nvmm_x86_svm.c revision 1.24 1 /* $NetBSD: nvmm_x86_svm.c,v 1.24 2019/02/15 13:17:05 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.24 2019/02/15 13:17:05 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int svm_vmrun(paddr_t, uint64_t *);
57
58 #define MSR_VM_HSAVE_PA 0xC0010117
59
60 /* -------------------------------------------------------------------------- */
61
62 #define VMCB_EXITCODE_CR0_READ 0x0000
63 #define VMCB_EXITCODE_CR1_READ 0x0001
64 #define VMCB_EXITCODE_CR2_READ 0x0002
65 #define VMCB_EXITCODE_CR3_READ 0x0003
66 #define VMCB_EXITCODE_CR4_READ 0x0004
67 #define VMCB_EXITCODE_CR5_READ 0x0005
68 #define VMCB_EXITCODE_CR6_READ 0x0006
69 #define VMCB_EXITCODE_CR7_READ 0x0007
70 #define VMCB_EXITCODE_CR8_READ 0x0008
71 #define VMCB_EXITCODE_CR9_READ 0x0009
72 #define VMCB_EXITCODE_CR10_READ 0x000A
73 #define VMCB_EXITCODE_CR11_READ 0x000B
74 #define VMCB_EXITCODE_CR12_READ 0x000C
75 #define VMCB_EXITCODE_CR13_READ 0x000D
76 #define VMCB_EXITCODE_CR14_READ 0x000E
77 #define VMCB_EXITCODE_CR15_READ 0x000F
78 #define VMCB_EXITCODE_CR0_WRITE 0x0010
79 #define VMCB_EXITCODE_CR1_WRITE 0x0011
80 #define VMCB_EXITCODE_CR2_WRITE 0x0012
81 #define VMCB_EXITCODE_CR3_WRITE 0x0013
82 #define VMCB_EXITCODE_CR4_WRITE 0x0014
83 #define VMCB_EXITCODE_CR5_WRITE 0x0015
84 #define VMCB_EXITCODE_CR6_WRITE 0x0016
85 #define VMCB_EXITCODE_CR7_WRITE 0x0017
86 #define VMCB_EXITCODE_CR8_WRITE 0x0018
87 #define VMCB_EXITCODE_CR9_WRITE 0x0019
88 #define VMCB_EXITCODE_CR10_WRITE 0x001A
89 #define VMCB_EXITCODE_CR11_WRITE 0x001B
90 #define VMCB_EXITCODE_CR12_WRITE 0x001C
91 #define VMCB_EXITCODE_CR13_WRITE 0x001D
92 #define VMCB_EXITCODE_CR14_WRITE 0x001E
93 #define VMCB_EXITCODE_CR15_WRITE 0x001F
94 #define VMCB_EXITCODE_DR0_READ 0x0020
95 #define VMCB_EXITCODE_DR1_READ 0x0021
96 #define VMCB_EXITCODE_DR2_READ 0x0022
97 #define VMCB_EXITCODE_DR3_READ 0x0023
98 #define VMCB_EXITCODE_DR4_READ 0x0024
99 #define VMCB_EXITCODE_DR5_READ 0x0025
100 #define VMCB_EXITCODE_DR6_READ 0x0026
101 #define VMCB_EXITCODE_DR7_READ 0x0027
102 #define VMCB_EXITCODE_DR8_READ 0x0028
103 #define VMCB_EXITCODE_DR9_READ 0x0029
104 #define VMCB_EXITCODE_DR10_READ 0x002A
105 #define VMCB_EXITCODE_DR11_READ 0x002B
106 #define VMCB_EXITCODE_DR12_READ 0x002C
107 #define VMCB_EXITCODE_DR13_READ 0x002D
108 #define VMCB_EXITCODE_DR14_READ 0x002E
109 #define VMCB_EXITCODE_DR15_READ 0x002F
110 #define VMCB_EXITCODE_DR0_WRITE 0x0030
111 #define VMCB_EXITCODE_DR1_WRITE 0x0031
112 #define VMCB_EXITCODE_DR2_WRITE 0x0032
113 #define VMCB_EXITCODE_DR3_WRITE 0x0033
114 #define VMCB_EXITCODE_DR4_WRITE 0x0034
115 #define VMCB_EXITCODE_DR5_WRITE 0x0035
116 #define VMCB_EXITCODE_DR6_WRITE 0x0036
117 #define VMCB_EXITCODE_DR7_WRITE 0x0037
118 #define VMCB_EXITCODE_DR8_WRITE 0x0038
119 #define VMCB_EXITCODE_DR9_WRITE 0x0039
120 #define VMCB_EXITCODE_DR10_WRITE 0x003A
121 #define VMCB_EXITCODE_DR11_WRITE 0x003B
122 #define VMCB_EXITCODE_DR12_WRITE 0x003C
123 #define VMCB_EXITCODE_DR13_WRITE 0x003D
124 #define VMCB_EXITCODE_DR14_WRITE 0x003E
125 #define VMCB_EXITCODE_DR15_WRITE 0x003F
126 #define VMCB_EXITCODE_EXCP0 0x0040
127 #define VMCB_EXITCODE_EXCP1 0x0041
128 #define VMCB_EXITCODE_EXCP2 0x0042
129 #define VMCB_EXITCODE_EXCP3 0x0043
130 #define VMCB_EXITCODE_EXCP4 0x0044
131 #define VMCB_EXITCODE_EXCP5 0x0045
132 #define VMCB_EXITCODE_EXCP6 0x0046
133 #define VMCB_EXITCODE_EXCP7 0x0047
134 #define VMCB_EXITCODE_EXCP8 0x0048
135 #define VMCB_EXITCODE_EXCP9 0x0049
136 #define VMCB_EXITCODE_EXCP10 0x004A
137 #define VMCB_EXITCODE_EXCP11 0x004B
138 #define VMCB_EXITCODE_EXCP12 0x004C
139 #define VMCB_EXITCODE_EXCP13 0x004D
140 #define VMCB_EXITCODE_EXCP14 0x004E
141 #define VMCB_EXITCODE_EXCP15 0x004F
142 #define VMCB_EXITCODE_EXCP16 0x0050
143 #define VMCB_EXITCODE_EXCP17 0x0051
144 #define VMCB_EXITCODE_EXCP18 0x0052
145 #define VMCB_EXITCODE_EXCP19 0x0053
146 #define VMCB_EXITCODE_EXCP20 0x0054
147 #define VMCB_EXITCODE_EXCP21 0x0055
148 #define VMCB_EXITCODE_EXCP22 0x0056
149 #define VMCB_EXITCODE_EXCP23 0x0057
150 #define VMCB_EXITCODE_EXCP24 0x0058
151 #define VMCB_EXITCODE_EXCP25 0x0059
152 #define VMCB_EXITCODE_EXCP26 0x005A
153 #define VMCB_EXITCODE_EXCP27 0x005B
154 #define VMCB_EXITCODE_EXCP28 0x005C
155 #define VMCB_EXITCODE_EXCP29 0x005D
156 #define VMCB_EXITCODE_EXCP30 0x005E
157 #define VMCB_EXITCODE_EXCP31 0x005F
158 #define VMCB_EXITCODE_INTR 0x0060
159 #define VMCB_EXITCODE_NMI 0x0061
160 #define VMCB_EXITCODE_SMI 0x0062
161 #define VMCB_EXITCODE_INIT 0x0063
162 #define VMCB_EXITCODE_VINTR 0x0064
163 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
164 #define VMCB_EXITCODE_IDTR_READ 0x0066
165 #define VMCB_EXITCODE_GDTR_READ 0x0067
166 #define VMCB_EXITCODE_LDTR_READ 0x0068
167 #define VMCB_EXITCODE_TR_READ 0x0069
168 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
169 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
170 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
171 #define VMCB_EXITCODE_TR_WRITE 0x006D
172 #define VMCB_EXITCODE_RDTSC 0x006E
173 #define VMCB_EXITCODE_RDPMC 0x006F
174 #define VMCB_EXITCODE_PUSHF 0x0070
175 #define VMCB_EXITCODE_POPF 0x0071
176 #define VMCB_EXITCODE_CPUID 0x0072
177 #define VMCB_EXITCODE_RSM 0x0073
178 #define VMCB_EXITCODE_IRET 0x0074
179 #define VMCB_EXITCODE_SWINT 0x0075
180 #define VMCB_EXITCODE_INVD 0x0076
181 #define VMCB_EXITCODE_PAUSE 0x0077
182 #define VMCB_EXITCODE_HLT 0x0078
183 #define VMCB_EXITCODE_INVLPG 0x0079
184 #define VMCB_EXITCODE_INVLPGA 0x007A
185 #define VMCB_EXITCODE_IOIO 0x007B
186 #define VMCB_EXITCODE_MSR 0x007C
187 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
188 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
189 #define VMCB_EXITCODE_SHUTDOWN 0x007F
190 #define VMCB_EXITCODE_VMRUN 0x0080
191 #define VMCB_EXITCODE_VMMCALL 0x0081
192 #define VMCB_EXITCODE_VMLOAD 0x0082
193 #define VMCB_EXITCODE_VMSAVE 0x0083
194 #define VMCB_EXITCODE_STGI 0x0084
195 #define VMCB_EXITCODE_CLGI 0x0085
196 #define VMCB_EXITCODE_SKINIT 0x0086
197 #define VMCB_EXITCODE_RDTSCP 0x0087
198 #define VMCB_EXITCODE_ICEBP 0x0088
199 #define VMCB_EXITCODE_WBINVD 0x0089
200 #define VMCB_EXITCODE_MONITOR 0x008A
201 #define VMCB_EXITCODE_MWAIT 0x008B
202 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
203 #define VMCB_EXITCODE_XSETBV 0x008D
204 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
205 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
206 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
207 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
208 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
209 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
210 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
211 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
212 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
213 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
214 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
215 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
216 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
217 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
218 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
219 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
220 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
221 #define VMCB_EXITCODE_NPF 0x0400
222 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
223 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
224 #define VMCB_EXITCODE_VMGEXIT 0x0403
225 #define VMCB_EXITCODE_INVALID -1
226
227 /* -------------------------------------------------------------------------- */
228
229 struct vmcb_ctrl {
230 uint32_t intercept_cr;
231 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
232 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
233
234 uint32_t intercept_dr;
235 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
236 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
237
238 uint32_t intercept_vec;
239 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
240
241 uint32_t intercept_misc1;
242 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
243 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
244 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
245 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
246 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
247 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
248 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
249 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
250 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
251 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
252 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
253 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
254 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
255 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
256 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
257 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
258 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
259 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
260 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
261 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
262 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
263 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
264 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
265 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
266 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
267 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
268 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
269 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
270 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
271 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
272 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
273 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
274
275 uint32_t intercept_misc2;
276 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
277 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
278 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
279 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
280 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
281 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
282 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
283 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
284 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
285 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
286 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
287 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
288 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
289 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
290 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
291
292 uint8_t rsvd1[40];
293 uint16_t pause_filt_thresh;
294 uint16_t pause_filt_cnt;
295 uint64_t iopm_base_pa;
296 uint64_t msrpm_base_pa;
297 uint64_t tsc_offset;
298 uint32_t guest_asid;
299
300 uint32_t tlb_ctrl;
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
304
305 uint64_t v;
306 #define VMCB_CTRL_V_TPR __BITS(7,0)
307 #define VMCB_CTRL_V_IRQ __BIT(8)
308 #define VMCB_CTRL_V_VGIF __BIT(9)
309 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
310 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
311 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
312 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
313 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
314 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
315
316 uint64_t intr;
317 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
318
319 uint64_t exitcode;
320 uint64_t exitinfo1;
321 uint64_t exitinfo2;
322
323 uint64_t exitintinfo;
324 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
325 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
326 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
327 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
328 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
329
330 uint64_t enable1;
331 #define VMCB_CTRL_ENABLE_NP __BIT(0)
332 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
333 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
334
335 uint64_t avic;
336 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
337
338 uint64_t ghcb;
339
340 uint64_t eventinj;
341 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
342 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
343 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
344 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
345 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
346
347 uint64_t n_cr3;
348
349 uint64_t enable2;
350 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
351 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
352
353 uint32_t vmcb_clean;
354 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
355 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
356 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
357 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
358 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
359 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
360 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
361 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
362 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
363 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
364 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
365 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
366
367 uint32_t rsvd2;
368 uint64_t nrip;
369 uint8_t inst_len;
370 uint8_t inst_bytes[15];
371 uint64_t avic_abpp;
372 uint64_t rsvd3;
373 uint64_t avic_ltp;
374
375 uint64_t avic_phys;
376 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
377 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
378
379 uint64_t rsvd4;
380 uint64_t vmcb_ptr;
381
382 uint8_t pad[752];
383 } __packed;
384
385 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
386
387 struct vmcb_segment {
388 uint16_t selector;
389 uint16_t attrib; /* hidden */
390 uint32_t limit; /* hidden */
391 uint64_t base; /* hidden */
392 } __packed;
393
394 CTASSERT(sizeof(struct vmcb_segment) == 16);
395
396 struct vmcb_state {
397 struct vmcb_segment es;
398 struct vmcb_segment cs;
399 struct vmcb_segment ss;
400 struct vmcb_segment ds;
401 struct vmcb_segment fs;
402 struct vmcb_segment gs;
403 struct vmcb_segment gdt;
404 struct vmcb_segment ldt;
405 struct vmcb_segment idt;
406 struct vmcb_segment tr;
407 uint8_t rsvd1[43];
408 uint8_t cpl;
409 uint8_t rsvd2[4];
410 uint64_t efer;
411 uint8_t rsvd3[112];
412 uint64_t cr4;
413 uint64_t cr3;
414 uint64_t cr0;
415 uint64_t dr7;
416 uint64_t dr6;
417 uint64_t rflags;
418 uint64_t rip;
419 uint8_t rsvd4[88];
420 uint64_t rsp;
421 uint8_t rsvd5[24];
422 uint64_t rax;
423 uint64_t star;
424 uint64_t lstar;
425 uint64_t cstar;
426 uint64_t sfmask;
427 uint64_t kernelgsbase;
428 uint64_t sysenter_cs;
429 uint64_t sysenter_esp;
430 uint64_t sysenter_eip;
431 uint64_t cr2;
432 uint8_t rsvd6[32];
433 uint64_t g_pat;
434 uint64_t dbgctl;
435 uint64_t br_from;
436 uint64_t br_to;
437 uint64_t int_from;
438 uint64_t int_to;
439 uint8_t pad[2408];
440 } __packed;
441
442 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
443
444 struct vmcb {
445 struct vmcb_ctrl ctrl;
446 struct vmcb_state state;
447 } __packed;
448
449 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
450 CTASSERT(offsetof(struct vmcb, state) == 0x400);
451
452 /* -------------------------------------------------------------------------- */
453
454 struct svm_hsave {
455 paddr_t pa;
456 };
457
458 static struct svm_hsave hsave[MAXCPUS];
459
460 static uint8_t *svm_asidmap __read_mostly;
461 static uint32_t svm_maxasid __read_mostly;
462 static kmutex_t svm_asidlock __cacheline_aligned;
463
464 static bool svm_decode_assist __read_mostly;
465 static uint32_t svm_ctrl_tlb_flush __read_mostly;
466
467 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
468 static uint64_t svm_xcr0_mask __read_mostly;
469
470 #define SVM_NCPUIDS 32
471
472 #define VMCB_NPAGES 1
473
474 #define MSRBM_NPAGES 2
475 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
476
477 #define IOBM_NPAGES 3
478 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
479
480 /* Does not include EFER_LMSLE. */
481 #define EFER_VALID \
482 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
483
484 #define EFER_TLB_FLUSH \
485 (EFER_NXE|EFER_LMA|EFER_LME)
486 #define CR0_TLB_FLUSH \
487 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
488 #define CR4_TLB_FLUSH \
489 (CR4_PGE|CR4_PAE|CR4_PSE)
490
491 /* -------------------------------------------------------------------------- */
492
493 struct svm_machdata {
494 bool cpuidpresent[SVM_NCPUIDS];
495 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
496 };
497
498 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
499 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
500 };
501
502 struct svm_cpudata {
503 /* General */
504 bool shared_asid;
505 bool tlb_want_flush;
506
507 /* VMCB */
508 struct vmcb *vmcb;
509 paddr_t vmcb_pa;
510
511 /* I/O bitmap */
512 uint8_t *iobm;
513 paddr_t iobm_pa;
514
515 /* MSR bitmap */
516 uint8_t *msrbm;
517 paddr_t msrbm_pa;
518
519 /* Host state */
520 uint64_t hxcr0;
521 uint64_t star;
522 uint64_t lstar;
523 uint64_t cstar;
524 uint64_t sfmask;
525 uint64_t fsbase;
526 uint64_t kernelgsbase;
527 bool ts_set;
528 struct xsave_header hfpu __aligned(64);
529
530 /* Event state */
531 bool int_window_exit;
532 bool nmi_window_exit;
533
534 /* Guest state */
535 uint64_t gxcr0;
536 uint64_t gprs[NVMM_X64_NGPR];
537 uint64_t drs[NVMM_X64_NDR];
538 uint64_t tsc_offset;
539 struct xsave_header gfpu __aligned(64);
540 };
541
542 static void
543 svm_vmcb_cache_default(struct vmcb *vmcb)
544 {
545 vmcb->ctrl.vmcb_clean =
546 VMCB_CTRL_VMCB_CLEAN_I |
547 VMCB_CTRL_VMCB_CLEAN_IOPM |
548 VMCB_CTRL_VMCB_CLEAN_ASID |
549 VMCB_CTRL_VMCB_CLEAN_TPR |
550 VMCB_CTRL_VMCB_CLEAN_NP |
551 VMCB_CTRL_VMCB_CLEAN_CR |
552 VMCB_CTRL_VMCB_CLEAN_DR |
553 VMCB_CTRL_VMCB_CLEAN_DT |
554 VMCB_CTRL_VMCB_CLEAN_SEG |
555 VMCB_CTRL_VMCB_CLEAN_CR2 |
556 VMCB_CTRL_VMCB_CLEAN_LBR |
557 VMCB_CTRL_VMCB_CLEAN_AVIC;
558 }
559
560 static void
561 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
562 {
563 if (flags & NVMM_X64_STATE_SEGS) {
564 vmcb->ctrl.vmcb_clean &=
565 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
566 }
567 if (flags & NVMM_X64_STATE_CRS) {
568 vmcb->ctrl.vmcb_clean &=
569 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
570 VMCB_CTRL_VMCB_CLEAN_TPR);
571 }
572 if (flags & NVMM_X64_STATE_DRS) {
573 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
574 }
575 if (flags & NVMM_X64_STATE_MSRS) {
576 /* CR for EFER, NP for PAT. */
577 vmcb->ctrl.vmcb_clean &=
578 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
579 }
580 }
581
582 static inline void
583 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
584 {
585 vmcb->ctrl.vmcb_clean &= ~flags;
586 }
587
588 static inline void
589 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
590 {
591 vmcb->ctrl.vmcb_clean = 0;
592 }
593
594 #define SVM_EVENT_TYPE_HW_INT 0
595 #define SVM_EVENT_TYPE_NMI 2
596 #define SVM_EVENT_TYPE_EXC 3
597 #define SVM_EVENT_TYPE_SW_INT 4
598
599 static void
600 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
601 {
602 struct svm_cpudata *cpudata = vcpu->cpudata;
603 struct vmcb *vmcb = cpudata->vmcb;
604
605 if (nmi) {
606 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
607 cpudata->nmi_window_exit = true;
608 } else {
609 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
610 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
611 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
612 cpudata->int_window_exit = true;
613 }
614
615 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
616 }
617
618 static void
619 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
620 {
621 struct svm_cpudata *cpudata = vcpu->cpudata;
622 struct vmcb *vmcb = cpudata->vmcb;
623
624 if (nmi) {
625 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
626 cpudata->nmi_window_exit = false;
627 } else {
628 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
629 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
630 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
631 cpudata->int_window_exit = false;
632 }
633
634 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
635 }
636
637 static inline int
638 svm_event_has_error(uint64_t vector)
639 {
640 switch (vector) {
641 case 8: /* #DF */
642 case 10: /* #TS */
643 case 11: /* #NP */
644 case 12: /* #SS */
645 case 13: /* #GP */
646 case 14: /* #PF */
647 case 17: /* #AC */
648 case 30: /* #SX */
649 return 1;
650 default:
651 return 0;
652 }
653 }
654
655 static int
656 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
657 struct nvmm_event *event)
658 {
659 struct svm_cpudata *cpudata = vcpu->cpudata;
660 struct vmcb *vmcb = cpudata->vmcb;
661 int type = 0, err = 0;
662
663 if (event->vector >= 256) {
664 return EINVAL;
665 }
666
667 switch (event->type) {
668 case NVMM_EVENT_INTERRUPT_HW:
669 type = SVM_EVENT_TYPE_HW_INT;
670 if (event->vector == 2) {
671 type = SVM_EVENT_TYPE_NMI;
672 }
673 if (type == SVM_EVENT_TYPE_NMI) {
674 if (cpudata->nmi_window_exit) {
675 return EAGAIN;
676 }
677 svm_event_waitexit_enable(vcpu, true);
678 } else {
679 if (((vmcb->state.rflags & PSL_I) == 0) ||
680 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
681 svm_event_waitexit_enable(vcpu, false);
682 return EAGAIN;
683 }
684 }
685 err = 0;
686 break;
687 case NVMM_EVENT_INTERRUPT_SW:
688 return EINVAL;
689 case NVMM_EVENT_EXCEPTION:
690 type = SVM_EVENT_TYPE_EXC;
691 if (event->vector == 2 || event->vector >= 32)
692 return EINVAL;
693 if (event->vector == 3 || event->vector == 0)
694 return EINVAL;
695 err = svm_event_has_error(event->vector);
696 break;
697 default:
698 return EINVAL;
699 }
700
701 vmcb->ctrl.eventinj =
702 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
703 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
704 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
705 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
706 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
707
708 return 0;
709 }
710
711 static void
712 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
713 {
714 struct nvmm_event event;
715 int ret __diagused;
716
717 event.type = NVMM_EVENT_EXCEPTION;
718 event.vector = 6;
719 event.u.error = 0;
720
721 ret = svm_vcpu_inject(mach, vcpu, &event);
722 KASSERT(ret == 0);
723 }
724
725 static void
726 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
727 {
728 struct nvmm_event event;
729 int ret __diagused;
730
731 event.type = NVMM_EVENT_EXCEPTION;
732 event.vector = 13;
733 event.u.error = 0;
734
735 ret = svm_vcpu_inject(mach, vcpu, &event);
736 KASSERT(ret == 0);
737 }
738
739 static inline void
740 svm_inkernel_advance(struct vmcb *vmcb)
741 {
742 /*
743 * Maybe we should also apply single-stepping and debug exceptions.
744 * Matters for guest-ring3, because it can execute 'cpuid' under a
745 * debugger.
746 */
747 vmcb->state.rip = vmcb->ctrl.nrip;
748 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
749 }
750
751 static void
752 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
753 {
754 struct svm_cpudata *cpudata = vcpu->cpudata;
755
756 switch (eax) {
757 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
758 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
759 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
760 CPUID_LOCAL_APIC_ID);
761 break;
762 case 0x0000000D: /* FPU description. Not tunable. */
763 if (ecx != 0 || svm_xcr0_mask == 0) {
764 break;
765 }
766 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
767 if (cpudata->gxcr0 & XCR0_SSE) {
768 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
769 } else {
770 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
771 }
772 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
773 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
774 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
775 break;
776 case 0x40000000:
777 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
778 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
779 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
780 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
781 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
782 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
783 break;
784 case 0x80000001: /* No SVM, no RDTSCP. The rest is tunable. */
785 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
786 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
787 break;
788 default:
789 break;
790 }
791 }
792
793 static void
794 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
795 struct nvmm_exit *exit)
796 {
797 struct svm_machdata *machdata = mach->machdata;
798 struct svm_cpudata *cpudata = vcpu->cpudata;
799 struct nvmm_x86_conf_cpuid *cpuid;
800 uint64_t eax, ecx;
801 u_int descs[4];
802 size_t i;
803
804 eax = cpudata->vmcb->state.rax;
805 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
806 x86_cpuid2(eax, ecx, descs);
807
808 cpudata->vmcb->state.rax = descs[0];
809 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
810 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
811 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
812
813 for (i = 0; i < SVM_NCPUIDS; i++) {
814 cpuid = &machdata->cpuid[i];
815 if (!machdata->cpuidpresent[i]) {
816 continue;
817 }
818 if (cpuid->leaf != eax) {
819 continue;
820 }
821
822 /* del */
823 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
824 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
825 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
826 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
827
828 /* set */
829 cpudata->vmcb->state.rax |= cpuid->set.eax;
830 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
831 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
832 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
833
834 break;
835 }
836
837 /* Overwrite non-tunable leaves. */
838 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
839
840 svm_inkernel_advance(cpudata->vmcb);
841 exit->reason = NVMM_EXIT_NONE;
842 }
843
844 static void
845 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
846 struct nvmm_exit *exit)
847 {
848 struct svm_cpudata *cpudata = vcpu->cpudata;
849 struct vmcb *vmcb = cpudata->vmcb;
850
851 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
852 svm_event_waitexit_disable(vcpu, false);
853 }
854
855 svm_inkernel_advance(cpudata->vmcb);
856 exit->reason = NVMM_EXIT_HALTED;
857 }
858
859 #define SVM_EXIT_IO_PORT __BITS(31,16)
860 #define SVM_EXIT_IO_SEG __BITS(12,10)
861 #define SVM_EXIT_IO_A64 __BIT(9)
862 #define SVM_EXIT_IO_A32 __BIT(8)
863 #define SVM_EXIT_IO_A16 __BIT(7)
864 #define SVM_EXIT_IO_SZ32 __BIT(6)
865 #define SVM_EXIT_IO_SZ16 __BIT(5)
866 #define SVM_EXIT_IO_SZ8 __BIT(4)
867 #define SVM_EXIT_IO_REP __BIT(3)
868 #define SVM_EXIT_IO_STR __BIT(2)
869 #define SVM_EXIT_IO_IN __BIT(0)
870
871 static const int seg_to_nvmm[] = {
872 [0] = NVMM_X64_SEG_ES,
873 [1] = NVMM_X64_SEG_CS,
874 [2] = NVMM_X64_SEG_SS,
875 [3] = NVMM_X64_SEG_DS,
876 [4] = NVMM_X64_SEG_FS,
877 [5] = NVMM_X64_SEG_GS
878 };
879
880 static void
881 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
882 struct nvmm_exit *exit)
883 {
884 struct svm_cpudata *cpudata = vcpu->cpudata;
885 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
886 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
887
888 exit->reason = NVMM_EXIT_IO;
889
890 if (info & SVM_EXIT_IO_IN) {
891 exit->u.io.type = NVMM_EXIT_IO_IN;
892 } else {
893 exit->u.io.type = NVMM_EXIT_IO_OUT;
894 }
895
896 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
897
898 if (svm_decode_assist) {
899 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
900 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
901 } else {
902 exit->u.io.seg = -1;
903 }
904
905 if (info & SVM_EXIT_IO_A64) {
906 exit->u.io.address_size = 8;
907 } else if (info & SVM_EXIT_IO_A32) {
908 exit->u.io.address_size = 4;
909 } else if (info & SVM_EXIT_IO_A16) {
910 exit->u.io.address_size = 2;
911 }
912
913 if (info & SVM_EXIT_IO_SZ32) {
914 exit->u.io.operand_size = 4;
915 } else if (info & SVM_EXIT_IO_SZ16) {
916 exit->u.io.operand_size = 2;
917 } else if (info & SVM_EXIT_IO_SZ8) {
918 exit->u.io.operand_size = 1;
919 }
920
921 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
922 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
923 exit->u.io.npc = nextpc;
924 }
925
926 static const uint64_t msr_ignore_list[] = {
927 0xc0010055, /* MSR_CMPHALT */
928 MSR_DE_CFG,
929 MSR_IC_CFG,
930 MSR_UCODE_AMD_PATCHLEVEL
931 };
932
933 static bool
934 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
935 struct nvmm_exit *exit)
936 {
937 struct svm_cpudata *cpudata = vcpu->cpudata;
938 struct vmcb *vmcb = cpudata->vmcb;
939 uint64_t val;
940 size_t i;
941
942 switch (exit->u.msr.type) {
943 case NVMM_EXIT_MSR_RDMSR:
944 if (exit->u.msr.msr == MSR_NB_CFG) {
945 val = NB_CFG_INITAPICCPUIDLO;
946 vmcb->state.rax = (val & 0xFFFFFFFF);
947 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
948 goto handled;
949 }
950 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
951 if (msr_ignore_list[i] != exit->u.msr.msr)
952 continue;
953 val = 0;
954 vmcb->state.rax = (val & 0xFFFFFFFF);
955 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
956 goto handled;
957 }
958 break;
959 case NVMM_EXIT_MSR_WRMSR:
960 if (exit->u.msr.msr == MSR_EFER) {
961 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
962 goto error;
963 }
964 if ((vmcb->state.efer ^ exit->u.msr.val) &
965 EFER_TLB_FLUSH) {
966 cpudata->tlb_want_flush = true;
967 }
968 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
969 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
970 goto handled;
971 }
972 if (exit->u.msr.msr == MSR_TSC) {
973 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
974 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
975 curcpu()->ci_data.cpu_cc_skew;
976 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
977 goto handled;
978 }
979 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
980 if (msr_ignore_list[i] != exit->u.msr.msr)
981 continue;
982 goto handled;
983 }
984 break;
985 }
986
987 return false;
988
989 handled:
990 svm_inkernel_advance(cpudata->vmcb);
991 return true;
992
993 error:
994 svm_inject_gp(mach, vcpu);
995 return true;
996 }
997
998 static void
999 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1000 struct nvmm_exit *exit)
1001 {
1002 struct svm_cpudata *cpudata = vcpu->cpudata;
1003 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1004
1005 if (info == 0) {
1006 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1007 } else {
1008 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1009 }
1010
1011 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1012
1013 if (info == 1) {
1014 uint64_t rdx, rax;
1015 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1016 rax = cpudata->vmcb->state.rax;
1017 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1018 } else {
1019 exit->u.msr.val = 0;
1020 }
1021
1022 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1023 exit->reason = NVMM_EXIT_NONE;
1024 return;
1025 }
1026
1027 exit->reason = NVMM_EXIT_MSR;
1028 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1029 }
1030
1031 static void
1032 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1033 struct nvmm_exit *exit)
1034 {
1035 struct svm_cpudata *cpudata = vcpu->cpudata;
1036 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1037 int error;
1038
1039 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
1040
1041 if (error) {
1042 exit->reason = NVMM_EXIT_MEMORY;
1043 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1044 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1045 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1046 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1047 else
1048 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1049 exit->u.mem.gpa = gpa;
1050 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1051 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1052 sizeof(exit->u.mem.inst_bytes));
1053 } else {
1054 exit->reason = NVMM_EXIT_NONE;
1055 }
1056 }
1057
1058 static void
1059 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1060 {
1061 exit->u.insn.npc = vmcb->ctrl.nrip;
1062 exit->reason = reason;
1063 }
1064
1065 static void
1066 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1067 struct nvmm_exit *exit)
1068 {
1069 struct svm_cpudata *cpudata = vcpu->cpudata;
1070 struct vmcb *vmcb = cpudata->vmcb;
1071 uint64_t val;
1072
1073 exit->reason = NVMM_EXIT_NONE;
1074
1075 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1076 (vmcb->state.rax & 0xFFFFFFFF);
1077
1078 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1079 goto error;
1080 } else if (__predict_false(vmcb->state.cpl != 0)) {
1081 goto error;
1082 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1083 goto error;
1084 } else if (__predict_false((val & XCR0_X87) == 0)) {
1085 goto error;
1086 }
1087
1088 cpudata->gxcr0 = val;
1089
1090 svm_inkernel_advance(cpudata->vmcb);
1091 return;
1092
1093 error:
1094 svm_inject_gp(mach, vcpu);
1095 }
1096
1097 static void
1098 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1099 {
1100 struct svm_cpudata *cpudata = vcpu->cpudata;
1101
1102 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1103
1104 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1105 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1106
1107 if (svm_xcr0_mask != 0) {
1108 cpudata->hxcr0 = rdxcr(0);
1109 wrxcr(0, cpudata->gxcr0);
1110 }
1111 }
1112
1113 static void
1114 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1115 {
1116 struct svm_cpudata *cpudata = vcpu->cpudata;
1117
1118 if (svm_xcr0_mask != 0) {
1119 cpudata->gxcr0 = rdxcr(0);
1120 wrxcr(0, cpudata->hxcr0);
1121 }
1122
1123 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1124 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1125
1126 if (cpudata->ts_set) {
1127 stts();
1128 }
1129 }
1130
1131 static void
1132 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1133 {
1134 struct svm_cpudata *cpudata = vcpu->cpudata;
1135
1136 x86_dbregs_save(curlwp);
1137
1138 ldr7(0);
1139
1140 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1141 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1142 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1143 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1144 }
1145
1146 static void
1147 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1148 {
1149 struct svm_cpudata *cpudata = vcpu->cpudata;
1150
1151 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1152 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1153 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1154 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1155
1156 x86_dbregs_restore(curlwp);
1157 }
1158
1159 static void
1160 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1161 {
1162 struct svm_cpudata *cpudata = vcpu->cpudata;
1163
1164 cpudata->fsbase = rdmsr(MSR_FSBASE);
1165 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1166 }
1167
1168 static void
1169 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1170 {
1171 struct svm_cpudata *cpudata = vcpu->cpudata;
1172
1173 wrmsr(MSR_STAR, cpudata->star);
1174 wrmsr(MSR_LSTAR, cpudata->lstar);
1175 wrmsr(MSR_CSTAR, cpudata->cstar);
1176 wrmsr(MSR_SFMASK, cpudata->sfmask);
1177 wrmsr(MSR_FSBASE, cpudata->fsbase);
1178 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1179 }
1180
1181 static int
1182 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1183 struct nvmm_exit *exit)
1184 {
1185 struct svm_cpudata *cpudata = vcpu->cpudata;
1186 struct vmcb *vmcb = cpudata->vmcb;
1187 bool tlb_need_flush = false;
1188 int hcpu, s;
1189
1190 kpreempt_disable();
1191 hcpu = cpu_number();
1192
1193 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1194 tlb_need_flush = true;
1195 }
1196
1197 if (vcpu->hcpu_last != hcpu) {
1198 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1199 curcpu()->ci_data.cpu_cc_skew;
1200 svm_vmcb_cache_flush_all(vmcb);
1201 }
1202
1203 svm_vcpu_guest_dbregs_enter(vcpu);
1204 svm_vcpu_guest_misc_enter(vcpu);
1205
1206 while (1) {
1207 if (cpudata->tlb_want_flush || tlb_need_flush) {
1208 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1209 } else {
1210 vmcb->ctrl.tlb_ctrl = 0;
1211 }
1212
1213 s = splhigh();
1214 svm_vcpu_guest_fpu_enter(vcpu);
1215 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1216 svm_vcpu_guest_fpu_leave(vcpu);
1217 splx(s);
1218
1219 svm_vmcb_cache_default(vmcb);
1220
1221 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1222 cpudata->tlb_want_flush = false;
1223 tlb_need_flush = false;
1224 vcpu->hcpu_last = hcpu;
1225 }
1226
1227 switch (vmcb->ctrl.exitcode) {
1228 case VMCB_EXITCODE_INTR:
1229 case VMCB_EXITCODE_NMI:
1230 exit->reason = NVMM_EXIT_NONE;
1231 break;
1232 case VMCB_EXITCODE_VINTR:
1233 svm_event_waitexit_disable(vcpu, false);
1234 exit->reason = NVMM_EXIT_INT_READY;
1235 break;
1236 case VMCB_EXITCODE_IRET:
1237 svm_event_waitexit_disable(vcpu, true);
1238 exit->reason = NVMM_EXIT_NMI_READY;
1239 break;
1240 case VMCB_EXITCODE_CPUID:
1241 svm_exit_cpuid(mach, vcpu, exit);
1242 break;
1243 case VMCB_EXITCODE_HLT:
1244 svm_exit_hlt(mach, vcpu, exit);
1245 break;
1246 case VMCB_EXITCODE_IOIO:
1247 svm_exit_io(mach, vcpu, exit);
1248 break;
1249 case VMCB_EXITCODE_MSR:
1250 svm_exit_msr(mach, vcpu, exit);
1251 break;
1252 case VMCB_EXITCODE_SHUTDOWN:
1253 exit->reason = NVMM_EXIT_SHUTDOWN;
1254 break;
1255 case VMCB_EXITCODE_RDPMC:
1256 case VMCB_EXITCODE_RSM:
1257 case VMCB_EXITCODE_INVLPGA:
1258 case VMCB_EXITCODE_VMRUN:
1259 case VMCB_EXITCODE_VMMCALL:
1260 case VMCB_EXITCODE_VMLOAD:
1261 case VMCB_EXITCODE_VMSAVE:
1262 case VMCB_EXITCODE_STGI:
1263 case VMCB_EXITCODE_CLGI:
1264 case VMCB_EXITCODE_SKINIT:
1265 case VMCB_EXITCODE_RDTSCP:
1266 svm_inject_ud(mach, vcpu);
1267 exit->reason = NVMM_EXIT_NONE;
1268 break;
1269 case VMCB_EXITCODE_MONITOR:
1270 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1271 break;
1272 case VMCB_EXITCODE_MWAIT:
1273 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1274 break;
1275 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1276 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1277 break;
1278 case VMCB_EXITCODE_XSETBV:
1279 svm_exit_xsetbv(mach, vcpu, exit);
1280 break;
1281 case VMCB_EXITCODE_NPF:
1282 svm_exit_npf(mach, vcpu, exit);
1283 break;
1284 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1285 default:
1286 exit->reason = NVMM_EXIT_INVALID;
1287 break;
1288 }
1289
1290 /* If no reason to return to userland, keep rolling. */
1291 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1292 break;
1293 }
1294 if (curcpu()->ci_data.cpu_softints != 0) {
1295 break;
1296 }
1297 if (curlwp->l_flag & LW_USERRET) {
1298 break;
1299 }
1300 if (exit->reason != NVMM_EXIT_NONE) {
1301 break;
1302 }
1303 }
1304
1305 svm_vcpu_guest_misc_leave(vcpu);
1306 svm_vcpu_guest_dbregs_leave(vcpu);
1307
1308 kpreempt_enable();
1309
1310 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1311 VMCB_CTRL_V_TPR);
1312 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1313
1314 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1315 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1316 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1317 cpudata->int_window_exit;
1318 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1319 cpudata->nmi_window_exit;
1320
1321 return 0;
1322 }
1323
1324 /* -------------------------------------------------------------------------- */
1325
1326 static int
1327 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1328 {
1329 struct pglist pglist;
1330 paddr_t _pa;
1331 vaddr_t _va;
1332 size_t i;
1333 int ret;
1334
1335 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1336 &pglist, 1, 0);
1337 if (ret != 0)
1338 return ENOMEM;
1339 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1340 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1341 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1342 if (_va == 0)
1343 goto error;
1344
1345 for (i = 0; i < npages; i++) {
1346 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1347 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1348 }
1349 pmap_update(pmap_kernel());
1350
1351 memset((void *)_va, 0, npages * PAGE_SIZE);
1352
1353 *pa = _pa;
1354 *va = _va;
1355 return 0;
1356
1357 error:
1358 for (i = 0; i < npages; i++) {
1359 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1360 }
1361 return ENOMEM;
1362 }
1363
1364 static void
1365 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1366 {
1367 size_t i;
1368
1369 pmap_kremove(va, npages * PAGE_SIZE);
1370 pmap_update(pmap_kernel());
1371 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1372 for (i = 0; i < npages; i++) {
1373 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1374 }
1375 }
1376
1377 /* -------------------------------------------------------------------------- */
1378
1379 #define SVM_MSRBM_READ __BIT(0)
1380 #define SVM_MSRBM_WRITE __BIT(1)
1381
1382 static void
1383 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1384 {
1385 uint64_t byte;
1386 uint8_t bitoff;
1387
1388 if (msr < 0x00002000) {
1389 /* Range 1 */
1390 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1391 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1392 /* Range 2 */
1393 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1394 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1395 /* Range 3 */
1396 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1397 } else {
1398 panic("%s: wrong range", __func__);
1399 }
1400
1401 bitoff = (msr & 0x3) << 1;
1402
1403 if (read) {
1404 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1405 }
1406 if (write) {
1407 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1408 }
1409 }
1410
1411 static void
1412 svm_asid_alloc(struct nvmm_cpu *vcpu)
1413 {
1414 struct svm_cpudata *cpudata = vcpu->cpudata;
1415 struct vmcb *vmcb = cpudata->vmcb;
1416 size_t i, oct, bit;
1417
1418 mutex_enter(&svm_asidlock);
1419
1420 for (i = 0; i < svm_maxasid; i++) {
1421 oct = i / 8;
1422 bit = i % 8;
1423
1424 if (svm_asidmap[oct] & __BIT(bit)) {
1425 continue;
1426 }
1427
1428 svm_asidmap[oct] |= __BIT(bit);
1429 vmcb->ctrl.guest_asid = i;
1430 mutex_exit(&svm_asidlock);
1431 return;
1432 }
1433
1434 /*
1435 * No free ASID. Use the last one, which is shared and requires
1436 * special TLB handling.
1437 */
1438 cpudata->shared_asid = true;
1439 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1440 mutex_exit(&svm_asidlock);
1441 }
1442
1443 static void
1444 svm_asid_free(struct nvmm_cpu *vcpu)
1445 {
1446 struct svm_cpudata *cpudata = vcpu->cpudata;
1447 struct vmcb *vmcb = cpudata->vmcb;
1448 size_t oct, bit;
1449
1450 if (cpudata->shared_asid) {
1451 return;
1452 }
1453
1454 oct = vmcb->ctrl.guest_asid / 8;
1455 bit = vmcb->ctrl.guest_asid % 8;
1456
1457 mutex_enter(&svm_asidlock);
1458 svm_asidmap[oct] &= ~__BIT(bit);
1459 mutex_exit(&svm_asidlock);
1460 }
1461
1462 static void
1463 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1464 {
1465 struct svm_cpudata *cpudata = vcpu->cpudata;
1466 struct vmcb *vmcb = cpudata->vmcb;
1467
1468 /* Allow reads/writes of Control Registers. */
1469 vmcb->ctrl.intercept_cr = 0;
1470
1471 /* Allow reads/writes of Debug Registers. */
1472 vmcb->ctrl.intercept_dr = 0;
1473
1474 /* Allow exceptions 0 to 31. */
1475 vmcb->ctrl.intercept_vec = 0;
1476
1477 /*
1478 * Allow:
1479 * - SMI [smm interrupts]
1480 * - VINTR [virtual interrupts]
1481 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1482 * - RIDTR [reads of IDTR]
1483 * - RGDTR [reads of GDTR]
1484 * - RLDTR [reads of LDTR]
1485 * - RTR [reads of TR]
1486 * - WIDTR [writes of IDTR]
1487 * - WGDTR [writes of GDTR]
1488 * - WLDTR [writes of LDTR]
1489 * - WTR [writes of TR]
1490 * - RDTSC [rdtsc instruction]
1491 * - PUSHF [pushf instruction]
1492 * - POPF [popf instruction]
1493 * - IRET [iret instruction]
1494 * - INTN [int $n instructions]
1495 * - INVD [invd instruction]
1496 * - PAUSE [pause instruction]
1497 * - INVLPG [invplg instruction]
1498 * - TASKSW [task switches]
1499 *
1500 * Intercept the rest below.
1501 */
1502 vmcb->ctrl.intercept_misc1 =
1503 VMCB_CTRL_INTERCEPT_INTR |
1504 VMCB_CTRL_INTERCEPT_NMI |
1505 VMCB_CTRL_INTERCEPT_INIT |
1506 VMCB_CTRL_INTERCEPT_RDPMC |
1507 VMCB_CTRL_INTERCEPT_CPUID |
1508 VMCB_CTRL_INTERCEPT_RSM |
1509 VMCB_CTRL_INTERCEPT_HLT |
1510 VMCB_CTRL_INTERCEPT_INVLPGA |
1511 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1512 VMCB_CTRL_INTERCEPT_MSR_PROT |
1513 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1514 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1515
1516 /*
1517 * Allow:
1518 * - ICEBP [icebp instruction]
1519 * - WBINVD [wbinvd instruction]
1520 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1521 *
1522 * Intercept the rest below.
1523 */
1524 vmcb->ctrl.intercept_misc2 =
1525 VMCB_CTRL_INTERCEPT_VMRUN |
1526 VMCB_CTRL_INTERCEPT_VMMCALL |
1527 VMCB_CTRL_INTERCEPT_VMLOAD |
1528 VMCB_CTRL_INTERCEPT_VMSAVE |
1529 VMCB_CTRL_INTERCEPT_STGI |
1530 VMCB_CTRL_INTERCEPT_CLGI |
1531 VMCB_CTRL_INTERCEPT_SKINIT |
1532 VMCB_CTRL_INTERCEPT_RDTSCP |
1533 VMCB_CTRL_INTERCEPT_MONITOR |
1534 VMCB_CTRL_INTERCEPT_MWAIT |
1535 VMCB_CTRL_INTERCEPT_XSETBV;
1536
1537 /* Intercept all I/O accesses. */
1538 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1539 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1540
1541 /*
1542 * Allow:
1543 * - EFER [read]
1544 * - STAR [read, write]
1545 * - LSTAR [read, write]
1546 * - CSTAR [read, write]
1547 * - SFMASK [read, write]
1548 * - KERNELGSBASE [read, write]
1549 * - SYSENTER_CS [read, write]
1550 * - SYSENTER_ESP [read, write]
1551 * - SYSENTER_EIP [read, write]
1552 * - FSBASE [read, write]
1553 * - GSBASE [read, write]
1554 * - PAT [read, write]
1555 * - TSC [read]
1556 *
1557 * Intercept the rest.
1558 */
1559 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1560 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1561 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1562 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1563 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1564 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1565 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1566 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1567 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1568 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1569 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1570 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1571 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1572 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1573 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1574
1575 /* Generate ASID. */
1576 svm_asid_alloc(vcpu);
1577
1578 /* Virtual TPR. */
1579 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1580
1581 /* Enable Nested Paging. */
1582 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1583 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1584
1585 /* Must always be set. */
1586 vmcb->state.efer = EFER_SVME;
1587 cpudata->gxcr0 = XCR0_X87;
1588
1589 /* Init XSAVE header. */
1590 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1591 cpudata->gfpu.xsh_xcomp_bv = 0;
1592
1593 /* Set guest TSC to zero, more or less. */
1594 cpudata->tsc_offset = -cpu_counter();
1595
1596 /* These MSRs are static. */
1597 cpudata->star = rdmsr(MSR_STAR);
1598 cpudata->lstar = rdmsr(MSR_LSTAR);
1599 cpudata->cstar = rdmsr(MSR_CSTAR);
1600 cpudata->sfmask = rdmsr(MSR_SFMASK);
1601 }
1602
1603 static int
1604 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1605 {
1606 struct svm_cpudata *cpudata;
1607 int error;
1608
1609 /* Allocate the SVM cpudata. */
1610 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1611 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1612 UVM_KMF_WIRED|UVM_KMF_ZERO);
1613 vcpu->cpudata = cpudata;
1614
1615 /* VMCB */
1616 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1617 VMCB_NPAGES);
1618 if (error)
1619 goto error;
1620
1621 /* I/O Bitmap */
1622 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1623 IOBM_NPAGES);
1624 if (error)
1625 goto error;
1626
1627 /* MSR Bitmap */
1628 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1629 MSRBM_NPAGES);
1630 if (error)
1631 goto error;
1632
1633 /* Init the VCPU info. */
1634 svm_vcpu_init(mach, vcpu);
1635
1636 return 0;
1637
1638 error:
1639 if (cpudata->vmcb_pa) {
1640 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1641 VMCB_NPAGES);
1642 }
1643 if (cpudata->iobm_pa) {
1644 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1645 IOBM_NPAGES);
1646 }
1647 if (cpudata->msrbm_pa) {
1648 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1649 MSRBM_NPAGES);
1650 }
1651 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1652 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1653 return error;
1654 }
1655
1656 static void
1657 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1658 {
1659 struct svm_cpudata *cpudata = vcpu->cpudata;
1660
1661 svm_asid_free(vcpu);
1662
1663 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1664 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1665 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1666
1667 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1668 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1669 }
1670
1671 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1672 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1673 #define SVM_SEG_ATTRIB_P __BIT(7)
1674 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1675 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1676 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1677 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1678
1679 static void
1680 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1681 {
1682 vseg->selector = seg->selector;
1683 vseg->attrib =
1684 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1685 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1686 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1687 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1688 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1689 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1690 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1691 vseg->limit = seg->limit;
1692 vseg->base = seg->base;
1693 }
1694
1695 static void
1696 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1697 {
1698 seg->selector = vseg->selector;
1699 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1700 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1701 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1702 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1703 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1704 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1705 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1706 seg->limit = vseg->limit;
1707 seg->base = vseg->base;
1708 }
1709
1710 static inline bool
1711 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
1712 uint64_t flags)
1713 {
1714 if (flags & NVMM_X64_STATE_CRS) {
1715 if ((vmcb->state.cr0 ^
1716 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1717 return true;
1718 }
1719 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1720 return true;
1721 }
1722 if ((vmcb->state.cr4 ^
1723 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1724 return true;
1725 }
1726 }
1727
1728 if (flags & NVMM_X64_STATE_MSRS) {
1729 if ((vmcb->state.efer ^
1730 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1731 return true;
1732 }
1733 }
1734
1735 return false;
1736 }
1737
1738 static void
1739 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1740 {
1741 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1742 struct svm_cpudata *cpudata = vcpu->cpudata;
1743 struct vmcb *vmcb = cpudata->vmcb;
1744 struct fxsave *fpustate;
1745
1746 if (svm_state_tlb_flush(vmcb, state, flags)) {
1747 cpudata->tlb_want_flush = true;
1748 }
1749
1750 if (flags & NVMM_X64_STATE_SEGS) {
1751 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1752 &vmcb->state.cs);
1753 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1754 &vmcb->state.ds);
1755 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1756 &vmcb->state.es);
1757 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1758 &vmcb->state.fs);
1759 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1760 &vmcb->state.gs);
1761 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1762 &vmcb->state.ss);
1763 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1764 &vmcb->state.gdt);
1765 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1766 &vmcb->state.idt);
1767 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1768 &vmcb->state.ldt);
1769 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1770 &vmcb->state.tr);
1771
1772 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1773 }
1774
1775 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1776 if (flags & NVMM_X64_STATE_GPRS) {
1777 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1778
1779 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1780 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1781 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1782 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1783 }
1784
1785 if (flags & NVMM_X64_STATE_CRS) {
1786 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1787 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1788 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1789 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1790
1791 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1792 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1793 VMCB_CTRL_V_TPR);
1794
1795 if (svm_xcr0_mask != 0) {
1796 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1797 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1798 cpudata->gxcr0 &= svm_xcr0_mask;
1799 cpudata->gxcr0 |= XCR0_X87;
1800 }
1801 }
1802
1803 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1804 if (flags & NVMM_X64_STATE_DRS) {
1805 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1806
1807 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1808 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1809 }
1810
1811 if (flags & NVMM_X64_STATE_MSRS) {
1812 /* Bit EFER_SVME is mandatory. */
1813 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1814
1815 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1816 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1817 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1818 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1819 vmcb->state.kernelgsbase =
1820 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1821 vmcb->state.sysenter_cs =
1822 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1823 vmcb->state.sysenter_esp =
1824 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1825 vmcb->state.sysenter_eip =
1826 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1827 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1828 }
1829
1830 if (flags & NVMM_X64_STATE_MISC) {
1831 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1832 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1833 } else {
1834 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1835 }
1836
1837 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1838 svm_event_waitexit_enable(vcpu, false);
1839 } else {
1840 svm_event_waitexit_disable(vcpu, false);
1841 }
1842
1843 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1844 svm_event_waitexit_enable(vcpu, true);
1845 } else {
1846 svm_event_waitexit_disable(vcpu, true);
1847 }
1848 }
1849
1850 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1851 if (flags & NVMM_X64_STATE_FPU) {
1852 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1853 sizeof(state->fpu));
1854
1855 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1856 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1857 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1858
1859 if (svm_xcr0_mask != 0) {
1860 /* Reset XSTATE_BV, to force a reload. */
1861 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1862 }
1863 }
1864
1865 svm_vmcb_cache_update(vmcb, flags);
1866 }
1867
1868 static void
1869 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1870 {
1871 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1872 struct svm_cpudata *cpudata = vcpu->cpudata;
1873 struct vmcb *vmcb = cpudata->vmcb;
1874
1875 if (flags & NVMM_X64_STATE_SEGS) {
1876 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1877 &vmcb->state.cs);
1878 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1879 &vmcb->state.ds);
1880 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1881 &vmcb->state.es);
1882 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1883 &vmcb->state.fs);
1884 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1885 &vmcb->state.gs);
1886 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1887 &vmcb->state.ss);
1888 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1889 &vmcb->state.gdt);
1890 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1891 &vmcb->state.idt);
1892 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1893 &vmcb->state.ldt);
1894 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1895 &vmcb->state.tr);
1896
1897 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1898 }
1899
1900 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1901 if (flags & NVMM_X64_STATE_GPRS) {
1902 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1903
1904 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1905 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1906 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1907 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1908 }
1909
1910 if (flags & NVMM_X64_STATE_CRS) {
1911 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1912 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1913 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1914 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1915 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1916 VMCB_CTRL_V_TPR);
1917 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1918 }
1919
1920 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1921 if (flags & NVMM_X64_STATE_DRS) {
1922 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1923
1924 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1925 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1926 }
1927
1928 if (flags & NVMM_X64_STATE_MSRS) {
1929 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1930 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1931 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1932 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1933 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1934 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1935 vmcb->state.kernelgsbase;
1936 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1937 vmcb->state.sysenter_cs;
1938 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1939 vmcb->state.sysenter_esp;
1940 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1941 vmcb->state.sysenter_eip;
1942 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1943
1944 /* Hide SVME. */
1945 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1946 }
1947
1948 if (flags & NVMM_X64_STATE_MISC) {
1949 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1950 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1951 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1952 cpudata->int_window_exit;
1953 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1954 cpudata->nmi_window_exit;
1955 }
1956
1957 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1958 if (flags & NVMM_X64_STATE_FPU) {
1959 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1960 sizeof(state->fpu));
1961 }
1962 }
1963
1964 /* -------------------------------------------------------------------------- */
1965
1966 static void
1967 svm_tlb_flush(struct pmap *pm)
1968 {
1969 struct nvmm_machine *mach = pm->pm_data;
1970 struct svm_cpudata *cpudata;
1971 struct nvmm_cpu *vcpu;
1972 int error;
1973 size_t i;
1974
1975 /* Request TLB flushes. */
1976 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1977 error = nvmm_vcpu_get(mach, i, &vcpu);
1978 if (error)
1979 continue;
1980 cpudata = vcpu->cpudata;
1981 cpudata->tlb_want_flush = true;
1982 nvmm_vcpu_put(vcpu);
1983 }
1984 }
1985
1986 static void
1987 svm_machine_create(struct nvmm_machine *mach)
1988 {
1989 /* Fill in pmap info. */
1990 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1991 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1992
1993 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1994 }
1995
1996 static void
1997 svm_machine_destroy(struct nvmm_machine *mach)
1998 {
1999 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2000 }
2001
2002 static int
2003 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2004 {
2005 struct nvmm_x86_conf_cpuid *cpuid = data;
2006 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2007 size_t i;
2008
2009 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2010 return EINVAL;
2011 }
2012
2013 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2014 (cpuid->set.ebx & cpuid->del.ebx) ||
2015 (cpuid->set.ecx & cpuid->del.ecx) ||
2016 (cpuid->set.edx & cpuid->del.edx))) {
2017 return EINVAL;
2018 }
2019
2020 /* If already here, replace. */
2021 for (i = 0; i < SVM_NCPUIDS; i++) {
2022 if (!machdata->cpuidpresent[i]) {
2023 continue;
2024 }
2025 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2026 memcpy(&machdata->cpuid[i], cpuid,
2027 sizeof(struct nvmm_x86_conf_cpuid));
2028 return 0;
2029 }
2030 }
2031
2032 /* Not here, insert. */
2033 for (i = 0; i < SVM_NCPUIDS; i++) {
2034 if (!machdata->cpuidpresent[i]) {
2035 machdata->cpuidpresent[i] = true;
2036 memcpy(&machdata->cpuid[i], cpuid,
2037 sizeof(struct nvmm_x86_conf_cpuid));
2038 return 0;
2039 }
2040 }
2041
2042 return ENOBUFS;
2043 }
2044
2045 /* -------------------------------------------------------------------------- */
2046
2047 static bool
2048 svm_ident(void)
2049 {
2050 u_int descs[4];
2051 uint64_t msr;
2052
2053 if (cpu_vendor != CPUVENDOR_AMD) {
2054 return false;
2055 }
2056 if (!(cpu_feature[3] & CPUID_SVM)) {
2057 return false;
2058 }
2059
2060 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2061 return false;
2062 }
2063 x86_cpuid(0x8000000a, descs);
2064
2065 /* Want Nested Paging. */
2066 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2067 return false;
2068 }
2069
2070 /* Want nRIP. */
2071 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2072 return false;
2073 }
2074
2075 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2076
2077 msr = rdmsr(MSR_VMCR);
2078 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2079 return false;
2080 }
2081
2082 return true;
2083 }
2084
2085 static void
2086 svm_init_asid(uint32_t maxasid)
2087 {
2088 size_t i, j, allocsz;
2089
2090 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2091
2092 /* Arbitrarily limit. */
2093 maxasid = uimin(maxasid, 8192);
2094
2095 svm_maxasid = maxasid;
2096 allocsz = roundup(maxasid, 8) / 8;
2097 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2098
2099 /* ASID 0 is reserved for the host. */
2100 svm_asidmap[0] |= __BIT(0);
2101
2102 /* ASID n-1 is special, we share it. */
2103 i = (maxasid - 1) / 8;
2104 j = (maxasid - 1) % 8;
2105 svm_asidmap[i] |= __BIT(j);
2106 }
2107
2108 static void
2109 svm_change_cpu(void *arg1, void *arg2)
2110 {
2111 bool enable = (bool)arg1;
2112 uint64_t msr;
2113
2114 msr = rdmsr(MSR_VMCR);
2115 if (msr & VMCR_SVMED) {
2116 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2117 }
2118
2119 if (!enable) {
2120 wrmsr(MSR_VM_HSAVE_PA, 0);
2121 }
2122
2123 msr = rdmsr(MSR_EFER);
2124 if (enable) {
2125 msr |= EFER_SVME;
2126 } else {
2127 msr &= ~EFER_SVME;
2128 }
2129 wrmsr(MSR_EFER, msr);
2130
2131 if (enable) {
2132 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2133 }
2134 }
2135
2136 static void
2137 svm_init(void)
2138 {
2139 CPU_INFO_ITERATOR cii;
2140 struct cpu_info *ci;
2141 struct vm_page *pg;
2142 u_int descs[4];
2143 uint64_t xc;
2144
2145 x86_cpuid(0x8000000a, descs);
2146
2147 /* The guest TLB flush command. */
2148 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2149 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2150 } else {
2151 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2152 }
2153
2154 /* Init the ASID. */
2155 svm_init_asid(descs[1]);
2156
2157 /* Init the XCR0 mask. */
2158 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2159
2160 memset(hsave, 0, sizeof(hsave));
2161 for (CPU_INFO_FOREACH(cii, ci)) {
2162 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2163 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2164 }
2165
2166 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2167 xc_wait(xc);
2168 }
2169
2170 static void
2171 svm_fini_asid(void)
2172 {
2173 size_t allocsz;
2174
2175 allocsz = roundup(svm_maxasid, 8) / 8;
2176 kmem_free(svm_asidmap, allocsz);
2177
2178 mutex_destroy(&svm_asidlock);
2179 }
2180
2181 static void
2182 svm_fini(void)
2183 {
2184 uint64_t xc;
2185 size_t i;
2186
2187 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2188 xc_wait(xc);
2189
2190 for (i = 0; i < MAXCPUS; i++) {
2191 if (hsave[i].pa != 0)
2192 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2193 }
2194
2195 svm_fini_asid();
2196 }
2197
2198 static void
2199 svm_capability(struct nvmm_capability *cap)
2200 {
2201 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2202 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2203 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2204 }
2205
2206 const struct nvmm_impl nvmm_x86_svm = {
2207 .ident = svm_ident,
2208 .init = svm_init,
2209 .fini = svm_fini,
2210 .capability = svm_capability,
2211 .conf_max = NVMM_X86_NCONF,
2212 .conf_sizes = svm_conf_sizes,
2213 .state_size = sizeof(struct nvmm_x64_state),
2214 .machine_create = svm_machine_create,
2215 .machine_destroy = svm_machine_destroy,
2216 .machine_configure = svm_machine_configure,
2217 .vcpu_create = svm_vcpu_create,
2218 .vcpu_destroy = svm_vcpu_destroy,
2219 .vcpu_setstate = svm_vcpu_setstate,
2220 .vcpu_getstate = svm_vcpu_getstate,
2221 .vcpu_inject = svm_vcpu_inject,
2222 .vcpu_run = svm_vcpu_run
2223 };
2224