nvmm_x86_svm.c revision 1.32 1 /* $NetBSD: nvmm_x86_svm.c,v 1.32 2019/02/26 12:23:12 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.32 2019/02/26 12:23:12 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int svm_vmrun(paddr_t, uint64_t *);
57
58 #define MSR_VM_HSAVE_PA 0xC0010117
59
60 /* -------------------------------------------------------------------------- */
61
62 #define VMCB_EXITCODE_CR0_READ 0x0000
63 #define VMCB_EXITCODE_CR1_READ 0x0001
64 #define VMCB_EXITCODE_CR2_READ 0x0002
65 #define VMCB_EXITCODE_CR3_READ 0x0003
66 #define VMCB_EXITCODE_CR4_READ 0x0004
67 #define VMCB_EXITCODE_CR5_READ 0x0005
68 #define VMCB_EXITCODE_CR6_READ 0x0006
69 #define VMCB_EXITCODE_CR7_READ 0x0007
70 #define VMCB_EXITCODE_CR8_READ 0x0008
71 #define VMCB_EXITCODE_CR9_READ 0x0009
72 #define VMCB_EXITCODE_CR10_READ 0x000A
73 #define VMCB_EXITCODE_CR11_READ 0x000B
74 #define VMCB_EXITCODE_CR12_READ 0x000C
75 #define VMCB_EXITCODE_CR13_READ 0x000D
76 #define VMCB_EXITCODE_CR14_READ 0x000E
77 #define VMCB_EXITCODE_CR15_READ 0x000F
78 #define VMCB_EXITCODE_CR0_WRITE 0x0010
79 #define VMCB_EXITCODE_CR1_WRITE 0x0011
80 #define VMCB_EXITCODE_CR2_WRITE 0x0012
81 #define VMCB_EXITCODE_CR3_WRITE 0x0013
82 #define VMCB_EXITCODE_CR4_WRITE 0x0014
83 #define VMCB_EXITCODE_CR5_WRITE 0x0015
84 #define VMCB_EXITCODE_CR6_WRITE 0x0016
85 #define VMCB_EXITCODE_CR7_WRITE 0x0017
86 #define VMCB_EXITCODE_CR8_WRITE 0x0018
87 #define VMCB_EXITCODE_CR9_WRITE 0x0019
88 #define VMCB_EXITCODE_CR10_WRITE 0x001A
89 #define VMCB_EXITCODE_CR11_WRITE 0x001B
90 #define VMCB_EXITCODE_CR12_WRITE 0x001C
91 #define VMCB_EXITCODE_CR13_WRITE 0x001D
92 #define VMCB_EXITCODE_CR14_WRITE 0x001E
93 #define VMCB_EXITCODE_CR15_WRITE 0x001F
94 #define VMCB_EXITCODE_DR0_READ 0x0020
95 #define VMCB_EXITCODE_DR1_READ 0x0021
96 #define VMCB_EXITCODE_DR2_READ 0x0022
97 #define VMCB_EXITCODE_DR3_READ 0x0023
98 #define VMCB_EXITCODE_DR4_READ 0x0024
99 #define VMCB_EXITCODE_DR5_READ 0x0025
100 #define VMCB_EXITCODE_DR6_READ 0x0026
101 #define VMCB_EXITCODE_DR7_READ 0x0027
102 #define VMCB_EXITCODE_DR8_READ 0x0028
103 #define VMCB_EXITCODE_DR9_READ 0x0029
104 #define VMCB_EXITCODE_DR10_READ 0x002A
105 #define VMCB_EXITCODE_DR11_READ 0x002B
106 #define VMCB_EXITCODE_DR12_READ 0x002C
107 #define VMCB_EXITCODE_DR13_READ 0x002D
108 #define VMCB_EXITCODE_DR14_READ 0x002E
109 #define VMCB_EXITCODE_DR15_READ 0x002F
110 #define VMCB_EXITCODE_DR0_WRITE 0x0030
111 #define VMCB_EXITCODE_DR1_WRITE 0x0031
112 #define VMCB_EXITCODE_DR2_WRITE 0x0032
113 #define VMCB_EXITCODE_DR3_WRITE 0x0033
114 #define VMCB_EXITCODE_DR4_WRITE 0x0034
115 #define VMCB_EXITCODE_DR5_WRITE 0x0035
116 #define VMCB_EXITCODE_DR6_WRITE 0x0036
117 #define VMCB_EXITCODE_DR7_WRITE 0x0037
118 #define VMCB_EXITCODE_DR8_WRITE 0x0038
119 #define VMCB_EXITCODE_DR9_WRITE 0x0039
120 #define VMCB_EXITCODE_DR10_WRITE 0x003A
121 #define VMCB_EXITCODE_DR11_WRITE 0x003B
122 #define VMCB_EXITCODE_DR12_WRITE 0x003C
123 #define VMCB_EXITCODE_DR13_WRITE 0x003D
124 #define VMCB_EXITCODE_DR14_WRITE 0x003E
125 #define VMCB_EXITCODE_DR15_WRITE 0x003F
126 #define VMCB_EXITCODE_EXCP0 0x0040
127 #define VMCB_EXITCODE_EXCP1 0x0041
128 #define VMCB_EXITCODE_EXCP2 0x0042
129 #define VMCB_EXITCODE_EXCP3 0x0043
130 #define VMCB_EXITCODE_EXCP4 0x0044
131 #define VMCB_EXITCODE_EXCP5 0x0045
132 #define VMCB_EXITCODE_EXCP6 0x0046
133 #define VMCB_EXITCODE_EXCP7 0x0047
134 #define VMCB_EXITCODE_EXCP8 0x0048
135 #define VMCB_EXITCODE_EXCP9 0x0049
136 #define VMCB_EXITCODE_EXCP10 0x004A
137 #define VMCB_EXITCODE_EXCP11 0x004B
138 #define VMCB_EXITCODE_EXCP12 0x004C
139 #define VMCB_EXITCODE_EXCP13 0x004D
140 #define VMCB_EXITCODE_EXCP14 0x004E
141 #define VMCB_EXITCODE_EXCP15 0x004F
142 #define VMCB_EXITCODE_EXCP16 0x0050
143 #define VMCB_EXITCODE_EXCP17 0x0051
144 #define VMCB_EXITCODE_EXCP18 0x0052
145 #define VMCB_EXITCODE_EXCP19 0x0053
146 #define VMCB_EXITCODE_EXCP20 0x0054
147 #define VMCB_EXITCODE_EXCP21 0x0055
148 #define VMCB_EXITCODE_EXCP22 0x0056
149 #define VMCB_EXITCODE_EXCP23 0x0057
150 #define VMCB_EXITCODE_EXCP24 0x0058
151 #define VMCB_EXITCODE_EXCP25 0x0059
152 #define VMCB_EXITCODE_EXCP26 0x005A
153 #define VMCB_EXITCODE_EXCP27 0x005B
154 #define VMCB_EXITCODE_EXCP28 0x005C
155 #define VMCB_EXITCODE_EXCP29 0x005D
156 #define VMCB_EXITCODE_EXCP30 0x005E
157 #define VMCB_EXITCODE_EXCP31 0x005F
158 #define VMCB_EXITCODE_INTR 0x0060
159 #define VMCB_EXITCODE_NMI 0x0061
160 #define VMCB_EXITCODE_SMI 0x0062
161 #define VMCB_EXITCODE_INIT 0x0063
162 #define VMCB_EXITCODE_VINTR 0x0064
163 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
164 #define VMCB_EXITCODE_IDTR_READ 0x0066
165 #define VMCB_EXITCODE_GDTR_READ 0x0067
166 #define VMCB_EXITCODE_LDTR_READ 0x0068
167 #define VMCB_EXITCODE_TR_READ 0x0069
168 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
169 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
170 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
171 #define VMCB_EXITCODE_TR_WRITE 0x006D
172 #define VMCB_EXITCODE_RDTSC 0x006E
173 #define VMCB_EXITCODE_RDPMC 0x006F
174 #define VMCB_EXITCODE_PUSHF 0x0070
175 #define VMCB_EXITCODE_POPF 0x0071
176 #define VMCB_EXITCODE_CPUID 0x0072
177 #define VMCB_EXITCODE_RSM 0x0073
178 #define VMCB_EXITCODE_IRET 0x0074
179 #define VMCB_EXITCODE_SWINT 0x0075
180 #define VMCB_EXITCODE_INVD 0x0076
181 #define VMCB_EXITCODE_PAUSE 0x0077
182 #define VMCB_EXITCODE_HLT 0x0078
183 #define VMCB_EXITCODE_INVLPG 0x0079
184 #define VMCB_EXITCODE_INVLPGA 0x007A
185 #define VMCB_EXITCODE_IOIO 0x007B
186 #define VMCB_EXITCODE_MSR 0x007C
187 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
188 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
189 #define VMCB_EXITCODE_SHUTDOWN 0x007F
190 #define VMCB_EXITCODE_VMRUN 0x0080
191 #define VMCB_EXITCODE_VMMCALL 0x0081
192 #define VMCB_EXITCODE_VMLOAD 0x0082
193 #define VMCB_EXITCODE_VMSAVE 0x0083
194 #define VMCB_EXITCODE_STGI 0x0084
195 #define VMCB_EXITCODE_CLGI 0x0085
196 #define VMCB_EXITCODE_SKINIT 0x0086
197 #define VMCB_EXITCODE_RDTSCP 0x0087
198 #define VMCB_EXITCODE_ICEBP 0x0088
199 #define VMCB_EXITCODE_WBINVD 0x0089
200 #define VMCB_EXITCODE_MONITOR 0x008A
201 #define VMCB_EXITCODE_MWAIT 0x008B
202 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
203 #define VMCB_EXITCODE_XSETBV 0x008D
204 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
205 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
206 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
207 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
208 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
209 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
210 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
211 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
212 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
213 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
214 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
215 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
216 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
217 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
218 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
219 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
220 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
221 #define VMCB_EXITCODE_NPF 0x0400
222 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
223 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
224 #define VMCB_EXITCODE_VMGEXIT 0x0403
225 #define VMCB_EXITCODE_INVALID -1
226
227 /* -------------------------------------------------------------------------- */
228
229 struct vmcb_ctrl {
230 uint32_t intercept_cr;
231 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
232 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
233
234 uint32_t intercept_dr;
235 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
236 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
237
238 uint32_t intercept_vec;
239 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
240
241 uint32_t intercept_misc1;
242 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
243 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
244 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
245 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
246 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
247 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
248 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
249 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
250 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
251 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
252 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
253 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
254 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
255 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
256 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
257 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
258 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
259 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
260 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
261 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
262 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
263 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
264 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
265 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
266 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
267 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
268 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
269 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
270 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
271 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
272 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
273 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
274
275 uint32_t intercept_misc2;
276 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
277 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
278 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
279 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
280 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
281 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
282 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
283 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
284 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
285 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
286 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
287 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
288 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
289 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
290 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
291
292 uint8_t rsvd1[40];
293 uint16_t pause_filt_thresh;
294 uint16_t pause_filt_cnt;
295 uint64_t iopm_base_pa;
296 uint64_t msrpm_base_pa;
297 uint64_t tsc_offset;
298 uint32_t guest_asid;
299
300 uint32_t tlb_ctrl;
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
304
305 uint64_t v;
306 #define VMCB_CTRL_V_TPR __BITS(7,0)
307 #define VMCB_CTRL_V_IRQ __BIT(8)
308 #define VMCB_CTRL_V_VGIF __BIT(9)
309 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
310 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
311 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
312 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
313 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
314 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
315
316 uint64_t intr;
317 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
318
319 uint64_t exitcode;
320 uint64_t exitinfo1;
321 uint64_t exitinfo2;
322
323 uint64_t exitintinfo;
324 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
325 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
326 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
327 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
328 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
329
330 uint64_t enable1;
331 #define VMCB_CTRL_ENABLE_NP __BIT(0)
332 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
333 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
334
335 uint64_t avic;
336 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
337
338 uint64_t ghcb;
339
340 uint64_t eventinj;
341 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
342 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
343 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
344 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
345 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
346
347 uint64_t n_cr3;
348
349 uint64_t enable2;
350 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
351 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
352
353 uint32_t vmcb_clean;
354 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
355 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
356 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
357 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
358 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
359 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
360 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
361 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
362 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
363 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
364 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
365 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
366
367 uint32_t rsvd2;
368 uint64_t nrip;
369 uint8_t inst_len;
370 uint8_t inst_bytes[15];
371 uint64_t avic_abpp;
372 uint64_t rsvd3;
373 uint64_t avic_ltp;
374
375 uint64_t avic_phys;
376 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
377 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
378
379 uint64_t rsvd4;
380 uint64_t vmcb_ptr;
381
382 uint8_t pad[752];
383 } __packed;
384
385 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
386
387 struct vmcb_segment {
388 uint16_t selector;
389 uint16_t attrib; /* hidden */
390 uint32_t limit; /* hidden */
391 uint64_t base; /* hidden */
392 } __packed;
393
394 CTASSERT(sizeof(struct vmcb_segment) == 16);
395
396 struct vmcb_state {
397 struct vmcb_segment es;
398 struct vmcb_segment cs;
399 struct vmcb_segment ss;
400 struct vmcb_segment ds;
401 struct vmcb_segment fs;
402 struct vmcb_segment gs;
403 struct vmcb_segment gdt;
404 struct vmcb_segment ldt;
405 struct vmcb_segment idt;
406 struct vmcb_segment tr;
407 uint8_t rsvd1[43];
408 uint8_t cpl;
409 uint8_t rsvd2[4];
410 uint64_t efer;
411 uint8_t rsvd3[112];
412 uint64_t cr4;
413 uint64_t cr3;
414 uint64_t cr0;
415 uint64_t dr7;
416 uint64_t dr6;
417 uint64_t rflags;
418 uint64_t rip;
419 uint8_t rsvd4[88];
420 uint64_t rsp;
421 uint8_t rsvd5[24];
422 uint64_t rax;
423 uint64_t star;
424 uint64_t lstar;
425 uint64_t cstar;
426 uint64_t sfmask;
427 uint64_t kernelgsbase;
428 uint64_t sysenter_cs;
429 uint64_t sysenter_esp;
430 uint64_t sysenter_eip;
431 uint64_t cr2;
432 uint8_t rsvd6[32];
433 uint64_t g_pat;
434 uint64_t dbgctl;
435 uint64_t br_from;
436 uint64_t br_to;
437 uint64_t int_from;
438 uint64_t int_to;
439 uint8_t pad[2408];
440 } __packed;
441
442 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
443
444 struct vmcb {
445 struct vmcb_ctrl ctrl;
446 struct vmcb_state state;
447 } __packed;
448
449 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
450 CTASSERT(offsetof(struct vmcb, state) == 0x400);
451
452 /* -------------------------------------------------------------------------- */
453
454 struct svm_hsave {
455 paddr_t pa;
456 };
457
458 static struct svm_hsave hsave[MAXCPUS];
459
460 static uint8_t *svm_asidmap __read_mostly;
461 static uint32_t svm_maxasid __read_mostly;
462 static kmutex_t svm_asidlock __cacheline_aligned;
463
464 static bool svm_decode_assist __read_mostly;
465 static uint32_t svm_ctrl_tlb_flush __read_mostly;
466
467 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
468 static uint64_t svm_xcr0_mask __read_mostly;
469
470 #define SVM_NCPUIDS 32
471
472 #define VMCB_NPAGES 1
473
474 #define MSRBM_NPAGES 2
475 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
476
477 #define IOBM_NPAGES 3
478 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
479
480 /* Does not include EFER_LMSLE. */
481 #define EFER_VALID \
482 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
483
484 #define EFER_TLB_FLUSH \
485 (EFER_NXE|EFER_LMA|EFER_LME)
486 #define CR0_TLB_FLUSH \
487 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
488 #define CR4_TLB_FLUSH \
489 (CR4_PGE|CR4_PAE|CR4_PSE)
490
491 /* -------------------------------------------------------------------------- */
492
493 struct svm_machdata {
494 bool cpuidpresent[SVM_NCPUIDS];
495 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
496 volatile uint64_t mach_htlb_gen;
497 };
498
499 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
500 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
501 };
502
503 struct svm_cpudata {
504 /* General */
505 bool shared_asid;
506 bool gtlb_want_flush;
507 uint64_t vcpu_htlb_gen;
508
509 /* VMCB */
510 struct vmcb *vmcb;
511 paddr_t vmcb_pa;
512
513 /* I/O bitmap */
514 uint8_t *iobm;
515 paddr_t iobm_pa;
516
517 /* MSR bitmap */
518 uint8_t *msrbm;
519 paddr_t msrbm_pa;
520
521 /* Host state */
522 uint64_t hxcr0;
523 uint64_t star;
524 uint64_t lstar;
525 uint64_t cstar;
526 uint64_t sfmask;
527 uint64_t fsbase;
528 uint64_t kernelgsbase;
529 bool ts_set;
530 struct xsave_header hfpu __aligned(64);
531
532 /* Event state */
533 bool int_window_exit;
534 bool nmi_window_exit;
535
536 /* Guest state */
537 uint64_t gxcr0;
538 uint64_t gprs[NVMM_X64_NGPR];
539 uint64_t drs[NVMM_X64_NDR];
540 uint64_t tsc_offset;
541 struct xsave_header gfpu __aligned(64);
542 };
543
544 static void
545 svm_vmcb_cache_default(struct vmcb *vmcb)
546 {
547 vmcb->ctrl.vmcb_clean =
548 VMCB_CTRL_VMCB_CLEAN_I |
549 VMCB_CTRL_VMCB_CLEAN_IOPM |
550 VMCB_CTRL_VMCB_CLEAN_ASID |
551 VMCB_CTRL_VMCB_CLEAN_TPR |
552 VMCB_CTRL_VMCB_CLEAN_NP |
553 VMCB_CTRL_VMCB_CLEAN_CR |
554 VMCB_CTRL_VMCB_CLEAN_DR |
555 VMCB_CTRL_VMCB_CLEAN_DT |
556 VMCB_CTRL_VMCB_CLEAN_SEG |
557 VMCB_CTRL_VMCB_CLEAN_CR2 |
558 VMCB_CTRL_VMCB_CLEAN_LBR |
559 VMCB_CTRL_VMCB_CLEAN_AVIC;
560 }
561
562 static void
563 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
564 {
565 if (flags & NVMM_X64_STATE_SEGS) {
566 vmcb->ctrl.vmcb_clean &=
567 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
568 }
569 if (flags & NVMM_X64_STATE_CRS) {
570 vmcb->ctrl.vmcb_clean &=
571 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
572 VMCB_CTRL_VMCB_CLEAN_TPR);
573 }
574 if (flags & NVMM_X64_STATE_DRS) {
575 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
576 }
577 if (flags & NVMM_X64_STATE_MSRS) {
578 /* CR for EFER, NP for PAT. */
579 vmcb->ctrl.vmcb_clean &=
580 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
581 }
582 }
583
584 static inline void
585 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
586 {
587 vmcb->ctrl.vmcb_clean &= ~flags;
588 }
589
590 static inline void
591 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
592 {
593 vmcb->ctrl.vmcb_clean = 0;
594 }
595
596 #define SVM_EVENT_TYPE_HW_INT 0
597 #define SVM_EVENT_TYPE_NMI 2
598 #define SVM_EVENT_TYPE_EXC 3
599 #define SVM_EVENT_TYPE_SW_INT 4
600
601 static void
602 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
603 {
604 struct svm_cpudata *cpudata = vcpu->cpudata;
605 struct vmcb *vmcb = cpudata->vmcb;
606
607 if (nmi) {
608 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
609 cpudata->nmi_window_exit = true;
610 } else {
611 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
612 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
613 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
614 cpudata->int_window_exit = true;
615 }
616
617 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
618 }
619
620 static void
621 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
622 {
623 struct svm_cpudata *cpudata = vcpu->cpudata;
624 struct vmcb *vmcb = cpudata->vmcb;
625
626 if (nmi) {
627 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
628 cpudata->nmi_window_exit = false;
629 } else {
630 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
631 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
632 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
633 cpudata->int_window_exit = false;
634 }
635
636 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
637 }
638
639 static inline int
640 svm_event_has_error(uint64_t vector)
641 {
642 switch (vector) {
643 case 8: /* #DF */
644 case 10: /* #TS */
645 case 11: /* #NP */
646 case 12: /* #SS */
647 case 13: /* #GP */
648 case 14: /* #PF */
649 case 17: /* #AC */
650 case 30: /* #SX */
651 return 1;
652 default:
653 return 0;
654 }
655 }
656
657 static int
658 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
659 struct nvmm_event *event)
660 {
661 struct svm_cpudata *cpudata = vcpu->cpudata;
662 struct vmcb *vmcb = cpudata->vmcb;
663 int type = 0, err = 0;
664
665 if (event->vector >= 256) {
666 return EINVAL;
667 }
668
669 switch (event->type) {
670 case NVMM_EVENT_INTERRUPT_HW:
671 type = SVM_EVENT_TYPE_HW_INT;
672 if (event->vector == 2) {
673 type = SVM_EVENT_TYPE_NMI;
674 }
675 if (type == SVM_EVENT_TYPE_NMI) {
676 if (cpudata->nmi_window_exit) {
677 return EAGAIN;
678 }
679 svm_event_waitexit_enable(vcpu, true);
680 } else {
681 if (((vmcb->state.rflags & PSL_I) == 0) ||
682 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
683 svm_event_waitexit_enable(vcpu, false);
684 return EAGAIN;
685 }
686 }
687 err = 0;
688 break;
689 case NVMM_EVENT_INTERRUPT_SW:
690 return EINVAL;
691 case NVMM_EVENT_EXCEPTION:
692 type = SVM_EVENT_TYPE_EXC;
693 if (event->vector == 2 || event->vector >= 32)
694 return EINVAL;
695 if (event->vector == 3 || event->vector == 0)
696 return EINVAL;
697 err = svm_event_has_error(event->vector);
698 break;
699 default:
700 return EINVAL;
701 }
702
703 vmcb->ctrl.eventinj =
704 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
705 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
706 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
707 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
708 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
709
710 return 0;
711 }
712
713 static void
714 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
715 {
716 struct nvmm_event event;
717 int ret __diagused;
718
719 event.type = NVMM_EVENT_EXCEPTION;
720 event.vector = 6;
721 event.u.error = 0;
722
723 ret = svm_vcpu_inject(mach, vcpu, &event);
724 KASSERT(ret == 0);
725 }
726
727 static void
728 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
729 {
730 struct nvmm_event event;
731 int ret __diagused;
732
733 event.type = NVMM_EVENT_EXCEPTION;
734 event.vector = 13;
735 event.u.error = 0;
736
737 ret = svm_vcpu_inject(mach, vcpu, &event);
738 KASSERT(ret == 0);
739 }
740
741 static inline void
742 svm_inkernel_advance(struct vmcb *vmcb)
743 {
744 /*
745 * Maybe we should also apply single-stepping and debug exceptions.
746 * Matters for guest-ring3, because it can execute 'cpuid' under a
747 * debugger.
748 */
749 vmcb->state.rip = vmcb->ctrl.nrip;
750 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
751 }
752
753 static void
754 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
755 {
756 struct svm_cpudata *cpudata = vcpu->cpudata;
757 uint64_t cr4;
758
759 switch (eax) {
760 case 0x00000001:
761 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
762 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
763 CPUID_LOCAL_APIC_ID);
764
765 /* CPUID2_OSXSAVE depends on CR4. */
766 cr4 = cpudata->vmcb->state.cr4;
767 if (!(cr4 & CR4_OSXSAVE)) {
768 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
769 }
770 break;
771 case 0x0000000D:
772 if (svm_xcr0_mask == 0) {
773 break;
774 }
775 switch (ecx) {
776 case 0:
777 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
778 if (cpudata->gxcr0 & XCR0_SSE) {
779 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
780 } else {
781 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
782 }
783 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
784 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
785 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
786 break;
787 case 1:
788 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
789 break;
790 }
791 break;
792 case 0x40000000:
793 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
794 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
795 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
796 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
797 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
798 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
799 break;
800 case 0x80000001:
801 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID_SVM;
802 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
803 break;
804 default:
805 break;
806 }
807 }
808
809 static void
810 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
811 struct nvmm_exit *exit)
812 {
813 struct svm_machdata *machdata = mach->machdata;
814 struct svm_cpudata *cpudata = vcpu->cpudata;
815 struct nvmm_x86_conf_cpuid *cpuid;
816 uint64_t eax, ecx;
817 u_int descs[4];
818 size_t i;
819
820 eax = cpudata->vmcb->state.rax;
821 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
822 x86_cpuid2(eax, ecx, descs);
823
824 cpudata->vmcb->state.rax = descs[0];
825 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
826 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
827 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
828
829 for (i = 0; i < SVM_NCPUIDS; i++) {
830 cpuid = &machdata->cpuid[i];
831 if (!machdata->cpuidpresent[i]) {
832 continue;
833 }
834 if (cpuid->leaf != eax) {
835 continue;
836 }
837
838 /* del */
839 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
840 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
841 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
842 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
843
844 /* set */
845 cpudata->vmcb->state.rax |= cpuid->set.eax;
846 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
847 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
848 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
849
850 break;
851 }
852
853 /* Overwrite non-tunable leaves. */
854 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
855
856 svm_inkernel_advance(cpudata->vmcb);
857 exit->reason = NVMM_EXIT_NONE;
858 }
859
860 static void
861 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
862 struct nvmm_exit *exit)
863 {
864 struct svm_cpudata *cpudata = vcpu->cpudata;
865 struct vmcb *vmcb = cpudata->vmcb;
866
867 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
868 svm_event_waitexit_disable(vcpu, false);
869 }
870
871 svm_inkernel_advance(cpudata->vmcb);
872 exit->reason = NVMM_EXIT_HALTED;
873 }
874
875 #define SVM_EXIT_IO_PORT __BITS(31,16)
876 #define SVM_EXIT_IO_SEG __BITS(12,10)
877 #define SVM_EXIT_IO_A64 __BIT(9)
878 #define SVM_EXIT_IO_A32 __BIT(8)
879 #define SVM_EXIT_IO_A16 __BIT(7)
880 #define SVM_EXIT_IO_SZ32 __BIT(6)
881 #define SVM_EXIT_IO_SZ16 __BIT(5)
882 #define SVM_EXIT_IO_SZ8 __BIT(4)
883 #define SVM_EXIT_IO_REP __BIT(3)
884 #define SVM_EXIT_IO_STR __BIT(2)
885 #define SVM_EXIT_IO_IN __BIT(0)
886
887 static void
888 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
889 struct nvmm_exit *exit)
890 {
891 struct svm_cpudata *cpudata = vcpu->cpudata;
892 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
893 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
894
895 exit->reason = NVMM_EXIT_IO;
896
897 if (info & SVM_EXIT_IO_IN) {
898 exit->u.io.type = NVMM_EXIT_IO_IN;
899 } else {
900 exit->u.io.type = NVMM_EXIT_IO_OUT;
901 }
902
903 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
904
905 if (svm_decode_assist) {
906 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
907 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
908 } else {
909 exit->u.io.seg = -1;
910 }
911
912 if (info & SVM_EXIT_IO_A64) {
913 exit->u.io.address_size = 8;
914 } else if (info & SVM_EXIT_IO_A32) {
915 exit->u.io.address_size = 4;
916 } else if (info & SVM_EXIT_IO_A16) {
917 exit->u.io.address_size = 2;
918 }
919
920 if (info & SVM_EXIT_IO_SZ32) {
921 exit->u.io.operand_size = 4;
922 } else if (info & SVM_EXIT_IO_SZ16) {
923 exit->u.io.operand_size = 2;
924 } else if (info & SVM_EXIT_IO_SZ8) {
925 exit->u.io.operand_size = 1;
926 }
927
928 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
929 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
930 exit->u.io.npc = nextpc;
931 }
932
933 static const uint64_t msr_ignore_list[] = {
934 0xc0010055, /* MSR_CMPHALT */
935 MSR_DE_CFG,
936 MSR_IC_CFG,
937 MSR_UCODE_AMD_PATCHLEVEL
938 };
939
940 static bool
941 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
942 struct nvmm_exit *exit)
943 {
944 struct svm_cpudata *cpudata = vcpu->cpudata;
945 struct vmcb *vmcb = cpudata->vmcb;
946 uint64_t val;
947 size_t i;
948
949 switch (exit->u.msr.type) {
950 case NVMM_EXIT_MSR_RDMSR:
951 if (exit->u.msr.msr == MSR_NB_CFG) {
952 val = NB_CFG_INITAPICCPUIDLO;
953 vmcb->state.rax = (val & 0xFFFFFFFF);
954 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
955 goto handled;
956 }
957 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
958 if (msr_ignore_list[i] != exit->u.msr.msr)
959 continue;
960 val = 0;
961 vmcb->state.rax = (val & 0xFFFFFFFF);
962 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
963 goto handled;
964 }
965 break;
966 case NVMM_EXIT_MSR_WRMSR:
967 if (exit->u.msr.msr == MSR_EFER) {
968 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
969 goto error;
970 }
971 if ((vmcb->state.efer ^ exit->u.msr.val) &
972 EFER_TLB_FLUSH) {
973 cpudata->gtlb_want_flush = true;
974 }
975 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
976 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
977 goto handled;
978 }
979 if (exit->u.msr.msr == MSR_TSC) {
980 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
981 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
982 curcpu()->ci_data.cpu_cc_skew;
983 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
984 goto handled;
985 }
986 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
987 if (msr_ignore_list[i] != exit->u.msr.msr)
988 continue;
989 goto handled;
990 }
991 break;
992 }
993
994 return false;
995
996 handled:
997 svm_inkernel_advance(cpudata->vmcb);
998 return true;
999
1000 error:
1001 svm_inject_gp(mach, vcpu);
1002 return true;
1003 }
1004
1005 static void
1006 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1007 struct nvmm_exit *exit)
1008 {
1009 struct svm_cpudata *cpudata = vcpu->cpudata;
1010 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1011
1012 if (info == 0) {
1013 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1014 } else {
1015 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1016 }
1017
1018 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1019
1020 if (info == 1) {
1021 uint64_t rdx, rax;
1022 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1023 rax = cpudata->vmcb->state.rax;
1024 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1025 } else {
1026 exit->u.msr.val = 0;
1027 }
1028
1029 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1030 exit->reason = NVMM_EXIT_NONE;
1031 return;
1032 }
1033
1034 exit->reason = NVMM_EXIT_MSR;
1035 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1036 }
1037
1038 static void
1039 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1040 struct nvmm_exit *exit)
1041 {
1042 struct svm_cpudata *cpudata = vcpu->cpudata;
1043 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1044
1045 exit->reason = NVMM_EXIT_MEMORY;
1046 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1047 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1048 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1049 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1050 else
1051 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1052 exit->u.mem.gpa = gpa;
1053 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1054 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1055 sizeof(exit->u.mem.inst_bytes));
1056 }
1057
1058 static void
1059 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1060 {
1061 exit->u.insn.npc = vmcb->ctrl.nrip;
1062 exit->reason = reason;
1063 }
1064
1065 static void
1066 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1067 struct nvmm_exit *exit)
1068 {
1069 struct svm_cpudata *cpudata = vcpu->cpudata;
1070 struct vmcb *vmcb = cpudata->vmcb;
1071 uint64_t val;
1072
1073 exit->reason = NVMM_EXIT_NONE;
1074
1075 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1076 (vmcb->state.rax & 0xFFFFFFFF);
1077
1078 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1079 goto error;
1080 } else if (__predict_false(vmcb->state.cpl != 0)) {
1081 goto error;
1082 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1083 goto error;
1084 } else if (__predict_false((val & XCR0_X87) == 0)) {
1085 goto error;
1086 }
1087
1088 cpudata->gxcr0 = val;
1089
1090 svm_inkernel_advance(cpudata->vmcb);
1091 return;
1092
1093 error:
1094 svm_inject_gp(mach, vcpu);
1095 }
1096
1097 /* -------------------------------------------------------------------------- */
1098
1099 static void
1100 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1101 {
1102 struct svm_cpudata *cpudata = vcpu->cpudata;
1103
1104 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1105
1106 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1107 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1108
1109 if (svm_xcr0_mask != 0) {
1110 cpudata->hxcr0 = rdxcr(0);
1111 wrxcr(0, cpudata->gxcr0);
1112 }
1113 }
1114
1115 static void
1116 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1117 {
1118 struct svm_cpudata *cpudata = vcpu->cpudata;
1119
1120 if (svm_xcr0_mask != 0) {
1121 cpudata->gxcr0 = rdxcr(0);
1122 wrxcr(0, cpudata->hxcr0);
1123 }
1124
1125 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1126 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1127
1128 if (cpudata->ts_set) {
1129 stts();
1130 }
1131 }
1132
1133 static void
1134 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1135 {
1136 struct svm_cpudata *cpudata = vcpu->cpudata;
1137
1138 x86_dbregs_save(curlwp);
1139
1140 ldr7(0);
1141
1142 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1143 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1144 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1145 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1146 }
1147
1148 static void
1149 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1150 {
1151 struct svm_cpudata *cpudata = vcpu->cpudata;
1152
1153 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1154 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1155 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1156 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1157
1158 x86_dbregs_restore(curlwp);
1159 }
1160
1161 static void
1162 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1163 {
1164 struct svm_cpudata *cpudata = vcpu->cpudata;
1165
1166 cpudata->fsbase = rdmsr(MSR_FSBASE);
1167 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1168 }
1169
1170 static void
1171 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1172 {
1173 struct svm_cpudata *cpudata = vcpu->cpudata;
1174
1175 wrmsr(MSR_STAR, cpudata->star);
1176 wrmsr(MSR_LSTAR, cpudata->lstar);
1177 wrmsr(MSR_CSTAR, cpudata->cstar);
1178 wrmsr(MSR_SFMASK, cpudata->sfmask);
1179 wrmsr(MSR_FSBASE, cpudata->fsbase);
1180 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1181 }
1182
1183 /* -------------------------------------------------------------------------- */
1184
1185 static inline void
1186 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1187 {
1188 struct svm_cpudata *cpudata = vcpu->cpudata;
1189
1190 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1191 cpudata->gtlb_want_flush = true;
1192 }
1193 }
1194
1195 static inline void
1196 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1197 {
1198 /*
1199 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1200 * executing on this hCPU and the hTLB already got flushed, or it
1201 * was executing on another hCPU in which case the catchup is done
1202 * in svm_gtlb_catchup().
1203 */
1204 }
1205
1206 static inline uint64_t
1207 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1208 {
1209 struct vmcb *vmcb = cpudata->vmcb;
1210 uint64_t machgen;
1211
1212 machgen = machdata->mach_htlb_gen;
1213 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1214 return machgen;
1215 }
1216
1217 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1218 return machgen;
1219 }
1220
1221 static inline void
1222 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1223 {
1224 struct vmcb *vmcb = cpudata->vmcb;
1225
1226 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1227 cpudata->vcpu_htlb_gen = machgen;
1228 }
1229 }
1230
1231 static int
1232 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1233 struct nvmm_exit *exit)
1234 {
1235 struct svm_machdata *machdata = mach->machdata;
1236 struct svm_cpudata *cpudata = vcpu->cpudata;
1237 struct vmcb *vmcb = cpudata->vmcb;
1238 uint64_t machgen;
1239 int hcpu, s;
1240
1241 kpreempt_disable();
1242 hcpu = cpu_number();
1243
1244 svm_gtlb_catchup(vcpu, hcpu);
1245 svm_htlb_catchup(vcpu, hcpu);
1246
1247 if (vcpu->hcpu_last != hcpu) {
1248 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1249 curcpu()->ci_data.cpu_cc_skew;
1250 svm_vmcb_cache_flush_all(vmcb);
1251 }
1252
1253 svm_vcpu_guest_dbregs_enter(vcpu);
1254 svm_vcpu_guest_misc_enter(vcpu);
1255
1256 while (1) {
1257 if (cpudata->gtlb_want_flush) {
1258 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1259 } else {
1260 vmcb->ctrl.tlb_ctrl = 0;
1261 }
1262
1263 s = splhigh();
1264 machgen = svm_htlb_flush(machdata, cpudata);
1265 svm_vcpu_guest_fpu_enter(vcpu);
1266 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1267 svm_vcpu_guest_fpu_leave(vcpu);
1268 svm_htlb_flush_ack(cpudata, machgen);
1269 splx(s);
1270
1271 svm_vmcb_cache_default(vmcb);
1272
1273 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1274 cpudata->gtlb_want_flush = false;
1275 vcpu->hcpu_last = hcpu;
1276 }
1277
1278 switch (vmcb->ctrl.exitcode) {
1279 case VMCB_EXITCODE_INTR:
1280 case VMCB_EXITCODE_NMI:
1281 exit->reason = NVMM_EXIT_NONE;
1282 break;
1283 case VMCB_EXITCODE_VINTR:
1284 svm_event_waitexit_disable(vcpu, false);
1285 exit->reason = NVMM_EXIT_INT_READY;
1286 break;
1287 case VMCB_EXITCODE_IRET:
1288 svm_event_waitexit_disable(vcpu, true);
1289 exit->reason = NVMM_EXIT_NMI_READY;
1290 break;
1291 case VMCB_EXITCODE_CPUID:
1292 svm_exit_cpuid(mach, vcpu, exit);
1293 break;
1294 case VMCB_EXITCODE_HLT:
1295 svm_exit_hlt(mach, vcpu, exit);
1296 break;
1297 case VMCB_EXITCODE_IOIO:
1298 svm_exit_io(mach, vcpu, exit);
1299 break;
1300 case VMCB_EXITCODE_MSR:
1301 svm_exit_msr(mach, vcpu, exit);
1302 break;
1303 case VMCB_EXITCODE_SHUTDOWN:
1304 exit->reason = NVMM_EXIT_SHUTDOWN;
1305 break;
1306 case VMCB_EXITCODE_RDPMC:
1307 case VMCB_EXITCODE_RSM:
1308 case VMCB_EXITCODE_INVLPGA:
1309 case VMCB_EXITCODE_VMRUN:
1310 case VMCB_EXITCODE_VMMCALL:
1311 case VMCB_EXITCODE_VMLOAD:
1312 case VMCB_EXITCODE_VMSAVE:
1313 case VMCB_EXITCODE_STGI:
1314 case VMCB_EXITCODE_CLGI:
1315 case VMCB_EXITCODE_SKINIT:
1316 case VMCB_EXITCODE_RDTSCP:
1317 svm_inject_ud(mach, vcpu);
1318 exit->reason = NVMM_EXIT_NONE;
1319 break;
1320 case VMCB_EXITCODE_MONITOR:
1321 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1322 break;
1323 case VMCB_EXITCODE_MWAIT:
1324 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1325 break;
1326 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1327 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1328 break;
1329 case VMCB_EXITCODE_XSETBV:
1330 svm_exit_xsetbv(mach, vcpu, exit);
1331 break;
1332 case VMCB_EXITCODE_NPF:
1333 svm_exit_npf(mach, vcpu, exit);
1334 break;
1335 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1336 default:
1337 exit->reason = NVMM_EXIT_INVALID;
1338 break;
1339 }
1340
1341 /* If no reason to return to userland, keep rolling. */
1342 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1343 break;
1344 }
1345 if (curcpu()->ci_data.cpu_softints != 0) {
1346 break;
1347 }
1348 if (curlwp->l_flag & LW_USERRET) {
1349 break;
1350 }
1351 if (exit->reason != NVMM_EXIT_NONE) {
1352 break;
1353 }
1354 }
1355
1356 svm_vcpu_guest_misc_leave(vcpu);
1357 svm_vcpu_guest_dbregs_leave(vcpu);
1358
1359 kpreempt_enable();
1360
1361 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1362 VMCB_CTRL_V_TPR);
1363 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1364
1365 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1366 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1367 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1368 cpudata->int_window_exit;
1369 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1370 cpudata->nmi_window_exit;
1371
1372 return 0;
1373 }
1374
1375 /* -------------------------------------------------------------------------- */
1376
1377 static int
1378 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1379 {
1380 struct pglist pglist;
1381 paddr_t _pa;
1382 vaddr_t _va;
1383 size_t i;
1384 int ret;
1385
1386 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1387 &pglist, 1, 0);
1388 if (ret != 0)
1389 return ENOMEM;
1390 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1391 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1392 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1393 if (_va == 0)
1394 goto error;
1395
1396 for (i = 0; i < npages; i++) {
1397 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1398 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1399 }
1400 pmap_update(pmap_kernel());
1401
1402 memset((void *)_va, 0, npages * PAGE_SIZE);
1403
1404 *pa = _pa;
1405 *va = _va;
1406 return 0;
1407
1408 error:
1409 for (i = 0; i < npages; i++) {
1410 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1411 }
1412 return ENOMEM;
1413 }
1414
1415 static void
1416 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1417 {
1418 size_t i;
1419
1420 pmap_kremove(va, npages * PAGE_SIZE);
1421 pmap_update(pmap_kernel());
1422 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1423 for (i = 0; i < npages; i++) {
1424 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1425 }
1426 }
1427
1428 /* -------------------------------------------------------------------------- */
1429
1430 #define SVM_MSRBM_READ __BIT(0)
1431 #define SVM_MSRBM_WRITE __BIT(1)
1432
1433 static void
1434 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1435 {
1436 uint64_t byte;
1437 uint8_t bitoff;
1438
1439 if (msr < 0x00002000) {
1440 /* Range 1 */
1441 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1442 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1443 /* Range 2 */
1444 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1445 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1446 /* Range 3 */
1447 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1448 } else {
1449 panic("%s: wrong range", __func__);
1450 }
1451
1452 bitoff = (msr & 0x3) << 1;
1453
1454 if (read) {
1455 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1456 }
1457 if (write) {
1458 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1459 }
1460 }
1461
1462 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1463 #define SVM_SEG_ATTRIB_S __BIT(4)
1464 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1465 #define SVM_SEG_ATTRIB_P __BIT(7)
1466 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1467 #define SVM_SEG_ATTRIB_L __BIT(9)
1468 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1469 #define SVM_SEG_ATTRIB_G __BIT(11)
1470
1471 static void
1472 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1473 struct vmcb_segment *vseg)
1474 {
1475 vseg->selector = seg->selector;
1476 vseg->attrib =
1477 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1478 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1479 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1480 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1481 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1482 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1483 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1484 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1485 vseg->limit = seg->limit;
1486 vseg->base = seg->base;
1487 }
1488
1489 static void
1490 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1491 {
1492 seg->selector = vseg->selector;
1493 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1494 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1495 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1496 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1497 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1498 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1499 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1500 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1501 seg->limit = vseg->limit;
1502 seg->base = vseg->base;
1503 }
1504
1505 static inline bool
1506 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1507 uint64_t flags)
1508 {
1509 if (flags & NVMM_X64_STATE_CRS) {
1510 if ((vmcb->state.cr0 ^
1511 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1512 return true;
1513 }
1514 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1515 return true;
1516 }
1517 if ((vmcb->state.cr4 ^
1518 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1519 return true;
1520 }
1521 }
1522
1523 if (flags & NVMM_X64_STATE_MSRS) {
1524 if ((vmcb->state.efer ^
1525 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1526 return true;
1527 }
1528 }
1529
1530 return false;
1531 }
1532
1533 static void
1534 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
1535 {
1536 const struct nvmm_x64_state *state = data;
1537 struct svm_cpudata *cpudata = vcpu->cpudata;
1538 struct vmcb *vmcb = cpudata->vmcb;
1539 struct fxsave *fpustate;
1540
1541 if (svm_state_tlb_flush(vmcb, state, flags)) {
1542 cpudata->gtlb_want_flush = true;
1543 }
1544
1545 if (flags & NVMM_X64_STATE_SEGS) {
1546 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1547 &vmcb->state.cs);
1548 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1549 &vmcb->state.ds);
1550 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1551 &vmcb->state.es);
1552 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1553 &vmcb->state.fs);
1554 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1555 &vmcb->state.gs);
1556 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1557 &vmcb->state.ss);
1558 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1559 &vmcb->state.gdt);
1560 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1561 &vmcb->state.idt);
1562 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1563 &vmcb->state.ldt);
1564 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1565 &vmcb->state.tr);
1566
1567 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1568 }
1569
1570 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1571 if (flags & NVMM_X64_STATE_GPRS) {
1572 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1573
1574 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1575 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1576 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1577 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1578 }
1579
1580 if (flags & NVMM_X64_STATE_CRS) {
1581 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1582 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1583 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1584 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1585
1586 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1587 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1588 VMCB_CTRL_V_TPR);
1589
1590 if (svm_xcr0_mask != 0) {
1591 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1592 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1593 cpudata->gxcr0 &= svm_xcr0_mask;
1594 cpudata->gxcr0 |= XCR0_X87;
1595 }
1596 }
1597
1598 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1599 if (flags & NVMM_X64_STATE_DRS) {
1600 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1601
1602 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1603 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1604 }
1605
1606 if (flags & NVMM_X64_STATE_MSRS) {
1607 /*
1608 * EFER_SVME is mandatory.
1609 */
1610 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1611 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1612 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1613 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1614 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1615 vmcb->state.kernelgsbase =
1616 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1617 vmcb->state.sysenter_cs =
1618 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1619 vmcb->state.sysenter_esp =
1620 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1621 vmcb->state.sysenter_eip =
1622 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1623 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1624 }
1625
1626 if (flags & NVMM_X64_STATE_MISC) {
1627 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1628 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1629 } else {
1630 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1631 }
1632
1633 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1634 svm_event_waitexit_enable(vcpu, false);
1635 } else {
1636 svm_event_waitexit_disable(vcpu, false);
1637 }
1638
1639 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1640 svm_event_waitexit_enable(vcpu, true);
1641 } else {
1642 svm_event_waitexit_disable(vcpu, true);
1643 }
1644 }
1645
1646 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1647 if (flags & NVMM_X64_STATE_FPU) {
1648 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1649 sizeof(state->fpu));
1650
1651 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1652 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1653 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1654
1655 if (svm_xcr0_mask != 0) {
1656 /* Reset XSTATE_BV, to force a reload. */
1657 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1658 }
1659 }
1660
1661 svm_vmcb_cache_update(vmcb, flags);
1662 }
1663
1664 static void
1665 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1666 {
1667 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1668 struct svm_cpudata *cpudata = vcpu->cpudata;
1669 struct vmcb *vmcb = cpudata->vmcb;
1670
1671 if (flags & NVMM_X64_STATE_SEGS) {
1672 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1673 &vmcb->state.cs);
1674 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1675 &vmcb->state.ds);
1676 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1677 &vmcb->state.es);
1678 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1679 &vmcb->state.fs);
1680 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1681 &vmcb->state.gs);
1682 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1683 &vmcb->state.ss);
1684 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1685 &vmcb->state.gdt);
1686 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1687 &vmcb->state.idt);
1688 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1689 &vmcb->state.ldt);
1690 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1691 &vmcb->state.tr);
1692
1693 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1694 }
1695
1696 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1697 if (flags & NVMM_X64_STATE_GPRS) {
1698 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1699
1700 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1701 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1702 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1703 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1704 }
1705
1706 if (flags & NVMM_X64_STATE_CRS) {
1707 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1708 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1709 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1710 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1711 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1712 VMCB_CTRL_V_TPR);
1713 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1714 }
1715
1716 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1717 if (flags & NVMM_X64_STATE_DRS) {
1718 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1719
1720 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1721 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1722 }
1723
1724 if (flags & NVMM_X64_STATE_MSRS) {
1725 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1726 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1727 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1728 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1729 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1730 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1731 vmcb->state.kernelgsbase;
1732 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1733 vmcb->state.sysenter_cs;
1734 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1735 vmcb->state.sysenter_esp;
1736 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1737 vmcb->state.sysenter_eip;
1738 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1739
1740 /* Hide SVME. */
1741 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1742 }
1743
1744 if (flags & NVMM_X64_STATE_MISC) {
1745 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1746 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1747 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1748 cpudata->int_window_exit;
1749 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1750 cpudata->nmi_window_exit;
1751 }
1752
1753 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1754 if (flags & NVMM_X64_STATE_FPU) {
1755 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1756 sizeof(state->fpu));
1757 }
1758 }
1759
1760 /* -------------------------------------------------------------------------- */
1761
1762 static void
1763 svm_asid_alloc(struct nvmm_cpu *vcpu)
1764 {
1765 struct svm_cpudata *cpudata = vcpu->cpudata;
1766 struct vmcb *vmcb = cpudata->vmcb;
1767 size_t i, oct, bit;
1768
1769 mutex_enter(&svm_asidlock);
1770
1771 for (i = 0; i < svm_maxasid; i++) {
1772 oct = i / 8;
1773 bit = i % 8;
1774
1775 if (svm_asidmap[oct] & __BIT(bit)) {
1776 continue;
1777 }
1778
1779 svm_asidmap[oct] |= __BIT(bit);
1780 vmcb->ctrl.guest_asid = i;
1781 mutex_exit(&svm_asidlock);
1782 return;
1783 }
1784
1785 /*
1786 * No free ASID. Use the last one, which is shared and requires
1787 * special TLB handling.
1788 */
1789 cpudata->shared_asid = true;
1790 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1791 mutex_exit(&svm_asidlock);
1792 }
1793
1794 static void
1795 svm_asid_free(struct nvmm_cpu *vcpu)
1796 {
1797 struct svm_cpudata *cpudata = vcpu->cpudata;
1798 struct vmcb *vmcb = cpudata->vmcb;
1799 size_t oct, bit;
1800
1801 if (cpudata->shared_asid) {
1802 return;
1803 }
1804
1805 oct = vmcb->ctrl.guest_asid / 8;
1806 bit = vmcb->ctrl.guest_asid % 8;
1807
1808 mutex_enter(&svm_asidlock);
1809 svm_asidmap[oct] &= ~__BIT(bit);
1810 mutex_exit(&svm_asidlock);
1811 }
1812
1813 static void
1814 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1815 {
1816 struct svm_cpudata *cpudata = vcpu->cpudata;
1817 struct vmcb *vmcb = cpudata->vmcb;
1818
1819 /* Allow reads/writes of Control Registers. */
1820 vmcb->ctrl.intercept_cr = 0;
1821
1822 /* Allow reads/writes of Debug Registers. */
1823 vmcb->ctrl.intercept_dr = 0;
1824
1825 /* Allow exceptions 0 to 31. */
1826 vmcb->ctrl.intercept_vec = 0;
1827
1828 /*
1829 * Allow:
1830 * - SMI [smm interrupts]
1831 * - VINTR [virtual interrupts]
1832 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1833 * - RIDTR [reads of IDTR]
1834 * - RGDTR [reads of GDTR]
1835 * - RLDTR [reads of LDTR]
1836 * - RTR [reads of TR]
1837 * - WIDTR [writes of IDTR]
1838 * - WGDTR [writes of GDTR]
1839 * - WLDTR [writes of LDTR]
1840 * - WTR [writes of TR]
1841 * - RDTSC [rdtsc instruction]
1842 * - PUSHF [pushf instruction]
1843 * - POPF [popf instruction]
1844 * - IRET [iret instruction]
1845 * - INTN [int $n instructions]
1846 * - INVD [invd instruction]
1847 * - PAUSE [pause instruction]
1848 * - INVLPG [invplg instruction]
1849 * - TASKSW [task switches]
1850 *
1851 * Intercept the rest below.
1852 */
1853 vmcb->ctrl.intercept_misc1 =
1854 VMCB_CTRL_INTERCEPT_INTR |
1855 VMCB_CTRL_INTERCEPT_NMI |
1856 VMCB_CTRL_INTERCEPT_INIT |
1857 VMCB_CTRL_INTERCEPT_RDPMC |
1858 VMCB_CTRL_INTERCEPT_CPUID |
1859 VMCB_CTRL_INTERCEPT_RSM |
1860 VMCB_CTRL_INTERCEPT_HLT |
1861 VMCB_CTRL_INTERCEPT_INVLPGA |
1862 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1863 VMCB_CTRL_INTERCEPT_MSR_PROT |
1864 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1865 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1866
1867 /*
1868 * Allow:
1869 * - ICEBP [icebp instruction]
1870 * - WBINVD [wbinvd instruction]
1871 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1872 *
1873 * Intercept the rest below.
1874 */
1875 vmcb->ctrl.intercept_misc2 =
1876 VMCB_CTRL_INTERCEPT_VMRUN |
1877 VMCB_CTRL_INTERCEPT_VMMCALL |
1878 VMCB_CTRL_INTERCEPT_VMLOAD |
1879 VMCB_CTRL_INTERCEPT_VMSAVE |
1880 VMCB_CTRL_INTERCEPT_STGI |
1881 VMCB_CTRL_INTERCEPT_CLGI |
1882 VMCB_CTRL_INTERCEPT_SKINIT |
1883 VMCB_CTRL_INTERCEPT_RDTSCP |
1884 VMCB_CTRL_INTERCEPT_MONITOR |
1885 VMCB_CTRL_INTERCEPT_MWAIT |
1886 VMCB_CTRL_INTERCEPT_XSETBV;
1887
1888 /* Intercept all I/O accesses. */
1889 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1890 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1891
1892 /* Allow direct access to certain MSRs. */
1893 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1894 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1895 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1896 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1897 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1898 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1899 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1900 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1901 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1902 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1903 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1904 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1905 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1906 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1907 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1908
1909 /* Generate ASID. */
1910 svm_asid_alloc(vcpu);
1911
1912 /* Virtual TPR. */
1913 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1914
1915 /* Enable Nested Paging. */
1916 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1917 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1918
1919 /* Init XSAVE header. */
1920 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1921 cpudata->gfpu.xsh_xcomp_bv = 0;
1922
1923 /* Set guest TSC to zero, more or less. */
1924 cpudata->tsc_offset = -cpu_counter();
1925
1926 /* These MSRs are static. */
1927 cpudata->star = rdmsr(MSR_STAR);
1928 cpudata->lstar = rdmsr(MSR_LSTAR);
1929 cpudata->cstar = rdmsr(MSR_CSTAR);
1930 cpudata->sfmask = rdmsr(MSR_SFMASK);
1931
1932 /* Install the RESET state. */
1933 svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
1934 }
1935
1936 static int
1937 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1938 {
1939 struct svm_cpudata *cpudata;
1940 int error;
1941
1942 /* Allocate the SVM cpudata. */
1943 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1944 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1945 UVM_KMF_WIRED|UVM_KMF_ZERO);
1946 vcpu->cpudata = cpudata;
1947
1948 /* VMCB */
1949 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1950 VMCB_NPAGES);
1951 if (error)
1952 goto error;
1953
1954 /* I/O Bitmap */
1955 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1956 IOBM_NPAGES);
1957 if (error)
1958 goto error;
1959
1960 /* MSR Bitmap */
1961 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1962 MSRBM_NPAGES);
1963 if (error)
1964 goto error;
1965
1966 /* Init the VCPU info. */
1967 svm_vcpu_init(mach, vcpu);
1968
1969 return 0;
1970
1971 error:
1972 if (cpudata->vmcb_pa) {
1973 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1974 VMCB_NPAGES);
1975 }
1976 if (cpudata->iobm_pa) {
1977 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1978 IOBM_NPAGES);
1979 }
1980 if (cpudata->msrbm_pa) {
1981 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1982 MSRBM_NPAGES);
1983 }
1984 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1985 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1986 return error;
1987 }
1988
1989 static void
1990 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1991 {
1992 struct svm_cpudata *cpudata = vcpu->cpudata;
1993
1994 svm_asid_free(vcpu);
1995
1996 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1997 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1998 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1999
2000 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2001 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2002 }
2003
2004 /* -------------------------------------------------------------------------- */
2005
2006 static void
2007 svm_tlb_flush(struct pmap *pm)
2008 {
2009 struct nvmm_machine *mach = pm->pm_data;
2010 struct svm_machdata *machdata = mach->machdata;
2011
2012 atomic_inc_64(&machdata->mach_htlb_gen);
2013
2014 /* Generates IPIs, which cause #VMEXITs. */
2015 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2016 }
2017
2018 static void
2019 svm_machine_create(struct nvmm_machine *mach)
2020 {
2021 struct svm_machdata *machdata;
2022
2023 /* Fill in pmap info. */
2024 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2025 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2026
2027 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2028 mach->machdata = machdata;
2029
2030 /* Start with an hTLB flush everywhere. */
2031 machdata->mach_htlb_gen = 1;
2032 }
2033
2034 static void
2035 svm_machine_destroy(struct nvmm_machine *mach)
2036 {
2037 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2038 }
2039
2040 static int
2041 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2042 {
2043 struct nvmm_x86_conf_cpuid *cpuid = data;
2044 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2045 size_t i;
2046
2047 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2048 return EINVAL;
2049 }
2050
2051 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2052 (cpuid->set.ebx & cpuid->del.ebx) ||
2053 (cpuid->set.ecx & cpuid->del.ecx) ||
2054 (cpuid->set.edx & cpuid->del.edx))) {
2055 return EINVAL;
2056 }
2057
2058 /* If already here, replace. */
2059 for (i = 0; i < SVM_NCPUIDS; i++) {
2060 if (!machdata->cpuidpresent[i]) {
2061 continue;
2062 }
2063 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2064 memcpy(&machdata->cpuid[i], cpuid,
2065 sizeof(struct nvmm_x86_conf_cpuid));
2066 return 0;
2067 }
2068 }
2069
2070 /* Not here, insert. */
2071 for (i = 0; i < SVM_NCPUIDS; i++) {
2072 if (!machdata->cpuidpresent[i]) {
2073 machdata->cpuidpresent[i] = true;
2074 memcpy(&machdata->cpuid[i], cpuid,
2075 sizeof(struct nvmm_x86_conf_cpuid));
2076 return 0;
2077 }
2078 }
2079
2080 return ENOBUFS;
2081 }
2082
2083 /* -------------------------------------------------------------------------- */
2084
2085 static bool
2086 svm_ident(void)
2087 {
2088 u_int descs[4];
2089 uint64_t msr;
2090
2091 if (cpu_vendor != CPUVENDOR_AMD) {
2092 return false;
2093 }
2094 if (!(cpu_feature[3] & CPUID_SVM)) {
2095 return false;
2096 }
2097
2098 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2099 return false;
2100 }
2101 x86_cpuid(0x8000000a, descs);
2102
2103 /* Want Nested Paging. */
2104 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2105 return false;
2106 }
2107
2108 /* Want nRIP. */
2109 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2110 return false;
2111 }
2112
2113 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2114
2115 msr = rdmsr(MSR_VMCR);
2116 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2117 return false;
2118 }
2119
2120 return true;
2121 }
2122
2123 static void
2124 svm_init_asid(uint32_t maxasid)
2125 {
2126 size_t i, j, allocsz;
2127
2128 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2129
2130 /* Arbitrarily limit. */
2131 maxasid = uimin(maxasid, 8192);
2132
2133 svm_maxasid = maxasid;
2134 allocsz = roundup(maxasid, 8) / 8;
2135 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2136
2137 /* ASID 0 is reserved for the host. */
2138 svm_asidmap[0] |= __BIT(0);
2139
2140 /* ASID n-1 is special, we share it. */
2141 i = (maxasid - 1) / 8;
2142 j = (maxasid - 1) % 8;
2143 svm_asidmap[i] |= __BIT(j);
2144 }
2145
2146 static void
2147 svm_change_cpu(void *arg1, void *arg2)
2148 {
2149 bool enable = (bool)arg1;
2150 uint64_t msr;
2151
2152 msr = rdmsr(MSR_VMCR);
2153 if (msr & VMCR_SVMED) {
2154 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2155 }
2156
2157 if (!enable) {
2158 wrmsr(MSR_VM_HSAVE_PA, 0);
2159 }
2160
2161 msr = rdmsr(MSR_EFER);
2162 if (enable) {
2163 msr |= EFER_SVME;
2164 } else {
2165 msr &= ~EFER_SVME;
2166 }
2167 wrmsr(MSR_EFER, msr);
2168
2169 if (enable) {
2170 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2171 }
2172 }
2173
2174 static void
2175 svm_init(void)
2176 {
2177 CPU_INFO_ITERATOR cii;
2178 struct cpu_info *ci;
2179 struct vm_page *pg;
2180 u_int descs[4];
2181 uint64_t xc;
2182
2183 x86_cpuid(0x8000000a, descs);
2184
2185 /* The guest TLB flush command. */
2186 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2187 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2188 } else {
2189 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2190 }
2191
2192 /* Init the ASID. */
2193 svm_init_asid(descs[1]);
2194
2195 /* Init the XCR0 mask. */
2196 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2197
2198 memset(hsave, 0, sizeof(hsave));
2199 for (CPU_INFO_FOREACH(cii, ci)) {
2200 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2201 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2202 }
2203
2204 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2205 xc_wait(xc);
2206 }
2207
2208 static void
2209 svm_fini_asid(void)
2210 {
2211 size_t allocsz;
2212
2213 allocsz = roundup(svm_maxasid, 8) / 8;
2214 kmem_free(svm_asidmap, allocsz);
2215
2216 mutex_destroy(&svm_asidlock);
2217 }
2218
2219 static void
2220 svm_fini(void)
2221 {
2222 uint64_t xc;
2223 size_t i;
2224
2225 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2226 xc_wait(xc);
2227
2228 for (i = 0; i < MAXCPUS; i++) {
2229 if (hsave[i].pa != 0)
2230 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2231 }
2232
2233 svm_fini_asid();
2234 }
2235
2236 static void
2237 svm_capability(struct nvmm_capability *cap)
2238 {
2239 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2240 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2241 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2242 }
2243
2244 const struct nvmm_impl nvmm_x86_svm = {
2245 .ident = svm_ident,
2246 .init = svm_init,
2247 .fini = svm_fini,
2248 .capability = svm_capability,
2249 .conf_max = NVMM_X86_NCONF,
2250 .conf_sizes = svm_conf_sizes,
2251 .state_size = sizeof(struct nvmm_x64_state),
2252 .machine_create = svm_machine_create,
2253 .machine_destroy = svm_machine_destroy,
2254 .machine_configure = svm_machine_configure,
2255 .vcpu_create = svm_vcpu_create,
2256 .vcpu_destroy = svm_vcpu_destroy,
2257 .vcpu_setstate = svm_vcpu_setstate,
2258 .vcpu_getstate = svm_vcpu_getstate,
2259 .vcpu_inject = svm_vcpu_inject,
2260 .vcpu_run = svm_vcpu_run
2261 };
2262