993
1994 static int
1995 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
1996 {
1997 struct nvmm_x86_conf_cpuid *cpuid = data;
1998 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
1999 size_t i;
2000
2001 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2002 return EINVAL;
2003 }
2004
2005 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2006 (cpuid->set.ebx & cpuid->del.ebx) ||
2007 (cpuid->set.ecx & cpuid->del.ecx) ||
2008 (cpuid->set.edx & cpuid->del.edx))) {
2009 return EINVAL;
2010 }
2011
2012 /* If already here, replace. */
2013 for (i = 0; i < SVM_NCPUIDS; i++) {
2014 if (!machdata->cpuidpresent[i]) {
2015 continue;
2016 }
2017 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2018 memcpy(&machdata->cpuid[i], cpuid,
2019 sizeof(struct nvmm_x86_conf_cpuid));
2020 return 0;
2021 }
2022 }
2023
2024 /* Not here, insert. */
2025 for (i = 0; i < SVM_NCPUIDS; i++) {
2026 if (!machdata->cpuidpresent[i]) {
2027 machdata->cpuidpresent[i] = true;
2028 memcpy(&machdata->cpuid[i], cpuid,
2029 sizeof(struct nvmm_x86_conf_cpuid));
2030 return 0;
2031 }
2032 }
2033
2034 return ENOBUFS;
2035 }
2036
2037 /* -------------------------------------------------------------------------- */
2038
2039 static bool
2040 svm_ident(void)
2041 {
2042 u_int descs[4];
2043 uint64_t msr;
2044
2045 if (cpu_vendor != CPUVENDOR_AMD) {
2046 return false;
2047 }
2048 if (!(cpu_feature[3] & CPUID_SVM)) {
2049 return false;
2050 }
2051
2052 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2053 return false;
2054 }
2055 x86_cpuid(0x8000000a, descs);
2056
2057 /* Want Nested Paging. */
2058 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2059 return false;
2060 }
2061
2062 /* Want nRIP. */
2063 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2064 return false;
2065 }
2066
2067 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2068
2069 msr = rdmsr(MSR_VMCR);
2070 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2071 return false;
2072 }
2073
2074 return true;
2075 }
2076
2077 static void
2078 svm_init_asid(uint32_t maxasid)
2079 {
2080 size_t i, j, allocsz;
2081
2082 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2083
2084 /* Arbitrarily limit. */
2085 maxasid = uimin(maxasid, 8192);
2086
2087 svm_maxasid = maxasid;
2088 allocsz = roundup(maxasid, 8) / 8;
2089 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2090
2091 /* ASID 0 is reserved for the host. */
2092 svm_asidmap[0] |= __BIT(0);
2093
2094 /* ASID n-1 is special, we share it. */
2095 i = (maxasid - 1) / 8;
2096 j = (maxasid - 1) % 8;
2097 svm_asidmap[i] |= __BIT(j);
2098 }
2099
2100 static void
2101 svm_change_cpu(void *arg1, void *arg2)
2102 {
2103 bool enable = (bool)arg1;
2104 uint64_t msr;
2105
2106 msr = rdmsr(MSR_VMCR);
2107 if (msr & VMCR_SVMED) {
2108 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2109 }
2110
2111 if (!enable) {
2112 wrmsr(MSR_VM_HSAVE_PA, 0);
2113 }
2114
2115 msr = rdmsr(MSR_EFER);
2116 if (enable) {
2117 msr |= EFER_SVME;
2118 } else {
2119 msr &= ~EFER_SVME;
2120 }
2121 wrmsr(MSR_EFER, msr);
2122
2123 if (enable) {
2124 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2125 }
2126 }
2127
2128 static void
2129 svm_init(void)
2130 {
2131 CPU_INFO_ITERATOR cii;
2132 struct cpu_info *ci;
2133 struct vm_page *pg;
2134 u_int descs[4];
2135 uint64_t xc;
2136
2137 x86_cpuid(0x8000000a, descs);
2138
2139 /* The guest TLB flush command. */
2140 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2141 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2142 } else {
2143 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2144 }
2145
2146 /* Init the ASID. */
2147 svm_init_asid(descs[1]);
2148
2149 /* Init the XCR0 mask. */
2150 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2151
2152 memset(hsave, 0, sizeof(hsave));
2153 for (CPU_INFO_FOREACH(cii, ci)) {
2154 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2155 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2156 }
2157
2158 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2159 xc_wait(xc);
2160 }
2161
2162 static void
2163 svm_fini_asid(void)
2164 {
2165 size_t allocsz;
2166
2167 allocsz = roundup(svm_maxasid, 8) / 8;
2168 kmem_free(svm_asidmap, allocsz);
2169
2170 mutex_destroy(&svm_asidlock);
2171 }
2172
2173 static void
2174 svm_fini(void)
2175 {
2176 uint64_t xc;
2177 size_t i;
2178
2179 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2180 xc_wait(xc);
2181
2182 for (i = 0; i < MAXCPUS; i++) {
2183 if (hsave[i].pa != 0)
2184 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2185 }
2186
2187 svm_fini_asid();
2188 }
2189
2190 static void
2191 svm_capability(struct nvmm_capability *cap)
2192 {
2193 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2194 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2195 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2196 }
2197
2198 const struct nvmm_impl nvmm_x86_svm = {
2199 .ident = svm_ident,
2200 .init = svm_init,
2201 .fini = svm_fini,
2202 .capability = svm_capability,
2203 .conf_max = NVMM_X86_NCONF,
2204 .conf_sizes = svm_conf_sizes,
2205 .state_size = sizeof(struct nvmm_x64_state),
2206 .machine_create = svm_machine_create,
2207 .machine_destroy = svm_machine_destroy,
2208 .machine_configure = svm_machine_configure,
2209 .vcpu_create = svm_vcpu_create,
2210 .vcpu_destroy = svm_vcpu_destroy,
2211 .vcpu_setstate = svm_vcpu_setstate,
2212 .vcpu_getstate = svm_vcpu_getstate,
2213 .vcpu_inject = svm_vcpu_inject,
2214 .vcpu_run = svm_vcpu_run
2215 };
2216