nvmm_x86_svm.c revision 1.31 1 /* $NetBSD: nvmm_x86_svm.c,v 1.31 2019/02/23 12:27:00 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.31 2019/02/23 12:27:00 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int svm_vmrun(paddr_t, uint64_t *);
57
58 #define MSR_VM_HSAVE_PA 0xC0010117
59
60 /* -------------------------------------------------------------------------- */
61
62 #define VMCB_EXITCODE_CR0_READ 0x0000
63 #define VMCB_EXITCODE_CR1_READ 0x0001
64 #define VMCB_EXITCODE_CR2_READ 0x0002
65 #define VMCB_EXITCODE_CR3_READ 0x0003
66 #define VMCB_EXITCODE_CR4_READ 0x0004
67 #define VMCB_EXITCODE_CR5_READ 0x0005
68 #define VMCB_EXITCODE_CR6_READ 0x0006
69 #define VMCB_EXITCODE_CR7_READ 0x0007
70 #define VMCB_EXITCODE_CR8_READ 0x0008
71 #define VMCB_EXITCODE_CR9_READ 0x0009
72 #define VMCB_EXITCODE_CR10_READ 0x000A
73 #define VMCB_EXITCODE_CR11_READ 0x000B
74 #define VMCB_EXITCODE_CR12_READ 0x000C
75 #define VMCB_EXITCODE_CR13_READ 0x000D
76 #define VMCB_EXITCODE_CR14_READ 0x000E
77 #define VMCB_EXITCODE_CR15_READ 0x000F
78 #define VMCB_EXITCODE_CR0_WRITE 0x0010
79 #define VMCB_EXITCODE_CR1_WRITE 0x0011
80 #define VMCB_EXITCODE_CR2_WRITE 0x0012
81 #define VMCB_EXITCODE_CR3_WRITE 0x0013
82 #define VMCB_EXITCODE_CR4_WRITE 0x0014
83 #define VMCB_EXITCODE_CR5_WRITE 0x0015
84 #define VMCB_EXITCODE_CR6_WRITE 0x0016
85 #define VMCB_EXITCODE_CR7_WRITE 0x0017
86 #define VMCB_EXITCODE_CR8_WRITE 0x0018
87 #define VMCB_EXITCODE_CR9_WRITE 0x0019
88 #define VMCB_EXITCODE_CR10_WRITE 0x001A
89 #define VMCB_EXITCODE_CR11_WRITE 0x001B
90 #define VMCB_EXITCODE_CR12_WRITE 0x001C
91 #define VMCB_EXITCODE_CR13_WRITE 0x001D
92 #define VMCB_EXITCODE_CR14_WRITE 0x001E
93 #define VMCB_EXITCODE_CR15_WRITE 0x001F
94 #define VMCB_EXITCODE_DR0_READ 0x0020
95 #define VMCB_EXITCODE_DR1_READ 0x0021
96 #define VMCB_EXITCODE_DR2_READ 0x0022
97 #define VMCB_EXITCODE_DR3_READ 0x0023
98 #define VMCB_EXITCODE_DR4_READ 0x0024
99 #define VMCB_EXITCODE_DR5_READ 0x0025
100 #define VMCB_EXITCODE_DR6_READ 0x0026
101 #define VMCB_EXITCODE_DR7_READ 0x0027
102 #define VMCB_EXITCODE_DR8_READ 0x0028
103 #define VMCB_EXITCODE_DR9_READ 0x0029
104 #define VMCB_EXITCODE_DR10_READ 0x002A
105 #define VMCB_EXITCODE_DR11_READ 0x002B
106 #define VMCB_EXITCODE_DR12_READ 0x002C
107 #define VMCB_EXITCODE_DR13_READ 0x002D
108 #define VMCB_EXITCODE_DR14_READ 0x002E
109 #define VMCB_EXITCODE_DR15_READ 0x002F
110 #define VMCB_EXITCODE_DR0_WRITE 0x0030
111 #define VMCB_EXITCODE_DR1_WRITE 0x0031
112 #define VMCB_EXITCODE_DR2_WRITE 0x0032
113 #define VMCB_EXITCODE_DR3_WRITE 0x0033
114 #define VMCB_EXITCODE_DR4_WRITE 0x0034
115 #define VMCB_EXITCODE_DR5_WRITE 0x0035
116 #define VMCB_EXITCODE_DR6_WRITE 0x0036
117 #define VMCB_EXITCODE_DR7_WRITE 0x0037
118 #define VMCB_EXITCODE_DR8_WRITE 0x0038
119 #define VMCB_EXITCODE_DR9_WRITE 0x0039
120 #define VMCB_EXITCODE_DR10_WRITE 0x003A
121 #define VMCB_EXITCODE_DR11_WRITE 0x003B
122 #define VMCB_EXITCODE_DR12_WRITE 0x003C
123 #define VMCB_EXITCODE_DR13_WRITE 0x003D
124 #define VMCB_EXITCODE_DR14_WRITE 0x003E
125 #define VMCB_EXITCODE_DR15_WRITE 0x003F
126 #define VMCB_EXITCODE_EXCP0 0x0040
127 #define VMCB_EXITCODE_EXCP1 0x0041
128 #define VMCB_EXITCODE_EXCP2 0x0042
129 #define VMCB_EXITCODE_EXCP3 0x0043
130 #define VMCB_EXITCODE_EXCP4 0x0044
131 #define VMCB_EXITCODE_EXCP5 0x0045
132 #define VMCB_EXITCODE_EXCP6 0x0046
133 #define VMCB_EXITCODE_EXCP7 0x0047
134 #define VMCB_EXITCODE_EXCP8 0x0048
135 #define VMCB_EXITCODE_EXCP9 0x0049
136 #define VMCB_EXITCODE_EXCP10 0x004A
137 #define VMCB_EXITCODE_EXCP11 0x004B
138 #define VMCB_EXITCODE_EXCP12 0x004C
139 #define VMCB_EXITCODE_EXCP13 0x004D
140 #define VMCB_EXITCODE_EXCP14 0x004E
141 #define VMCB_EXITCODE_EXCP15 0x004F
142 #define VMCB_EXITCODE_EXCP16 0x0050
143 #define VMCB_EXITCODE_EXCP17 0x0051
144 #define VMCB_EXITCODE_EXCP18 0x0052
145 #define VMCB_EXITCODE_EXCP19 0x0053
146 #define VMCB_EXITCODE_EXCP20 0x0054
147 #define VMCB_EXITCODE_EXCP21 0x0055
148 #define VMCB_EXITCODE_EXCP22 0x0056
149 #define VMCB_EXITCODE_EXCP23 0x0057
150 #define VMCB_EXITCODE_EXCP24 0x0058
151 #define VMCB_EXITCODE_EXCP25 0x0059
152 #define VMCB_EXITCODE_EXCP26 0x005A
153 #define VMCB_EXITCODE_EXCP27 0x005B
154 #define VMCB_EXITCODE_EXCP28 0x005C
155 #define VMCB_EXITCODE_EXCP29 0x005D
156 #define VMCB_EXITCODE_EXCP30 0x005E
157 #define VMCB_EXITCODE_EXCP31 0x005F
158 #define VMCB_EXITCODE_INTR 0x0060
159 #define VMCB_EXITCODE_NMI 0x0061
160 #define VMCB_EXITCODE_SMI 0x0062
161 #define VMCB_EXITCODE_INIT 0x0063
162 #define VMCB_EXITCODE_VINTR 0x0064
163 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
164 #define VMCB_EXITCODE_IDTR_READ 0x0066
165 #define VMCB_EXITCODE_GDTR_READ 0x0067
166 #define VMCB_EXITCODE_LDTR_READ 0x0068
167 #define VMCB_EXITCODE_TR_READ 0x0069
168 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
169 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
170 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
171 #define VMCB_EXITCODE_TR_WRITE 0x006D
172 #define VMCB_EXITCODE_RDTSC 0x006E
173 #define VMCB_EXITCODE_RDPMC 0x006F
174 #define VMCB_EXITCODE_PUSHF 0x0070
175 #define VMCB_EXITCODE_POPF 0x0071
176 #define VMCB_EXITCODE_CPUID 0x0072
177 #define VMCB_EXITCODE_RSM 0x0073
178 #define VMCB_EXITCODE_IRET 0x0074
179 #define VMCB_EXITCODE_SWINT 0x0075
180 #define VMCB_EXITCODE_INVD 0x0076
181 #define VMCB_EXITCODE_PAUSE 0x0077
182 #define VMCB_EXITCODE_HLT 0x0078
183 #define VMCB_EXITCODE_INVLPG 0x0079
184 #define VMCB_EXITCODE_INVLPGA 0x007A
185 #define VMCB_EXITCODE_IOIO 0x007B
186 #define VMCB_EXITCODE_MSR 0x007C
187 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
188 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
189 #define VMCB_EXITCODE_SHUTDOWN 0x007F
190 #define VMCB_EXITCODE_VMRUN 0x0080
191 #define VMCB_EXITCODE_VMMCALL 0x0081
192 #define VMCB_EXITCODE_VMLOAD 0x0082
193 #define VMCB_EXITCODE_VMSAVE 0x0083
194 #define VMCB_EXITCODE_STGI 0x0084
195 #define VMCB_EXITCODE_CLGI 0x0085
196 #define VMCB_EXITCODE_SKINIT 0x0086
197 #define VMCB_EXITCODE_RDTSCP 0x0087
198 #define VMCB_EXITCODE_ICEBP 0x0088
199 #define VMCB_EXITCODE_WBINVD 0x0089
200 #define VMCB_EXITCODE_MONITOR 0x008A
201 #define VMCB_EXITCODE_MWAIT 0x008B
202 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
203 #define VMCB_EXITCODE_XSETBV 0x008D
204 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
205 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
206 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
207 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
208 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
209 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
210 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
211 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
212 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
213 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
214 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
215 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
216 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
217 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
218 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
219 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
220 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
221 #define VMCB_EXITCODE_NPF 0x0400
222 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
223 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
224 #define VMCB_EXITCODE_VMGEXIT 0x0403
225 #define VMCB_EXITCODE_INVALID -1
226
227 /* -------------------------------------------------------------------------- */
228
229 struct vmcb_ctrl {
230 uint32_t intercept_cr;
231 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
232 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
233
234 uint32_t intercept_dr;
235 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
236 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
237
238 uint32_t intercept_vec;
239 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
240
241 uint32_t intercept_misc1;
242 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
243 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
244 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
245 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
246 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
247 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
248 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
249 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
250 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
251 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
252 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
253 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
254 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
255 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
256 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
257 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
258 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
259 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
260 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
261 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
262 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
263 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
264 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
265 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
266 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
267 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
268 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
269 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
270 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
271 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
272 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
273 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
274
275 uint32_t intercept_misc2;
276 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
277 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
278 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
279 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
280 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
281 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
282 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
283 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
284 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
285 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
286 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
287 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
288 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
289 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
290 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
291
292 uint8_t rsvd1[40];
293 uint16_t pause_filt_thresh;
294 uint16_t pause_filt_cnt;
295 uint64_t iopm_base_pa;
296 uint64_t msrpm_base_pa;
297 uint64_t tsc_offset;
298 uint32_t guest_asid;
299
300 uint32_t tlb_ctrl;
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
304
305 uint64_t v;
306 #define VMCB_CTRL_V_TPR __BITS(7,0)
307 #define VMCB_CTRL_V_IRQ __BIT(8)
308 #define VMCB_CTRL_V_VGIF __BIT(9)
309 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
310 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
311 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
312 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
313 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
314 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
315
316 uint64_t intr;
317 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
318
319 uint64_t exitcode;
320 uint64_t exitinfo1;
321 uint64_t exitinfo2;
322
323 uint64_t exitintinfo;
324 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
325 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
326 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
327 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
328 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
329
330 uint64_t enable1;
331 #define VMCB_CTRL_ENABLE_NP __BIT(0)
332 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
333 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
334
335 uint64_t avic;
336 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
337
338 uint64_t ghcb;
339
340 uint64_t eventinj;
341 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
342 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
343 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
344 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
345 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
346
347 uint64_t n_cr3;
348
349 uint64_t enable2;
350 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
351 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
352
353 uint32_t vmcb_clean;
354 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
355 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
356 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
357 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
358 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
359 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
360 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
361 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
362 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
363 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
364 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
365 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
366
367 uint32_t rsvd2;
368 uint64_t nrip;
369 uint8_t inst_len;
370 uint8_t inst_bytes[15];
371 uint64_t avic_abpp;
372 uint64_t rsvd3;
373 uint64_t avic_ltp;
374
375 uint64_t avic_phys;
376 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
377 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
378
379 uint64_t rsvd4;
380 uint64_t vmcb_ptr;
381
382 uint8_t pad[752];
383 } __packed;
384
385 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
386
387 struct vmcb_segment {
388 uint16_t selector;
389 uint16_t attrib; /* hidden */
390 uint32_t limit; /* hidden */
391 uint64_t base; /* hidden */
392 } __packed;
393
394 CTASSERT(sizeof(struct vmcb_segment) == 16);
395
396 struct vmcb_state {
397 struct vmcb_segment es;
398 struct vmcb_segment cs;
399 struct vmcb_segment ss;
400 struct vmcb_segment ds;
401 struct vmcb_segment fs;
402 struct vmcb_segment gs;
403 struct vmcb_segment gdt;
404 struct vmcb_segment ldt;
405 struct vmcb_segment idt;
406 struct vmcb_segment tr;
407 uint8_t rsvd1[43];
408 uint8_t cpl;
409 uint8_t rsvd2[4];
410 uint64_t efer;
411 uint8_t rsvd3[112];
412 uint64_t cr4;
413 uint64_t cr3;
414 uint64_t cr0;
415 uint64_t dr7;
416 uint64_t dr6;
417 uint64_t rflags;
418 uint64_t rip;
419 uint8_t rsvd4[88];
420 uint64_t rsp;
421 uint8_t rsvd5[24];
422 uint64_t rax;
423 uint64_t star;
424 uint64_t lstar;
425 uint64_t cstar;
426 uint64_t sfmask;
427 uint64_t kernelgsbase;
428 uint64_t sysenter_cs;
429 uint64_t sysenter_esp;
430 uint64_t sysenter_eip;
431 uint64_t cr2;
432 uint8_t rsvd6[32];
433 uint64_t g_pat;
434 uint64_t dbgctl;
435 uint64_t br_from;
436 uint64_t br_to;
437 uint64_t int_from;
438 uint64_t int_to;
439 uint8_t pad[2408];
440 } __packed;
441
442 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
443
444 struct vmcb {
445 struct vmcb_ctrl ctrl;
446 struct vmcb_state state;
447 } __packed;
448
449 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
450 CTASSERT(offsetof(struct vmcb, state) == 0x400);
451
452 /* -------------------------------------------------------------------------- */
453
454 struct svm_hsave {
455 paddr_t pa;
456 };
457
458 static struct svm_hsave hsave[MAXCPUS];
459
460 static uint8_t *svm_asidmap __read_mostly;
461 static uint32_t svm_maxasid __read_mostly;
462 static kmutex_t svm_asidlock __cacheline_aligned;
463
464 static bool svm_decode_assist __read_mostly;
465 static uint32_t svm_ctrl_tlb_flush __read_mostly;
466
467 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
468 static uint64_t svm_xcr0_mask __read_mostly;
469
470 #define SVM_NCPUIDS 32
471
472 #define VMCB_NPAGES 1
473
474 #define MSRBM_NPAGES 2
475 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
476
477 #define IOBM_NPAGES 3
478 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
479
480 /* Does not include EFER_LMSLE. */
481 #define EFER_VALID \
482 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
483
484 #define EFER_TLB_FLUSH \
485 (EFER_NXE|EFER_LMA|EFER_LME)
486 #define CR0_TLB_FLUSH \
487 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
488 #define CR4_TLB_FLUSH \
489 (CR4_PGE|CR4_PAE|CR4_PSE)
490
491 /* -------------------------------------------------------------------------- */
492
493 struct svm_machdata {
494 bool cpuidpresent[SVM_NCPUIDS];
495 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
496 volatile uint64_t mach_htlb_gen;
497 };
498
499 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
500 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
501 };
502
503 struct svm_cpudata {
504 /* General */
505 bool shared_asid;
506 bool gtlb_want_flush;
507 uint64_t vcpu_htlb_gen;
508
509 /* VMCB */
510 struct vmcb *vmcb;
511 paddr_t vmcb_pa;
512
513 /* I/O bitmap */
514 uint8_t *iobm;
515 paddr_t iobm_pa;
516
517 /* MSR bitmap */
518 uint8_t *msrbm;
519 paddr_t msrbm_pa;
520
521 /* Host state */
522 uint64_t hxcr0;
523 uint64_t star;
524 uint64_t lstar;
525 uint64_t cstar;
526 uint64_t sfmask;
527 uint64_t fsbase;
528 uint64_t kernelgsbase;
529 bool ts_set;
530 struct xsave_header hfpu __aligned(64);
531
532 /* Event state */
533 bool int_window_exit;
534 bool nmi_window_exit;
535
536 /* Guest state */
537 uint64_t gxcr0;
538 uint64_t gprs[NVMM_X64_NGPR];
539 uint64_t drs[NVMM_X64_NDR];
540 uint64_t tsc_offset;
541 struct xsave_header gfpu __aligned(64);
542 };
543
544 static void
545 svm_vmcb_cache_default(struct vmcb *vmcb)
546 {
547 vmcb->ctrl.vmcb_clean =
548 VMCB_CTRL_VMCB_CLEAN_I |
549 VMCB_CTRL_VMCB_CLEAN_IOPM |
550 VMCB_CTRL_VMCB_CLEAN_ASID |
551 VMCB_CTRL_VMCB_CLEAN_TPR |
552 VMCB_CTRL_VMCB_CLEAN_NP |
553 VMCB_CTRL_VMCB_CLEAN_CR |
554 VMCB_CTRL_VMCB_CLEAN_DR |
555 VMCB_CTRL_VMCB_CLEAN_DT |
556 VMCB_CTRL_VMCB_CLEAN_SEG |
557 VMCB_CTRL_VMCB_CLEAN_CR2 |
558 VMCB_CTRL_VMCB_CLEAN_LBR |
559 VMCB_CTRL_VMCB_CLEAN_AVIC;
560 }
561
562 static void
563 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
564 {
565 if (flags & NVMM_X64_STATE_SEGS) {
566 vmcb->ctrl.vmcb_clean &=
567 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
568 }
569 if (flags & NVMM_X64_STATE_CRS) {
570 vmcb->ctrl.vmcb_clean &=
571 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
572 VMCB_CTRL_VMCB_CLEAN_TPR);
573 }
574 if (flags & NVMM_X64_STATE_DRS) {
575 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
576 }
577 if (flags & NVMM_X64_STATE_MSRS) {
578 /* CR for EFER, NP for PAT. */
579 vmcb->ctrl.vmcb_clean &=
580 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
581 }
582 }
583
584 static inline void
585 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
586 {
587 vmcb->ctrl.vmcb_clean &= ~flags;
588 }
589
590 static inline void
591 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
592 {
593 vmcb->ctrl.vmcb_clean = 0;
594 }
595
596 #define SVM_EVENT_TYPE_HW_INT 0
597 #define SVM_EVENT_TYPE_NMI 2
598 #define SVM_EVENT_TYPE_EXC 3
599 #define SVM_EVENT_TYPE_SW_INT 4
600
601 static void
602 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
603 {
604 struct svm_cpudata *cpudata = vcpu->cpudata;
605 struct vmcb *vmcb = cpudata->vmcb;
606
607 if (nmi) {
608 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
609 cpudata->nmi_window_exit = true;
610 } else {
611 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
612 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
613 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
614 cpudata->int_window_exit = true;
615 }
616
617 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
618 }
619
620 static void
621 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
622 {
623 struct svm_cpudata *cpudata = vcpu->cpudata;
624 struct vmcb *vmcb = cpudata->vmcb;
625
626 if (nmi) {
627 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
628 cpudata->nmi_window_exit = false;
629 } else {
630 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
631 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
632 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
633 cpudata->int_window_exit = false;
634 }
635
636 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
637 }
638
639 static inline int
640 svm_event_has_error(uint64_t vector)
641 {
642 switch (vector) {
643 case 8: /* #DF */
644 case 10: /* #TS */
645 case 11: /* #NP */
646 case 12: /* #SS */
647 case 13: /* #GP */
648 case 14: /* #PF */
649 case 17: /* #AC */
650 case 30: /* #SX */
651 return 1;
652 default:
653 return 0;
654 }
655 }
656
657 static int
658 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
659 struct nvmm_event *event)
660 {
661 struct svm_cpudata *cpudata = vcpu->cpudata;
662 struct vmcb *vmcb = cpudata->vmcb;
663 int type = 0, err = 0;
664
665 if (event->vector >= 256) {
666 return EINVAL;
667 }
668
669 switch (event->type) {
670 case NVMM_EVENT_INTERRUPT_HW:
671 type = SVM_EVENT_TYPE_HW_INT;
672 if (event->vector == 2) {
673 type = SVM_EVENT_TYPE_NMI;
674 }
675 if (type == SVM_EVENT_TYPE_NMI) {
676 if (cpudata->nmi_window_exit) {
677 return EAGAIN;
678 }
679 svm_event_waitexit_enable(vcpu, true);
680 } else {
681 if (((vmcb->state.rflags & PSL_I) == 0) ||
682 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
683 svm_event_waitexit_enable(vcpu, false);
684 return EAGAIN;
685 }
686 }
687 err = 0;
688 break;
689 case NVMM_EVENT_INTERRUPT_SW:
690 return EINVAL;
691 case NVMM_EVENT_EXCEPTION:
692 type = SVM_EVENT_TYPE_EXC;
693 if (event->vector == 2 || event->vector >= 32)
694 return EINVAL;
695 if (event->vector == 3 || event->vector == 0)
696 return EINVAL;
697 err = svm_event_has_error(event->vector);
698 break;
699 default:
700 return EINVAL;
701 }
702
703 vmcb->ctrl.eventinj =
704 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
705 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
706 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
707 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
708 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
709
710 return 0;
711 }
712
713 static void
714 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
715 {
716 struct nvmm_event event;
717 int ret __diagused;
718
719 event.type = NVMM_EVENT_EXCEPTION;
720 event.vector = 6;
721 event.u.error = 0;
722
723 ret = svm_vcpu_inject(mach, vcpu, &event);
724 KASSERT(ret == 0);
725 }
726
727 static void
728 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
729 {
730 struct nvmm_event event;
731 int ret __diagused;
732
733 event.type = NVMM_EVENT_EXCEPTION;
734 event.vector = 13;
735 event.u.error = 0;
736
737 ret = svm_vcpu_inject(mach, vcpu, &event);
738 KASSERT(ret == 0);
739 }
740
741 static inline void
742 svm_inkernel_advance(struct vmcb *vmcb)
743 {
744 /*
745 * Maybe we should also apply single-stepping and debug exceptions.
746 * Matters for guest-ring3, because it can execute 'cpuid' under a
747 * debugger.
748 */
749 vmcb->state.rip = vmcb->ctrl.nrip;
750 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
751 }
752
753 static void
754 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
755 {
756 struct svm_cpudata *cpudata = vcpu->cpudata;
757 uint64_t cr4;
758
759 switch (eax) {
760 case 0x00000001:
761 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
762 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
763 CPUID_LOCAL_APIC_ID);
764
765 /* CPUID2_OSXSAVE depends on CR4. */
766 cr4 = cpudata->vmcb->state.cr4;
767 if (!(cr4 & CR4_OSXSAVE)) {
768 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
769 }
770 break;
771 case 0x0000000D:
772 if (svm_xcr0_mask == 0) {
773 break;
774 }
775 switch (ecx) {
776 case 0:
777 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
778 if (cpudata->gxcr0 & XCR0_SSE) {
779 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
780 } else {
781 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
782 }
783 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
784 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
785 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
786 break;
787 case 1:
788 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
789 break;
790 }
791 break;
792 case 0x40000000:
793 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
794 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
795 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
796 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
797 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
798 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
799 break;
800 case 0x80000001:
801 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
802 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
803 break;
804 default:
805 break;
806 }
807 }
808
809 static void
810 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
811 struct nvmm_exit *exit)
812 {
813 struct svm_machdata *machdata = mach->machdata;
814 struct svm_cpudata *cpudata = vcpu->cpudata;
815 struct nvmm_x86_conf_cpuid *cpuid;
816 uint64_t eax, ecx;
817 u_int descs[4];
818 size_t i;
819
820 eax = cpudata->vmcb->state.rax;
821 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
822 x86_cpuid2(eax, ecx, descs);
823
824 cpudata->vmcb->state.rax = descs[0];
825 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
826 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
827 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
828
829 for (i = 0; i < SVM_NCPUIDS; i++) {
830 cpuid = &machdata->cpuid[i];
831 if (!machdata->cpuidpresent[i]) {
832 continue;
833 }
834 if (cpuid->leaf != eax) {
835 continue;
836 }
837
838 /* del */
839 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
840 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
841 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
842 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
843
844 /* set */
845 cpudata->vmcb->state.rax |= cpuid->set.eax;
846 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
847 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
848 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
849
850 break;
851 }
852
853 /* Overwrite non-tunable leaves. */
854 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
855
856 svm_inkernel_advance(cpudata->vmcb);
857 exit->reason = NVMM_EXIT_NONE;
858 }
859
860 static void
861 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
862 struct nvmm_exit *exit)
863 {
864 struct svm_cpudata *cpudata = vcpu->cpudata;
865 struct vmcb *vmcb = cpudata->vmcb;
866
867 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
868 svm_event_waitexit_disable(vcpu, false);
869 }
870
871 svm_inkernel_advance(cpudata->vmcb);
872 exit->reason = NVMM_EXIT_HALTED;
873 }
874
875 #define SVM_EXIT_IO_PORT __BITS(31,16)
876 #define SVM_EXIT_IO_SEG __BITS(12,10)
877 #define SVM_EXIT_IO_A64 __BIT(9)
878 #define SVM_EXIT_IO_A32 __BIT(8)
879 #define SVM_EXIT_IO_A16 __BIT(7)
880 #define SVM_EXIT_IO_SZ32 __BIT(6)
881 #define SVM_EXIT_IO_SZ16 __BIT(5)
882 #define SVM_EXIT_IO_SZ8 __BIT(4)
883 #define SVM_EXIT_IO_REP __BIT(3)
884 #define SVM_EXIT_IO_STR __BIT(2)
885 #define SVM_EXIT_IO_IN __BIT(0)
886
887 static const int seg_to_nvmm[] = {
888 [0] = NVMM_X64_SEG_ES,
889 [1] = NVMM_X64_SEG_CS,
890 [2] = NVMM_X64_SEG_SS,
891 [3] = NVMM_X64_SEG_DS,
892 [4] = NVMM_X64_SEG_FS,
893 [5] = NVMM_X64_SEG_GS
894 };
895
896 static void
897 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
898 struct nvmm_exit *exit)
899 {
900 struct svm_cpudata *cpudata = vcpu->cpudata;
901 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
902 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
903
904 exit->reason = NVMM_EXIT_IO;
905
906 if (info & SVM_EXIT_IO_IN) {
907 exit->u.io.type = NVMM_EXIT_IO_IN;
908 } else {
909 exit->u.io.type = NVMM_EXIT_IO_OUT;
910 }
911
912 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
913
914 if (svm_decode_assist) {
915 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
916 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
917 } else {
918 exit->u.io.seg = -1;
919 }
920
921 if (info & SVM_EXIT_IO_A64) {
922 exit->u.io.address_size = 8;
923 } else if (info & SVM_EXIT_IO_A32) {
924 exit->u.io.address_size = 4;
925 } else if (info & SVM_EXIT_IO_A16) {
926 exit->u.io.address_size = 2;
927 }
928
929 if (info & SVM_EXIT_IO_SZ32) {
930 exit->u.io.operand_size = 4;
931 } else if (info & SVM_EXIT_IO_SZ16) {
932 exit->u.io.operand_size = 2;
933 } else if (info & SVM_EXIT_IO_SZ8) {
934 exit->u.io.operand_size = 1;
935 }
936
937 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
938 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
939 exit->u.io.npc = nextpc;
940 }
941
942 static const uint64_t msr_ignore_list[] = {
943 0xc0010055, /* MSR_CMPHALT */
944 MSR_DE_CFG,
945 MSR_IC_CFG,
946 MSR_UCODE_AMD_PATCHLEVEL
947 };
948
949 static bool
950 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
951 struct nvmm_exit *exit)
952 {
953 struct svm_cpudata *cpudata = vcpu->cpudata;
954 struct vmcb *vmcb = cpudata->vmcb;
955 uint64_t val;
956 size_t i;
957
958 switch (exit->u.msr.type) {
959 case NVMM_EXIT_MSR_RDMSR:
960 if (exit->u.msr.msr == MSR_NB_CFG) {
961 val = NB_CFG_INITAPICCPUIDLO;
962 vmcb->state.rax = (val & 0xFFFFFFFF);
963 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
964 goto handled;
965 }
966 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
967 if (msr_ignore_list[i] != exit->u.msr.msr)
968 continue;
969 val = 0;
970 vmcb->state.rax = (val & 0xFFFFFFFF);
971 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
972 goto handled;
973 }
974 break;
975 case NVMM_EXIT_MSR_WRMSR:
976 if (exit->u.msr.msr == MSR_EFER) {
977 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
978 goto error;
979 }
980 if ((vmcb->state.efer ^ exit->u.msr.val) &
981 EFER_TLB_FLUSH) {
982 cpudata->gtlb_want_flush = true;
983 }
984 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
985 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
986 goto handled;
987 }
988 if (exit->u.msr.msr == MSR_TSC) {
989 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
990 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
991 curcpu()->ci_data.cpu_cc_skew;
992 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
993 goto handled;
994 }
995 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
996 if (msr_ignore_list[i] != exit->u.msr.msr)
997 continue;
998 goto handled;
999 }
1000 break;
1001 }
1002
1003 return false;
1004
1005 handled:
1006 svm_inkernel_advance(cpudata->vmcb);
1007 return true;
1008
1009 error:
1010 svm_inject_gp(mach, vcpu);
1011 return true;
1012 }
1013
1014 static void
1015 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1016 struct nvmm_exit *exit)
1017 {
1018 struct svm_cpudata *cpudata = vcpu->cpudata;
1019 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1020
1021 if (info == 0) {
1022 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1023 } else {
1024 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1025 }
1026
1027 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1028
1029 if (info == 1) {
1030 uint64_t rdx, rax;
1031 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1032 rax = cpudata->vmcb->state.rax;
1033 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1034 } else {
1035 exit->u.msr.val = 0;
1036 }
1037
1038 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1039 exit->reason = NVMM_EXIT_NONE;
1040 return;
1041 }
1042
1043 exit->reason = NVMM_EXIT_MSR;
1044 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1045 }
1046
1047 static void
1048 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1049 struct nvmm_exit *exit)
1050 {
1051 struct svm_cpudata *cpudata = vcpu->cpudata;
1052 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1053
1054 exit->reason = NVMM_EXIT_MEMORY;
1055 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1056 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1057 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1058 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1059 else
1060 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1061 exit->u.mem.gpa = gpa;
1062 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1063 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1064 sizeof(exit->u.mem.inst_bytes));
1065 }
1066
1067 static void
1068 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1069 {
1070 exit->u.insn.npc = vmcb->ctrl.nrip;
1071 exit->reason = reason;
1072 }
1073
1074 static void
1075 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1076 struct nvmm_exit *exit)
1077 {
1078 struct svm_cpudata *cpudata = vcpu->cpudata;
1079 struct vmcb *vmcb = cpudata->vmcb;
1080 uint64_t val;
1081
1082 exit->reason = NVMM_EXIT_NONE;
1083
1084 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1085 (vmcb->state.rax & 0xFFFFFFFF);
1086
1087 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1088 goto error;
1089 } else if (__predict_false(vmcb->state.cpl != 0)) {
1090 goto error;
1091 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1092 goto error;
1093 } else if (__predict_false((val & XCR0_X87) == 0)) {
1094 goto error;
1095 }
1096
1097 cpudata->gxcr0 = val;
1098
1099 svm_inkernel_advance(cpudata->vmcb);
1100 return;
1101
1102 error:
1103 svm_inject_gp(mach, vcpu);
1104 }
1105
1106 /* -------------------------------------------------------------------------- */
1107
1108 static void
1109 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1110 {
1111 struct svm_cpudata *cpudata = vcpu->cpudata;
1112
1113 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1114
1115 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1116 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1117
1118 if (svm_xcr0_mask != 0) {
1119 cpudata->hxcr0 = rdxcr(0);
1120 wrxcr(0, cpudata->gxcr0);
1121 }
1122 }
1123
1124 static void
1125 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1126 {
1127 struct svm_cpudata *cpudata = vcpu->cpudata;
1128
1129 if (svm_xcr0_mask != 0) {
1130 cpudata->gxcr0 = rdxcr(0);
1131 wrxcr(0, cpudata->hxcr0);
1132 }
1133
1134 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1135 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1136
1137 if (cpudata->ts_set) {
1138 stts();
1139 }
1140 }
1141
1142 static void
1143 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1144 {
1145 struct svm_cpudata *cpudata = vcpu->cpudata;
1146
1147 x86_dbregs_save(curlwp);
1148
1149 ldr7(0);
1150
1151 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1152 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1153 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1154 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1155 }
1156
1157 static void
1158 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1159 {
1160 struct svm_cpudata *cpudata = vcpu->cpudata;
1161
1162 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1163 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1164 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1165 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1166
1167 x86_dbregs_restore(curlwp);
1168 }
1169
1170 static void
1171 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1172 {
1173 struct svm_cpudata *cpudata = vcpu->cpudata;
1174
1175 cpudata->fsbase = rdmsr(MSR_FSBASE);
1176 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1177 }
1178
1179 static void
1180 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1181 {
1182 struct svm_cpudata *cpudata = vcpu->cpudata;
1183
1184 wrmsr(MSR_STAR, cpudata->star);
1185 wrmsr(MSR_LSTAR, cpudata->lstar);
1186 wrmsr(MSR_CSTAR, cpudata->cstar);
1187 wrmsr(MSR_SFMASK, cpudata->sfmask);
1188 wrmsr(MSR_FSBASE, cpudata->fsbase);
1189 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1190 }
1191
1192 /* -------------------------------------------------------------------------- */
1193
1194 static inline void
1195 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1196 {
1197 struct svm_cpudata *cpudata = vcpu->cpudata;
1198
1199 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1200 cpudata->gtlb_want_flush = true;
1201 }
1202 }
1203
1204 static inline void
1205 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1206 {
1207 /*
1208 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1209 * executing on this hCPU and the hTLB already got flushed, or it
1210 * was executing on another hCPU in which case the catchup is done
1211 * in svm_gtlb_catchup().
1212 */
1213 }
1214
1215 static inline uint64_t
1216 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1217 {
1218 struct vmcb *vmcb = cpudata->vmcb;
1219 uint64_t machgen;
1220
1221 machgen = machdata->mach_htlb_gen;
1222 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1223 return machgen;
1224 }
1225
1226 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1227 return machgen;
1228 }
1229
1230 static inline void
1231 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1232 {
1233 struct vmcb *vmcb = cpudata->vmcb;
1234
1235 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1236 cpudata->vcpu_htlb_gen = machgen;
1237 }
1238 }
1239
1240 static int
1241 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1242 struct nvmm_exit *exit)
1243 {
1244 struct svm_machdata *machdata = mach->machdata;
1245 struct svm_cpudata *cpudata = vcpu->cpudata;
1246 struct vmcb *vmcb = cpudata->vmcb;
1247 uint64_t machgen;
1248 int hcpu, s;
1249
1250 kpreempt_disable();
1251 hcpu = cpu_number();
1252
1253 svm_gtlb_catchup(vcpu, hcpu);
1254 svm_htlb_catchup(vcpu, hcpu);
1255
1256 if (vcpu->hcpu_last != hcpu) {
1257 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1258 curcpu()->ci_data.cpu_cc_skew;
1259 svm_vmcb_cache_flush_all(vmcb);
1260 }
1261
1262 svm_vcpu_guest_dbregs_enter(vcpu);
1263 svm_vcpu_guest_misc_enter(vcpu);
1264
1265 while (1) {
1266 if (cpudata->gtlb_want_flush) {
1267 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1268 } else {
1269 vmcb->ctrl.tlb_ctrl = 0;
1270 }
1271
1272 s = splhigh();
1273 machgen = svm_htlb_flush(machdata, cpudata);
1274 svm_vcpu_guest_fpu_enter(vcpu);
1275 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1276 svm_vcpu_guest_fpu_leave(vcpu);
1277 svm_htlb_flush_ack(cpudata, machgen);
1278 splx(s);
1279
1280 svm_vmcb_cache_default(vmcb);
1281
1282 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1283 cpudata->gtlb_want_flush = false;
1284 vcpu->hcpu_last = hcpu;
1285 }
1286
1287 switch (vmcb->ctrl.exitcode) {
1288 case VMCB_EXITCODE_INTR:
1289 case VMCB_EXITCODE_NMI:
1290 exit->reason = NVMM_EXIT_NONE;
1291 break;
1292 case VMCB_EXITCODE_VINTR:
1293 svm_event_waitexit_disable(vcpu, false);
1294 exit->reason = NVMM_EXIT_INT_READY;
1295 break;
1296 case VMCB_EXITCODE_IRET:
1297 svm_event_waitexit_disable(vcpu, true);
1298 exit->reason = NVMM_EXIT_NMI_READY;
1299 break;
1300 case VMCB_EXITCODE_CPUID:
1301 svm_exit_cpuid(mach, vcpu, exit);
1302 break;
1303 case VMCB_EXITCODE_HLT:
1304 svm_exit_hlt(mach, vcpu, exit);
1305 break;
1306 case VMCB_EXITCODE_IOIO:
1307 svm_exit_io(mach, vcpu, exit);
1308 break;
1309 case VMCB_EXITCODE_MSR:
1310 svm_exit_msr(mach, vcpu, exit);
1311 break;
1312 case VMCB_EXITCODE_SHUTDOWN:
1313 exit->reason = NVMM_EXIT_SHUTDOWN;
1314 break;
1315 case VMCB_EXITCODE_RDPMC:
1316 case VMCB_EXITCODE_RSM:
1317 case VMCB_EXITCODE_INVLPGA:
1318 case VMCB_EXITCODE_VMRUN:
1319 case VMCB_EXITCODE_VMMCALL:
1320 case VMCB_EXITCODE_VMLOAD:
1321 case VMCB_EXITCODE_VMSAVE:
1322 case VMCB_EXITCODE_STGI:
1323 case VMCB_EXITCODE_CLGI:
1324 case VMCB_EXITCODE_SKINIT:
1325 case VMCB_EXITCODE_RDTSCP:
1326 svm_inject_ud(mach, vcpu);
1327 exit->reason = NVMM_EXIT_NONE;
1328 break;
1329 case VMCB_EXITCODE_MONITOR:
1330 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1331 break;
1332 case VMCB_EXITCODE_MWAIT:
1333 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1334 break;
1335 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1336 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1337 break;
1338 case VMCB_EXITCODE_XSETBV:
1339 svm_exit_xsetbv(mach, vcpu, exit);
1340 break;
1341 case VMCB_EXITCODE_NPF:
1342 svm_exit_npf(mach, vcpu, exit);
1343 break;
1344 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1345 default:
1346 exit->reason = NVMM_EXIT_INVALID;
1347 break;
1348 }
1349
1350 /* If no reason to return to userland, keep rolling. */
1351 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1352 break;
1353 }
1354 if (curcpu()->ci_data.cpu_softints != 0) {
1355 break;
1356 }
1357 if (curlwp->l_flag & LW_USERRET) {
1358 break;
1359 }
1360 if (exit->reason != NVMM_EXIT_NONE) {
1361 break;
1362 }
1363 }
1364
1365 svm_vcpu_guest_misc_leave(vcpu);
1366 svm_vcpu_guest_dbregs_leave(vcpu);
1367
1368 kpreempt_enable();
1369
1370 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1371 VMCB_CTRL_V_TPR);
1372 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1373
1374 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1375 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1376 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1377 cpudata->int_window_exit;
1378 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1379 cpudata->nmi_window_exit;
1380
1381 return 0;
1382 }
1383
1384 /* -------------------------------------------------------------------------- */
1385
1386 static int
1387 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1388 {
1389 struct pglist pglist;
1390 paddr_t _pa;
1391 vaddr_t _va;
1392 size_t i;
1393 int ret;
1394
1395 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1396 &pglist, 1, 0);
1397 if (ret != 0)
1398 return ENOMEM;
1399 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1400 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1401 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1402 if (_va == 0)
1403 goto error;
1404
1405 for (i = 0; i < npages; i++) {
1406 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1407 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1408 }
1409 pmap_update(pmap_kernel());
1410
1411 memset((void *)_va, 0, npages * PAGE_SIZE);
1412
1413 *pa = _pa;
1414 *va = _va;
1415 return 0;
1416
1417 error:
1418 for (i = 0; i < npages; i++) {
1419 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1420 }
1421 return ENOMEM;
1422 }
1423
1424 static void
1425 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1426 {
1427 size_t i;
1428
1429 pmap_kremove(va, npages * PAGE_SIZE);
1430 pmap_update(pmap_kernel());
1431 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1432 for (i = 0; i < npages; i++) {
1433 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1434 }
1435 }
1436
1437 /* -------------------------------------------------------------------------- */
1438
1439 #define SVM_MSRBM_READ __BIT(0)
1440 #define SVM_MSRBM_WRITE __BIT(1)
1441
1442 static void
1443 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1444 {
1445 uint64_t byte;
1446 uint8_t bitoff;
1447
1448 if (msr < 0x00002000) {
1449 /* Range 1 */
1450 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1451 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1452 /* Range 2 */
1453 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1454 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1455 /* Range 3 */
1456 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1457 } else {
1458 panic("%s: wrong range", __func__);
1459 }
1460
1461 bitoff = (msr & 0x3) << 1;
1462
1463 if (read) {
1464 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1465 }
1466 if (write) {
1467 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1468 }
1469 }
1470
1471
1472
1473 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1474 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1475 #define SVM_SEG_ATTRIB_P __BIT(7)
1476 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1477 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1478 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1479 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1480
1481 static void
1482 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1483 struct vmcb_segment *vseg)
1484 {
1485 vseg->selector = seg->selector;
1486 vseg->attrib =
1487 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1488 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1489 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1490 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1491 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1492 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1493 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1494 vseg->limit = seg->limit;
1495 vseg->base = seg->base;
1496 }
1497
1498 static void
1499 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1500 {
1501 seg->selector = vseg->selector;
1502 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1503 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1504 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1505 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1506 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1507 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1508 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1509 seg->limit = vseg->limit;
1510 seg->base = vseg->base;
1511 }
1512
1513 static inline bool
1514 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1515 uint64_t flags)
1516 {
1517 if (flags & NVMM_X64_STATE_CRS) {
1518 if ((vmcb->state.cr0 ^
1519 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1520 return true;
1521 }
1522 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1523 return true;
1524 }
1525 if ((vmcb->state.cr4 ^
1526 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1527 return true;
1528 }
1529 }
1530
1531 if (flags & NVMM_X64_STATE_MSRS) {
1532 if ((vmcb->state.efer ^
1533 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1534 return true;
1535 }
1536 }
1537
1538 return false;
1539 }
1540
1541 static void
1542 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
1543 {
1544 const struct nvmm_x64_state *state = data;
1545 struct svm_cpudata *cpudata = vcpu->cpudata;
1546 struct vmcb *vmcb = cpudata->vmcb;
1547 struct fxsave *fpustate;
1548
1549 if (svm_state_tlb_flush(vmcb, state, flags)) {
1550 cpudata->gtlb_want_flush = true;
1551 }
1552
1553 if (flags & NVMM_X64_STATE_SEGS) {
1554 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1555 &vmcb->state.cs);
1556 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1557 &vmcb->state.ds);
1558 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1559 &vmcb->state.es);
1560 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1561 &vmcb->state.fs);
1562 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1563 &vmcb->state.gs);
1564 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1565 &vmcb->state.ss);
1566 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1567 &vmcb->state.gdt);
1568 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1569 &vmcb->state.idt);
1570 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1571 &vmcb->state.ldt);
1572 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1573 &vmcb->state.tr);
1574
1575 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1576 }
1577
1578 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1579 if (flags & NVMM_X64_STATE_GPRS) {
1580 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1581
1582 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1583 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1584 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1585 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1586 }
1587
1588 if (flags & NVMM_X64_STATE_CRS) {
1589 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1590 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1591 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1592 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1593
1594 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1595 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1596 VMCB_CTRL_V_TPR);
1597
1598 if (svm_xcr0_mask != 0) {
1599 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1600 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1601 cpudata->gxcr0 &= svm_xcr0_mask;
1602 cpudata->gxcr0 |= XCR0_X87;
1603 }
1604 }
1605
1606 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1607 if (flags & NVMM_X64_STATE_DRS) {
1608 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1609
1610 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1611 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1612 }
1613
1614 if (flags & NVMM_X64_STATE_MSRS) {
1615 /*
1616 * EFER_SVME is mandatory.
1617 */
1618 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1619 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1620 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1621 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1622 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1623 vmcb->state.kernelgsbase =
1624 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1625 vmcb->state.sysenter_cs =
1626 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1627 vmcb->state.sysenter_esp =
1628 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1629 vmcb->state.sysenter_eip =
1630 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1631 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1632 }
1633
1634 if (flags & NVMM_X64_STATE_MISC) {
1635 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1636 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1637 } else {
1638 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1639 }
1640
1641 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1642 svm_event_waitexit_enable(vcpu, false);
1643 } else {
1644 svm_event_waitexit_disable(vcpu, false);
1645 }
1646
1647 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1648 svm_event_waitexit_enable(vcpu, true);
1649 } else {
1650 svm_event_waitexit_disable(vcpu, true);
1651 }
1652 }
1653
1654 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1655 if (flags & NVMM_X64_STATE_FPU) {
1656 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1657 sizeof(state->fpu));
1658
1659 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1660 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1661 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1662
1663 if (svm_xcr0_mask != 0) {
1664 /* Reset XSTATE_BV, to force a reload. */
1665 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1666 }
1667 }
1668
1669 svm_vmcb_cache_update(vmcb, flags);
1670 }
1671
1672 static void
1673 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1674 {
1675 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1676 struct svm_cpudata *cpudata = vcpu->cpudata;
1677 struct vmcb *vmcb = cpudata->vmcb;
1678
1679 if (flags & NVMM_X64_STATE_SEGS) {
1680 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1681 &vmcb->state.cs);
1682 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1683 &vmcb->state.ds);
1684 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1685 &vmcb->state.es);
1686 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1687 &vmcb->state.fs);
1688 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1689 &vmcb->state.gs);
1690 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1691 &vmcb->state.ss);
1692 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1693 &vmcb->state.gdt);
1694 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1695 &vmcb->state.idt);
1696 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1697 &vmcb->state.ldt);
1698 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1699 &vmcb->state.tr);
1700
1701 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1702 }
1703
1704 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1705 if (flags & NVMM_X64_STATE_GPRS) {
1706 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1707
1708 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1709 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1710 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1711 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1712 }
1713
1714 if (flags & NVMM_X64_STATE_CRS) {
1715 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1716 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1717 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1718 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1719 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1720 VMCB_CTRL_V_TPR);
1721 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1722 }
1723
1724 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1725 if (flags & NVMM_X64_STATE_DRS) {
1726 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1727
1728 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1729 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1730 }
1731
1732 if (flags & NVMM_X64_STATE_MSRS) {
1733 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1734 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1735 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1736 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1737 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1738 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1739 vmcb->state.kernelgsbase;
1740 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1741 vmcb->state.sysenter_cs;
1742 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1743 vmcb->state.sysenter_esp;
1744 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1745 vmcb->state.sysenter_eip;
1746 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1747
1748 /* Hide SVME. */
1749 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1750 }
1751
1752 if (flags & NVMM_X64_STATE_MISC) {
1753 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1754 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1755 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1756 cpudata->int_window_exit;
1757 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1758 cpudata->nmi_window_exit;
1759 }
1760
1761 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1762 if (flags & NVMM_X64_STATE_FPU) {
1763 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1764 sizeof(state->fpu));
1765 }
1766 }
1767
1768 /* -------------------------------------------------------------------------- */
1769
1770 static void
1771 svm_asid_alloc(struct nvmm_cpu *vcpu)
1772 {
1773 struct svm_cpudata *cpudata = vcpu->cpudata;
1774 struct vmcb *vmcb = cpudata->vmcb;
1775 size_t i, oct, bit;
1776
1777 mutex_enter(&svm_asidlock);
1778
1779 for (i = 0; i < svm_maxasid; i++) {
1780 oct = i / 8;
1781 bit = i % 8;
1782
1783 if (svm_asidmap[oct] & __BIT(bit)) {
1784 continue;
1785 }
1786
1787 svm_asidmap[oct] |= __BIT(bit);
1788 vmcb->ctrl.guest_asid = i;
1789 mutex_exit(&svm_asidlock);
1790 return;
1791 }
1792
1793 /*
1794 * No free ASID. Use the last one, which is shared and requires
1795 * special TLB handling.
1796 */
1797 cpudata->shared_asid = true;
1798 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1799 mutex_exit(&svm_asidlock);
1800 }
1801
1802 static void
1803 svm_asid_free(struct nvmm_cpu *vcpu)
1804 {
1805 struct svm_cpudata *cpudata = vcpu->cpudata;
1806 struct vmcb *vmcb = cpudata->vmcb;
1807 size_t oct, bit;
1808
1809 if (cpudata->shared_asid) {
1810 return;
1811 }
1812
1813 oct = vmcb->ctrl.guest_asid / 8;
1814 bit = vmcb->ctrl.guest_asid % 8;
1815
1816 mutex_enter(&svm_asidlock);
1817 svm_asidmap[oct] &= ~__BIT(bit);
1818 mutex_exit(&svm_asidlock);
1819 }
1820
1821 static void
1822 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1823 {
1824 struct svm_cpudata *cpudata = vcpu->cpudata;
1825 struct vmcb *vmcb = cpudata->vmcb;
1826
1827 /* Allow reads/writes of Control Registers. */
1828 vmcb->ctrl.intercept_cr = 0;
1829
1830 /* Allow reads/writes of Debug Registers. */
1831 vmcb->ctrl.intercept_dr = 0;
1832
1833 /* Allow exceptions 0 to 31. */
1834 vmcb->ctrl.intercept_vec = 0;
1835
1836 /*
1837 * Allow:
1838 * - SMI [smm interrupts]
1839 * - VINTR [virtual interrupts]
1840 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1841 * - RIDTR [reads of IDTR]
1842 * - RGDTR [reads of GDTR]
1843 * - RLDTR [reads of LDTR]
1844 * - RTR [reads of TR]
1845 * - WIDTR [writes of IDTR]
1846 * - WGDTR [writes of GDTR]
1847 * - WLDTR [writes of LDTR]
1848 * - WTR [writes of TR]
1849 * - RDTSC [rdtsc instruction]
1850 * - PUSHF [pushf instruction]
1851 * - POPF [popf instruction]
1852 * - IRET [iret instruction]
1853 * - INTN [int $n instructions]
1854 * - INVD [invd instruction]
1855 * - PAUSE [pause instruction]
1856 * - INVLPG [invplg instruction]
1857 * - TASKSW [task switches]
1858 *
1859 * Intercept the rest below.
1860 */
1861 vmcb->ctrl.intercept_misc1 =
1862 VMCB_CTRL_INTERCEPT_INTR |
1863 VMCB_CTRL_INTERCEPT_NMI |
1864 VMCB_CTRL_INTERCEPT_INIT |
1865 VMCB_CTRL_INTERCEPT_RDPMC |
1866 VMCB_CTRL_INTERCEPT_CPUID |
1867 VMCB_CTRL_INTERCEPT_RSM |
1868 VMCB_CTRL_INTERCEPT_HLT |
1869 VMCB_CTRL_INTERCEPT_INVLPGA |
1870 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1871 VMCB_CTRL_INTERCEPT_MSR_PROT |
1872 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1873 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1874
1875 /*
1876 * Allow:
1877 * - ICEBP [icebp instruction]
1878 * - WBINVD [wbinvd instruction]
1879 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1880 *
1881 * Intercept the rest below.
1882 */
1883 vmcb->ctrl.intercept_misc2 =
1884 VMCB_CTRL_INTERCEPT_VMRUN |
1885 VMCB_CTRL_INTERCEPT_VMMCALL |
1886 VMCB_CTRL_INTERCEPT_VMLOAD |
1887 VMCB_CTRL_INTERCEPT_VMSAVE |
1888 VMCB_CTRL_INTERCEPT_STGI |
1889 VMCB_CTRL_INTERCEPT_CLGI |
1890 VMCB_CTRL_INTERCEPT_SKINIT |
1891 VMCB_CTRL_INTERCEPT_RDTSCP |
1892 VMCB_CTRL_INTERCEPT_MONITOR |
1893 VMCB_CTRL_INTERCEPT_MWAIT |
1894 VMCB_CTRL_INTERCEPT_XSETBV;
1895
1896 /* Intercept all I/O accesses. */
1897 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1898 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1899
1900 /* Allow direct access to certain MSRs. */
1901 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1902 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1903 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1904 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1905 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1906 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1907 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1908 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1909 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1910 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1911 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1912 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1913 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1914 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1915 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1916
1917 /* Generate ASID. */
1918 svm_asid_alloc(vcpu);
1919
1920 /* Virtual TPR. */
1921 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1922
1923 /* Enable Nested Paging. */
1924 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1925 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1926
1927 /* Init XSAVE header. */
1928 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1929 cpudata->gfpu.xsh_xcomp_bv = 0;
1930
1931 /* Set guest TSC to zero, more or less. */
1932 cpudata->tsc_offset = -cpu_counter();
1933
1934 /* These MSRs are static. */
1935 cpudata->star = rdmsr(MSR_STAR);
1936 cpudata->lstar = rdmsr(MSR_LSTAR);
1937 cpudata->cstar = rdmsr(MSR_CSTAR);
1938 cpudata->sfmask = rdmsr(MSR_SFMASK);
1939
1940 /* Install the RESET state. */
1941 svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
1942 }
1943
1944 static int
1945 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1946 {
1947 struct svm_cpudata *cpudata;
1948 int error;
1949
1950 /* Allocate the SVM cpudata. */
1951 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1952 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1953 UVM_KMF_WIRED|UVM_KMF_ZERO);
1954 vcpu->cpudata = cpudata;
1955
1956 /* VMCB */
1957 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1958 VMCB_NPAGES);
1959 if (error)
1960 goto error;
1961
1962 /* I/O Bitmap */
1963 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1964 IOBM_NPAGES);
1965 if (error)
1966 goto error;
1967
1968 /* MSR Bitmap */
1969 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1970 MSRBM_NPAGES);
1971 if (error)
1972 goto error;
1973
1974 /* Init the VCPU info. */
1975 svm_vcpu_init(mach, vcpu);
1976
1977 return 0;
1978
1979 error:
1980 if (cpudata->vmcb_pa) {
1981 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1982 VMCB_NPAGES);
1983 }
1984 if (cpudata->iobm_pa) {
1985 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1986 IOBM_NPAGES);
1987 }
1988 if (cpudata->msrbm_pa) {
1989 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1990 MSRBM_NPAGES);
1991 }
1992 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1993 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1994 return error;
1995 }
1996
1997 static void
1998 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1999 {
2000 struct svm_cpudata *cpudata = vcpu->cpudata;
2001
2002 svm_asid_free(vcpu);
2003
2004 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2005 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2006 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2007
2008 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2009 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2010 }
2011
2012 /* -------------------------------------------------------------------------- */
2013
2014 static void
2015 svm_tlb_flush(struct pmap *pm)
2016 {
2017 struct nvmm_machine *mach = pm->pm_data;
2018 struct svm_machdata *machdata = mach->machdata;
2019
2020 atomic_inc_64(&machdata->mach_htlb_gen);
2021
2022 /* Generates IPIs, which cause #VMEXITs. */
2023 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2024 }
2025
2026 static void
2027 svm_machine_create(struct nvmm_machine *mach)
2028 {
2029 struct svm_machdata *machdata;
2030
2031 /* Fill in pmap info. */
2032 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2033 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2034
2035 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2036 mach->machdata = machdata;
2037
2038 /* Start with an hTLB flush everywhere. */
2039 machdata->mach_htlb_gen = 1;
2040 }
2041
2042 static void
2043 svm_machine_destroy(struct nvmm_machine *mach)
2044 {
2045 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2046 }
2047
2048 static int
2049 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2050 {
2051 struct nvmm_x86_conf_cpuid *cpuid = data;
2052 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2053 size_t i;
2054
2055 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2056 return EINVAL;
2057 }
2058
2059 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2060 (cpuid->set.ebx & cpuid->del.ebx) ||
2061 (cpuid->set.ecx & cpuid->del.ecx) ||
2062 (cpuid->set.edx & cpuid->del.edx))) {
2063 return EINVAL;
2064 }
2065
2066 /* If already here, replace. */
2067 for (i = 0; i < SVM_NCPUIDS; i++) {
2068 if (!machdata->cpuidpresent[i]) {
2069 continue;
2070 }
2071 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2072 memcpy(&machdata->cpuid[i], cpuid,
2073 sizeof(struct nvmm_x86_conf_cpuid));
2074 return 0;
2075 }
2076 }
2077
2078 /* Not here, insert. */
2079 for (i = 0; i < SVM_NCPUIDS; i++) {
2080 if (!machdata->cpuidpresent[i]) {
2081 machdata->cpuidpresent[i] = true;
2082 memcpy(&machdata->cpuid[i], cpuid,
2083 sizeof(struct nvmm_x86_conf_cpuid));
2084 return 0;
2085 }
2086 }
2087
2088 return ENOBUFS;
2089 }
2090
2091 /* -------------------------------------------------------------------------- */
2092
2093 static bool
2094 svm_ident(void)
2095 {
2096 u_int descs[4];
2097 uint64_t msr;
2098
2099 if (cpu_vendor != CPUVENDOR_AMD) {
2100 return false;
2101 }
2102 if (!(cpu_feature[3] & CPUID_SVM)) {
2103 return false;
2104 }
2105
2106 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2107 return false;
2108 }
2109 x86_cpuid(0x8000000a, descs);
2110
2111 /* Want Nested Paging. */
2112 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2113 return false;
2114 }
2115
2116 /* Want nRIP. */
2117 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2118 return false;
2119 }
2120
2121 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2122
2123 msr = rdmsr(MSR_VMCR);
2124 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2125 return false;
2126 }
2127
2128 return true;
2129 }
2130
2131 static void
2132 svm_init_asid(uint32_t maxasid)
2133 {
2134 size_t i, j, allocsz;
2135
2136 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2137
2138 /* Arbitrarily limit. */
2139 maxasid = uimin(maxasid, 8192);
2140
2141 svm_maxasid = maxasid;
2142 allocsz = roundup(maxasid, 8) / 8;
2143 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2144
2145 /* ASID 0 is reserved for the host. */
2146 svm_asidmap[0] |= __BIT(0);
2147
2148 /* ASID n-1 is special, we share it. */
2149 i = (maxasid - 1) / 8;
2150 j = (maxasid - 1) % 8;
2151 svm_asidmap[i] |= __BIT(j);
2152 }
2153
2154 static void
2155 svm_change_cpu(void *arg1, void *arg2)
2156 {
2157 bool enable = (bool)arg1;
2158 uint64_t msr;
2159
2160 msr = rdmsr(MSR_VMCR);
2161 if (msr & VMCR_SVMED) {
2162 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2163 }
2164
2165 if (!enable) {
2166 wrmsr(MSR_VM_HSAVE_PA, 0);
2167 }
2168
2169 msr = rdmsr(MSR_EFER);
2170 if (enable) {
2171 msr |= EFER_SVME;
2172 } else {
2173 msr &= ~EFER_SVME;
2174 }
2175 wrmsr(MSR_EFER, msr);
2176
2177 if (enable) {
2178 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2179 }
2180 }
2181
2182 static void
2183 svm_init(void)
2184 {
2185 CPU_INFO_ITERATOR cii;
2186 struct cpu_info *ci;
2187 struct vm_page *pg;
2188 u_int descs[4];
2189 uint64_t xc;
2190
2191 x86_cpuid(0x8000000a, descs);
2192
2193 /* The guest TLB flush command. */
2194 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2195 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2196 } else {
2197 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2198 }
2199
2200 /* Init the ASID. */
2201 svm_init_asid(descs[1]);
2202
2203 /* Init the XCR0 mask. */
2204 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2205
2206 memset(hsave, 0, sizeof(hsave));
2207 for (CPU_INFO_FOREACH(cii, ci)) {
2208 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2209 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2210 }
2211
2212 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2213 xc_wait(xc);
2214 }
2215
2216 static void
2217 svm_fini_asid(void)
2218 {
2219 size_t allocsz;
2220
2221 allocsz = roundup(svm_maxasid, 8) / 8;
2222 kmem_free(svm_asidmap, allocsz);
2223
2224 mutex_destroy(&svm_asidlock);
2225 }
2226
2227 static void
2228 svm_fini(void)
2229 {
2230 uint64_t xc;
2231 size_t i;
2232
2233 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2234 xc_wait(xc);
2235
2236 for (i = 0; i < MAXCPUS; i++) {
2237 if (hsave[i].pa != 0)
2238 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2239 }
2240
2241 svm_fini_asid();
2242 }
2243
2244 static void
2245 svm_capability(struct nvmm_capability *cap)
2246 {
2247 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2248 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2249 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2250 }
2251
2252 const struct nvmm_impl nvmm_x86_svm = {
2253 .ident = svm_ident,
2254 .init = svm_init,
2255 .fini = svm_fini,
2256 .capability = svm_capability,
2257 .conf_max = NVMM_X86_NCONF,
2258 .conf_sizes = svm_conf_sizes,
2259 .state_size = sizeof(struct nvmm_x64_state),
2260 .machine_create = svm_machine_create,
2261 .machine_destroy = svm_machine_destroy,
2262 .machine_configure = svm_machine_configure,
2263 .vcpu_create = svm_vcpu_create,
2264 .vcpu_destroy = svm_vcpu_destroy,
2265 .vcpu_setstate = svm_vcpu_setstate,
2266 .vcpu_getstate = svm_vcpu_getstate,
2267 .vcpu_inject = svm_vcpu_inject,
2268 .vcpu_run = svm_vcpu_run
2269 };
2270