nvmm_x86_svm.c revision 1.26 1 /* $NetBSD: nvmm_x86_svm.c,v 1.26 2019/02/16 12:58:13 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.26 2019/02/16 12:58:13 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int svm_vmrun(paddr_t, uint64_t *);
57
58 #define MSR_VM_HSAVE_PA 0xC0010117
59
60 /* -------------------------------------------------------------------------- */
61
62 #define VMCB_EXITCODE_CR0_READ 0x0000
63 #define VMCB_EXITCODE_CR1_READ 0x0001
64 #define VMCB_EXITCODE_CR2_READ 0x0002
65 #define VMCB_EXITCODE_CR3_READ 0x0003
66 #define VMCB_EXITCODE_CR4_READ 0x0004
67 #define VMCB_EXITCODE_CR5_READ 0x0005
68 #define VMCB_EXITCODE_CR6_READ 0x0006
69 #define VMCB_EXITCODE_CR7_READ 0x0007
70 #define VMCB_EXITCODE_CR8_READ 0x0008
71 #define VMCB_EXITCODE_CR9_READ 0x0009
72 #define VMCB_EXITCODE_CR10_READ 0x000A
73 #define VMCB_EXITCODE_CR11_READ 0x000B
74 #define VMCB_EXITCODE_CR12_READ 0x000C
75 #define VMCB_EXITCODE_CR13_READ 0x000D
76 #define VMCB_EXITCODE_CR14_READ 0x000E
77 #define VMCB_EXITCODE_CR15_READ 0x000F
78 #define VMCB_EXITCODE_CR0_WRITE 0x0010
79 #define VMCB_EXITCODE_CR1_WRITE 0x0011
80 #define VMCB_EXITCODE_CR2_WRITE 0x0012
81 #define VMCB_EXITCODE_CR3_WRITE 0x0013
82 #define VMCB_EXITCODE_CR4_WRITE 0x0014
83 #define VMCB_EXITCODE_CR5_WRITE 0x0015
84 #define VMCB_EXITCODE_CR6_WRITE 0x0016
85 #define VMCB_EXITCODE_CR7_WRITE 0x0017
86 #define VMCB_EXITCODE_CR8_WRITE 0x0018
87 #define VMCB_EXITCODE_CR9_WRITE 0x0019
88 #define VMCB_EXITCODE_CR10_WRITE 0x001A
89 #define VMCB_EXITCODE_CR11_WRITE 0x001B
90 #define VMCB_EXITCODE_CR12_WRITE 0x001C
91 #define VMCB_EXITCODE_CR13_WRITE 0x001D
92 #define VMCB_EXITCODE_CR14_WRITE 0x001E
93 #define VMCB_EXITCODE_CR15_WRITE 0x001F
94 #define VMCB_EXITCODE_DR0_READ 0x0020
95 #define VMCB_EXITCODE_DR1_READ 0x0021
96 #define VMCB_EXITCODE_DR2_READ 0x0022
97 #define VMCB_EXITCODE_DR3_READ 0x0023
98 #define VMCB_EXITCODE_DR4_READ 0x0024
99 #define VMCB_EXITCODE_DR5_READ 0x0025
100 #define VMCB_EXITCODE_DR6_READ 0x0026
101 #define VMCB_EXITCODE_DR7_READ 0x0027
102 #define VMCB_EXITCODE_DR8_READ 0x0028
103 #define VMCB_EXITCODE_DR9_READ 0x0029
104 #define VMCB_EXITCODE_DR10_READ 0x002A
105 #define VMCB_EXITCODE_DR11_READ 0x002B
106 #define VMCB_EXITCODE_DR12_READ 0x002C
107 #define VMCB_EXITCODE_DR13_READ 0x002D
108 #define VMCB_EXITCODE_DR14_READ 0x002E
109 #define VMCB_EXITCODE_DR15_READ 0x002F
110 #define VMCB_EXITCODE_DR0_WRITE 0x0030
111 #define VMCB_EXITCODE_DR1_WRITE 0x0031
112 #define VMCB_EXITCODE_DR2_WRITE 0x0032
113 #define VMCB_EXITCODE_DR3_WRITE 0x0033
114 #define VMCB_EXITCODE_DR4_WRITE 0x0034
115 #define VMCB_EXITCODE_DR5_WRITE 0x0035
116 #define VMCB_EXITCODE_DR6_WRITE 0x0036
117 #define VMCB_EXITCODE_DR7_WRITE 0x0037
118 #define VMCB_EXITCODE_DR8_WRITE 0x0038
119 #define VMCB_EXITCODE_DR9_WRITE 0x0039
120 #define VMCB_EXITCODE_DR10_WRITE 0x003A
121 #define VMCB_EXITCODE_DR11_WRITE 0x003B
122 #define VMCB_EXITCODE_DR12_WRITE 0x003C
123 #define VMCB_EXITCODE_DR13_WRITE 0x003D
124 #define VMCB_EXITCODE_DR14_WRITE 0x003E
125 #define VMCB_EXITCODE_DR15_WRITE 0x003F
126 #define VMCB_EXITCODE_EXCP0 0x0040
127 #define VMCB_EXITCODE_EXCP1 0x0041
128 #define VMCB_EXITCODE_EXCP2 0x0042
129 #define VMCB_EXITCODE_EXCP3 0x0043
130 #define VMCB_EXITCODE_EXCP4 0x0044
131 #define VMCB_EXITCODE_EXCP5 0x0045
132 #define VMCB_EXITCODE_EXCP6 0x0046
133 #define VMCB_EXITCODE_EXCP7 0x0047
134 #define VMCB_EXITCODE_EXCP8 0x0048
135 #define VMCB_EXITCODE_EXCP9 0x0049
136 #define VMCB_EXITCODE_EXCP10 0x004A
137 #define VMCB_EXITCODE_EXCP11 0x004B
138 #define VMCB_EXITCODE_EXCP12 0x004C
139 #define VMCB_EXITCODE_EXCP13 0x004D
140 #define VMCB_EXITCODE_EXCP14 0x004E
141 #define VMCB_EXITCODE_EXCP15 0x004F
142 #define VMCB_EXITCODE_EXCP16 0x0050
143 #define VMCB_EXITCODE_EXCP17 0x0051
144 #define VMCB_EXITCODE_EXCP18 0x0052
145 #define VMCB_EXITCODE_EXCP19 0x0053
146 #define VMCB_EXITCODE_EXCP20 0x0054
147 #define VMCB_EXITCODE_EXCP21 0x0055
148 #define VMCB_EXITCODE_EXCP22 0x0056
149 #define VMCB_EXITCODE_EXCP23 0x0057
150 #define VMCB_EXITCODE_EXCP24 0x0058
151 #define VMCB_EXITCODE_EXCP25 0x0059
152 #define VMCB_EXITCODE_EXCP26 0x005A
153 #define VMCB_EXITCODE_EXCP27 0x005B
154 #define VMCB_EXITCODE_EXCP28 0x005C
155 #define VMCB_EXITCODE_EXCP29 0x005D
156 #define VMCB_EXITCODE_EXCP30 0x005E
157 #define VMCB_EXITCODE_EXCP31 0x005F
158 #define VMCB_EXITCODE_INTR 0x0060
159 #define VMCB_EXITCODE_NMI 0x0061
160 #define VMCB_EXITCODE_SMI 0x0062
161 #define VMCB_EXITCODE_INIT 0x0063
162 #define VMCB_EXITCODE_VINTR 0x0064
163 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
164 #define VMCB_EXITCODE_IDTR_READ 0x0066
165 #define VMCB_EXITCODE_GDTR_READ 0x0067
166 #define VMCB_EXITCODE_LDTR_READ 0x0068
167 #define VMCB_EXITCODE_TR_READ 0x0069
168 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
169 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
170 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
171 #define VMCB_EXITCODE_TR_WRITE 0x006D
172 #define VMCB_EXITCODE_RDTSC 0x006E
173 #define VMCB_EXITCODE_RDPMC 0x006F
174 #define VMCB_EXITCODE_PUSHF 0x0070
175 #define VMCB_EXITCODE_POPF 0x0071
176 #define VMCB_EXITCODE_CPUID 0x0072
177 #define VMCB_EXITCODE_RSM 0x0073
178 #define VMCB_EXITCODE_IRET 0x0074
179 #define VMCB_EXITCODE_SWINT 0x0075
180 #define VMCB_EXITCODE_INVD 0x0076
181 #define VMCB_EXITCODE_PAUSE 0x0077
182 #define VMCB_EXITCODE_HLT 0x0078
183 #define VMCB_EXITCODE_INVLPG 0x0079
184 #define VMCB_EXITCODE_INVLPGA 0x007A
185 #define VMCB_EXITCODE_IOIO 0x007B
186 #define VMCB_EXITCODE_MSR 0x007C
187 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
188 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
189 #define VMCB_EXITCODE_SHUTDOWN 0x007F
190 #define VMCB_EXITCODE_VMRUN 0x0080
191 #define VMCB_EXITCODE_VMMCALL 0x0081
192 #define VMCB_EXITCODE_VMLOAD 0x0082
193 #define VMCB_EXITCODE_VMSAVE 0x0083
194 #define VMCB_EXITCODE_STGI 0x0084
195 #define VMCB_EXITCODE_CLGI 0x0085
196 #define VMCB_EXITCODE_SKINIT 0x0086
197 #define VMCB_EXITCODE_RDTSCP 0x0087
198 #define VMCB_EXITCODE_ICEBP 0x0088
199 #define VMCB_EXITCODE_WBINVD 0x0089
200 #define VMCB_EXITCODE_MONITOR 0x008A
201 #define VMCB_EXITCODE_MWAIT 0x008B
202 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
203 #define VMCB_EXITCODE_XSETBV 0x008D
204 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
205 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
206 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
207 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
208 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
209 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
210 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
211 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
212 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
213 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
214 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
215 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
216 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
217 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
218 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
219 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
220 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
221 #define VMCB_EXITCODE_NPF 0x0400
222 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
223 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
224 #define VMCB_EXITCODE_VMGEXIT 0x0403
225 #define VMCB_EXITCODE_INVALID -1
226
227 /* -------------------------------------------------------------------------- */
228
229 struct vmcb_ctrl {
230 uint32_t intercept_cr;
231 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
232 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
233
234 uint32_t intercept_dr;
235 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
236 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
237
238 uint32_t intercept_vec;
239 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
240
241 uint32_t intercept_misc1;
242 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
243 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
244 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
245 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
246 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
247 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
248 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
249 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
250 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
251 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
252 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
253 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
254 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
255 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
256 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
257 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
258 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
259 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
260 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
261 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
262 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
263 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
264 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
265 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
266 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
267 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
268 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
269 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
270 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
271 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
272 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
273 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
274
275 uint32_t intercept_misc2;
276 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
277 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
278 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
279 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
280 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
281 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
282 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
283 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
284 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
285 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
286 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
287 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
288 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
289 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
290 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
291
292 uint8_t rsvd1[40];
293 uint16_t pause_filt_thresh;
294 uint16_t pause_filt_cnt;
295 uint64_t iopm_base_pa;
296 uint64_t msrpm_base_pa;
297 uint64_t tsc_offset;
298 uint32_t guest_asid;
299
300 uint32_t tlb_ctrl;
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
304
305 uint64_t v;
306 #define VMCB_CTRL_V_TPR __BITS(7,0)
307 #define VMCB_CTRL_V_IRQ __BIT(8)
308 #define VMCB_CTRL_V_VGIF __BIT(9)
309 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
310 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
311 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
312 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
313 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
314 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
315
316 uint64_t intr;
317 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
318
319 uint64_t exitcode;
320 uint64_t exitinfo1;
321 uint64_t exitinfo2;
322
323 uint64_t exitintinfo;
324 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
325 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
326 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
327 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
328 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
329
330 uint64_t enable1;
331 #define VMCB_CTRL_ENABLE_NP __BIT(0)
332 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
333 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
334
335 uint64_t avic;
336 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
337
338 uint64_t ghcb;
339
340 uint64_t eventinj;
341 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
342 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
343 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
344 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
345 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
346
347 uint64_t n_cr3;
348
349 uint64_t enable2;
350 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
351 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
352
353 uint32_t vmcb_clean;
354 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
355 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
356 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
357 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
358 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
359 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
360 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
361 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
362 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
363 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
364 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
365 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
366
367 uint32_t rsvd2;
368 uint64_t nrip;
369 uint8_t inst_len;
370 uint8_t inst_bytes[15];
371 uint64_t avic_abpp;
372 uint64_t rsvd3;
373 uint64_t avic_ltp;
374
375 uint64_t avic_phys;
376 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
377 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
378
379 uint64_t rsvd4;
380 uint64_t vmcb_ptr;
381
382 uint8_t pad[752];
383 } __packed;
384
385 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
386
387 struct vmcb_segment {
388 uint16_t selector;
389 uint16_t attrib; /* hidden */
390 uint32_t limit; /* hidden */
391 uint64_t base; /* hidden */
392 } __packed;
393
394 CTASSERT(sizeof(struct vmcb_segment) == 16);
395
396 struct vmcb_state {
397 struct vmcb_segment es;
398 struct vmcb_segment cs;
399 struct vmcb_segment ss;
400 struct vmcb_segment ds;
401 struct vmcb_segment fs;
402 struct vmcb_segment gs;
403 struct vmcb_segment gdt;
404 struct vmcb_segment ldt;
405 struct vmcb_segment idt;
406 struct vmcb_segment tr;
407 uint8_t rsvd1[43];
408 uint8_t cpl;
409 uint8_t rsvd2[4];
410 uint64_t efer;
411 uint8_t rsvd3[112];
412 uint64_t cr4;
413 uint64_t cr3;
414 uint64_t cr0;
415 uint64_t dr7;
416 uint64_t dr6;
417 uint64_t rflags;
418 uint64_t rip;
419 uint8_t rsvd4[88];
420 uint64_t rsp;
421 uint8_t rsvd5[24];
422 uint64_t rax;
423 uint64_t star;
424 uint64_t lstar;
425 uint64_t cstar;
426 uint64_t sfmask;
427 uint64_t kernelgsbase;
428 uint64_t sysenter_cs;
429 uint64_t sysenter_esp;
430 uint64_t sysenter_eip;
431 uint64_t cr2;
432 uint8_t rsvd6[32];
433 uint64_t g_pat;
434 uint64_t dbgctl;
435 uint64_t br_from;
436 uint64_t br_to;
437 uint64_t int_from;
438 uint64_t int_to;
439 uint8_t pad[2408];
440 } __packed;
441
442 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
443
444 struct vmcb {
445 struct vmcb_ctrl ctrl;
446 struct vmcb_state state;
447 } __packed;
448
449 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
450 CTASSERT(offsetof(struct vmcb, state) == 0x400);
451
452 /* -------------------------------------------------------------------------- */
453
454 struct svm_hsave {
455 paddr_t pa;
456 };
457
458 static struct svm_hsave hsave[MAXCPUS];
459
460 static uint8_t *svm_asidmap __read_mostly;
461 static uint32_t svm_maxasid __read_mostly;
462 static kmutex_t svm_asidlock __cacheline_aligned;
463
464 static bool svm_decode_assist __read_mostly;
465 static uint32_t svm_ctrl_tlb_flush __read_mostly;
466
467 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
468 static uint64_t svm_xcr0_mask __read_mostly;
469
470 #define SVM_NCPUIDS 32
471
472 #define VMCB_NPAGES 1
473
474 #define MSRBM_NPAGES 2
475 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
476
477 #define IOBM_NPAGES 3
478 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
479
480 /* Does not include EFER_LMSLE. */
481 #define EFER_VALID \
482 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
483
484 #define EFER_TLB_FLUSH \
485 (EFER_NXE|EFER_LMA|EFER_LME)
486 #define CR0_TLB_FLUSH \
487 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
488 #define CR4_TLB_FLUSH \
489 (CR4_PGE|CR4_PAE|CR4_PSE)
490
491 /* -------------------------------------------------------------------------- */
492
493 struct svm_machdata {
494 bool cpuidpresent[SVM_NCPUIDS];
495 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
496 };
497
498 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
499 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
500 };
501
502 struct svm_cpudata {
503 /* General */
504 bool shared_asid;
505 bool tlb_want_flush;
506
507 /* VMCB */
508 struct vmcb *vmcb;
509 paddr_t vmcb_pa;
510
511 /* I/O bitmap */
512 uint8_t *iobm;
513 paddr_t iobm_pa;
514
515 /* MSR bitmap */
516 uint8_t *msrbm;
517 paddr_t msrbm_pa;
518
519 /* Host state */
520 uint64_t hxcr0;
521 uint64_t star;
522 uint64_t lstar;
523 uint64_t cstar;
524 uint64_t sfmask;
525 uint64_t fsbase;
526 uint64_t kernelgsbase;
527 bool ts_set;
528 struct xsave_header hfpu __aligned(64);
529
530 /* Event state */
531 bool int_window_exit;
532 bool nmi_window_exit;
533
534 /* Guest state */
535 uint64_t gxcr0;
536 uint64_t gprs[NVMM_X64_NGPR];
537 uint64_t drs[NVMM_X64_NDR];
538 uint64_t tsc_offset;
539 struct xsave_header gfpu __aligned(64);
540 };
541
542 static void
543 svm_vmcb_cache_default(struct vmcb *vmcb)
544 {
545 vmcb->ctrl.vmcb_clean =
546 VMCB_CTRL_VMCB_CLEAN_I |
547 VMCB_CTRL_VMCB_CLEAN_IOPM |
548 VMCB_CTRL_VMCB_CLEAN_ASID |
549 VMCB_CTRL_VMCB_CLEAN_TPR |
550 VMCB_CTRL_VMCB_CLEAN_NP |
551 VMCB_CTRL_VMCB_CLEAN_CR |
552 VMCB_CTRL_VMCB_CLEAN_DR |
553 VMCB_CTRL_VMCB_CLEAN_DT |
554 VMCB_CTRL_VMCB_CLEAN_SEG |
555 VMCB_CTRL_VMCB_CLEAN_CR2 |
556 VMCB_CTRL_VMCB_CLEAN_LBR |
557 VMCB_CTRL_VMCB_CLEAN_AVIC;
558 }
559
560 static void
561 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
562 {
563 if (flags & NVMM_X64_STATE_SEGS) {
564 vmcb->ctrl.vmcb_clean &=
565 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
566 }
567 if (flags & NVMM_X64_STATE_CRS) {
568 vmcb->ctrl.vmcb_clean &=
569 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
570 VMCB_CTRL_VMCB_CLEAN_TPR);
571 }
572 if (flags & NVMM_X64_STATE_DRS) {
573 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
574 }
575 if (flags & NVMM_X64_STATE_MSRS) {
576 /* CR for EFER, NP for PAT. */
577 vmcb->ctrl.vmcb_clean &=
578 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
579 }
580 }
581
582 static inline void
583 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
584 {
585 vmcb->ctrl.vmcb_clean &= ~flags;
586 }
587
588 static inline void
589 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
590 {
591 vmcb->ctrl.vmcb_clean = 0;
592 }
593
594 #define SVM_EVENT_TYPE_HW_INT 0
595 #define SVM_EVENT_TYPE_NMI 2
596 #define SVM_EVENT_TYPE_EXC 3
597 #define SVM_EVENT_TYPE_SW_INT 4
598
599 static void
600 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
601 {
602 struct svm_cpudata *cpudata = vcpu->cpudata;
603 struct vmcb *vmcb = cpudata->vmcb;
604
605 if (nmi) {
606 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
607 cpudata->nmi_window_exit = true;
608 } else {
609 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
610 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
611 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
612 cpudata->int_window_exit = true;
613 }
614
615 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
616 }
617
618 static void
619 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
620 {
621 struct svm_cpudata *cpudata = vcpu->cpudata;
622 struct vmcb *vmcb = cpudata->vmcb;
623
624 if (nmi) {
625 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
626 cpudata->nmi_window_exit = false;
627 } else {
628 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
629 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
630 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
631 cpudata->int_window_exit = false;
632 }
633
634 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
635 }
636
637 static inline int
638 svm_event_has_error(uint64_t vector)
639 {
640 switch (vector) {
641 case 8: /* #DF */
642 case 10: /* #TS */
643 case 11: /* #NP */
644 case 12: /* #SS */
645 case 13: /* #GP */
646 case 14: /* #PF */
647 case 17: /* #AC */
648 case 30: /* #SX */
649 return 1;
650 default:
651 return 0;
652 }
653 }
654
655 static int
656 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
657 struct nvmm_event *event)
658 {
659 struct svm_cpudata *cpudata = vcpu->cpudata;
660 struct vmcb *vmcb = cpudata->vmcb;
661 int type = 0, err = 0;
662
663 if (event->vector >= 256) {
664 return EINVAL;
665 }
666
667 switch (event->type) {
668 case NVMM_EVENT_INTERRUPT_HW:
669 type = SVM_EVENT_TYPE_HW_INT;
670 if (event->vector == 2) {
671 type = SVM_EVENT_TYPE_NMI;
672 }
673 if (type == SVM_EVENT_TYPE_NMI) {
674 if (cpudata->nmi_window_exit) {
675 return EAGAIN;
676 }
677 svm_event_waitexit_enable(vcpu, true);
678 } else {
679 if (((vmcb->state.rflags & PSL_I) == 0) ||
680 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
681 svm_event_waitexit_enable(vcpu, false);
682 return EAGAIN;
683 }
684 }
685 err = 0;
686 break;
687 case NVMM_EVENT_INTERRUPT_SW:
688 return EINVAL;
689 case NVMM_EVENT_EXCEPTION:
690 type = SVM_EVENT_TYPE_EXC;
691 if (event->vector == 2 || event->vector >= 32)
692 return EINVAL;
693 if (event->vector == 3 || event->vector == 0)
694 return EINVAL;
695 err = svm_event_has_error(event->vector);
696 break;
697 default:
698 return EINVAL;
699 }
700
701 vmcb->ctrl.eventinj =
702 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
703 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
704 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
705 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
706 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
707
708 return 0;
709 }
710
711 static void
712 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
713 {
714 struct nvmm_event event;
715 int ret __diagused;
716
717 event.type = NVMM_EVENT_EXCEPTION;
718 event.vector = 6;
719 event.u.error = 0;
720
721 ret = svm_vcpu_inject(mach, vcpu, &event);
722 KASSERT(ret == 0);
723 }
724
725 static void
726 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
727 {
728 struct nvmm_event event;
729 int ret __diagused;
730
731 event.type = NVMM_EVENT_EXCEPTION;
732 event.vector = 13;
733 event.u.error = 0;
734
735 ret = svm_vcpu_inject(mach, vcpu, &event);
736 KASSERT(ret == 0);
737 }
738
739 static inline void
740 svm_inkernel_advance(struct vmcb *vmcb)
741 {
742 /*
743 * Maybe we should also apply single-stepping and debug exceptions.
744 * Matters for guest-ring3, because it can execute 'cpuid' under a
745 * debugger.
746 */
747 vmcb->state.rip = vmcb->ctrl.nrip;
748 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
749 }
750
751 static void
752 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
753 {
754 struct svm_cpudata *cpudata = vcpu->cpudata;
755 uint64_t cr4;
756
757 switch (eax) {
758 case 0x00000001:
759 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
760 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
761 CPUID_LOCAL_APIC_ID);
762
763 /* CPUID2_OSXSAVE depends on CR4. */
764 cr4 = cpudata->vmcb->state.cr4;
765 if (!(cr4 & CR4_OSXSAVE)) {
766 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
767 }
768 break;
769 case 0x0000000D:
770 if (svm_xcr0_mask == 0) {
771 break;
772 }
773 switch (ecx) {
774 case 0:
775 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
776 if (cpudata->gxcr0 & XCR0_SSE) {
777 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
778 } else {
779 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
780 }
781 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
782 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
783 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
784 break;
785 case 1:
786 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
787 break;
788 }
789 break;
790 case 0x40000000:
791 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
792 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
793 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
794 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
795 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
796 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
797 break;
798 case 0x80000001:
799 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
800 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
801 break;
802 default:
803 break;
804 }
805 }
806
807 static void
808 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
809 struct nvmm_exit *exit)
810 {
811 struct svm_machdata *machdata = mach->machdata;
812 struct svm_cpudata *cpudata = vcpu->cpudata;
813 struct nvmm_x86_conf_cpuid *cpuid;
814 uint64_t eax, ecx;
815 u_int descs[4];
816 size_t i;
817
818 eax = cpudata->vmcb->state.rax;
819 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
820 x86_cpuid2(eax, ecx, descs);
821
822 cpudata->vmcb->state.rax = descs[0];
823 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
824 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
825 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
826
827 for (i = 0; i < SVM_NCPUIDS; i++) {
828 cpuid = &machdata->cpuid[i];
829 if (!machdata->cpuidpresent[i]) {
830 continue;
831 }
832 if (cpuid->leaf != eax) {
833 continue;
834 }
835
836 /* del */
837 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
838 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
839 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
840 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
841
842 /* set */
843 cpudata->vmcb->state.rax |= cpuid->set.eax;
844 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
845 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
846 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
847
848 break;
849 }
850
851 /* Overwrite non-tunable leaves. */
852 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
853
854 svm_inkernel_advance(cpudata->vmcb);
855 exit->reason = NVMM_EXIT_NONE;
856 }
857
858 static void
859 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
860 struct nvmm_exit *exit)
861 {
862 struct svm_cpudata *cpudata = vcpu->cpudata;
863 struct vmcb *vmcb = cpudata->vmcb;
864
865 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
866 svm_event_waitexit_disable(vcpu, false);
867 }
868
869 svm_inkernel_advance(cpudata->vmcb);
870 exit->reason = NVMM_EXIT_HALTED;
871 }
872
873 #define SVM_EXIT_IO_PORT __BITS(31,16)
874 #define SVM_EXIT_IO_SEG __BITS(12,10)
875 #define SVM_EXIT_IO_A64 __BIT(9)
876 #define SVM_EXIT_IO_A32 __BIT(8)
877 #define SVM_EXIT_IO_A16 __BIT(7)
878 #define SVM_EXIT_IO_SZ32 __BIT(6)
879 #define SVM_EXIT_IO_SZ16 __BIT(5)
880 #define SVM_EXIT_IO_SZ8 __BIT(4)
881 #define SVM_EXIT_IO_REP __BIT(3)
882 #define SVM_EXIT_IO_STR __BIT(2)
883 #define SVM_EXIT_IO_IN __BIT(0)
884
885 static const int seg_to_nvmm[] = {
886 [0] = NVMM_X64_SEG_ES,
887 [1] = NVMM_X64_SEG_CS,
888 [2] = NVMM_X64_SEG_SS,
889 [3] = NVMM_X64_SEG_DS,
890 [4] = NVMM_X64_SEG_FS,
891 [5] = NVMM_X64_SEG_GS
892 };
893
894 static void
895 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
896 struct nvmm_exit *exit)
897 {
898 struct svm_cpudata *cpudata = vcpu->cpudata;
899 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
900 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
901
902 exit->reason = NVMM_EXIT_IO;
903
904 if (info & SVM_EXIT_IO_IN) {
905 exit->u.io.type = NVMM_EXIT_IO_IN;
906 } else {
907 exit->u.io.type = NVMM_EXIT_IO_OUT;
908 }
909
910 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
911
912 if (svm_decode_assist) {
913 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
914 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
915 } else {
916 exit->u.io.seg = -1;
917 }
918
919 if (info & SVM_EXIT_IO_A64) {
920 exit->u.io.address_size = 8;
921 } else if (info & SVM_EXIT_IO_A32) {
922 exit->u.io.address_size = 4;
923 } else if (info & SVM_EXIT_IO_A16) {
924 exit->u.io.address_size = 2;
925 }
926
927 if (info & SVM_EXIT_IO_SZ32) {
928 exit->u.io.operand_size = 4;
929 } else if (info & SVM_EXIT_IO_SZ16) {
930 exit->u.io.operand_size = 2;
931 } else if (info & SVM_EXIT_IO_SZ8) {
932 exit->u.io.operand_size = 1;
933 }
934
935 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
936 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
937 exit->u.io.npc = nextpc;
938 }
939
940 static const uint64_t msr_ignore_list[] = {
941 0xc0010055, /* MSR_CMPHALT */
942 MSR_DE_CFG,
943 MSR_IC_CFG,
944 MSR_UCODE_AMD_PATCHLEVEL
945 };
946
947 static bool
948 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
949 struct nvmm_exit *exit)
950 {
951 struct svm_cpudata *cpudata = vcpu->cpudata;
952 struct vmcb *vmcb = cpudata->vmcb;
953 uint64_t val;
954 size_t i;
955
956 switch (exit->u.msr.type) {
957 case NVMM_EXIT_MSR_RDMSR:
958 if (exit->u.msr.msr == MSR_NB_CFG) {
959 val = NB_CFG_INITAPICCPUIDLO;
960 vmcb->state.rax = (val & 0xFFFFFFFF);
961 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
962 goto handled;
963 }
964 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
965 if (msr_ignore_list[i] != exit->u.msr.msr)
966 continue;
967 val = 0;
968 vmcb->state.rax = (val & 0xFFFFFFFF);
969 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
970 goto handled;
971 }
972 break;
973 case NVMM_EXIT_MSR_WRMSR:
974 if (exit->u.msr.msr == MSR_EFER) {
975 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
976 goto error;
977 }
978 if ((vmcb->state.efer ^ exit->u.msr.val) &
979 EFER_TLB_FLUSH) {
980 cpudata->tlb_want_flush = true;
981 }
982 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
983 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
984 goto handled;
985 }
986 if (exit->u.msr.msr == MSR_TSC) {
987 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
988 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
989 curcpu()->ci_data.cpu_cc_skew;
990 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
991 goto handled;
992 }
993 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
994 if (msr_ignore_list[i] != exit->u.msr.msr)
995 continue;
996 goto handled;
997 }
998 break;
999 }
1000
1001 return false;
1002
1003 handled:
1004 svm_inkernel_advance(cpudata->vmcb);
1005 return true;
1006
1007 error:
1008 svm_inject_gp(mach, vcpu);
1009 return true;
1010 }
1011
1012 static void
1013 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1014 struct nvmm_exit *exit)
1015 {
1016 struct svm_cpudata *cpudata = vcpu->cpudata;
1017 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1018
1019 if (info == 0) {
1020 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1021 } else {
1022 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1023 }
1024
1025 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1026
1027 if (info == 1) {
1028 uint64_t rdx, rax;
1029 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1030 rax = cpudata->vmcb->state.rax;
1031 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1032 } else {
1033 exit->u.msr.val = 0;
1034 }
1035
1036 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1037 exit->reason = NVMM_EXIT_NONE;
1038 return;
1039 }
1040
1041 exit->reason = NVMM_EXIT_MSR;
1042 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1043 }
1044
1045 static void
1046 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1047 struct nvmm_exit *exit)
1048 {
1049 struct svm_cpudata *cpudata = vcpu->cpudata;
1050 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1051 int error;
1052
1053 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
1054
1055 if (error) {
1056 exit->reason = NVMM_EXIT_MEMORY;
1057 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1058 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1059 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1060 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1061 else
1062 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1063 exit->u.mem.gpa = gpa;
1064 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1065 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1066 sizeof(exit->u.mem.inst_bytes));
1067 } else {
1068 exit->reason = NVMM_EXIT_NONE;
1069 }
1070 }
1071
1072 static void
1073 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1074 {
1075 exit->u.insn.npc = vmcb->ctrl.nrip;
1076 exit->reason = reason;
1077 }
1078
1079 static void
1080 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1081 struct nvmm_exit *exit)
1082 {
1083 struct svm_cpudata *cpudata = vcpu->cpudata;
1084 struct vmcb *vmcb = cpudata->vmcb;
1085 uint64_t val;
1086
1087 exit->reason = NVMM_EXIT_NONE;
1088
1089 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1090 (vmcb->state.rax & 0xFFFFFFFF);
1091
1092 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1093 goto error;
1094 } else if (__predict_false(vmcb->state.cpl != 0)) {
1095 goto error;
1096 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1097 goto error;
1098 } else if (__predict_false((val & XCR0_X87) == 0)) {
1099 goto error;
1100 }
1101
1102 cpudata->gxcr0 = val;
1103
1104 svm_inkernel_advance(cpudata->vmcb);
1105 return;
1106
1107 error:
1108 svm_inject_gp(mach, vcpu);
1109 }
1110
1111 static void
1112 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1113 {
1114 struct svm_cpudata *cpudata = vcpu->cpudata;
1115
1116 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1117
1118 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1119 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1120
1121 if (svm_xcr0_mask != 0) {
1122 cpudata->hxcr0 = rdxcr(0);
1123 wrxcr(0, cpudata->gxcr0);
1124 }
1125 }
1126
1127 static void
1128 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1129 {
1130 struct svm_cpudata *cpudata = vcpu->cpudata;
1131
1132 if (svm_xcr0_mask != 0) {
1133 cpudata->gxcr0 = rdxcr(0);
1134 wrxcr(0, cpudata->hxcr0);
1135 }
1136
1137 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1138 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1139
1140 if (cpudata->ts_set) {
1141 stts();
1142 }
1143 }
1144
1145 static void
1146 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1147 {
1148 struct svm_cpudata *cpudata = vcpu->cpudata;
1149
1150 x86_dbregs_save(curlwp);
1151
1152 ldr7(0);
1153
1154 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1155 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1156 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1157 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1158 }
1159
1160 static void
1161 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1162 {
1163 struct svm_cpudata *cpudata = vcpu->cpudata;
1164
1165 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1166 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1167 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1168 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1169
1170 x86_dbregs_restore(curlwp);
1171 }
1172
1173 static void
1174 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1175 {
1176 struct svm_cpudata *cpudata = vcpu->cpudata;
1177
1178 cpudata->fsbase = rdmsr(MSR_FSBASE);
1179 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1180 }
1181
1182 static void
1183 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1184 {
1185 struct svm_cpudata *cpudata = vcpu->cpudata;
1186
1187 wrmsr(MSR_STAR, cpudata->star);
1188 wrmsr(MSR_LSTAR, cpudata->lstar);
1189 wrmsr(MSR_CSTAR, cpudata->cstar);
1190 wrmsr(MSR_SFMASK, cpudata->sfmask);
1191 wrmsr(MSR_FSBASE, cpudata->fsbase);
1192 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1193 }
1194
1195 static int
1196 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1197 struct nvmm_exit *exit)
1198 {
1199 struct svm_cpudata *cpudata = vcpu->cpudata;
1200 struct vmcb *vmcb = cpudata->vmcb;
1201 bool tlb_need_flush = false;
1202 int hcpu, s;
1203
1204 kpreempt_disable();
1205 hcpu = cpu_number();
1206
1207 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1208 tlb_need_flush = true;
1209 }
1210
1211 if (vcpu->hcpu_last != hcpu) {
1212 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1213 curcpu()->ci_data.cpu_cc_skew;
1214 svm_vmcb_cache_flush_all(vmcb);
1215 }
1216
1217 svm_vcpu_guest_dbregs_enter(vcpu);
1218 svm_vcpu_guest_misc_enter(vcpu);
1219
1220 while (1) {
1221 if (cpudata->tlb_want_flush || tlb_need_flush) {
1222 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1223 } else {
1224 vmcb->ctrl.tlb_ctrl = 0;
1225 }
1226
1227 s = splhigh();
1228 svm_vcpu_guest_fpu_enter(vcpu);
1229 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1230 svm_vcpu_guest_fpu_leave(vcpu);
1231 splx(s);
1232
1233 svm_vmcb_cache_default(vmcb);
1234
1235 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1236 cpudata->tlb_want_flush = false;
1237 tlb_need_flush = false;
1238 vcpu->hcpu_last = hcpu;
1239 }
1240
1241 switch (vmcb->ctrl.exitcode) {
1242 case VMCB_EXITCODE_INTR:
1243 case VMCB_EXITCODE_NMI:
1244 exit->reason = NVMM_EXIT_NONE;
1245 break;
1246 case VMCB_EXITCODE_VINTR:
1247 svm_event_waitexit_disable(vcpu, false);
1248 exit->reason = NVMM_EXIT_INT_READY;
1249 break;
1250 case VMCB_EXITCODE_IRET:
1251 svm_event_waitexit_disable(vcpu, true);
1252 exit->reason = NVMM_EXIT_NMI_READY;
1253 break;
1254 case VMCB_EXITCODE_CPUID:
1255 svm_exit_cpuid(mach, vcpu, exit);
1256 break;
1257 case VMCB_EXITCODE_HLT:
1258 svm_exit_hlt(mach, vcpu, exit);
1259 break;
1260 case VMCB_EXITCODE_IOIO:
1261 svm_exit_io(mach, vcpu, exit);
1262 break;
1263 case VMCB_EXITCODE_MSR:
1264 svm_exit_msr(mach, vcpu, exit);
1265 break;
1266 case VMCB_EXITCODE_SHUTDOWN:
1267 exit->reason = NVMM_EXIT_SHUTDOWN;
1268 break;
1269 case VMCB_EXITCODE_RDPMC:
1270 case VMCB_EXITCODE_RSM:
1271 case VMCB_EXITCODE_INVLPGA:
1272 case VMCB_EXITCODE_VMRUN:
1273 case VMCB_EXITCODE_VMMCALL:
1274 case VMCB_EXITCODE_VMLOAD:
1275 case VMCB_EXITCODE_VMSAVE:
1276 case VMCB_EXITCODE_STGI:
1277 case VMCB_EXITCODE_CLGI:
1278 case VMCB_EXITCODE_SKINIT:
1279 case VMCB_EXITCODE_RDTSCP:
1280 svm_inject_ud(mach, vcpu);
1281 exit->reason = NVMM_EXIT_NONE;
1282 break;
1283 case VMCB_EXITCODE_MONITOR:
1284 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1285 break;
1286 case VMCB_EXITCODE_MWAIT:
1287 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1288 break;
1289 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1290 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1291 break;
1292 case VMCB_EXITCODE_XSETBV:
1293 svm_exit_xsetbv(mach, vcpu, exit);
1294 break;
1295 case VMCB_EXITCODE_NPF:
1296 svm_exit_npf(mach, vcpu, exit);
1297 break;
1298 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1299 default:
1300 exit->reason = NVMM_EXIT_INVALID;
1301 break;
1302 }
1303
1304 /* If no reason to return to userland, keep rolling. */
1305 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1306 break;
1307 }
1308 if (curcpu()->ci_data.cpu_softints != 0) {
1309 break;
1310 }
1311 if (curlwp->l_flag & LW_USERRET) {
1312 break;
1313 }
1314 if (exit->reason != NVMM_EXIT_NONE) {
1315 break;
1316 }
1317 }
1318
1319 svm_vcpu_guest_misc_leave(vcpu);
1320 svm_vcpu_guest_dbregs_leave(vcpu);
1321
1322 kpreempt_enable();
1323
1324 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1325 VMCB_CTRL_V_TPR);
1326 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1327
1328 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1329 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1330 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1331 cpudata->int_window_exit;
1332 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1333 cpudata->nmi_window_exit;
1334
1335 return 0;
1336 }
1337
1338 /* -------------------------------------------------------------------------- */
1339
1340 static int
1341 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1342 {
1343 struct pglist pglist;
1344 paddr_t _pa;
1345 vaddr_t _va;
1346 size_t i;
1347 int ret;
1348
1349 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1350 &pglist, 1, 0);
1351 if (ret != 0)
1352 return ENOMEM;
1353 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1354 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1355 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1356 if (_va == 0)
1357 goto error;
1358
1359 for (i = 0; i < npages; i++) {
1360 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1361 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1362 }
1363 pmap_update(pmap_kernel());
1364
1365 memset((void *)_va, 0, npages * PAGE_SIZE);
1366
1367 *pa = _pa;
1368 *va = _va;
1369 return 0;
1370
1371 error:
1372 for (i = 0; i < npages; i++) {
1373 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1374 }
1375 return ENOMEM;
1376 }
1377
1378 static void
1379 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1380 {
1381 size_t i;
1382
1383 pmap_kremove(va, npages * PAGE_SIZE);
1384 pmap_update(pmap_kernel());
1385 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1386 for (i = 0; i < npages; i++) {
1387 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1388 }
1389 }
1390
1391 /* -------------------------------------------------------------------------- */
1392
1393 #define SVM_MSRBM_READ __BIT(0)
1394 #define SVM_MSRBM_WRITE __BIT(1)
1395
1396 static void
1397 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1398 {
1399 uint64_t byte;
1400 uint8_t bitoff;
1401
1402 if (msr < 0x00002000) {
1403 /* Range 1 */
1404 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1405 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1406 /* Range 2 */
1407 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1408 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1409 /* Range 3 */
1410 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1411 } else {
1412 panic("%s: wrong range", __func__);
1413 }
1414
1415 bitoff = (msr & 0x3) << 1;
1416
1417 if (read) {
1418 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1419 }
1420 if (write) {
1421 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1422 }
1423 }
1424
1425 static void
1426 svm_asid_alloc(struct nvmm_cpu *vcpu)
1427 {
1428 struct svm_cpudata *cpudata = vcpu->cpudata;
1429 struct vmcb *vmcb = cpudata->vmcb;
1430 size_t i, oct, bit;
1431
1432 mutex_enter(&svm_asidlock);
1433
1434 for (i = 0; i < svm_maxasid; i++) {
1435 oct = i / 8;
1436 bit = i % 8;
1437
1438 if (svm_asidmap[oct] & __BIT(bit)) {
1439 continue;
1440 }
1441
1442 svm_asidmap[oct] |= __BIT(bit);
1443 vmcb->ctrl.guest_asid = i;
1444 mutex_exit(&svm_asidlock);
1445 return;
1446 }
1447
1448 /*
1449 * No free ASID. Use the last one, which is shared and requires
1450 * special TLB handling.
1451 */
1452 cpudata->shared_asid = true;
1453 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1454 mutex_exit(&svm_asidlock);
1455 }
1456
1457 static void
1458 svm_asid_free(struct nvmm_cpu *vcpu)
1459 {
1460 struct svm_cpudata *cpudata = vcpu->cpudata;
1461 struct vmcb *vmcb = cpudata->vmcb;
1462 size_t oct, bit;
1463
1464 if (cpudata->shared_asid) {
1465 return;
1466 }
1467
1468 oct = vmcb->ctrl.guest_asid / 8;
1469 bit = vmcb->ctrl.guest_asid % 8;
1470
1471 mutex_enter(&svm_asidlock);
1472 svm_asidmap[oct] &= ~__BIT(bit);
1473 mutex_exit(&svm_asidlock);
1474 }
1475
1476 static void
1477 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1478 {
1479 struct svm_cpudata *cpudata = vcpu->cpudata;
1480 struct vmcb *vmcb = cpudata->vmcb;
1481
1482 /* Allow reads/writes of Control Registers. */
1483 vmcb->ctrl.intercept_cr = 0;
1484
1485 /* Allow reads/writes of Debug Registers. */
1486 vmcb->ctrl.intercept_dr = 0;
1487
1488 /* Allow exceptions 0 to 31. */
1489 vmcb->ctrl.intercept_vec = 0;
1490
1491 /*
1492 * Allow:
1493 * - SMI [smm interrupts]
1494 * - VINTR [virtual interrupts]
1495 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1496 * - RIDTR [reads of IDTR]
1497 * - RGDTR [reads of GDTR]
1498 * - RLDTR [reads of LDTR]
1499 * - RTR [reads of TR]
1500 * - WIDTR [writes of IDTR]
1501 * - WGDTR [writes of GDTR]
1502 * - WLDTR [writes of LDTR]
1503 * - WTR [writes of TR]
1504 * - RDTSC [rdtsc instruction]
1505 * - PUSHF [pushf instruction]
1506 * - POPF [popf instruction]
1507 * - IRET [iret instruction]
1508 * - INTN [int $n instructions]
1509 * - INVD [invd instruction]
1510 * - PAUSE [pause instruction]
1511 * - INVLPG [invplg instruction]
1512 * - TASKSW [task switches]
1513 *
1514 * Intercept the rest below.
1515 */
1516 vmcb->ctrl.intercept_misc1 =
1517 VMCB_CTRL_INTERCEPT_INTR |
1518 VMCB_CTRL_INTERCEPT_NMI |
1519 VMCB_CTRL_INTERCEPT_INIT |
1520 VMCB_CTRL_INTERCEPT_RDPMC |
1521 VMCB_CTRL_INTERCEPT_CPUID |
1522 VMCB_CTRL_INTERCEPT_RSM |
1523 VMCB_CTRL_INTERCEPT_HLT |
1524 VMCB_CTRL_INTERCEPT_INVLPGA |
1525 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1526 VMCB_CTRL_INTERCEPT_MSR_PROT |
1527 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1528 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1529
1530 /*
1531 * Allow:
1532 * - ICEBP [icebp instruction]
1533 * - WBINVD [wbinvd instruction]
1534 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1535 *
1536 * Intercept the rest below.
1537 */
1538 vmcb->ctrl.intercept_misc2 =
1539 VMCB_CTRL_INTERCEPT_VMRUN |
1540 VMCB_CTRL_INTERCEPT_VMMCALL |
1541 VMCB_CTRL_INTERCEPT_VMLOAD |
1542 VMCB_CTRL_INTERCEPT_VMSAVE |
1543 VMCB_CTRL_INTERCEPT_STGI |
1544 VMCB_CTRL_INTERCEPT_CLGI |
1545 VMCB_CTRL_INTERCEPT_SKINIT |
1546 VMCB_CTRL_INTERCEPT_RDTSCP |
1547 VMCB_CTRL_INTERCEPT_MONITOR |
1548 VMCB_CTRL_INTERCEPT_MWAIT |
1549 VMCB_CTRL_INTERCEPT_XSETBV;
1550
1551 /* Intercept all I/O accesses. */
1552 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1553 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1554
1555 /*
1556 * Allow:
1557 * - EFER [read]
1558 * - STAR [read, write]
1559 * - LSTAR [read, write]
1560 * - CSTAR [read, write]
1561 * - SFMASK [read, write]
1562 * - KERNELGSBASE [read, write]
1563 * - SYSENTER_CS [read, write]
1564 * - SYSENTER_ESP [read, write]
1565 * - SYSENTER_EIP [read, write]
1566 * - FSBASE [read, write]
1567 * - GSBASE [read, write]
1568 * - PAT [read, write]
1569 * - TSC [read]
1570 *
1571 * Intercept the rest.
1572 */
1573 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1574 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1575 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1576 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1577 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1578 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1579 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1580 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1581 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1582 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1583 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1584 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1585 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1586 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1587 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1588
1589 /* Generate ASID. */
1590 svm_asid_alloc(vcpu);
1591
1592 /* Virtual TPR. */
1593 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1594
1595 /* Enable Nested Paging. */
1596 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1597 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1598
1599 /* Must always be set. */
1600 vmcb->state.efer = EFER_SVME;
1601 cpudata->gxcr0 = XCR0_X87;
1602
1603 /* Init XSAVE header. */
1604 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1605 cpudata->gfpu.xsh_xcomp_bv = 0;
1606
1607 /* Set guest TSC to zero, more or less. */
1608 cpudata->tsc_offset = -cpu_counter();
1609
1610 /* These MSRs are static. */
1611 cpudata->star = rdmsr(MSR_STAR);
1612 cpudata->lstar = rdmsr(MSR_LSTAR);
1613 cpudata->cstar = rdmsr(MSR_CSTAR);
1614 cpudata->sfmask = rdmsr(MSR_SFMASK);
1615 }
1616
1617 static int
1618 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1619 {
1620 struct svm_cpudata *cpudata;
1621 int error;
1622
1623 /* Allocate the SVM cpudata. */
1624 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1625 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1626 UVM_KMF_WIRED|UVM_KMF_ZERO);
1627 vcpu->cpudata = cpudata;
1628
1629 /* VMCB */
1630 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1631 VMCB_NPAGES);
1632 if (error)
1633 goto error;
1634
1635 /* I/O Bitmap */
1636 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1637 IOBM_NPAGES);
1638 if (error)
1639 goto error;
1640
1641 /* MSR Bitmap */
1642 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1643 MSRBM_NPAGES);
1644 if (error)
1645 goto error;
1646
1647 /* Init the VCPU info. */
1648 svm_vcpu_init(mach, vcpu);
1649
1650 return 0;
1651
1652 error:
1653 if (cpudata->vmcb_pa) {
1654 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1655 VMCB_NPAGES);
1656 }
1657 if (cpudata->iobm_pa) {
1658 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1659 IOBM_NPAGES);
1660 }
1661 if (cpudata->msrbm_pa) {
1662 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1663 MSRBM_NPAGES);
1664 }
1665 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1666 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1667 return error;
1668 }
1669
1670 static void
1671 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1672 {
1673 struct svm_cpudata *cpudata = vcpu->cpudata;
1674
1675 svm_asid_free(vcpu);
1676
1677 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1678 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1679 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1680
1681 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1682 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1683 }
1684
1685 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1686 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1687 #define SVM_SEG_ATTRIB_P __BIT(7)
1688 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1689 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1690 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1691 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1692
1693 static void
1694 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1695 {
1696 vseg->selector = seg->selector;
1697 vseg->attrib =
1698 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1699 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1700 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1701 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1702 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1703 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1704 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1705 vseg->limit = seg->limit;
1706 vseg->base = seg->base;
1707 }
1708
1709 static void
1710 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1711 {
1712 seg->selector = vseg->selector;
1713 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1714 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1715 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1716 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1717 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1718 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1719 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1720 seg->limit = vseg->limit;
1721 seg->base = vseg->base;
1722 }
1723
1724 static inline bool
1725 svm_state_tlb_flush(struct vmcb *vmcb, struct nvmm_x64_state *state,
1726 uint64_t flags)
1727 {
1728 if (flags & NVMM_X64_STATE_CRS) {
1729 if ((vmcb->state.cr0 ^
1730 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1731 return true;
1732 }
1733 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1734 return true;
1735 }
1736 if ((vmcb->state.cr4 ^
1737 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1738 return true;
1739 }
1740 }
1741
1742 if (flags & NVMM_X64_STATE_MSRS) {
1743 if ((vmcb->state.efer ^
1744 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1745 return true;
1746 }
1747 }
1748
1749 return false;
1750 }
1751
1752 static void
1753 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1754 {
1755 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1756 struct svm_cpudata *cpudata = vcpu->cpudata;
1757 struct vmcb *vmcb = cpudata->vmcb;
1758 struct fxsave *fpustate;
1759
1760 if (svm_state_tlb_flush(vmcb, state, flags)) {
1761 cpudata->tlb_want_flush = true;
1762 }
1763
1764 if (flags & NVMM_X64_STATE_SEGS) {
1765 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1766 &vmcb->state.cs);
1767 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1768 &vmcb->state.ds);
1769 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1770 &vmcb->state.es);
1771 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1772 &vmcb->state.fs);
1773 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1774 &vmcb->state.gs);
1775 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1776 &vmcb->state.ss);
1777 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1778 &vmcb->state.gdt);
1779 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1780 &vmcb->state.idt);
1781 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1782 &vmcb->state.ldt);
1783 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1784 &vmcb->state.tr);
1785
1786 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1787 }
1788
1789 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1790 if (flags & NVMM_X64_STATE_GPRS) {
1791 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1792
1793 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1794 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1795 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1796 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1797 }
1798
1799 if (flags & NVMM_X64_STATE_CRS) {
1800 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1801 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1802 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1803 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1804
1805 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1806 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1807 VMCB_CTRL_V_TPR);
1808
1809 if (svm_xcr0_mask != 0) {
1810 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1811 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1812 cpudata->gxcr0 &= svm_xcr0_mask;
1813 cpudata->gxcr0 |= XCR0_X87;
1814 }
1815 }
1816
1817 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1818 if (flags & NVMM_X64_STATE_DRS) {
1819 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1820
1821 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1822 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1823 }
1824
1825 if (flags & NVMM_X64_STATE_MSRS) {
1826 /* Bit EFER_SVME is mandatory. */
1827 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1828
1829 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1830 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1831 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1832 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1833 vmcb->state.kernelgsbase =
1834 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1835 vmcb->state.sysenter_cs =
1836 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1837 vmcb->state.sysenter_esp =
1838 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1839 vmcb->state.sysenter_eip =
1840 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1841 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1842 }
1843
1844 if (flags & NVMM_X64_STATE_MISC) {
1845 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1846 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1847 } else {
1848 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1849 }
1850
1851 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1852 svm_event_waitexit_enable(vcpu, false);
1853 } else {
1854 svm_event_waitexit_disable(vcpu, false);
1855 }
1856
1857 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1858 svm_event_waitexit_enable(vcpu, true);
1859 } else {
1860 svm_event_waitexit_disable(vcpu, true);
1861 }
1862 }
1863
1864 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1865 if (flags & NVMM_X64_STATE_FPU) {
1866 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1867 sizeof(state->fpu));
1868
1869 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1870 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1871 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1872
1873 if (svm_xcr0_mask != 0) {
1874 /* Reset XSTATE_BV, to force a reload. */
1875 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1876 }
1877 }
1878
1879 svm_vmcb_cache_update(vmcb, flags);
1880 }
1881
1882 static void
1883 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1884 {
1885 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1886 struct svm_cpudata *cpudata = vcpu->cpudata;
1887 struct vmcb *vmcb = cpudata->vmcb;
1888
1889 if (flags & NVMM_X64_STATE_SEGS) {
1890 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1891 &vmcb->state.cs);
1892 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1893 &vmcb->state.ds);
1894 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1895 &vmcb->state.es);
1896 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1897 &vmcb->state.fs);
1898 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1899 &vmcb->state.gs);
1900 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1901 &vmcb->state.ss);
1902 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1903 &vmcb->state.gdt);
1904 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1905 &vmcb->state.idt);
1906 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1907 &vmcb->state.ldt);
1908 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1909 &vmcb->state.tr);
1910
1911 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1912 }
1913
1914 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1915 if (flags & NVMM_X64_STATE_GPRS) {
1916 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1917
1918 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1919 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1920 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1921 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1922 }
1923
1924 if (flags & NVMM_X64_STATE_CRS) {
1925 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1926 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1927 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1928 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1929 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1930 VMCB_CTRL_V_TPR);
1931 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1932 }
1933
1934 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1935 if (flags & NVMM_X64_STATE_DRS) {
1936 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1937
1938 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1939 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1940 }
1941
1942 if (flags & NVMM_X64_STATE_MSRS) {
1943 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1944 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1945 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1946 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1947 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1948 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1949 vmcb->state.kernelgsbase;
1950 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1951 vmcb->state.sysenter_cs;
1952 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1953 vmcb->state.sysenter_esp;
1954 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1955 vmcb->state.sysenter_eip;
1956 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1957
1958 /* Hide SVME. */
1959 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1960 }
1961
1962 if (flags & NVMM_X64_STATE_MISC) {
1963 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1964 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1965 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1966 cpudata->int_window_exit;
1967 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1968 cpudata->nmi_window_exit;
1969 }
1970
1971 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1972 if (flags & NVMM_X64_STATE_FPU) {
1973 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1974 sizeof(state->fpu));
1975 }
1976 }
1977
1978 /* -------------------------------------------------------------------------- */
1979
1980 static void
1981 svm_tlb_flush(struct pmap *pm)
1982 {
1983 struct nvmm_machine *mach = pm->pm_data;
1984 struct svm_cpudata *cpudata;
1985 struct nvmm_cpu *vcpu;
1986 int error;
1987 size_t i;
1988
1989 /* Request TLB flushes. */
1990 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1991 error = nvmm_vcpu_get(mach, i, &vcpu);
1992 if (error)
1993 continue;
1994 cpudata = vcpu->cpudata;
1995 cpudata->tlb_want_flush = true;
1996 nvmm_vcpu_put(vcpu);
1997 }
1998 }
1999
2000 static void
2001 svm_machine_create(struct nvmm_machine *mach)
2002 {
2003 /* Fill in pmap info. */
2004 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2005 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2006
2007 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2008 }
2009
2010 static void
2011 svm_machine_destroy(struct nvmm_machine *mach)
2012 {
2013 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2014 }
2015
2016 static int
2017 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2018 {
2019 struct nvmm_x86_conf_cpuid *cpuid = data;
2020 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2021 size_t i;
2022
2023 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2024 return EINVAL;
2025 }
2026
2027 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2028 (cpuid->set.ebx & cpuid->del.ebx) ||
2029 (cpuid->set.ecx & cpuid->del.ecx) ||
2030 (cpuid->set.edx & cpuid->del.edx))) {
2031 return EINVAL;
2032 }
2033
2034 /* If already here, replace. */
2035 for (i = 0; i < SVM_NCPUIDS; i++) {
2036 if (!machdata->cpuidpresent[i]) {
2037 continue;
2038 }
2039 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2040 memcpy(&machdata->cpuid[i], cpuid,
2041 sizeof(struct nvmm_x86_conf_cpuid));
2042 return 0;
2043 }
2044 }
2045
2046 /* Not here, insert. */
2047 for (i = 0; i < SVM_NCPUIDS; i++) {
2048 if (!machdata->cpuidpresent[i]) {
2049 machdata->cpuidpresent[i] = true;
2050 memcpy(&machdata->cpuid[i], cpuid,
2051 sizeof(struct nvmm_x86_conf_cpuid));
2052 return 0;
2053 }
2054 }
2055
2056 return ENOBUFS;
2057 }
2058
2059 /* -------------------------------------------------------------------------- */
2060
2061 static bool
2062 svm_ident(void)
2063 {
2064 u_int descs[4];
2065 uint64_t msr;
2066
2067 if (cpu_vendor != CPUVENDOR_AMD) {
2068 return false;
2069 }
2070 if (!(cpu_feature[3] & CPUID_SVM)) {
2071 return false;
2072 }
2073
2074 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2075 return false;
2076 }
2077 x86_cpuid(0x8000000a, descs);
2078
2079 /* Want Nested Paging. */
2080 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2081 return false;
2082 }
2083
2084 /* Want nRIP. */
2085 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2086 return false;
2087 }
2088
2089 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2090
2091 msr = rdmsr(MSR_VMCR);
2092 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2093 return false;
2094 }
2095
2096 return true;
2097 }
2098
2099 static void
2100 svm_init_asid(uint32_t maxasid)
2101 {
2102 size_t i, j, allocsz;
2103
2104 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2105
2106 /* Arbitrarily limit. */
2107 maxasid = uimin(maxasid, 8192);
2108
2109 svm_maxasid = maxasid;
2110 allocsz = roundup(maxasid, 8) / 8;
2111 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2112
2113 /* ASID 0 is reserved for the host. */
2114 svm_asidmap[0] |= __BIT(0);
2115
2116 /* ASID n-1 is special, we share it. */
2117 i = (maxasid - 1) / 8;
2118 j = (maxasid - 1) % 8;
2119 svm_asidmap[i] |= __BIT(j);
2120 }
2121
2122 static void
2123 svm_change_cpu(void *arg1, void *arg2)
2124 {
2125 bool enable = (bool)arg1;
2126 uint64_t msr;
2127
2128 msr = rdmsr(MSR_VMCR);
2129 if (msr & VMCR_SVMED) {
2130 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2131 }
2132
2133 if (!enable) {
2134 wrmsr(MSR_VM_HSAVE_PA, 0);
2135 }
2136
2137 msr = rdmsr(MSR_EFER);
2138 if (enable) {
2139 msr |= EFER_SVME;
2140 } else {
2141 msr &= ~EFER_SVME;
2142 }
2143 wrmsr(MSR_EFER, msr);
2144
2145 if (enable) {
2146 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2147 }
2148 }
2149
2150 static void
2151 svm_init(void)
2152 {
2153 CPU_INFO_ITERATOR cii;
2154 struct cpu_info *ci;
2155 struct vm_page *pg;
2156 u_int descs[4];
2157 uint64_t xc;
2158
2159 x86_cpuid(0x8000000a, descs);
2160
2161 /* The guest TLB flush command. */
2162 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2163 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2164 } else {
2165 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2166 }
2167
2168 /* Init the ASID. */
2169 svm_init_asid(descs[1]);
2170
2171 /* Init the XCR0 mask. */
2172 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2173
2174 memset(hsave, 0, sizeof(hsave));
2175 for (CPU_INFO_FOREACH(cii, ci)) {
2176 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2177 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2178 }
2179
2180 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2181 xc_wait(xc);
2182 }
2183
2184 static void
2185 svm_fini_asid(void)
2186 {
2187 size_t allocsz;
2188
2189 allocsz = roundup(svm_maxasid, 8) / 8;
2190 kmem_free(svm_asidmap, allocsz);
2191
2192 mutex_destroy(&svm_asidlock);
2193 }
2194
2195 static void
2196 svm_fini(void)
2197 {
2198 uint64_t xc;
2199 size_t i;
2200
2201 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2202 xc_wait(xc);
2203
2204 for (i = 0; i < MAXCPUS; i++) {
2205 if (hsave[i].pa != 0)
2206 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2207 }
2208
2209 svm_fini_asid();
2210 }
2211
2212 static void
2213 svm_capability(struct nvmm_capability *cap)
2214 {
2215 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2216 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2217 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2218 }
2219
2220 const struct nvmm_impl nvmm_x86_svm = {
2221 .ident = svm_ident,
2222 .init = svm_init,
2223 .fini = svm_fini,
2224 .capability = svm_capability,
2225 .conf_max = NVMM_X86_NCONF,
2226 .conf_sizes = svm_conf_sizes,
2227 .state_size = sizeof(struct nvmm_x64_state),
2228 .machine_create = svm_machine_create,
2229 .machine_destroy = svm_machine_destroy,
2230 .machine_configure = svm_machine_configure,
2231 .vcpu_create = svm_vcpu_create,
2232 .vcpu_destroy = svm_vcpu_destroy,
2233 .vcpu_setstate = svm_vcpu_setstate,
2234 .vcpu_getstate = svm_vcpu_getstate,
2235 .vcpu_inject = svm_vcpu_inject,
2236 .vcpu_run = svm_vcpu_run
2237 };
2238