Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.23
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.23 2019/02/14 14:30:20 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.23 2019/02/14 14:30:20 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 
     42 #include <uvm/uvm.h>
     43 #include <uvm/uvm_page.h>
     44 
     45 #include <x86/cputypes.h>
     46 #include <x86/specialreg.h>
     47 #include <x86/pmap.h>
     48 #include <x86/dbregs.h>
     49 #include <machine/cpuvar.h>
     50 
     51 #include <dev/nvmm/nvmm.h>
     52 #include <dev/nvmm/nvmm_internal.h>
     53 #include <dev/nvmm/x86/nvmm_x86.h>
     54 
     55 int svm_vmrun(paddr_t, uint64_t *);
     56 
     57 #define	MSR_VM_HSAVE_PA	0xC0010117
     58 
     59 /* -------------------------------------------------------------------------- */
     60 
     61 #define VMCB_EXITCODE_CR0_READ		0x0000
     62 #define VMCB_EXITCODE_CR1_READ		0x0001
     63 #define VMCB_EXITCODE_CR2_READ		0x0002
     64 #define VMCB_EXITCODE_CR3_READ		0x0003
     65 #define VMCB_EXITCODE_CR4_READ		0x0004
     66 #define VMCB_EXITCODE_CR5_READ		0x0005
     67 #define VMCB_EXITCODE_CR6_READ		0x0006
     68 #define VMCB_EXITCODE_CR7_READ		0x0007
     69 #define VMCB_EXITCODE_CR8_READ		0x0008
     70 #define VMCB_EXITCODE_CR9_READ		0x0009
     71 #define VMCB_EXITCODE_CR10_READ		0x000A
     72 #define VMCB_EXITCODE_CR11_READ		0x000B
     73 #define VMCB_EXITCODE_CR12_READ		0x000C
     74 #define VMCB_EXITCODE_CR13_READ		0x000D
     75 #define VMCB_EXITCODE_CR14_READ		0x000E
     76 #define VMCB_EXITCODE_CR15_READ		0x000F
     77 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     78 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     79 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     80 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     81 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     82 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     83 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     84 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     85 #define VMCB_EXITCODE_CR8_WRITE		0x0018
     86 #define VMCB_EXITCODE_CR9_WRITE		0x0019
     87 #define VMCB_EXITCODE_CR10_WRITE	0x001A
     88 #define VMCB_EXITCODE_CR11_WRITE	0x001B
     89 #define VMCB_EXITCODE_CR12_WRITE	0x001C
     90 #define VMCB_EXITCODE_CR13_WRITE	0x001D
     91 #define VMCB_EXITCODE_CR14_WRITE	0x001E
     92 #define VMCB_EXITCODE_CR15_WRITE	0x001F
     93 #define VMCB_EXITCODE_DR0_READ		0x0020
     94 #define VMCB_EXITCODE_DR1_READ		0x0021
     95 #define VMCB_EXITCODE_DR2_READ		0x0022
     96 #define VMCB_EXITCODE_DR3_READ		0x0023
     97 #define VMCB_EXITCODE_DR4_READ		0x0024
     98 #define VMCB_EXITCODE_DR5_READ		0x0025
     99 #define VMCB_EXITCODE_DR6_READ		0x0026
    100 #define VMCB_EXITCODE_DR7_READ		0x0027
    101 #define VMCB_EXITCODE_DR8_READ		0x0028
    102 #define VMCB_EXITCODE_DR9_READ		0x0029
    103 #define VMCB_EXITCODE_DR10_READ		0x002A
    104 #define VMCB_EXITCODE_DR11_READ		0x002B
    105 #define VMCB_EXITCODE_DR12_READ		0x002C
    106 #define VMCB_EXITCODE_DR13_READ		0x002D
    107 #define VMCB_EXITCODE_DR14_READ		0x002E
    108 #define VMCB_EXITCODE_DR15_READ		0x002F
    109 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    110 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    111 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    112 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    113 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    114 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    115 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    116 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    117 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    118 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    119 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    120 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    121 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    122 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    123 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    124 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    125 #define VMCB_EXITCODE_EXCP0		0x0040
    126 #define VMCB_EXITCODE_EXCP1		0x0041
    127 #define VMCB_EXITCODE_EXCP2		0x0042
    128 #define VMCB_EXITCODE_EXCP3		0x0043
    129 #define VMCB_EXITCODE_EXCP4		0x0044
    130 #define VMCB_EXITCODE_EXCP5		0x0045
    131 #define VMCB_EXITCODE_EXCP6		0x0046
    132 #define VMCB_EXITCODE_EXCP7		0x0047
    133 #define VMCB_EXITCODE_EXCP8		0x0048
    134 #define VMCB_EXITCODE_EXCP9		0x0049
    135 #define VMCB_EXITCODE_EXCP10		0x004A
    136 #define VMCB_EXITCODE_EXCP11		0x004B
    137 #define VMCB_EXITCODE_EXCP12		0x004C
    138 #define VMCB_EXITCODE_EXCP13		0x004D
    139 #define VMCB_EXITCODE_EXCP14		0x004E
    140 #define VMCB_EXITCODE_EXCP15		0x004F
    141 #define VMCB_EXITCODE_EXCP16		0x0050
    142 #define VMCB_EXITCODE_EXCP17		0x0051
    143 #define VMCB_EXITCODE_EXCP18		0x0052
    144 #define VMCB_EXITCODE_EXCP19		0x0053
    145 #define VMCB_EXITCODE_EXCP20		0x0054
    146 #define VMCB_EXITCODE_EXCP21		0x0055
    147 #define VMCB_EXITCODE_EXCP22		0x0056
    148 #define VMCB_EXITCODE_EXCP23		0x0057
    149 #define VMCB_EXITCODE_EXCP24		0x0058
    150 #define VMCB_EXITCODE_EXCP25		0x0059
    151 #define VMCB_EXITCODE_EXCP26		0x005A
    152 #define VMCB_EXITCODE_EXCP27		0x005B
    153 #define VMCB_EXITCODE_EXCP28		0x005C
    154 #define VMCB_EXITCODE_EXCP29		0x005D
    155 #define VMCB_EXITCODE_EXCP30		0x005E
    156 #define VMCB_EXITCODE_EXCP31		0x005F
    157 #define VMCB_EXITCODE_INTR		0x0060
    158 #define VMCB_EXITCODE_NMI		0x0061
    159 #define VMCB_EXITCODE_SMI		0x0062
    160 #define VMCB_EXITCODE_INIT		0x0063
    161 #define VMCB_EXITCODE_VINTR		0x0064
    162 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    163 #define VMCB_EXITCODE_IDTR_READ		0x0066
    164 #define VMCB_EXITCODE_GDTR_READ		0x0067
    165 #define VMCB_EXITCODE_LDTR_READ		0x0068
    166 #define VMCB_EXITCODE_TR_READ		0x0069
    167 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    168 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    169 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    170 #define VMCB_EXITCODE_TR_WRITE		0x006D
    171 #define VMCB_EXITCODE_RDTSC		0x006E
    172 #define VMCB_EXITCODE_RDPMC		0x006F
    173 #define VMCB_EXITCODE_PUSHF		0x0070
    174 #define VMCB_EXITCODE_POPF		0x0071
    175 #define VMCB_EXITCODE_CPUID		0x0072
    176 #define VMCB_EXITCODE_RSM		0x0073
    177 #define VMCB_EXITCODE_IRET		0x0074
    178 #define VMCB_EXITCODE_SWINT		0x0075
    179 #define VMCB_EXITCODE_INVD		0x0076
    180 #define VMCB_EXITCODE_PAUSE		0x0077
    181 #define VMCB_EXITCODE_HLT		0x0078
    182 #define VMCB_EXITCODE_INVLPG		0x0079
    183 #define VMCB_EXITCODE_INVLPGA		0x007A
    184 #define VMCB_EXITCODE_IOIO		0x007B
    185 #define VMCB_EXITCODE_MSR		0x007C
    186 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    187 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    188 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    189 #define VMCB_EXITCODE_VMRUN		0x0080
    190 #define VMCB_EXITCODE_VMMCALL		0x0081
    191 #define VMCB_EXITCODE_VMLOAD		0x0082
    192 #define VMCB_EXITCODE_VMSAVE		0x0083
    193 #define VMCB_EXITCODE_STGI		0x0084
    194 #define VMCB_EXITCODE_CLGI		0x0085
    195 #define VMCB_EXITCODE_SKINIT		0x0086
    196 #define VMCB_EXITCODE_RDTSCP		0x0087
    197 #define VMCB_EXITCODE_ICEBP		0x0088
    198 #define VMCB_EXITCODE_WBINVD		0x0089
    199 #define VMCB_EXITCODE_MONITOR		0x008A
    200 #define VMCB_EXITCODE_MWAIT		0x008B
    201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    202 #define VMCB_EXITCODE_XSETBV		0x008D
    203 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    204 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    205 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    206 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    207 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    208 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    209 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    210 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    211 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    212 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    213 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    214 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    215 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    216 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    217 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    218 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    219 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    220 #define VMCB_EXITCODE_NPF		0x0400
    221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    222 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    223 #define VMCB_EXITCODE_VMGEXIT		0x0403
    224 #define VMCB_EXITCODE_INVALID		-1
    225 
    226 /* -------------------------------------------------------------------------- */
    227 
    228 struct vmcb_ctrl {
    229 	uint32_t intercept_cr;
    230 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    231 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    232 
    233 	uint32_t intercept_dr;
    234 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    235 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    236 
    237 	uint32_t intercept_vec;
    238 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    239 
    240 	uint32_t intercept_misc1;
    241 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    242 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    243 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    244 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    245 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    247 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    248 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    249 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    250 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    251 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    252 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    253 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    254 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    255 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    256 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    257 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    258 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    259 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    260 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    261 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    262 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    263 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    264 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    265 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    266 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    267 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    269 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    270 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    273 
    274 	uint32_t intercept_misc2;
    275 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    276 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    277 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    278 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    279 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    280 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    281 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    282 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    283 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    284 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    285 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    286 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
    287 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    290 
    291 	uint8_t  rsvd1[40];
    292 	uint16_t pause_filt_thresh;
    293 	uint16_t pause_filt_cnt;
    294 	uint64_t iopm_base_pa;
    295 	uint64_t msrpm_base_pa;
    296 	uint64_t tsc_offset;
    297 	uint32_t guest_asid;
    298 
    299 	uint32_t tlb_ctrl;
    300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    303 
    304 	uint64_t v;
    305 #define VMCB_CTRL_V_TPR			__BITS(7,0)
    306 #define VMCB_CTRL_V_IRQ			__BIT(8)
    307 #define VMCB_CTRL_V_VGIF		__BIT(9)
    308 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    309 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    310 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    311 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    312 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    313 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    314 
    315 	uint64_t intr;
    316 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    317 
    318 	uint64_t exitcode;
    319 	uint64_t exitinfo1;
    320 	uint64_t exitinfo2;
    321 
    322 	uint64_t exitintinfo;
    323 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    324 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    325 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    326 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    327 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    328 
    329 	uint64_t enable1;
    330 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    331 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    332 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    333 
    334 	uint64_t avic;
    335 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    336 
    337 	uint64_t ghcb;
    338 
    339 	uint64_t eventinj;
    340 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    341 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    342 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    343 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    344 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    345 
    346 	uint64_t n_cr3;
    347 
    348 	uint64_t enable2;
    349 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    350 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    351 
    352 	uint32_t vmcb_clean;
    353 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    354 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    355 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    356 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    357 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    358 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    359 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    360 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    361 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    362 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    363 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    364 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    365 
    366 	uint32_t rsvd2;
    367 	uint64_t nrip;
    368 	uint8_t	inst_len;
    369 	uint8_t	inst_bytes[15];
    370 	uint64_t avic_abpp;
    371 	uint64_t rsvd3;
    372 	uint64_t avic_ltp;
    373 
    374 	uint64_t avic_phys;
    375 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    376 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    377 
    378 	uint64_t rsvd4;
    379 	uint64_t vmcb_ptr;
    380 
    381 	uint8_t	pad[752];
    382 } __packed;
    383 
    384 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    385 
    386 struct vmcb_segment {
    387 	uint16_t selector;
    388 	uint16_t attrib;	/* hidden */
    389 	uint32_t limit;		/* hidden */
    390 	uint64_t base;		/* hidden */
    391 } __packed;
    392 
    393 CTASSERT(sizeof(struct vmcb_segment) == 16);
    394 
    395 struct vmcb_state {
    396 	struct   vmcb_segment es;
    397 	struct   vmcb_segment cs;
    398 	struct   vmcb_segment ss;
    399 	struct   vmcb_segment ds;
    400 	struct   vmcb_segment fs;
    401 	struct   vmcb_segment gs;
    402 	struct   vmcb_segment gdt;
    403 	struct   vmcb_segment ldt;
    404 	struct   vmcb_segment idt;
    405 	struct   vmcb_segment tr;
    406 	uint8_t	 rsvd1[43];
    407 	uint8_t	 cpl;
    408 	uint8_t  rsvd2[4];
    409 	uint64_t efer;
    410 	uint8_t	 rsvd3[112];
    411 	uint64_t cr4;
    412 	uint64_t cr3;
    413 	uint64_t cr0;
    414 	uint64_t dr7;
    415 	uint64_t dr6;
    416 	uint64_t rflags;
    417 	uint64_t rip;
    418 	uint8_t	 rsvd4[88];
    419 	uint64_t rsp;
    420 	uint8_t	 rsvd5[24];
    421 	uint64_t rax;
    422 	uint64_t star;
    423 	uint64_t lstar;
    424 	uint64_t cstar;
    425 	uint64_t sfmask;
    426 	uint64_t kernelgsbase;
    427 	uint64_t sysenter_cs;
    428 	uint64_t sysenter_esp;
    429 	uint64_t sysenter_eip;
    430 	uint64_t cr2;
    431 	uint8_t	 rsvd6[32];
    432 	uint64_t g_pat;
    433 	uint64_t dbgctl;
    434 	uint64_t br_from;
    435 	uint64_t br_to;
    436 	uint64_t int_from;
    437 	uint64_t int_to;
    438 	uint8_t	 pad[2408];
    439 } __packed;
    440 
    441 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    442 
    443 struct vmcb {
    444 	struct vmcb_ctrl ctrl;
    445 	struct vmcb_state state;
    446 } __packed;
    447 
    448 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    449 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    450 
    451 /* -------------------------------------------------------------------------- */
    452 
    453 struct svm_hsave {
    454 	paddr_t pa;
    455 };
    456 
    457 static struct svm_hsave hsave[MAXCPUS];
    458 
    459 static uint8_t *svm_asidmap __read_mostly;
    460 static uint32_t svm_maxasid __read_mostly;
    461 static kmutex_t svm_asidlock __cacheline_aligned;
    462 
    463 static bool svm_decode_assist __read_mostly;
    464 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    465 
    466 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    467 static uint64_t svm_xcr0_mask __read_mostly;
    468 
    469 #define SVM_NCPUIDS	32
    470 
    471 #define VMCB_NPAGES	1
    472 
    473 #define MSRBM_NPAGES	2
    474 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    475 
    476 #define IOBM_NPAGES	3
    477 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    478 
    479 /* Does not include EFER_LMSLE. */
    480 #define EFER_VALID \
    481 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    482 
    483 #define EFER_TLB_FLUSH \
    484 	(EFER_NXE|EFER_LMA|EFER_LME)
    485 #define CR0_TLB_FLUSH \
    486 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    487 #define CR4_TLB_FLUSH \
    488 	(CR4_PGE|CR4_PAE|CR4_PSE)
    489 
    490 /* -------------------------------------------------------------------------- */
    491 
    492 struct svm_machdata {
    493 	bool cpuidpresent[SVM_NCPUIDS];
    494 	struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
    495 };
    496 
    497 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
    498 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    499 };
    500 
    501 struct svm_cpudata {
    502 	/* General */
    503 	bool shared_asid;
    504 	bool tlb_want_flush;
    505 
    506 	/* VMCB */
    507 	struct vmcb *vmcb;
    508 	paddr_t vmcb_pa;
    509 
    510 	/* I/O bitmap */
    511 	uint8_t *iobm;
    512 	paddr_t iobm_pa;
    513 
    514 	/* MSR bitmap */
    515 	uint8_t *msrbm;
    516 	paddr_t msrbm_pa;
    517 
    518 	/* Host state */
    519 	uint64_t hxcr0;
    520 	uint64_t star;
    521 	uint64_t lstar;
    522 	uint64_t cstar;
    523 	uint64_t sfmask;
    524 	uint64_t fsbase;
    525 	uint64_t kernelgsbase;
    526 	bool ts_set;
    527 	struct xsave_header hfpu __aligned(64);
    528 
    529 	/* Event state */
    530 	bool int_window_exit;
    531 	bool nmi_window_exit;
    532 
    533 	/* Guest state */
    534 	uint64_t gxcr0;
    535 	uint64_t gprs[NVMM_X64_NGPR];
    536 	uint64_t drs[NVMM_X64_NDR];
    537 	uint64_t tsc_offset;
    538 	struct xsave_header gfpu __aligned(64);
    539 };
    540 
    541 static void
    542 svm_vmcb_cache_default(struct vmcb *vmcb)
    543 {
    544 	vmcb->ctrl.vmcb_clean =
    545 	    VMCB_CTRL_VMCB_CLEAN_I |
    546 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    547 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    548 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    549 	    VMCB_CTRL_VMCB_CLEAN_NP |
    550 	    VMCB_CTRL_VMCB_CLEAN_CR |
    551 	    VMCB_CTRL_VMCB_CLEAN_DR |
    552 	    VMCB_CTRL_VMCB_CLEAN_DT |
    553 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    554 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    555 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    556 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    557 }
    558 
    559 static void
    560 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    561 {
    562 	if (flags & NVMM_X64_STATE_SEGS) {
    563 		vmcb->ctrl.vmcb_clean &=
    564 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    565 	}
    566 	if (flags & NVMM_X64_STATE_CRS) {
    567 		vmcb->ctrl.vmcb_clean &=
    568 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    569 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    570 	}
    571 	if (flags & NVMM_X64_STATE_DRS) {
    572 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    573 	}
    574 	if (flags & NVMM_X64_STATE_MSRS) {
    575 		/* CR for EFER, NP for PAT. */
    576 		vmcb->ctrl.vmcb_clean &=
    577 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    578 	}
    579 }
    580 
    581 static inline void
    582 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    583 {
    584 	vmcb->ctrl.vmcb_clean &= ~flags;
    585 }
    586 
    587 static inline void
    588 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    589 {
    590 	vmcb->ctrl.vmcb_clean = 0;
    591 }
    592 
    593 #define SVM_EVENT_TYPE_HW_INT	0
    594 #define SVM_EVENT_TYPE_NMI	2
    595 #define SVM_EVENT_TYPE_EXC	3
    596 #define SVM_EVENT_TYPE_SW_INT	4
    597 
    598 static void
    599 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    600 {
    601 	struct svm_cpudata *cpudata = vcpu->cpudata;
    602 	struct vmcb *vmcb = cpudata->vmcb;
    603 
    604 	if (nmi) {
    605 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    606 		cpudata->nmi_window_exit = true;
    607 	} else {
    608 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    609 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    610 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    611 		cpudata->int_window_exit = true;
    612 	}
    613 
    614 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    615 }
    616 
    617 static void
    618 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    619 {
    620 	struct svm_cpudata *cpudata = vcpu->cpudata;
    621 	struct vmcb *vmcb = cpudata->vmcb;
    622 
    623 	if (nmi) {
    624 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    625 		cpudata->nmi_window_exit = false;
    626 	} else {
    627 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    628 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    629 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    630 		cpudata->int_window_exit = false;
    631 	}
    632 
    633 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    634 }
    635 
    636 static inline int
    637 svm_event_has_error(uint64_t vector)
    638 {
    639 	switch (vector) {
    640 	case 8:		/* #DF */
    641 	case 10:	/* #TS */
    642 	case 11:	/* #NP */
    643 	case 12:	/* #SS */
    644 	case 13:	/* #GP */
    645 	case 14:	/* #PF */
    646 	case 17:	/* #AC */
    647 	case 30:	/* #SX */
    648 		return 1;
    649 	default:
    650 		return 0;
    651 	}
    652 }
    653 
    654 static int
    655 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    656     struct nvmm_event *event)
    657 {
    658 	struct svm_cpudata *cpudata = vcpu->cpudata;
    659 	struct vmcb *vmcb = cpudata->vmcb;
    660 	int type = 0, err = 0;
    661 
    662 	if (event->vector >= 256) {
    663 		return EINVAL;
    664 	}
    665 
    666 	switch (event->type) {
    667 	case NVMM_EVENT_INTERRUPT_HW:
    668 		type = SVM_EVENT_TYPE_HW_INT;
    669 		if (event->vector == 2) {
    670 			type = SVM_EVENT_TYPE_NMI;
    671 		}
    672 		if (type == SVM_EVENT_TYPE_NMI) {
    673 			if (cpudata->nmi_window_exit) {
    674 				return EAGAIN;
    675 			}
    676 			svm_event_waitexit_enable(vcpu, true);
    677 		} else {
    678 			if (((vmcb->state.rflags & PSL_I) == 0) ||
    679 			    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
    680 				svm_event_waitexit_enable(vcpu, false);
    681 				return EAGAIN;
    682 			}
    683 		}
    684 		err = 0;
    685 		break;
    686 	case NVMM_EVENT_INTERRUPT_SW:
    687 		return EINVAL;
    688 	case NVMM_EVENT_EXCEPTION:
    689 		type = SVM_EVENT_TYPE_EXC;
    690 		if (event->vector == 2 || event->vector >= 32)
    691 			return EINVAL;
    692 		if (event->vector == 3 || event->vector == 0)
    693 			return EINVAL;
    694 		err = svm_event_has_error(event->vector);
    695 		break;
    696 	default:
    697 		return EINVAL;
    698 	}
    699 
    700 	vmcb->ctrl.eventinj =
    701 	    __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    702 	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
    703 	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
    704 	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
    705 	    __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    706 
    707 	return 0;
    708 }
    709 
    710 static void
    711 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    712 {
    713 	struct nvmm_event event;
    714 	int ret __diagused;
    715 
    716 	event.type = NVMM_EVENT_EXCEPTION;
    717 	event.vector = 6;
    718 	event.u.error = 0;
    719 
    720 	ret = svm_vcpu_inject(mach, vcpu, &event);
    721 	KASSERT(ret == 0);
    722 }
    723 
    724 static void
    725 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    726 {
    727 	struct nvmm_event event;
    728 	int ret __diagused;
    729 
    730 	event.type = NVMM_EVENT_EXCEPTION;
    731 	event.vector = 13;
    732 	event.u.error = 0;
    733 
    734 	ret = svm_vcpu_inject(mach, vcpu, &event);
    735 	KASSERT(ret == 0);
    736 }
    737 
    738 static inline void
    739 svm_inkernel_advance(struct vmcb *vmcb)
    740 {
    741 	/*
    742 	 * Maybe we should also apply single-stepping and debug exceptions.
    743 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    744 	 * debugger.
    745 	 */
    746 	vmcb->state.rip = vmcb->ctrl.nrip;
    747 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    748 }
    749 
    750 static void
    751 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    752 {
    753 	struct svm_cpudata *cpudata = vcpu->cpudata;
    754 
    755 	switch (eax) {
    756 	case 0x00000001: /* APIC number in RBX. The rest is tunable. */
    757 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    758 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    759 		    CPUID_LOCAL_APIC_ID);
    760 		break;
    761 	case 0x0000000D: /* FPU description. Not tunable. */
    762 		if (ecx != 0 || svm_xcr0_mask == 0) {
    763 			break;
    764 		}
    765 		cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    766 		if (cpudata->gxcr0 & XCR0_SSE) {
    767 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    768 		} else {
    769 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    770 		}
    771 		cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    772 		cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
    773 		cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    774 		break;
    775 	case 0x40000000:
    776 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    777 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    778 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    779 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    780 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    781 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    782 		break;
    783 	case 0x80000001: /* No SVM, no RDTSCP. The rest is tunable. */
    784 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
    785 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
    786 		break;
    787 	default:
    788 		break;
    789 	}
    790 }
    791 
    792 static void
    793 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    794     struct nvmm_exit *exit)
    795 {
    796 	struct svm_machdata *machdata = mach->machdata;
    797 	struct svm_cpudata *cpudata = vcpu->cpudata;
    798 	struct nvmm_x86_conf_cpuid *cpuid;
    799 	uint64_t eax, ecx;
    800 	u_int descs[4];
    801 	size_t i;
    802 
    803 	eax = cpudata->vmcb->state.rax;
    804 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    805 	x86_cpuid2(eax, ecx, descs);
    806 
    807 	cpudata->vmcb->state.rax = descs[0];
    808 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    809 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    810 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    811 
    812 	for (i = 0; i < SVM_NCPUIDS; i++) {
    813 		cpuid = &machdata->cpuid[i];
    814 		if (!machdata->cpuidpresent[i]) {
    815 			continue;
    816 		}
    817 		if (cpuid->leaf != eax) {
    818 			continue;
    819 		}
    820 
    821 		/* del */
    822 		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
    823 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
    824 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
    825 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
    826 
    827 		/* set */
    828 		cpudata->vmcb->state.rax |= cpuid->set.eax;
    829 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
    830 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
    831 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
    832 
    833 		break;
    834 	}
    835 
    836 	/* Overwrite non-tunable leaves. */
    837 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    838 
    839 	svm_inkernel_advance(cpudata->vmcb);
    840 	exit->reason = NVMM_EXIT_NONE;
    841 }
    842 
    843 static void
    844 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    845     struct nvmm_exit *exit)
    846 {
    847 	struct svm_cpudata *cpudata = vcpu->cpudata;
    848 	struct vmcb *vmcb = cpudata->vmcb;
    849 
    850 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
    851 		svm_event_waitexit_disable(vcpu, false);
    852 	}
    853 
    854 	svm_inkernel_advance(cpudata->vmcb);
    855 	exit->reason = NVMM_EXIT_HALTED;
    856 }
    857 
    858 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    859 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    860 #define SVM_EXIT_IO_A64		__BIT(9)
    861 #define SVM_EXIT_IO_A32		__BIT(8)
    862 #define SVM_EXIT_IO_A16		__BIT(7)
    863 #define SVM_EXIT_IO_SZ32	__BIT(6)
    864 #define SVM_EXIT_IO_SZ16	__BIT(5)
    865 #define SVM_EXIT_IO_SZ8		__BIT(4)
    866 #define SVM_EXIT_IO_REP		__BIT(3)
    867 #define SVM_EXIT_IO_STR		__BIT(2)
    868 #define SVM_EXIT_IO_IN		__BIT(0)
    869 
    870 static const int seg_to_nvmm[] = {
    871 	[0] = NVMM_X64_SEG_ES,
    872 	[1] = NVMM_X64_SEG_CS,
    873 	[2] = NVMM_X64_SEG_SS,
    874 	[3] = NVMM_X64_SEG_DS,
    875 	[4] = NVMM_X64_SEG_FS,
    876 	[5] = NVMM_X64_SEG_GS
    877 };
    878 
    879 static void
    880 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    881     struct nvmm_exit *exit)
    882 {
    883 	struct svm_cpudata *cpudata = vcpu->cpudata;
    884 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    885 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    886 
    887 	exit->reason = NVMM_EXIT_IO;
    888 
    889 	if (info & SVM_EXIT_IO_IN) {
    890 		exit->u.io.type = NVMM_EXIT_IO_IN;
    891 	} else {
    892 		exit->u.io.type = NVMM_EXIT_IO_OUT;
    893 	}
    894 
    895 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
    896 
    897 	if (svm_decode_assist) {
    898 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
    899 		exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
    900 	} else {
    901 		exit->u.io.seg = -1;
    902 	}
    903 
    904 	if (info & SVM_EXIT_IO_A64) {
    905 		exit->u.io.address_size = 8;
    906 	} else if (info & SVM_EXIT_IO_A32) {
    907 		exit->u.io.address_size = 4;
    908 	} else if (info & SVM_EXIT_IO_A16) {
    909 		exit->u.io.address_size = 2;
    910 	}
    911 
    912 	if (info & SVM_EXIT_IO_SZ32) {
    913 		exit->u.io.operand_size = 4;
    914 	} else if (info & SVM_EXIT_IO_SZ16) {
    915 		exit->u.io.operand_size = 2;
    916 	} else if (info & SVM_EXIT_IO_SZ8) {
    917 		exit->u.io.operand_size = 1;
    918 	}
    919 
    920 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
    921 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
    922 	exit->u.io.npc = nextpc;
    923 }
    924 
    925 static const uint64_t msr_ignore_list[] = {
    926 	0xc0010055, /* MSR_CMPHALT */
    927 	MSR_DE_CFG,
    928 	MSR_IC_CFG,
    929 	MSR_UCODE_AMD_PATCHLEVEL
    930 };
    931 
    932 static bool
    933 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    934     struct nvmm_exit *exit)
    935 {
    936 	struct svm_cpudata *cpudata = vcpu->cpudata;
    937 	struct vmcb *vmcb = cpudata->vmcb;
    938 	uint64_t val;
    939 	size_t i;
    940 
    941 	switch (exit->u.msr.type) {
    942 	case NVMM_EXIT_MSR_RDMSR:
    943 		if (exit->u.msr.msr == MSR_NB_CFG) {
    944 			val = NB_CFG_INITAPICCPUIDLO;
    945 			vmcb->state.rax = (val & 0xFFFFFFFF);
    946 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    947 			goto handled;
    948 		}
    949 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    950 			if (msr_ignore_list[i] != exit->u.msr.msr)
    951 				continue;
    952 			val = 0;
    953 			vmcb->state.rax = (val & 0xFFFFFFFF);
    954 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    955 			goto handled;
    956 		}
    957 		break;
    958 	case NVMM_EXIT_MSR_WRMSR:
    959 		if (exit->u.msr.msr == MSR_EFER) {
    960 			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
    961 				goto error;
    962 			}
    963 			if ((vmcb->state.efer ^ exit->u.msr.val) &
    964 			     EFER_TLB_FLUSH) {
    965 				cpudata->tlb_want_flush = true;
    966 			}
    967 			vmcb->state.efer = exit->u.msr.val | EFER_SVME;
    968 			vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_CR;
    969 			goto handled;
    970 		}
    971 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    972 			if (msr_ignore_list[i] != exit->u.msr.msr)
    973 				continue;
    974 			goto handled;
    975 		}
    976 		break;
    977 	}
    978 
    979 	return false;
    980 
    981 handled:
    982 	svm_inkernel_advance(cpudata->vmcb);
    983 	return true;
    984 
    985 error:
    986 	svm_inject_gp(mach, vcpu);
    987 	return true;
    988 }
    989 
    990 static void
    991 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    992     struct nvmm_exit *exit)
    993 {
    994 	struct svm_cpudata *cpudata = vcpu->cpudata;
    995 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    996 
    997 	if (info == 0) {
    998 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
    999 	} else {
   1000 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1001 	}
   1002 
   1003 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1004 
   1005 	if (info == 1) {
   1006 		uint64_t rdx, rax;
   1007 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1008 		rax = cpudata->vmcb->state.rax;
   1009 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1010 	} else {
   1011 		exit->u.msr.val = 0;
   1012 	}
   1013 
   1014 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1015 		exit->reason = NVMM_EXIT_NONE;
   1016 		return;
   1017 	}
   1018 
   1019 	exit->reason = NVMM_EXIT_MSR;
   1020 	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
   1021 }
   1022 
   1023 static void
   1024 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1025     struct nvmm_exit *exit)
   1026 {
   1027 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1028 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1029 	int error;
   1030 
   1031 	error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
   1032 
   1033 	if (error) {
   1034 		exit->reason = NVMM_EXIT_MEMORY;
   1035 		if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1036 			exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
   1037 		else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1038 			exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
   1039 		else
   1040 			exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
   1041 		exit->u.mem.gpa = gpa;
   1042 		exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1043 		memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1044 		    sizeof(exit->u.mem.inst_bytes));
   1045 	} else {
   1046 		exit->reason = NVMM_EXIT_NONE;
   1047 	}
   1048 }
   1049 
   1050 static void
   1051 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
   1052 {
   1053 	exit->u.insn.npc = vmcb->ctrl.nrip;
   1054 	exit->reason = reason;
   1055 }
   1056 
   1057 static void
   1058 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1059     struct nvmm_exit *exit)
   1060 {
   1061 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1062 	struct vmcb *vmcb = cpudata->vmcb;
   1063 	uint64_t val;
   1064 
   1065 	exit->reason = NVMM_EXIT_NONE;
   1066 
   1067 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1068 	    (vmcb->state.rax & 0xFFFFFFFF);
   1069 
   1070 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1071 		goto error;
   1072 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1073 		goto error;
   1074 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1075 		goto error;
   1076 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1077 		goto error;
   1078 	}
   1079 
   1080 	cpudata->gxcr0 = val;
   1081 
   1082 	svm_inkernel_advance(cpudata->vmcb);
   1083 	return;
   1084 
   1085 error:
   1086 	svm_inject_gp(mach, vcpu);
   1087 }
   1088 
   1089 static void
   1090 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1091 {
   1092 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1093 
   1094 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1095 
   1096 	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
   1097 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
   1098 
   1099 	if (svm_xcr0_mask != 0) {
   1100 		cpudata->hxcr0 = rdxcr(0);
   1101 		wrxcr(0, cpudata->gxcr0);
   1102 	}
   1103 }
   1104 
   1105 static void
   1106 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1107 {
   1108 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1109 
   1110 	if (svm_xcr0_mask != 0) {
   1111 		cpudata->gxcr0 = rdxcr(0);
   1112 		wrxcr(0, cpudata->hxcr0);
   1113 	}
   1114 
   1115 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
   1116 	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
   1117 
   1118 	if (cpudata->ts_set) {
   1119 		stts();
   1120 	}
   1121 }
   1122 
   1123 static void
   1124 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1125 {
   1126 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1127 
   1128 	x86_dbregs_save(curlwp);
   1129 
   1130 	ldr7(0);
   1131 
   1132 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1133 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1134 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1135 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1136 }
   1137 
   1138 static void
   1139 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1140 {
   1141 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1142 
   1143 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1144 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1145 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1146 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1147 
   1148 	x86_dbregs_restore(curlwp);
   1149 }
   1150 
   1151 static void
   1152 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1153 {
   1154 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1155 
   1156 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1157 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1158 }
   1159 
   1160 static void
   1161 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1162 {
   1163 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1164 
   1165 	wrmsr(MSR_STAR, cpudata->star);
   1166 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1167 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1168 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1169 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1170 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1171 }
   1172 
   1173 static int
   1174 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1175     struct nvmm_exit *exit)
   1176 {
   1177 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1178 	struct vmcb *vmcb = cpudata->vmcb;
   1179 	bool tlb_need_flush = false;
   1180 	int hcpu, s;
   1181 
   1182 	kpreempt_disable();
   1183 	hcpu = cpu_number();
   1184 
   1185 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1186 		tlb_need_flush = true;
   1187 	}
   1188 
   1189 	if (vcpu->hcpu_last != hcpu) {
   1190 		vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
   1191 		    curcpu()->ci_data.cpu_cc_skew;
   1192 		svm_vmcb_cache_flush_all(vmcb);
   1193 	}
   1194 
   1195 	svm_vcpu_guest_dbregs_enter(vcpu);
   1196 	svm_vcpu_guest_misc_enter(vcpu);
   1197 
   1198 	while (1) {
   1199 		if (cpudata->tlb_want_flush || tlb_need_flush) {
   1200 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1201 		} else {
   1202 			vmcb->ctrl.tlb_ctrl = 0;
   1203 		}
   1204 
   1205 		s = splhigh();
   1206 		svm_vcpu_guest_fpu_enter(vcpu);
   1207 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1208 		svm_vcpu_guest_fpu_leave(vcpu);
   1209 		splx(s);
   1210 
   1211 		svm_vmcb_cache_default(vmcb);
   1212 
   1213 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1214 			cpudata->tlb_want_flush = false;
   1215 			tlb_need_flush = false;
   1216 			vcpu->hcpu_last = hcpu;
   1217 		}
   1218 
   1219 		switch (vmcb->ctrl.exitcode) {
   1220 		case VMCB_EXITCODE_INTR:
   1221 		case VMCB_EXITCODE_NMI:
   1222 			exit->reason = NVMM_EXIT_NONE;
   1223 			break;
   1224 		case VMCB_EXITCODE_VINTR:
   1225 			svm_event_waitexit_disable(vcpu, false);
   1226 			exit->reason = NVMM_EXIT_INT_READY;
   1227 			break;
   1228 		case VMCB_EXITCODE_IRET:
   1229 			svm_event_waitexit_disable(vcpu, true);
   1230 			exit->reason = NVMM_EXIT_NMI_READY;
   1231 			break;
   1232 		case VMCB_EXITCODE_CPUID:
   1233 			svm_exit_cpuid(mach, vcpu, exit);
   1234 			break;
   1235 		case VMCB_EXITCODE_HLT:
   1236 			svm_exit_hlt(mach, vcpu, exit);
   1237 			break;
   1238 		case VMCB_EXITCODE_IOIO:
   1239 			svm_exit_io(mach, vcpu, exit);
   1240 			break;
   1241 		case VMCB_EXITCODE_MSR:
   1242 			svm_exit_msr(mach, vcpu, exit);
   1243 			break;
   1244 		case VMCB_EXITCODE_SHUTDOWN:
   1245 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1246 			break;
   1247 		case VMCB_EXITCODE_RDPMC:
   1248 		case VMCB_EXITCODE_RSM:
   1249 		case VMCB_EXITCODE_INVLPGA:
   1250 		case VMCB_EXITCODE_VMRUN:
   1251 		case VMCB_EXITCODE_VMMCALL:
   1252 		case VMCB_EXITCODE_VMLOAD:
   1253 		case VMCB_EXITCODE_VMSAVE:
   1254 		case VMCB_EXITCODE_STGI:
   1255 		case VMCB_EXITCODE_CLGI:
   1256 		case VMCB_EXITCODE_SKINIT:
   1257 		case VMCB_EXITCODE_RDTSCP:
   1258 			svm_inject_ud(mach, vcpu);
   1259 			exit->reason = NVMM_EXIT_NONE;
   1260 			break;
   1261 		case VMCB_EXITCODE_MONITOR:
   1262 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
   1263 			break;
   1264 		case VMCB_EXITCODE_MWAIT:
   1265 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
   1266 			break;
   1267 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1268 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
   1269 			break;
   1270 		case VMCB_EXITCODE_XSETBV:
   1271 			svm_exit_xsetbv(mach, vcpu, exit);
   1272 			break;
   1273 		case VMCB_EXITCODE_NPF:
   1274 			svm_exit_npf(mach, vcpu, exit);
   1275 			break;
   1276 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1277 		default:
   1278 			exit->reason = NVMM_EXIT_INVALID;
   1279 			break;
   1280 		}
   1281 
   1282 		/* If no reason to return to userland, keep rolling. */
   1283 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1284 			break;
   1285 		}
   1286 		if (curcpu()->ci_data.cpu_softints != 0) {
   1287 			break;
   1288 		}
   1289 		if (curlwp->l_flag & LW_USERRET) {
   1290 			break;
   1291 		}
   1292 		if (exit->reason != NVMM_EXIT_NONE) {
   1293 			break;
   1294 		}
   1295 	}
   1296 
   1297 	svm_vcpu_guest_misc_leave(vcpu);
   1298 	svm_vcpu_guest_dbregs_leave(vcpu);
   1299 
   1300 	kpreempt_enable();
   1301 
   1302 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1303 	    VMCB_CTRL_V_TPR);
   1304 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
   1305 
   1306 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1307 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1308 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1309 	    cpudata->int_window_exit;
   1310 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1311 	    cpudata->nmi_window_exit;
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 /* -------------------------------------------------------------------------- */
   1317 
   1318 static int
   1319 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1320 {
   1321 	struct pglist pglist;
   1322 	paddr_t _pa;
   1323 	vaddr_t _va;
   1324 	size_t i;
   1325 	int ret;
   1326 
   1327 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1328 	    &pglist, 1, 0);
   1329 	if (ret != 0)
   1330 		return ENOMEM;
   1331 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1332 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1333 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1334 	if (_va == 0)
   1335 		goto error;
   1336 
   1337 	for (i = 0; i < npages; i++) {
   1338 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1339 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1340 	}
   1341 	pmap_update(pmap_kernel());
   1342 
   1343 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1344 
   1345 	*pa = _pa;
   1346 	*va = _va;
   1347 	return 0;
   1348 
   1349 error:
   1350 	for (i = 0; i < npages; i++) {
   1351 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1352 	}
   1353 	return ENOMEM;
   1354 }
   1355 
   1356 static void
   1357 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1358 {
   1359 	size_t i;
   1360 
   1361 	pmap_kremove(va, npages * PAGE_SIZE);
   1362 	pmap_update(pmap_kernel());
   1363 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1364 	for (i = 0; i < npages; i++) {
   1365 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1366 	}
   1367 }
   1368 
   1369 /* -------------------------------------------------------------------------- */
   1370 
   1371 #define SVM_MSRBM_READ	__BIT(0)
   1372 #define SVM_MSRBM_WRITE	__BIT(1)
   1373 
   1374 static void
   1375 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1376 {
   1377 	uint64_t byte;
   1378 	uint8_t bitoff;
   1379 
   1380 	if (msr < 0x00002000) {
   1381 		/* Range 1 */
   1382 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1383 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1384 		/* Range 2 */
   1385 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1386 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1387 		/* Range 3 */
   1388 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1389 	} else {
   1390 		panic("%s: wrong range", __func__);
   1391 	}
   1392 
   1393 	bitoff = (msr & 0x3) << 1;
   1394 
   1395 	if (read) {
   1396 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1397 	}
   1398 	if (write) {
   1399 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1400 	}
   1401 }
   1402 
   1403 static void
   1404 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1405 {
   1406 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1407 	struct vmcb *vmcb = cpudata->vmcb;
   1408 	size_t i, oct, bit;
   1409 
   1410 	mutex_enter(&svm_asidlock);
   1411 
   1412 	for (i = 0; i < svm_maxasid; i++) {
   1413 		oct = i / 8;
   1414 		bit = i % 8;
   1415 
   1416 		if (svm_asidmap[oct] & __BIT(bit)) {
   1417 			continue;
   1418 		}
   1419 
   1420 		svm_asidmap[oct] |= __BIT(bit);
   1421 		vmcb->ctrl.guest_asid = i;
   1422 		mutex_exit(&svm_asidlock);
   1423 		return;
   1424 	}
   1425 
   1426 	/*
   1427 	 * No free ASID. Use the last one, which is shared and requires
   1428 	 * special TLB handling.
   1429 	 */
   1430 	cpudata->shared_asid = true;
   1431 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1432 	mutex_exit(&svm_asidlock);
   1433 }
   1434 
   1435 static void
   1436 svm_asid_free(struct nvmm_cpu *vcpu)
   1437 {
   1438 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1439 	struct vmcb *vmcb = cpudata->vmcb;
   1440 	size_t oct, bit;
   1441 
   1442 	if (cpudata->shared_asid) {
   1443 		return;
   1444 	}
   1445 
   1446 	oct = vmcb->ctrl.guest_asid / 8;
   1447 	bit = vmcb->ctrl.guest_asid % 8;
   1448 
   1449 	mutex_enter(&svm_asidlock);
   1450 	svm_asidmap[oct] &= ~__BIT(bit);
   1451 	mutex_exit(&svm_asidlock);
   1452 }
   1453 
   1454 static void
   1455 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1456 {
   1457 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1458 	struct vmcb *vmcb = cpudata->vmcb;
   1459 
   1460 	/* Allow reads/writes of Control Registers. */
   1461 	vmcb->ctrl.intercept_cr = 0;
   1462 
   1463 	/* Allow reads/writes of Debug Registers. */
   1464 	vmcb->ctrl.intercept_dr = 0;
   1465 
   1466 	/* Allow exceptions 0 to 31. */
   1467 	vmcb->ctrl.intercept_vec = 0;
   1468 
   1469 	/*
   1470 	 * Allow:
   1471 	 *  - SMI [smm interrupts]
   1472 	 *  - VINTR [virtual interrupts]
   1473 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   1474 	 *  - RIDTR [reads of IDTR]
   1475 	 *  - RGDTR [reads of GDTR]
   1476 	 *  - RLDTR [reads of LDTR]
   1477 	 *  - RTR [reads of TR]
   1478 	 *  - WIDTR [writes of IDTR]
   1479 	 *  - WGDTR [writes of GDTR]
   1480 	 *  - WLDTR [writes of LDTR]
   1481 	 *  - WTR [writes of TR]
   1482 	 *  - RDTSC [rdtsc instruction]
   1483 	 *  - PUSHF [pushf instruction]
   1484 	 *  - POPF [popf instruction]
   1485 	 *  - IRET [iret instruction]
   1486 	 *  - INTN [int $n instructions]
   1487 	 *  - INVD [invd instruction]
   1488 	 *  - PAUSE [pause instruction]
   1489 	 *  - INVLPG [invplg instruction]
   1490 	 *  - TASKSW [task switches]
   1491 	 *
   1492 	 * Intercept the rest below.
   1493 	 */
   1494 	vmcb->ctrl.intercept_misc1 =
   1495 	    VMCB_CTRL_INTERCEPT_INTR |
   1496 	    VMCB_CTRL_INTERCEPT_NMI |
   1497 	    VMCB_CTRL_INTERCEPT_INIT |
   1498 	    VMCB_CTRL_INTERCEPT_RDPMC |
   1499 	    VMCB_CTRL_INTERCEPT_CPUID |
   1500 	    VMCB_CTRL_INTERCEPT_RSM |
   1501 	    VMCB_CTRL_INTERCEPT_HLT |
   1502 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   1503 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   1504 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   1505 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   1506 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   1507 
   1508 	/*
   1509 	 * Allow:
   1510 	 *  - ICEBP [icebp instruction]
   1511 	 *  - WBINVD [wbinvd instruction]
   1512 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   1513 	 *
   1514 	 * Intercept the rest below.
   1515 	 */
   1516 	vmcb->ctrl.intercept_misc2 =
   1517 	    VMCB_CTRL_INTERCEPT_VMRUN |
   1518 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   1519 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   1520 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   1521 	    VMCB_CTRL_INTERCEPT_STGI |
   1522 	    VMCB_CTRL_INTERCEPT_CLGI |
   1523 	    VMCB_CTRL_INTERCEPT_SKINIT |
   1524 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   1525 	    VMCB_CTRL_INTERCEPT_MONITOR |
   1526 	    VMCB_CTRL_INTERCEPT_MWAIT |
   1527 	    VMCB_CTRL_INTERCEPT_XSETBV;
   1528 
   1529 	/* Intercept all I/O accesses. */
   1530 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   1531 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   1532 
   1533 	/*
   1534 	 * Allow:
   1535 	 *  - EFER [read]
   1536 	 *  - STAR [read, write]
   1537 	 *  - LSTAR [read, write]
   1538 	 *  - CSTAR [read, write]
   1539 	 *  - SFMASK [read, write]
   1540 	 *  - KERNELGSBASE [read, write]
   1541 	 *  - SYSENTER_CS [read, write]
   1542 	 *  - SYSENTER_ESP [read, write]
   1543 	 *  - SYSENTER_EIP [read, write]
   1544 	 *  - FSBASE [read, write]
   1545 	 *  - GSBASE [read, write]
   1546 	 *  - PAT [read, write]
   1547 	 *  - TSC [read]
   1548 	 *
   1549 	 * Intercept the rest.
   1550 	 */
   1551 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1552 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   1553 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1554 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1555 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1556 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1557 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1558 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1559 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1560 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1561 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1562 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1563 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   1564 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1565 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   1566 
   1567 	/* Generate ASID. */
   1568 	svm_asid_alloc(vcpu);
   1569 
   1570 	/* Virtual TPR. */
   1571 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   1572 
   1573 	/* Enable Nested Paging. */
   1574 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   1575 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   1576 
   1577 	/* Must always be set. */
   1578 	vmcb->state.efer = EFER_SVME;
   1579 	cpudata->gxcr0 = XCR0_X87;
   1580 
   1581 	/* Init XSAVE header. */
   1582 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1583 	cpudata->gfpu.xsh_xcomp_bv = 0;
   1584 
   1585 	/* Bluntly hide the host TSC. */
   1586 	cpudata->tsc_offset = rdtsc();
   1587 
   1588 	/* These MSRs are static. */
   1589 	cpudata->star = rdmsr(MSR_STAR);
   1590 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1591 	cpudata->cstar = rdmsr(MSR_CSTAR);
   1592 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   1593 }
   1594 
   1595 static int
   1596 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1597 {
   1598 	struct svm_cpudata *cpudata;
   1599 	int error;
   1600 
   1601 	/* Allocate the SVM cpudata. */
   1602 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   1603 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   1604 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1605 	vcpu->cpudata = cpudata;
   1606 
   1607 	/* VMCB */
   1608 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   1609 	    VMCB_NPAGES);
   1610 	if (error)
   1611 		goto error;
   1612 
   1613 	/* I/O Bitmap */
   1614 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   1615 	    IOBM_NPAGES);
   1616 	if (error)
   1617 		goto error;
   1618 
   1619 	/* MSR Bitmap */
   1620 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   1621 	    MSRBM_NPAGES);
   1622 	if (error)
   1623 		goto error;
   1624 
   1625 	/* Init the VCPU info. */
   1626 	svm_vcpu_init(mach, vcpu);
   1627 
   1628 	return 0;
   1629 
   1630 error:
   1631 	if (cpudata->vmcb_pa) {
   1632 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   1633 		    VMCB_NPAGES);
   1634 	}
   1635 	if (cpudata->iobm_pa) {
   1636 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   1637 		    IOBM_NPAGES);
   1638 	}
   1639 	if (cpudata->msrbm_pa) {
   1640 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   1641 		    MSRBM_NPAGES);
   1642 	}
   1643 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   1644 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   1645 	return error;
   1646 }
   1647 
   1648 static void
   1649 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1650 {
   1651 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1652 
   1653 	svm_asid_free(vcpu);
   1654 
   1655 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   1656 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   1657 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   1658 
   1659 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   1660 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   1661 }
   1662 
   1663 #define SVM_SEG_ATTRIB_TYPE		__BITS(4,0)
   1664 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1665 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1666 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1667 #define SVM_SEG_ATTRIB_LONG		__BIT(9)
   1668 #define SVM_SEG_ATTRIB_DEF32		__BIT(10)
   1669 #define SVM_SEG_ATTRIB_GRAN		__BIT(11)
   1670 
   1671 static void
   1672 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1673 {
   1674 	vseg->selector = seg->selector;
   1675 	vseg->attrib =
   1676 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1677 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1678 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1679 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1680 	    __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
   1681 	    __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
   1682 	    __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
   1683 	vseg->limit = seg->limit;
   1684 	vseg->base = seg->base;
   1685 }
   1686 
   1687 static void
   1688 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1689 {
   1690 	seg->selector = vseg->selector;
   1691 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1692 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1693 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1694 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1695 	seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
   1696 	seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
   1697 	seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
   1698 	seg->limit = vseg->limit;
   1699 	seg->base = vseg->base;
   1700 }
   1701 
   1702 static inline bool
   1703 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
   1704     uint64_t flags)
   1705 {
   1706 	if (flags & NVMM_X64_STATE_CRS) {
   1707 		if ((vmcb->state.cr0 ^
   1708 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1709 			return true;
   1710 		}
   1711 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1712 			return true;
   1713 		}
   1714 		if ((vmcb->state.cr4 ^
   1715 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1716 			return true;
   1717 		}
   1718 	}
   1719 
   1720 	if (flags & NVMM_X64_STATE_MSRS) {
   1721 		if ((vmcb->state.efer ^
   1722 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1723 			return true;
   1724 		}
   1725 	}
   1726 
   1727 	return false;
   1728 }
   1729 
   1730 static void
   1731 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1732 {
   1733 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1734 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1735 	struct vmcb *vmcb = cpudata->vmcb;
   1736 	struct fxsave *fpustate;
   1737 
   1738 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1739 		cpudata->tlb_want_flush = true;
   1740 	}
   1741 
   1742 	if (flags & NVMM_X64_STATE_SEGS) {
   1743 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1744 		    &vmcb->state.cs);
   1745 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1746 		    &vmcb->state.ds);
   1747 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1748 		    &vmcb->state.es);
   1749 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1750 		    &vmcb->state.fs);
   1751 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1752 		    &vmcb->state.gs);
   1753 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1754 		    &vmcb->state.ss);
   1755 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1756 		    &vmcb->state.gdt);
   1757 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1758 		    &vmcb->state.idt);
   1759 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1760 		    &vmcb->state.ldt);
   1761 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1762 		    &vmcb->state.tr);
   1763 
   1764 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1765 	}
   1766 
   1767 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1768 	if (flags & NVMM_X64_STATE_GPRS) {
   1769 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1770 
   1771 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1772 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1773 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1774 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1775 	}
   1776 
   1777 	if (flags & NVMM_X64_STATE_CRS) {
   1778 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1779 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1780 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1781 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1782 
   1783 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1784 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1785 		    VMCB_CTRL_V_TPR);
   1786 
   1787 		if (svm_xcr0_mask != 0) {
   1788 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1789 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1790 			cpudata->gxcr0 &= svm_xcr0_mask;
   1791 			cpudata->gxcr0 |= XCR0_X87;
   1792 		}
   1793 	}
   1794 
   1795 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1796 	if (flags & NVMM_X64_STATE_DRS) {
   1797 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1798 
   1799 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1800 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1801 	}
   1802 
   1803 	if (flags & NVMM_X64_STATE_MSRS) {
   1804 		/* Bit EFER_SVME is mandatory. */
   1805 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1806 
   1807 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1808 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1809 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1810 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1811 		vmcb->state.kernelgsbase =
   1812 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1813 		vmcb->state.sysenter_cs =
   1814 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1815 		vmcb->state.sysenter_esp =
   1816 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1817 		vmcb->state.sysenter_eip =
   1818 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1819 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1820 	}
   1821 
   1822 	if (flags & NVMM_X64_STATE_MISC) {
   1823 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   1824 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1825 		} else {
   1826 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1827 		}
   1828 
   1829 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   1830 			svm_event_waitexit_enable(vcpu, false);
   1831 		} else {
   1832 			svm_event_waitexit_disable(vcpu, false);
   1833 		}
   1834 
   1835 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   1836 			svm_event_waitexit_enable(vcpu, true);
   1837 		} else {
   1838 			svm_event_waitexit_disable(vcpu, true);
   1839 		}
   1840 	}
   1841 
   1842 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1843 	if (flags & NVMM_X64_STATE_FPU) {
   1844 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1845 		    sizeof(state->fpu));
   1846 
   1847 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1848 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1849 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1850 
   1851 		if (svm_xcr0_mask != 0) {
   1852 			/* Reset XSTATE_BV, to force a reload. */
   1853 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1854 		}
   1855 	}
   1856 
   1857 	svm_vmcb_cache_update(vmcb, flags);
   1858 }
   1859 
   1860 static void
   1861 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1862 {
   1863 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1864 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1865 	struct vmcb *vmcb = cpudata->vmcb;
   1866 
   1867 	if (flags & NVMM_X64_STATE_SEGS) {
   1868 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1869 		    &vmcb->state.cs);
   1870 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1871 		    &vmcb->state.ds);
   1872 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1873 		    &vmcb->state.es);
   1874 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1875 		    &vmcb->state.fs);
   1876 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1877 		    &vmcb->state.gs);
   1878 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1879 		    &vmcb->state.ss);
   1880 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1881 		    &vmcb->state.gdt);
   1882 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1883 		    &vmcb->state.idt);
   1884 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1885 		    &vmcb->state.ldt);
   1886 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1887 		    &vmcb->state.tr);
   1888 
   1889 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   1890 	}
   1891 
   1892 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1893 	if (flags & NVMM_X64_STATE_GPRS) {
   1894 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1895 
   1896 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1897 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1898 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1899 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1900 	}
   1901 
   1902 	if (flags & NVMM_X64_STATE_CRS) {
   1903 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1904 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1905 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1906 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1907 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1908 		    VMCB_CTRL_V_TPR);
   1909 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1910 	}
   1911 
   1912 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1913 	if (flags & NVMM_X64_STATE_DRS) {
   1914 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1915 
   1916 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1917 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1918 	}
   1919 
   1920 	if (flags & NVMM_X64_STATE_MSRS) {
   1921 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1922 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1923 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1924 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1925 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1926 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1927 		    vmcb->state.kernelgsbase;
   1928 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1929 		    vmcb->state.sysenter_cs;
   1930 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1931 		    vmcb->state.sysenter_esp;
   1932 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1933 		    vmcb->state.sysenter_eip;
   1934 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1935 
   1936 		/* Hide SVME. */
   1937 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1938 	}
   1939 
   1940 	if (flags & NVMM_X64_STATE_MISC) {
   1941 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   1942 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1943 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   1944 		    cpudata->int_window_exit;
   1945 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   1946 		    cpudata->nmi_window_exit;
   1947 	}
   1948 
   1949 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1950 	if (flags & NVMM_X64_STATE_FPU) {
   1951 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1952 		    sizeof(state->fpu));
   1953 	}
   1954 }
   1955 
   1956 /* -------------------------------------------------------------------------- */
   1957 
   1958 static void
   1959 svm_tlb_flush(struct pmap *pm)
   1960 {
   1961 	struct nvmm_machine *mach = pm->pm_data;
   1962 	struct svm_cpudata *cpudata;
   1963 	struct nvmm_cpu *vcpu;
   1964 	int error;
   1965 	size_t i;
   1966 
   1967 	/* Request TLB flushes. */
   1968 	for (i = 0; i < NVMM_MAX_VCPUS; i++) {
   1969 		error = nvmm_vcpu_get(mach, i, &vcpu);
   1970 		if (error)
   1971 			continue;
   1972 		cpudata = vcpu->cpudata;
   1973 		cpudata->tlb_want_flush = true;
   1974 		nvmm_vcpu_put(vcpu);
   1975 	}
   1976 }
   1977 
   1978 static void
   1979 svm_machine_create(struct nvmm_machine *mach)
   1980 {
   1981 	/* Fill in pmap info. */
   1982 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   1983 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   1984 
   1985 	mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   1986 }
   1987 
   1988 static void
   1989 svm_machine_destroy(struct nvmm_machine *mach)
   1990 {
   1991 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   1992 }
   1993 
   1994 static int
   1995 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   1996 {
   1997 	struct nvmm_x86_conf_cpuid *cpuid = data;
   1998 	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
   1999 	size_t i;
   2000 
   2001 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2002 		return EINVAL;
   2003 	}
   2004 
   2005 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2006 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2007 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2008 	    (cpuid->set.edx & cpuid->del.edx))) {
   2009 		return EINVAL;
   2010 	}
   2011 
   2012 	/* If already here, replace. */
   2013 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2014 		if (!machdata->cpuidpresent[i]) {
   2015 			continue;
   2016 		}
   2017 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2018 			memcpy(&machdata->cpuid[i], cpuid,
   2019 			    sizeof(struct nvmm_x86_conf_cpuid));
   2020 			return 0;
   2021 		}
   2022 	}
   2023 
   2024 	/* Not here, insert. */
   2025 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2026 		if (!machdata->cpuidpresent[i]) {
   2027 			machdata->cpuidpresent[i] = true;
   2028 			memcpy(&machdata->cpuid[i], cpuid,
   2029 			    sizeof(struct nvmm_x86_conf_cpuid));
   2030 			return 0;
   2031 		}
   2032 	}
   2033 
   2034 	return ENOBUFS;
   2035 }
   2036 
   2037 /* -------------------------------------------------------------------------- */
   2038 
   2039 static bool
   2040 svm_ident(void)
   2041 {
   2042 	u_int descs[4];
   2043 	uint64_t msr;
   2044 
   2045 	if (cpu_vendor != CPUVENDOR_AMD) {
   2046 		return false;
   2047 	}
   2048 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2049 		return false;
   2050 	}
   2051 
   2052 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2053 		return false;
   2054 	}
   2055 	x86_cpuid(0x8000000a, descs);
   2056 
   2057 	/* Want Nested Paging. */
   2058 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2059 		return false;
   2060 	}
   2061 
   2062 	/* Want nRIP. */
   2063 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2064 		return false;
   2065 	}
   2066 
   2067 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2068 
   2069 	msr = rdmsr(MSR_VMCR);
   2070 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2071 		return false;
   2072 	}
   2073 
   2074 	return true;
   2075 }
   2076 
   2077 static void
   2078 svm_init_asid(uint32_t maxasid)
   2079 {
   2080 	size_t i, j, allocsz;
   2081 
   2082 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2083 
   2084 	/* Arbitrarily limit. */
   2085 	maxasid = uimin(maxasid, 8192);
   2086 
   2087 	svm_maxasid = maxasid;
   2088 	allocsz = roundup(maxasid, 8) / 8;
   2089 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2090 
   2091 	/* ASID 0 is reserved for the host. */
   2092 	svm_asidmap[0] |= __BIT(0);
   2093 
   2094 	/* ASID n-1 is special, we share it. */
   2095 	i = (maxasid - 1) / 8;
   2096 	j = (maxasid - 1) % 8;
   2097 	svm_asidmap[i] |= __BIT(j);
   2098 }
   2099 
   2100 static void
   2101 svm_change_cpu(void *arg1, void *arg2)
   2102 {
   2103 	bool enable = (bool)arg1;
   2104 	uint64_t msr;
   2105 
   2106 	msr = rdmsr(MSR_VMCR);
   2107 	if (msr & VMCR_SVMED) {
   2108 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2109 	}
   2110 
   2111 	if (!enable) {
   2112 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2113 	}
   2114 
   2115 	msr = rdmsr(MSR_EFER);
   2116 	if (enable) {
   2117 		msr |= EFER_SVME;
   2118 	} else {
   2119 		msr &= ~EFER_SVME;
   2120 	}
   2121 	wrmsr(MSR_EFER, msr);
   2122 
   2123 	if (enable) {
   2124 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2125 	}
   2126 }
   2127 
   2128 static void
   2129 svm_init(void)
   2130 {
   2131 	CPU_INFO_ITERATOR cii;
   2132 	struct cpu_info *ci;
   2133 	struct vm_page *pg;
   2134 	u_int descs[4];
   2135 	uint64_t xc;
   2136 
   2137 	x86_cpuid(0x8000000a, descs);
   2138 
   2139 	/* The guest TLB flush command. */
   2140 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2141 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2142 	} else {
   2143 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2144 	}
   2145 
   2146 	/* Init the ASID. */
   2147 	svm_init_asid(descs[1]);
   2148 
   2149 	/* Init the XCR0 mask. */
   2150 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2151 
   2152 	memset(hsave, 0, sizeof(hsave));
   2153 	for (CPU_INFO_FOREACH(cii, ci)) {
   2154 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2155 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2156 	}
   2157 
   2158 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2159 	xc_wait(xc);
   2160 }
   2161 
   2162 static void
   2163 svm_fini_asid(void)
   2164 {
   2165 	size_t allocsz;
   2166 
   2167 	allocsz = roundup(svm_maxasid, 8) / 8;
   2168 	kmem_free(svm_asidmap, allocsz);
   2169 
   2170 	mutex_destroy(&svm_asidlock);
   2171 }
   2172 
   2173 static void
   2174 svm_fini(void)
   2175 {
   2176 	uint64_t xc;
   2177 	size_t i;
   2178 
   2179 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2180 	xc_wait(xc);
   2181 
   2182 	for (i = 0; i < MAXCPUS; i++) {
   2183 		if (hsave[i].pa != 0)
   2184 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2185 	}
   2186 
   2187 	svm_fini_asid();
   2188 }
   2189 
   2190 static void
   2191 svm_capability(struct nvmm_capability *cap)
   2192 {
   2193 	cap->u.x86.xcr0_mask = svm_xcr0_mask;
   2194 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2195 	cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
   2196 }
   2197 
   2198 const struct nvmm_impl nvmm_x86_svm = {
   2199 	.ident = svm_ident,
   2200 	.init = svm_init,
   2201 	.fini = svm_fini,
   2202 	.capability = svm_capability,
   2203 	.conf_max = NVMM_X86_NCONF,
   2204 	.conf_sizes = svm_conf_sizes,
   2205 	.state_size = sizeof(struct nvmm_x64_state),
   2206 	.machine_create = svm_machine_create,
   2207 	.machine_destroy = svm_machine_destroy,
   2208 	.machine_configure = svm_machine_configure,
   2209 	.vcpu_create = svm_vcpu_create,
   2210 	.vcpu_destroy = svm_vcpu_destroy,
   2211 	.vcpu_setstate = svm_vcpu_setstate,
   2212 	.vcpu_getstate = svm_vcpu_getstate,
   2213 	.vcpu_inject = svm_vcpu_inject,
   2214 	.vcpu_run = svm_vcpu_run
   2215 };
   2216