nvmm_x86_svm.c revision 1.35 1 /* $NetBSD: nvmm_x86_svm.c,v 1.35 2019/03/21 20:21:41 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.35 2019/03/21 20:21:41 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
206 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
207 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
208 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
209 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
210 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
211 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
212 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
213 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
214 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
215 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
216 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
217 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
218 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
219 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
220 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
221 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
222 #define VMCB_EXITCODE_NPF 0x0400
223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
224 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
225 #define VMCB_EXITCODE_VMGEXIT 0x0403
226 #define VMCB_EXITCODE_INVALID -1
227
228 /* -------------------------------------------------------------------------- */
229
230 struct vmcb_ctrl {
231 uint32_t intercept_cr;
232 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
233 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
234
235 uint32_t intercept_dr;
236 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
237 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
238
239 uint32_t intercept_vec;
240 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
241
242 uint32_t intercept_misc1;
243 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
244 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
245 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
246 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
247 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
249 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
250 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
251 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
252 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
253 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
254 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
255 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
256 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
257 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
258 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
259 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
260 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
261 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
262 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
263 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
264 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
265 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
266 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
267 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
268 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
269 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
271 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
272 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
275
276 uint32_t intercept_misc2;
277 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
278 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
279 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
280 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
281 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
282 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
283 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
284 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
285 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
286 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
287 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
288 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
289 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
292
293 uint8_t rsvd1[40];
294 uint16_t pause_filt_thresh;
295 uint16_t pause_filt_cnt;
296 uint64_t iopm_base_pa;
297 uint64_t msrpm_base_pa;
298 uint64_t tsc_offset;
299 uint32_t guest_asid;
300
301 uint32_t tlb_ctrl;
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
305
306 uint64_t v;
307 #define VMCB_CTRL_V_TPR __BITS(3,0)
308 #define VMCB_CTRL_V_IRQ __BIT(8)
309 #define VMCB_CTRL_V_VGIF __BIT(9)
310 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
311 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
312 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
313 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
314 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
315 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
316
317 uint64_t intr;
318 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
319
320 uint64_t exitcode;
321 uint64_t exitinfo1;
322 uint64_t exitinfo2;
323
324 uint64_t exitintinfo;
325 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
326 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
327 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
328 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
330
331 uint64_t enable1;
332 #define VMCB_CTRL_ENABLE_NP __BIT(0)
333 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
334 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
335
336 uint64_t avic;
337 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
338
339 uint64_t ghcb;
340
341 uint64_t eventinj;
342 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
345 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
346 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
347
348 uint64_t n_cr3;
349
350 uint64_t enable2;
351 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
352 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
353
354 uint32_t vmcb_clean;
355 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
356 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
357 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
358 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
359 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
360 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
361 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
362 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
363 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
364 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
365 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
366 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
367
368 uint32_t rsvd2;
369 uint64_t nrip;
370 uint8_t inst_len;
371 uint8_t inst_bytes[15];
372 uint64_t avic_abpp;
373 uint64_t rsvd3;
374 uint64_t avic_ltp;
375
376 uint64_t avic_phys;
377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
379
380 uint64_t rsvd4;
381 uint64_t vmcb_ptr;
382
383 uint8_t pad[752];
384 } __packed;
385
386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
387
388 struct vmcb_segment {
389 uint16_t selector;
390 uint16_t attrib; /* hidden */
391 uint32_t limit; /* hidden */
392 uint64_t base; /* hidden */
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_segment) == 16);
396
397 struct vmcb_state {
398 struct vmcb_segment es;
399 struct vmcb_segment cs;
400 struct vmcb_segment ss;
401 struct vmcb_segment ds;
402 struct vmcb_segment fs;
403 struct vmcb_segment gs;
404 struct vmcb_segment gdt;
405 struct vmcb_segment ldt;
406 struct vmcb_segment idt;
407 struct vmcb_segment tr;
408 uint8_t rsvd1[43];
409 uint8_t cpl;
410 uint8_t rsvd2[4];
411 uint64_t efer;
412 uint8_t rsvd3[112];
413 uint64_t cr4;
414 uint64_t cr3;
415 uint64_t cr0;
416 uint64_t dr7;
417 uint64_t dr6;
418 uint64_t rflags;
419 uint64_t rip;
420 uint8_t rsvd4[88];
421 uint64_t rsp;
422 uint8_t rsvd5[24];
423 uint64_t rax;
424 uint64_t star;
425 uint64_t lstar;
426 uint64_t cstar;
427 uint64_t sfmask;
428 uint64_t kernelgsbase;
429 uint64_t sysenter_cs;
430 uint64_t sysenter_esp;
431 uint64_t sysenter_eip;
432 uint64_t cr2;
433 uint8_t rsvd6[32];
434 uint64_t g_pat;
435 uint64_t dbgctl;
436 uint64_t br_from;
437 uint64_t br_to;
438 uint64_t int_from;
439 uint64_t int_to;
440 uint8_t pad[2408];
441 } __packed;
442
443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
444
445 struct vmcb {
446 struct vmcb_ctrl ctrl;
447 struct vmcb_state state;
448 } __packed;
449
450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
452
453 /* -------------------------------------------------------------------------- */
454
455 struct svm_hsave {
456 paddr_t pa;
457 };
458
459 static struct svm_hsave hsave[MAXCPUS];
460
461 static uint8_t *svm_asidmap __read_mostly;
462 static uint32_t svm_maxasid __read_mostly;
463 static kmutex_t svm_asidlock __cacheline_aligned;
464
465 static bool svm_decode_assist __read_mostly;
466 static uint32_t svm_ctrl_tlb_flush __read_mostly;
467
468 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
469 static uint64_t svm_xcr0_mask __read_mostly;
470
471 #define SVM_NCPUIDS 32
472
473 #define VMCB_NPAGES 1
474
475 #define MSRBM_NPAGES 2
476 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
477
478 #define IOBM_NPAGES 3
479 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
480
481 /* Does not include EFER_LMSLE. */
482 #define EFER_VALID \
483 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
484
485 #define EFER_TLB_FLUSH \
486 (EFER_NXE|EFER_LMA|EFER_LME)
487 #define CR0_TLB_FLUSH \
488 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
489 #define CR4_TLB_FLUSH \
490 (CR4_PGE|CR4_PAE|CR4_PSE)
491
492 /* -------------------------------------------------------------------------- */
493
494 struct svm_machdata {
495 bool cpuidpresent[SVM_NCPUIDS];
496 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
497 volatile uint64_t mach_htlb_gen;
498 };
499
500 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
501 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
502 };
503
504 struct svm_cpudata {
505 /* General */
506 bool shared_asid;
507 bool gtlb_want_flush;
508 uint64_t vcpu_htlb_gen;
509
510 /* VMCB */
511 struct vmcb *vmcb;
512 paddr_t vmcb_pa;
513
514 /* I/O bitmap */
515 uint8_t *iobm;
516 paddr_t iobm_pa;
517
518 /* MSR bitmap */
519 uint8_t *msrbm;
520 paddr_t msrbm_pa;
521
522 /* Host state */
523 uint64_t hxcr0;
524 uint64_t star;
525 uint64_t lstar;
526 uint64_t cstar;
527 uint64_t sfmask;
528 uint64_t fsbase;
529 uint64_t kernelgsbase;
530 bool ts_set;
531 struct xsave_header hfpu __aligned(64);
532
533 /* Event state */
534 bool int_window_exit;
535 bool nmi_window_exit;
536
537 /* Guest state */
538 uint64_t gxcr0;
539 uint64_t gprs[NVMM_X64_NGPR];
540 uint64_t drs[NVMM_X64_NDR];
541 uint64_t tsc_offset;
542 struct xsave_header gfpu __aligned(64);
543 };
544
545 static void
546 svm_vmcb_cache_default(struct vmcb *vmcb)
547 {
548 vmcb->ctrl.vmcb_clean =
549 VMCB_CTRL_VMCB_CLEAN_I |
550 VMCB_CTRL_VMCB_CLEAN_IOPM |
551 VMCB_CTRL_VMCB_CLEAN_ASID |
552 VMCB_CTRL_VMCB_CLEAN_TPR |
553 VMCB_CTRL_VMCB_CLEAN_NP |
554 VMCB_CTRL_VMCB_CLEAN_CR |
555 VMCB_CTRL_VMCB_CLEAN_DR |
556 VMCB_CTRL_VMCB_CLEAN_DT |
557 VMCB_CTRL_VMCB_CLEAN_SEG |
558 VMCB_CTRL_VMCB_CLEAN_CR2 |
559 VMCB_CTRL_VMCB_CLEAN_LBR |
560 VMCB_CTRL_VMCB_CLEAN_AVIC;
561 }
562
563 static void
564 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
565 {
566 if (flags & NVMM_X64_STATE_SEGS) {
567 vmcb->ctrl.vmcb_clean &=
568 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
569 }
570 if (flags & NVMM_X64_STATE_CRS) {
571 vmcb->ctrl.vmcb_clean &=
572 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
573 VMCB_CTRL_VMCB_CLEAN_TPR);
574 }
575 if (flags & NVMM_X64_STATE_DRS) {
576 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
577 }
578 if (flags & NVMM_X64_STATE_MSRS) {
579 /* CR for EFER, NP for PAT. */
580 vmcb->ctrl.vmcb_clean &=
581 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
582 }
583 }
584
585 static inline void
586 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
587 {
588 vmcb->ctrl.vmcb_clean &= ~flags;
589 }
590
591 static inline void
592 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
593 {
594 vmcb->ctrl.vmcb_clean = 0;
595 }
596
597 #define SVM_EVENT_TYPE_HW_INT 0
598 #define SVM_EVENT_TYPE_NMI 2
599 #define SVM_EVENT_TYPE_EXC 3
600 #define SVM_EVENT_TYPE_SW_INT 4
601
602 static void
603 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
604 {
605 struct svm_cpudata *cpudata = vcpu->cpudata;
606 struct vmcb *vmcb = cpudata->vmcb;
607
608 if (nmi) {
609 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
610 cpudata->nmi_window_exit = true;
611 } else {
612 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
613 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
614 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
615 cpudata->int_window_exit = true;
616 }
617
618 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
619 }
620
621 static void
622 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = false;
630 } else {
631 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = false;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static inline int
641 svm_event_has_error(uint64_t vector)
642 {
643 switch (vector) {
644 case 8: /* #DF */
645 case 10: /* #TS */
646 case 11: /* #NP */
647 case 12: /* #SS */
648 case 13: /* #GP */
649 case 14: /* #PF */
650 case 17: /* #AC */
651 case 30: /* #SX */
652 return 1;
653 default:
654 return 0;
655 }
656 }
657
658 static int
659 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
660 struct nvmm_event *event)
661 {
662 struct svm_cpudata *cpudata = vcpu->cpudata;
663 struct vmcb *vmcb = cpudata->vmcb;
664 int type = 0, err = 0;
665
666 if (event->vector >= 256) {
667 return EINVAL;
668 }
669
670 switch (event->type) {
671 case NVMM_EVENT_INTERRUPT_HW:
672 type = SVM_EVENT_TYPE_HW_INT;
673 if (event->vector == 2) {
674 type = SVM_EVENT_TYPE_NMI;
675 }
676 if (type == SVM_EVENT_TYPE_NMI) {
677 if (cpudata->nmi_window_exit) {
678 return EAGAIN;
679 }
680 svm_event_waitexit_enable(vcpu, true);
681 } else {
682 if (((vmcb->state.rflags & PSL_I) == 0) ||
683 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
684 svm_event_waitexit_enable(vcpu, false);
685 return EAGAIN;
686 }
687 }
688 err = 0;
689 break;
690 case NVMM_EVENT_INTERRUPT_SW:
691 return EINVAL;
692 case NVMM_EVENT_EXCEPTION:
693 type = SVM_EVENT_TYPE_EXC;
694 if (event->vector == 2 || event->vector >= 32)
695 return EINVAL;
696 if (event->vector == 3 || event->vector == 0)
697 return EINVAL;
698 err = svm_event_has_error(event->vector);
699 break;
700 default:
701 return EINVAL;
702 }
703
704 vmcb->ctrl.eventinj =
705 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
706 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
707 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
708 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
709 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
710
711 return 0;
712 }
713
714 static void
715 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
716 {
717 struct nvmm_event event;
718 int ret __diagused;
719
720 event.type = NVMM_EVENT_EXCEPTION;
721 event.vector = 6;
722 event.u.error = 0;
723
724 ret = svm_vcpu_inject(mach, vcpu, &event);
725 KASSERT(ret == 0);
726 }
727
728 static void
729 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
730 {
731 struct nvmm_event event;
732 int ret __diagused;
733
734 event.type = NVMM_EVENT_EXCEPTION;
735 event.vector = 13;
736 event.u.error = 0;
737
738 ret = svm_vcpu_inject(mach, vcpu, &event);
739 KASSERT(ret == 0);
740 }
741
742 static inline void
743 svm_inkernel_advance(struct vmcb *vmcb)
744 {
745 /*
746 * Maybe we should also apply single-stepping and debug exceptions.
747 * Matters for guest-ring3, because it can execute 'cpuid' under a
748 * debugger.
749 */
750 vmcb->state.rip = vmcb->ctrl.nrip;
751 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
752 }
753
754 static void
755 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
756 {
757 struct svm_cpudata *cpudata = vcpu->cpudata;
758 uint64_t cr4;
759
760 switch (eax) {
761 case 0x00000001:
762 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
763
764 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
765 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
766 CPUID_LOCAL_APIC_ID);
767
768 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
769 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
770
771 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
772
773 /* CPUID2_OSXSAVE depends on CR4. */
774 cr4 = cpudata->vmcb->state.cr4;
775 if (!(cr4 & CR4_OSXSAVE)) {
776 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
777 }
778 break;
779 case 0x00000005:
780 case 0x00000006:
781 cpudata->vmcb->state.rax = 0;
782 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
783 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
784 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
785 break;
786 case 0x00000007:
787 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
788 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
789 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
790 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
791 break;
792 case 0x0000000D:
793 if (svm_xcr0_mask == 0) {
794 break;
795 }
796 switch (ecx) {
797 case 0:
798 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
799 if (cpudata->gxcr0 & XCR0_SSE) {
800 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
801 } else {
802 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
803 }
804 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
805 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
806 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
807 break;
808 case 1:
809 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
810 break;
811 }
812 break;
813 case 0x40000000:
814 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
815 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
816 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
817 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
818 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
819 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
820 break;
821 case 0x80000001:
822 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
823 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
824 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
825 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
826 break;
827 default:
828 break;
829 }
830 }
831
832 static void
833 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
834 struct nvmm_exit *exit)
835 {
836 struct svm_machdata *machdata = mach->machdata;
837 struct svm_cpudata *cpudata = vcpu->cpudata;
838 struct nvmm_x86_conf_cpuid *cpuid;
839 uint64_t eax, ecx;
840 u_int descs[4];
841 size_t i;
842
843 eax = cpudata->vmcb->state.rax;
844 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
845 x86_cpuid2(eax, ecx, descs);
846
847 cpudata->vmcb->state.rax = descs[0];
848 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
849 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
850 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
851
852 for (i = 0; i < SVM_NCPUIDS; i++) {
853 cpuid = &machdata->cpuid[i];
854 if (!machdata->cpuidpresent[i]) {
855 continue;
856 }
857 if (cpuid->leaf != eax) {
858 continue;
859 }
860
861 /* del */
862 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
863 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
864 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
865 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
866
867 /* set */
868 cpudata->vmcb->state.rax |= cpuid->set.eax;
869 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
870 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
871 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
872
873 break;
874 }
875
876 /* Overwrite non-tunable leaves. */
877 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
878
879 svm_inkernel_advance(cpudata->vmcb);
880 exit->reason = NVMM_EXIT_NONE;
881 }
882
883 static void
884 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
885 struct nvmm_exit *exit)
886 {
887 struct svm_cpudata *cpudata = vcpu->cpudata;
888 struct vmcb *vmcb = cpudata->vmcb;
889
890 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
891 svm_event_waitexit_disable(vcpu, false);
892 }
893
894 svm_inkernel_advance(cpudata->vmcb);
895 exit->reason = NVMM_EXIT_HALTED;
896 }
897
898 #define SVM_EXIT_IO_PORT __BITS(31,16)
899 #define SVM_EXIT_IO_SEG __BITS(12,10)
900 #define SVM_EXIT_IO_A64 __BIT(9)
901 #define SVM_EXIT_IO_A32 __BIT(8)
902 #define SVM_EXIT_IO_A16 __BIT(7)
903 #define SVM_EXIT_IO_SZ32 __BIT(6)
904 #define SVM_EXIT_IO_SZ16 __BIT(5)
905 #define SVM_EXIT_IO_SZ8 __BIT(4)
906 #define SVM_EXIT_IO_REP __BIT(3)
907 #define SVM_EXIT_IO_STR __BIT(2)
908 #define SVM_EXIT_IO_IN __BIT(0)
909
910 static void
911 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
912 struct nvmm_exit *exit)
913 {
914 struct svm_cpudata *cpudata = vcpu->cpudata;
915 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
916 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
917
918 exit->reason = NVMM_EXIT_IO;
919
920 if (info & SVM_EXIT_IO_IN) {
921 exit->u.io.type = NVMM_EXIT_IO_IN;
922 } else {
923 exit->u.io.type = NVMM_EXIT_IO_OUT;
924 }
925
926 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
927
928 if (svm_decode_assist) {
929 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
930 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
931 } else {
932 exit->u.io.seg = -1;
933 }
934
935 if (info & SVM_EXIT_IO_A64) {
936 exit->u.io.address_size = 8;
937 } else if (info & SVM_EXIT_IO_A32) {
938 exit->u.io.address_size = 4;
939 } else if (info & SVM_EXIT_IO_A16) {
940 exit->u.io.address_size = 2;
941 }
942
943 if (info & SVM_EXIT_IO_SZ32) {
944 exit->u.io.operand_size = 4;
945 } else if (info & SVM_EXIT_IO_SZ16) {
946 exit->u.io.operand_size = 2;
947 } else if (info & SVM_EXIT_IO_SZ8) {
948 exit->u.io.operand_size = 1;
949 }
950
951 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
952 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
953 exit->u.io.npc = nextpc;
954 }
955
956 static const uint64_t msr_ignore_list[] = {
957 0xc0010055, /* MSR_CMPHALT */
958 MSR_DE_CFG,
959 MSR_IC_CFG,
960 MSR_UCODE_AMD_PATCHLEVEL
961 };
962
963 static bool
964 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
965 struct nvmm_exit *exit)
966 {
967 struct svm_cpudata *cpudata = vcpu->cpudata;
968 struct vmcb *vmcb = cpudata->vmcb;
969 uint64_t val;
970 size_t i;
971
972 switch (exit->u.msr.type) {
973 case NVMM_EXIT_MSR_RDMSR:
974 if (exit->u.msr.msr == MSR_NB_CFG) {
975 val = NB_CFG_INITAPICCPUIDLO;
976 vmcb->state.rax = (val & 0xFFFFFFFF);
977 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
978 goto handled;
979 }
980 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
981 if (msr_ignore_list[i] != exit->u.msr.msr)
982 continue;
983 val = 0;
984 vmcb->state.rax = (val & 0xFFFFFFFF);
985 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
986 goto handled;
987 }
988 break;
989 case NVMM_EXIT_MSR_WRMSR:
990 if (exit->u.msr.msr == MSR_EFER) {
991 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
992 goto error;
993 }
994 if ((vmcb->state.efer ^ exit->u.msr.val) &
995 EFER_TLB_FLUSH) {
996 cpudata->gtlb_want_flush = true;
997 }
998 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
999 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1000 goto handled;
1001 }
1002 if (exit->u.msr.msr == MSR_TSC) {
1003 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
1004 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1005 curcpu()->ci_data.cpu_cc_skew;
1006 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1007 goto handled;
1008 }
1009 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1010 if (msr_ignore_list[i] != exit->u.msr.msr)
1011 continue;
1012 goto handled;
1013 }
1014 break;
1015 }
1016
1017 return false;
1018
1019 handled:
1020 svm_inkernel_advance(cpudata->vmcb);
1021 return true;
1022
1023 error:
1024 svm_inject_gp(mach, vcpu);
1025 return true;
1026 }
1027
1028 static void
1029 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1030 struct nvmm_exit *exit)
1031 {
1032 struct svm_cpudata *cpudata = vcpu->cpudata;
1033 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1034
1035 if (info == 0) {
1036 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1037 } else {
1038 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1039 }
1040
1041 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1042
1043 if (info == 1) {
1044 uint64_t rdx, rax;
1045 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1046 rax = cpudata->vmcb->state.rax;
1047 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1048 } else {
1049 exit->u.msr.val = 0;
1050 }
1051
1052 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1053 exit->reason = NVMM_EXIT_NONE;
1054 return;
1055 }
1056
1057 exit->reason = NVMM_EXIT_MSR;
1058 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1059 }
1060
1061 static void
1062 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1063 struct nvmm_exit *exit)
1064 {
1065 struct svm_cpudata *cpudata = vcpu->cpudata;
1066 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1067
1068 exit->reason = NVMM_EXIT_MEMORY;
1069 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1070 exit->u.mem.prot = PROT_WRITE;
1071 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1072 exit->u.mem.prot = PROT_EXEC;
1073 else
1074 exit->u.mem.prot = PROT_READ;
1075 exit->u.mem.gpa = gpa;
1076 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1077 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1078 sizeof(exit->u.mem.inst_bytes));
1079 }
1080
1081 static void
1082 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1083 {
1084 exit->u.insn.npc = vmcb->ctrl.nrip;
1085 exit->reason = reason;
1086 }
1087
1088 static void
1089 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1090 struct nvmm_exit *exit)
1091 {
1092 struct svm_cpudata *cpudata = vcpu->cpudata;
1093 struct vmcb *vmcb = cpudata->vmcb;
1094 uint64_t val;
1095
1096 exit->reason = NVMM_EXIT_NONE;
1097
1098 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1099 (vmcb->state.rax & 0xFFFFFFFF);
1100
1101 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1102 goto error;
1103 } else if (__predict_false(vmcb->state.cpl != 0)) {
1104 goto error;
1105 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1106 goto error;
1107 } else if (__predict_false((val & XCR0_X87) == 0)) {
1108 goto error;
1109 }
1110
1111 cpudata->gxcr0 = val;
1112
1113 svm_inkernel_advance(cpudata->vmcb);
1114 return;
1115
1116 error:
1117 svm_inject_gp(mach, vcpu);
1118 }
1119
1120 /* -------------------------------------------------------------------------- */
1121
1122 static void
1123 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1124 {
1125 struct svm_cpudata *cpudata = vcpu->cpudata;
1126
1127 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1128
1129 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1130 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1131
1132 if (svm_xcr0_mask != 0) {
1133 cpudata->hxcr0 = rdxcr(0);
1134 wrxcr(0, cpudata->gxcr0);
1135 }
1136 }
1137
1138 static void
1139 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1140 {
1141 struct svm_cpudata *cpudata = vcpu->cpudata;
1142
1143 if (svm_xcr0_mask != 0) {
1144 cpudata->gxcr0 = rdxcr(0);
1145 wrxcr(0, cpudata->hxcr0);
1146 }
1147
1148 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1149 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1150
1151 if (cpudata->ts_set) {
1152 stts();
1153 }
1154 }
1155
1156 static void
1157 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1158 {
1159 struct svm_cpudata *cpudata = vcpu->cpudata;
1160
1161 x86_dbregs_save(curlwp);
1162
1163 ldr7(0);
1164
1165 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1166 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1167 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1168 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1169 }
1170
1171 static void
1172 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1173 {
1174 struct svm_cpudata *cpudata = vcpu->cpudata;
1175
1176 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1177 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1178 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1179 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1180
1181 x86_dbregs_restore(curlwp);
1182 }
1183
1184 static void
1185 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1186 {
1187 struct svm_cpudata *cpudata = vcpu->cpudata;
1188
1189 cpudata->fsbase = rdmsr(MSR_FSBASE);
1190 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1191 }
1192
1193 static void
1194 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1195 {
1196 struct svm_cpudata *cpudata = vcpu->cpudata;
1197
1198 wrmsr(MSR_STAR, cpudata->star);
1199 wrmsr(MSR_LSTAR, cpudata->lstar);
1200 wrmsr(MSR_CSTAR, cpudata->cstar);
1201 wrmsr(MSR_SFMASK, cpudata->sfmask);
1202 wrmsr(MSR_FSBASE, cpudata->fsbase);
1203 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1204 }
1205
1206 /* -------------------------------------------------------------------------- */
1207
1208 static inline void
1209 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1210 {
1211 struct svm_cpudata *cpudata = vcpu->cpudata;
1212
1213 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1214 cpudata->gtlb_want_flush = true;
1215 }
1216 }
1217
1218 static inline void
1219 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1220 {
1221 /*
1222 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1223 * executing on this hCPU and the hTLB already got flushed, or it
1224 * was executing on another hCPU in which case the catchup is done
1225 * in svm_gtlb_catchup().
1226 */
1227 }
1228
1229 static inline uint64_t
1230 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1231 {
1232 struct vmcb *vmcb = cpudata->vmcb;
1233 uint64_t machgen;
1234
1235 machgen = machdata->mach_htlb_gen;
1236 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1237 return machgen;
1238 }
1239
1240 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1241 return machgen;
1242 }
1243
1244 static inline void
1245 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1246 {
1247 struct vmcb *vmcb = cpudata->vmcb;
1248
1249 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1250 cpudata->vcpu_htlb_gen = machgen;
1251 }
1252 }
1253
1254 static int
1255 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1256 struct nvmm_exit *exit)
1257 {
1258 struct svm_machdata *machdata = mach->machdata;
1259 struct svm_cpudata *cpudata = vcpu->cpudata;
1260 struct vmcb *vmcb = cpudata->vmcb;
1261 uint64_t machgen;
1262 int hcpu, s;
1263
1264 kpreempt_disable();
1265 hcpu = cpu_number();
1266
1267 svm_gtlb_catchup(vcpu, hcpu);
1268 svm_htlb_catchup(vcpu, hcpu);
1269
1270 if (vcpu->hcpu_last != hcpu) {
1271 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1272 curcpu()->ci_data.cpu_cc_skew;
1273 svm_vmcb_cache_flush_all(vmcb);
1274 }
1275
1276 svm_vcpu_guest_dbregs_enter(vcpu);
1277 svm_vcpu_guest_misc_enter(vcpu);
1278
1279 while (1) {
1280 if (cpudata->gtlb_want_flush) {
1281 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1282 } else {
1283 vmcb->ctrl.tlb_ctrl = 0;
1284 }
1285
1286 s = splhigh();
1287 machgen = svm_htlb_flush(machdata, cpudata);
1288 svm_vcpu_guest_fpu_enter(vcpu);
1289 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1290 svm_vcpu_guest_fpu_leave(vcpu);
1291 svm_htlb_flush_ack(cpudata, machgen);
1292 splx(s);
1293
1294 svm_vmcb_cache_default(vmcb);
1295
1296 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1297 cpudata->gtlb_want_flush = false;
1298 vcpu->hcpu_last = hcpu;
1299 }
1300
1301 switch (vmcb->ctrl.exitcode) {
1302 case VMCB_EXITCODE_INTR:
1303 case VMCB_EXITCODE_NMI:
1304 exit->reason = NVMM_EXIT_NONE;
1305 break;
1306 case VMCB_EXITCODE_VINTR:
1307 svm_event_waitexit_disable(vcpu, false);
1308 exit->reason = NVMM_EXIT_INT_READY;
1309 break;
1310 case VMCB_EXITCODE_IRET:
1311 svm_event_waitexit_disable(vcpu, true);
1312 exit->reason = NVMM_EXIT_NMI_READY;
1313 break;
1314 case VMCB_EXITCODE_CPUID:
1315 svm_exit_cpuid(mach, vcpu, exit);
1316 break;
1317 case VMCB_EXITCODE_HLT:
1318 svm_exit_hlt(mach, vcpu, exit);
1319 break;
1320 case VMCB_EXITCODE_IOIO:
1321 svm_exit_io(mach, vcpu, exit);
1322 break;
1323 case VMCB_EXITCODE_MSR:
1324 svm_exit_msr(mach, vcpu, exit);
1325 break;
1326 case VMCB_EXITCODE_SHUTDOWN:
1327 exit->reason = NVMM_EXIT_SHUTDOWN;
1328 break;
1329 case VMCB_EXITCODE_RDPMC:
1330 case VMCB_EXITCODE_RSM:
1331 case VMCB_EXITCODE_INVLPGA:
1332 case VMCB_EXITCODE_VMRUN:
1333 case VMCB_EXITCODE_VMMCALL:
1334 case VMCB_EXITCODE_VMLOAD:
1335 case VMCB_EXITCODE_VMSAVE:
1336 case VMCB_EXITCODE_STGI:
1337 case VMCB_EXITCODE_CLGI:
1338 case VMCB_EXITCODE_SKINIT:
1339 case VMCB_EXITCODE_RDTSCP:
1340 svm_inject_ud(mach, vcpu);
1341 exit->reason = NVMM_EXIT_NONE;
1342 break;
1343 case VMCB_EXITCODE_MONITOR:
1344 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1345 break;
1346 case VMCB_EXITCODE_MWAIT:
1347 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1348 break;
1349 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1350 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1351 break;
1352 case VMCB_EXITCODE_XSETBV:
1353 svm_exit_xsetbv(mach, vcpu, exit);
1354 break;
1355 case VMCB_EXITCODE_NPF:
1356 svm_exit_npf(mach, vcpu, exit);
1357 break;
1358 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1359 default:
1360 exit->reason = NVMM_EXIT_INVALID;
1361 break;
1362 }
1363
1364 /* If no reason to return to userland, keep rolling. */
1365 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1366 break;
1367 }
1368 if (curcpu()->ci_data.cpu_softints != 0) {
1369 break;
1370 }
1371 if (curlwp->l_flag & LW_USERRET) {
1372 break;
1373 }
1374 if (exit->reason != NVMM_EXIT_NONE) {
1375 break;
1376 }
1377 }
1378
1379 svm_vcpu_guest_misc_leave(vcpu);
1380 svm_vcpu_guest_dbregs_leave(vcpu);
1381
1382 kpreempt_enable();
1383
1384 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1385 VMCB_CTRL_V_TPR);
1386 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1387
1388 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1389 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1390 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1391 cpudata->int_window_exit;
1392 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1393 cpudata->nmi_window_exit;
1394
1395 return 0;
1396 }
1397
1398 /* -------------------------------------------------------------------------- */
1399
1400 static int
1401 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1402 {
1403 struct pglist pglist;
1404 paddr_t _pa;
1405 vaddr_t _va;
1406 size_t i;
1407 int ret;
1408
1409 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1410 &pglist, 1, 0);
1411 if (ret != 0)
1412 return ENOMEM;
1413 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1414 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1415 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1416 if (_va == 0)
1417 goto error;
1418
1419 for (i = 0; i < npages; i++) {
1420 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1421 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1422 }
1423 pmap_update(pmap_kernel());
1424
1425 memset((void *)_va, 0, npages * PAGE_SIZE);
1426
1427 *pa = _pa;
1428 *va = _va;
1429 return 0;
1430
1431 error:
1432 for (i = 0; i < npages; i++) {
1433 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1434 }
1435 return ENOMEM;
1436 }
1437
1438 static void
1439 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1440 {
1441 size_t i;
1442
1443 pmap_kremove(va, npages * PAGE_SIZE);
1444 pmap_update(pmap_kernel());
1445 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1446 for (i = 0; i < npages; i++) {
1447 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1448 }
1449 }
1450
1451 /* -------------------------------------------------------------------------- */
1452
1453 #define SVM_MSRBM_READ __BIT(0)
1454 #define SVM_MSRBM_WRITE __BIT(1)
1455
1456 static void
1457 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1458 {
1459 uint64_t byte;
1460 uint8_t bitoff;
1461
1462 if (msr < 0x00002000) {
1463 /* Range 1 */
1464 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1465 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1466 /* Range 2 */
1467 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1468 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1469 /* Range 3 */
1470 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1471 } else {
1472 panic("%s: wrong range", __func__);
1473 }
1474
1475 bitoff = (msr & 0x3) << 1;
1476
1477 if (read) {
1478 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1479 }
1480 if (write) {
1481 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1482 }
1483 }
1484
1485 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1486 #define SVM_SEG_ATTRIB_S __BIT(4)
1487 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1488 #define SVM_SEG_ATTRIB_P __BIT(7)
1489 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1490 #define SVM_SEG_ATTRIB_L __BIT(9)
1491 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1492 #define SVM_SEG_ATTRIB_G __BIT(11)
1493
1494 static void
1495 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1496 struct vmcb_segment *vseg)
1497 {
1498 vseg->selector = seg->selector;
1499 vseg->attrib =
1500 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1501 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1502 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1503 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1504 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1505 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1506 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1507 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1508 vseg->limit = seg->limit;
1509 vseg->base = seg->base;
1510 }
1511
1512 static void
1513 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1514 {
1515 seg->selector = vseg->selector;
1516 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1517 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1518 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1519 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1520 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1521 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1522 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1523 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1524 seg->limit = vseg->limit;
1525 seg->base = vseg->base;
1526 }
1527
1528 static inline bool
1529 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1530 uint64_t flags)
1531 {
1532 if (flags & NVMM_X64_STATE_CRS) {
1533 if ((vmcb->state.cr0 ^
1534 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1535 return true;
1536 }
1537 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1538 return true;
1539 }
1540 if ((vmcb->state.cr4 ^
1541 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1542 return true;
1543 }
1544 }
1545
1546 if (flags & NVMM_X64_STATE_MSRS) {
1547 if ((vmcb->state.efer ^
1548 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1549 return true;
1550 }
1551 }
1552
1553 return false;
1554 }
1555
1556 static void
1557 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
1558 {
1559 const struct nvmm_x64_state *state = data;
1560 struct svm_cpudata *cpudata = vcpu->cpudata;
1561 struct vmcb *vmcb = cpudata->vmcb;
1562 struct fxsave *fpustate;
1563
1564 if (svm_state_tlb_flush(vmcb, state, flags)) {
1565 cpudata->gtlb_want_flush = true;
1566 }
1567
1568 if (flags & NVMM_X64_STATE_SEGS) {
1569 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1570 &vmcb->state.cs);
1571 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1572 &vmcb->state.ds);
1573 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1574 &vmcb->state.es);
1575 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1576 &vmcb->state.fs);
1577 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1578 &vmcb->state.gs);
1579 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1580 &vmcb->state.ss);
1581 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1582 &vmcb->state.gdt);
1583 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1584 &vmcb->state.idt);
1585 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1586 &vmcb->state.ldt);
1587 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1588 &vmcb->state.tr);
1589
1590 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1591 }
1592
1593 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1594 if (flags & NVMM_X64_STATE_GPRS) {
1595 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1596
1597 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1598 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1599 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1600 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1601 }
1602
1603 if (flags & NVMM_X64_STATE_CRS) {
1604 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1605 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1606 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1607 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1608
1609 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1610 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1611 VMCB_CTRL_V_TPR);
1612
1613 if (svm_xcr0_mask != 0) {
1614 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1615 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1616 cpudata->gxcr0 &= svm_xcr0_mask;
1617 cpudata->gxcr0 |= XCR0_X87;
1618 }
1619 }
1620
1621 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1622 if (flags & NVMM_X64_STATE_DRS) {
1623 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1624
1625 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1626 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1627 }
1628
1629 if (flags & NVMM_X64_STATE_MSRS) {
1630 /*
1631 * EFER_SVME is mandatory.
1632 */
1633 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1634 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1635 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1636 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1637 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1638 vmcb->state.kernelgsbase =
1639 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1640 vmcb->state.sysenter_cs =
1641 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1642 vmcb->state.sysenter_esp =
1643 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1644 vmcb->state.sysenter_eip =
1645 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1646 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1647 }
1648
1649 if (flags & NVMM_X64_STATE_MISC) {
1650 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1651 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1652 } else {
1653 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1654 }
1655
1656 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1657 svm_event_waitexit_enable(vcpu, false);
1658 } else {
1659 svm_event_waitexit_disable(vcpu, false);
1660 }
1661
1662 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1663 svm_event_waitexit_enable(vcpu, true);
1664 } else {
1665 svm_event_waitexit_disable(vcpu, true);
1666 }
1667 }
1668
1669 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1670 if (flags & NVMM_X64_STATE_FPU) {
1671 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1672 sizeof(state->fpu));
1673
1674 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1675 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1676 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1677
1678 if (svm_xcr0_mask != 0) {
1679 /* Reset XSTATE_BV, to force a reload. */
1680 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1681 }
1682 }
1683
1684 svm_vmcb_cache_update(vmcb, flags);
1685 }
1686
1687 static void
1688 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1689 {
1690 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1691 struct svm_cpudata *cpudata = vcpu->cpudata;
1692 struct vmcb *vmcb = cpudata->vmcb;
1693
1694 if (flags & NVMM_X64_STATE_SEGS) {
1695 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1696 &vmcb->state.cs);
1697 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1698 &vmcb->state.ds);
1699 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1700 &vmcb->state.es);
1701 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1702 &vmcb->state.fs);
1703 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1704 &vmcb->state.gs);
1705 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1706 &vmcb->state.ss);
1707 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1708 &vmcb->state.gdt);
1709 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1710 &vmcb->state.idt);
1711 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1712 &vmcb->state.ldt);
1713 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1714 &vmcb->state.tr);
1715
1716 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1717 }
1718
1719 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1720 if (flags & NVMM_X64_STATE_GPRS) {
1721 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1722
1723 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1724 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1725 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1726 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1727 }
1728
1729 if (flags & NVMM_X64_STATE_CRS) {
1730 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1731 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1732 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1733 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1734 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1735 VMCB_CTRL_V_TPR);
1736 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1737 }
1738
1739 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1740 if (flags & NVMM_X64_STATE_DRS) {
1741 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1742
1743 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1744 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1745 }
1746
1747 if (flags & NVMM_X64_STATE_MSRS) {
1748 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1749 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1750 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1751 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1752 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1753 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1754 vmcb->state.kernelgsbase;
1755 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1756 vmcb->state.sysenter_cs;
1757 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1758 vmcb->state.sysenter_esp;
1759 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1760 vmcb->state.sysenter_eip;
1761 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1762
1763 /* Hide SVME. */
1764 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1765 }
1766
1767 if (flags & NVMM_X64_STATE_MISC) {
1768 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1769 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1770 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1771 cpudata->int_window_exit;
1772 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1773 cpudata->nmi_window_exit;
1774 }
1775
1776 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1777 if (flags & NVMM_X64_STATE_FPU) {
1778 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1779 sizeof(state->fpu));
1780 }
1781 }
1782
1783 /* -------------------------------------------------------------------------- */
1784
1785 static void
1786 svm_asid_alloc(struct nvmm_cpu *vcpu)
1787 {
1788 struct svm_cpudata *cpudata = vcpu->cpudata;
1789 struct vmcb *vmcb = cpudata->vmcb;
1790 size_t i, oct, bit;
1791
1792 mutex_enter(&svm_asidlock);
1793
1794 for (i = 0; i < svm_maxasid; i++) {
1795 oct = i / 8;
1796 bit = i % 8;
1797
1798 if (svm_asidmap[oct] & __BIT(bit)) {
1799 continue;
1800 }
1801
1802 svm_asidmap[oct] |= __BIT(bit);
1803 vmcb->ctrl.guest_asid = i;
1804 mutex_exit(&svm_asidlock);
1805 return;
1806 }
1807
1808 /*
1809 * No free ASID. Use the last one, which is shared and requires
1810 * special TLB handling.
1811 */
1812 cpudata->shared_asid = true;
1813 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1814 mutex_exit(&svm_asidlock);
1815 }
1816
1817 static void
1818 svm_asid_free(struct nvmm_cpu *vcpu)
1819 {
1820 struct svm_cpudata *cpudata = vcpu->cpudata;
1821 struct vmcb *vmcb = cpudata->vmcb;
1822 size_t oct, bit;
1823
1824 if (cpudata->shared_asid) {
1825 return;
1826 }
1827
1828 oct = vmcb->ctrl.guest_asid / 8;
1829 bit = vmcb->ctrl.guest_asid % 8;
1830
1831 mutex_enter(&svm_asidlock);
1832 svm_asidmap[oct] &= ~__BIT(bit);
1833 mutex_exit(&svm_asidlock);
1834 }
1835
1836 static void
1837 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1838 {
1839 struct svm_cpudata *cpudata = vcpu->cpudata;
1840 struct vmcb *vmcb = cpudata->vmcb;
1841
1842 /* Allow reads/writes of Control Registers. */
1843 vmcb->ctrl.intercept_cr = 0;
1844
1845 /* Allow reads/writes of Debug Registers. */
1846 vmcb->ctrl.intercept_dr = 0;
1847
1848 /* Allow exceptions 0 to 31. */
1849 vmcb->ctrl.intercept_vec = 0;
1850
1851 /*
1852 * Allow:
1853 * - SMI [smm interrupts]
1854 * - VINTR [virtual interrupts]
1855 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1856 * - RIDTR [reads of IDTR]
1857 * - RGDTR [reads of GDTR]
1858 * - RLDTR [reads of LDTR]
1859 * - RTR [reads of TR]
1860 * - WIDTR [writes of IDTR]
1861 * - WGDTR [writes of GDTR]
1862 * - WLDTR [writes of LDTR]
1863 * - WTR [writes of TR]
1864 * - RDTSC [rdtsc instruction]
1865 * - PUSHF [pushf instruction]
1866 * - POPF [popf instruction]
1867 * - IRET [iret instruction]
1868 * - INTN [int $n instructions]
1869 * - INVD [invd instruction]
1870 * - PAUSE [pause instruction]
1871 * - INVLPG [invplg instruction]
1872 * - TASKSW [task switches]
1873 *
1874 * Intercept the rest below.
1875 */
1876 vmcb->ctrl.intercept_misc1 =
1877 VMCB_CTRL_INTERCEPT_INTR |
1878 VMCB_CTRL_INTERCEPT_NMI |
1879 VMCB_CTRL_INTERCEPT_INIT |
1880 VMCB_CTRL_INTERCEPT_RDPMC |
1881 VMCB_CTRL_INTERCEPT_CPUID |
1882 VMCB_CTRL_INTERCEPT_RSM |
1883 VMCB_CTRL_INTERCEPT_HLT |
1884 VMCB_CTRL_INTERCEPT_INVLPGA |
1885 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1886 VMCB_CTRL_INTERCEPT_MSR_PROT |
1887 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1888 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1889
1890 /*
1891 * Allow:
1892 * - ICEBP [icebp instruction]
1893 * - WBINVD [wbinvd instruction]
1894 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1895 *
1896 * Intercept the rest below.
1897 */
1898 vmcb->ctrl.intercept_misc2 =
1899 VMCB_CTRL_INTERCEPT_VMRUN |
1900 VMCB_CTRL_INTERCEPT_VMMCALL |
1901 VMCB_CTRL_INTERCEPT_VMLOAD |
1902 VMCB_CTRL_INTERCEPT_VMSAVE |
1903 VMCB_CTRL_INTERCEPT_STGI |
1904 VMCB_CTRL_INTERCEPT_CLGI |
1905 VMCB_CTRL_INTERCEPT_SKINIT |
1906 VMCB_CTRL_INTERCEPT_RDTSCP |
1907 VMCB_CTRL_INTERCEPT_MONITOR |
1908 VMCB_CTRL_INTERCEPT_MWAIT |
1909 VMCB_CTRL_INTERCEPT_XSETBV;
1910
1911 /* Intercept all I/O accesses. */
1912 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1913 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1914
1915 /* Allow direct access to certain MSRs. */
1916 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1917 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1918 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1919 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1920 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1921 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1922 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1923 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1924 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1925 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1926 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1927 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1928 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1929 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1930 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1931
1932 /* Generate ASID. */
1933 svm_asid_alloc(vcpu);
1934
1935 /* Virtual TPR. */
1936 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1937
1938 /* Enable Nested Paging. */
1939 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1940 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1941
1942 /* Init XSAVE header. */
1943 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1944 cpudata->gfpu.xsh_xcomp_bv = 0;
1945
1946 /* Set guest TSC to zero, more or less. */
1947 cpudata->tsc_offset = -cpu_counter();
1948
1949 /* These MSRs are static. */
1950 cpudata->star = rdmsr(MSR_STAR);
1951 cpudata->lstar = rdmsr(MSR_LSTAR);
1952 cpudata->cstar = rdmsr(MSR_CSTAR);
1953 cpudata->sfmask = rdmsr(MSR_SFMASK);
1954
1955 /* Install the RESET state. */
1956 svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
1957 }
1958
1959 static int
1960 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1961 {
1962 struct svm_cpudata *cpudata;
1963 int error;
1964
1965 /* Allocate the SVM cpudata. */
1966 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1967 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1968 UVM_KMF_WIRED|UVM_KMF_ZERO);
1969 vcpu->cpudata = cpudata;
1970
1971 /* VMCB */
1972 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1973 VMCB_NPAGES);
1974 if (error)
1975 goto error;
1976
1977 /* I/O Bitmap */
1978 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1979 IOBM_NPAGES);
1980 if (error)
1981 goto error;
1982
1983 /* MSR Bitmap */
1984 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1985 MSRBM_NPAGES);
1986 if (error)
1987 goto error;
1988
1989 /* Init the VCPU info. */
1990 svm_vcpu_init(mach, vcpu);
1991
1992 return 0;
1993
1994 error:
1995 if (cpudata->vmcb_pa) {
1996 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1997 VMCB_NPAGES);
1998 }
1999 if (cpudata->iobm_pa) {
2000 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2001 IOBM_NPAGES);
2002 }
2003 if (cpudata->msrbm_pa) {
2004 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2005 MSRBM_NPAGES);
2006 }
2007 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2008 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2009 return error;
2010 }
2011
2012 static void
2013 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2014 {
2015 struct svm_cpudata *cpudata = vcpu->cpudata;
2016
2017 svm_asid_free(vcpu);
2018
2019 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2020 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2021 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2022
2023 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2024 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2025 }
2026
2027 /* -------------------------------------------------------------------------- */
2028
2029 static void
2030 svm_tlb_flush(struct pmap *pm)
2031 {
2032 struct nvmm_machine *mach = pm->pm_data;
2033 struct svm_machdata *machdata = mach->machdata;
2034
2035 atomic_inc_64(&machdata->mach_htlb_gen);
2036
2037 /* Generates IPIs, which cause #VMEXITs. */
2038 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2039 }
2040
2041 static void
2042 svm_machine_create(struct nvmm_machine *mach)
2043 {
2044 struct svm_machdata *machdata;
2045
2046 /* Fill in pmap info. */
2047 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2048 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2049
2050 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2051 mach->machdata = machdata;
2052
2053 /* Start with an hTLB flush everywhere. */
2054 machdata->mach_htlb_gen = 1;
2055 }
2056
2057 static void
2058 svm_machine_destroy(struct nvmm_machine *mach)
2059 {
2060 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2061 }
2062
2063 static int
2064 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2065 {
2066 struct nvmm_x86_conf_cpuid *cpuid = data;
2067 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2068 size_t i;
2069
2070 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2071 return EINVAL;
2072 }
2073
2074 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2075 (cpuid->set.ebx & cpuid->del.ebx) ||
2076 (cpuid->set.ecx & cpuid->del.ecx) ||
2077 (cpuid->set.edx & cpuid->del.edx))) {
2078 return EINVAL;
2079 }
2080
2081 /* If already here, replace. */
2082 for (i = 0; i < SVM_NCPUIDS; i++) {
2083 if (!machdata->cpuidpresent[i]) {
2084 continue;
2085 }
2086 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2087 memcpy(&machdata->cpuid[i], cpuid,
2088 sizeof(struct nvmm_x86_conf_cpuid));
2089 return 0;
2090 }
2091 }
2092
2093 /* Not here, insert. */
2094 for (i = 0; i < SVM_NCPUIDS; i++) {
2095 if (!machdata->cpuidpresent[i]) {
2096 machdata->cpuidpresent[i] = true;
2097 memcpy(&machdata->cpuid[i], cpuid,
2098 sizeof(struct nvmm_x86_conf_cpuid));
2099 return 0;
2100 }
2101 }
2102
2103 return ENOBUFS;
2104 }
2105
2106 /* -------------------------------------------------------------------------- */
2107
2108 static bool
2109 svm_ident(void)
2110 {
2111 u_int descs[4];
2112 uint64_t msr;
2113
2114 if (cpu_vendor != CPUVENDOR_AMD) {
2115 return false;
2116 }
2117 if (!(cpu_feature[3] & CPUID_SVM)) {
2118 return false;
2119 }
2120
2121 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2122 return false;
2123 }
2124 x86_cpuid(0x8000000a, descs);
2125
2126 /* Want Nested Paging. */
2127 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2128 return false;
2129 }
2130
2131 /* Want nRIP. */
2132 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2133 return false;
2134 }
2135
2136 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2137
2138 msr = rdmsr(MSR_VMCR);
2139 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2140 return false;
2141 }
2142
2143 return true;
2144 }
2145
2146 static void
2147 svm_init_asid(uint32_t maxasid)
2148 {
2149 size_t i, j, allocsz;
2150
2151 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2152
2153 /* Arbitrarily limit. */
2154 maxasid = uimin(maxasid, 8192);
2155
2156 svm_maxasid = maxasid;
2157 allocsz = roundup(maxasid, 8) / 8;
2158 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2159
2160 /* ASID 0 is reserved for the host. */
2161 svm_asidmap[0] |= __BIT(0);
2162
2163 /* ASID n-1 is special, we share it. */
2164 i = (maxasid - 1) / 8;
2165 j = (maxasid - 1) % 8;
2166 svm_asidmap[i] |= __BIT(j);
2167 }
2168
2169 static void
2170 svm_change_cpu(void *arg1, void *arg2)
2171 {
2172 bool enable = (bool)arg1;
2173 uint64_t msr;
2174
2175 msr = rdmsr(MSR_VMCR);
2176 if (msr & VMCR_SVMED) {
2177 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2178 }
2179
2180 if (!enable) {
2181 wrmsr(MSR_VM_HSAVE_PA, 0);
2182 }
2183
2184 msr = rdmsr(MSR_EFER);
2185 if (enable) {
2186 msr |= EFER_SVME;
2187 } else {
2188 msr &= ~EFER_SVME;
2189 }
2190 wrmsr(MSR_EFER, msr);
2191
2192 if (enable) {
2193 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2194 }
2195 }
2196
2197 static void
2198 svm_init(void)
2199 {
2200 CPU_INFO_ITERATOR cii;
2201 struct cpu_info *ci;
2202 struct vm_page *pg;
2203 u_int descs[4];
2204 uint64_t xc;
2205
2206 x86_cpuid(0x8000000a, descs);
2207
2208 /* The guest TLB flush command. */
2209 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2210 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2211 } else {
2212 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2213 }
2214
2215 /* Init the ASID. */
2216 svm_init_asid(descs[1]);
2217
2218 /* Init the XCR0 mask. */
2219 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2220
2221 memset(hsave, 0, sizeof(hsave));
2222 for (CPU_INFO_FOREACH(cii, ci)) {
2223 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2224 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2225 }
2226
2227 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2228 xc_wait(xc);
2229 }
2230
2231 static void
2232 svm_fini_asid(void)
2233 {
2234 size_t allocsz;
2235
2236 allocsz = roundup(svm_maxasid, 8) / 8;
2237 kmem_free(svm_asidmap, allocsz);
2238
2239 mutex_destroy(&svm_asidlock);
2240 }
2241
2242 static void
2243 svm_fini(void)
2244 {
2245 uint64_t xc;
2246 size_t i;
2247
2248 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2249 xc_wait(xc);
2250
2251 for (i = 0; i < MAXCPUS; i++) {
2252 if (hsave[i].pa != 0)
2253 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2254 }
2255
2256 svm_fini_asid();
2257 }
2258
2259 static void
2260 svm_capability(struct nvmm_capability *cap)
2261 {
2262 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2263 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2264 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2265 }
2266
2267 const struct nvmm_impl nvmm_x86_svm = {
2268 .ident = svm_ident,
2269 .init = svm_init,
2270 .fini = svm_fini,
2271 .capability = svm_capability,
2272 .conf_max = NVMM_X86_NCONF,
2273 .conf_sizes = svm_conf_sizes,
2274 .state_size = sizeof(struct nvmm_x64_state),
2275 .machine_create = svm_machine_create,
2276 .machine_destroy = svm_machine_destroy,
2277 .machine_configure = svm_machine_configure,
2278 .vcpu_create = svm_vcpu_create,
2279 .vcpu_destroy = svm_vcpu_destroy,
2280 .vcpu_setstate = svm_vcpu_setstate,
2281 .vcpu_getstate = svm_vcpu_getstate,
2282 .vcpu_inject = svm_vcpu_inject,
2283 .vcpu_run = svm_vcpu_run
2284 };
2285