Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.35
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.35 2019/03/21 20:21:41 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.35 2019/03/21 20:21:41 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int svm_vmrun(paddr_t, uint64_t *);
     58 
     59 #define	MSR_VM_HSAVE_PA	0xC0010117
     60 
     61 /* -------------------------------------------------------------------------- */
     62 
     63 #define VMCB_EXITCODE_CR0_READ		0x0000
     64 #define VMCB_EXITCODE_CR1_READ		0x0001
     65 #define VMCB_EXITCODE_CR2_READ		0x0002
     66 #define VMCB_EXITCODE_CR3_READ		0x0003
     67 #define VMCB_EXITCODE_CR4_READ		0x0004
     68 #define VMCB_EXITCODE_CR5_READ		0x0005
     69 #define VMCB_EXITCODE_CR6_READ		0x0006
     70 #define VMCB_EXITCODE_CR7_READ		0x0007
     71 #define VMCB_EXITCODE_CR8_READ		0x0008
     72 #define VMCB_EXITCODE_CR9_READ		0x0009
     73 #define VMCB_EXITCODE_CR10_READ		0x000A
     74 #define VMCB_EXITCODE_CR11_READ		0x000B
     75 #define VMCB_EXITCODE_CR12_READ		0x000C
     76 #define VMCB_EXITCODE_CR13_READ		0x000D
     77 #define VMCB_EXITCODE_CR14_READ		0x000E
     78 #define VMCB_EXITCODE_CR15_READ		0x000F
     79 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     80 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     81 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     82 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     83 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     84 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     85 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     86 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     87 #define VMCB_EXITCODE_CR8_WRITE		0x0018
     88 #define VMCB_EXITCODE_CR9_WRITE		0x0019
     89 #define VMCB_EXITCODE_CR10_WRITE	0x001A
     90 #define VMCB_EXITCODE_CR11_WRITE	0x001B
     91 #define VMCB_EXITCODE_CR12_WRITE	0x001C
     92 #define VMCB_EXITCODE_CR13_WRITE	0x001D
     93 #define VMCB_EXITCODE_CR14_WRITE	0x001E
     94 #define VMCB_EXITCODE_CR15_WRITE	0x001F
     95 #define VMCB_EXITCODE_DR0_READ		0x0020
     96 #define VMCB_EXITCODE_DR1_READ		0x0021
     97 #define VMCB_EXITCODE_DR2_READ		0x0022
     98 #define VMCB_EXITCODE_DR3_READ		0x0023
     99 #define VMCB_EXITCODE_DR4_READ		0x0024
    100 #define VMCB_EXITCODE_DR5_READ		0x0025
    101 #define VMCB_EXITCODE_DR6_READ		0x0026
    102 #define VMCB_EXITCODE_DR7_READ		0x0027
    103 #define VMCB_EXITCODE_DR8_READ		0x0028
    104 #define VMCB_EXITCODE_DR9_READ		0x0029
    105 #define VMCB_EXITCODE_DR10_READ		0x002A
    106 #define VMCB_EXITCODE_DR11_READ		0x002B
    107 #define VMCB_EXITCODE_DR12_READ		0x002C
    108 #define VMCB_EXITCODE_DR13_READ		0x002D
    109 #define VMCB_EXITCODE_DR14_READ		0x002E
    110 #define VMCB_EXITCODE_DR15_READ		0x002F
    111 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    112 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    113 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    114 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    115 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    116 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    117 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    118 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    119 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    120 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    121 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    122 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    123 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    124 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    125 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    126 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    127 #define VMCB_EXITCODE_EXCP0		0x0040
    128 #define VMCB_EXITCODE_EXCP1		0x0041
    129 #define VMCB_EXITCODE_EXCP2		0x0042
    130 #define VMCB_EXITCODE_EXCP3		0x0043
    131 #define VMCB_EXITCODE_EXCP4		0x0044
    132 #define VMCB_EXITCODE_EXCP5		0x0045
    133 #define VMCB_EXITCODE_EXCP6		0x0046
    134 #define VMCB_EXITCODE_EXCP7		0x0047
    135 #define VMCB_EXITCODE_EXCP8		0x0048
    136 #define VMCB_EXITCODE_EXCP9		0x0049
    137 #define VMCB_EXITCODE_EXCP10		0x004A
    138 #define VMCB_EXITCODE_EXCP11		0x004B
    139 #define VMCB_EXITCODE_EXCP12		0x004C
    140 #define VMCB_EXITCODE_EXCP13		0x004D
    141 #define VMCB_EXITCODE_EXCP14		0x004E
    142 #define VMCB_EXITCODE_EXCP15		0x004F
    143 #define VMCB_EXITCODE_EXCP16		0x0050
    144 #define VMCB_EXITCODE_EXCP17		0x0051
    145 #define VMCB_EXITCODE_EXCP18		0x0052
    146 #define VMCB_EXITCODE_EXCP19		0x0053
    147 #define VMCB_EXITCODE_EXCP20		0x0054
    148 #define VMCB_EXITCODE_EXCP21		0x0055
    149 #define VMCB_EXITCODE_EXCP22		0x0056
    150 #define VMCB_EXITCODE_EXCP23		0x0057
    151 #define VMCB_EXITCODE_EXCP24		0x0058
    152 #define VMCB_EXITCODE_EXCP25		0x0059
    153 #define VMCB_EXITCODE_EXCP26		0x005A
    154 #define VMCB_EXITCODE_EXCP27		0x005B
    155 #define VMCB_EXITCODE_EXCP28		0x005C
    156 #define VMCB_EXITCODE_EXCP29		0x005D
    157 #define VMCB_EXITCODE_EXCP30		0x005E
    158 #define VMCB_EXITCODE_EXCP31		0x005F
    159 #define VMCB_EXITCODE_INTR		0x0060
    160 #define VMCB_EXITCODE_NMI		0x0061
    161 #define VMCB_EXITCODE_SMI		0x0062
    162 #define VMCB_EXITCODE_INIT		0x0063
    163 #define VMCB_EXITCODE_VINTR		0x0064
    164 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    165 #define VMCB_EXITCODE_IDTR_READ		0x0066
    166 #define VMCB_EXITCODE_GDTR_READ		0x0067
    167 #define VMCB_EXITCODE_LDTR_READ		0x0068
    168 #define VMCB_EXITCODE_TR_READ		0x0069
    169 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    170 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    171 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    172 #define VMCB_EXITCODE_TR_WRITE		0x006D
    173 #define VMCB_EXITCODE_RDTSC		0x006E
    174 #define VMCB_EXITCODE_RDPMC		0x006F
    175 #define VMCB_EXITCODE_PUSHF		0x0070
    176 #define VMCB_EXITCODE_POPF		0x0071
    177 #define VMCB_EXITCODE_CPUID		0x0072
    178 #define VMCB_EXITCODE_RSM		0x0073
    179 #define VMCB_EXITCODE_IRET		0x0074
    180 #define VMCB_EXITCODE_SWINT		0x0075
    181 #define VMCB_EXITCODE_INVD		0x0076
    182 #define VMCB_EXITCODE_PAUSE		0x0077
    183 #define VMCB_EXITCODE_HLT		0x0078
    184 #define VMCB_EXITCODE_INVLPG		0x0079
    185 #define VMCB_EXITCODE_INVLPGA		0x007A
    186 #define VMCB_EXITCODE_IOIO		0x007B
    187 #define VMCB_EXITCODE_MSR		0x007C
    188 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    189 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    190 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    191 #define VMCB_EXITCODE_VMRUN		0x0080
    192 #define VMCB_EXITCODE_VMMCALL		0x0081
    193 #define VMCB_EXITCODE_VMLOAD		0x0082
    194 #define VMCB_EXITCODE_VMSAVE		0x0083
    195 #define VMCB_EXITCODE_STGI		0x0084
    196 #define VMCB_EXITCODE_CLGI		0x0085
    197 #define VMCB_EXITCODE_SKINIT		0x0086
    198 #define VMCB_EXITCODE_RDTSCP		0x0087
    199 #define VMCB_EXITCODE_ICEBP		0x0088
    200 #define VMCB_EXITCODE_WBINVD		0x0089
    201 #define VMCB_EXITCODE_MONITOR		0x008A
    202 #define VMCB_EXITCODE_MWAIT		0x008B
    203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    204 #define VMCB_EXITCODE_XSETBV		0x008D
    205 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    206 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    207 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    208 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    209 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    210 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    211 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    212 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    213 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    214 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    215 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    216 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    217 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    218 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    219 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    220 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    221 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    222 #define VMCB_EXITCODE_NPF		0x0400
    223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    224 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    225 #define VMCB_EXITCODE_VMGEXIT		0x0403
    226 #define VMCB_EXITCODE_INVALID		-1
    227 
    228 /* -------------------------------------------------------------------------- */
    229 
    230 struct vmcb_ctrl {
    231 	uint32_t intercept_cr;
    232 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    233 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    234 
    235 	uint32_t intercept_dr;
    236 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    237 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    238 
    239 	uint32_t intercept_vec;
    240 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    241 
    242 	uint32_t intercept_misc1;
    243 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    244 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    245 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    246 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    247 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    249 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    250 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    251 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    252 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    253 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    254 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    255 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    256 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    257 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    258 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    259 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    260 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    261 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    262 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    263 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    264 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    265 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    266 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    267 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    268 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    269 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    271 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    272 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    275 
    276 	uint32_t intercept_misc2;
    277 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    278 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    279 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    280 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    281 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    282 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    283 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    284 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    285 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    286 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    287 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    288 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
    289 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    292 
    293 	uint8_t  rsvd1[40];
    294 	uint16_t pause_filt_thresh;
    295 	uint16_t pause_filt_cnt;
    296 	uint64_t iopm_base_pa;
    297 	uint64_t msrpm_base_pa;
    298 	uint64_t tsc_offset;
    299 	uint32_t guest_asid;
    300 
    301 	uint32_t tlb_ctrl;
    302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    305 
    306 	uint64_t v;
    307 #define VMCB_CTRL_V_TPR			__BITS(3,0)
    308 #define VMCB_CTRL_V_IRQ			__BIT(8)
    309 #define VMCB_CTRL_V_VGIF		__BIT(9)
    310 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    311 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    312 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    313 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    314 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    315 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    316 
    317 	uint64_t intr;
    318 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    319 
    320 	uint64_t exitcode;
    321 	uint64_t exitinfo1;
    322 	uint64_t exitinfo2;
    323 
    324 	uint64_t exitintinfo;
    325 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    326 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    327 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    328 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    330 
    331 	uint64_t enable1;
    332 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    333 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    334 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    335 
    336 	uint64_t avic;
    337 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    338 
    339 	uint64_t ghcb;
    340 
    341 	uint64_t eventinj;
    342 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    343 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    344 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    345 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    346 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    347 
    348 	uint64_t n_cr3;
    349 
    350 	uint64_t enable2;
    351 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    352 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    353 
    354 	uint32_t vmcb_clean;
    355 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    356 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    357 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    358 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    359 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    360 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    361 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    362 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    363 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    364 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    365 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    366 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    367 
    368 	uint32_t rsvd2;
    369 	uint64_t nrip;
    370 	uint8_t	inst_len;
    371 	uint8_t	inst_bytes[15];
    372 	uint64_t avic_abpp;
    373 	uint64_t rsvd3;
    374 	uint64_t avic_ltp;
    375 
    376 	uint64_t avic_phys;
    377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    379 
    380 	uint64_t rsvd4;
    381 	uint64_t vmcb_ptr;
    382 
    383 	uint8_t	pad[752];
    384 } __packed;
    385 
    386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    387 
    388 struct vmcb_segment {
    389 	uint16_t selector;
    390 	uint16_t attrib;	/* hidden */
    391 	uint32_t limit;		/* hidden */
    392 	uint64_t base;		/* hidden */
    393 } __packed;
    394 
    395 CTASSERT(sizeof(struct vmcb_segment) == 16);
    396 
    397 struct vmcb_state {
    398 	struct   vmcb_segment es;
    399 	struct   vmcb_segment cs;
    400 	struct   vmcb_segment ss;
    401 	struct   vmcb_segment ds;
    402 	struct   vmcb_segment fs;
    403 	struct   vmcb_segment gs;
    404 	struct   vmcb_segment gdt;
    405 	struct   vmcb_segment ldt;
    406 	struct   vmcb_segment idt;
    407 	struct   vmcb_segment tr;
    408 	uint8_t	 rsvd1[43];
    409 	uint8_t	 cpl;
    410 	uint8_t  rsvd2[4];
    411 	uint64_t efer;
    412 	uint8_t	 rsvd3[112];
    413 	uint64_t cr4;
    414 	uint64_t cr3;
    415 	uint64_t cr0;
    416 	uint64_t dr7;
    417 	uint64_t dr6;
    418 	uint64_t rflags;
    419 	uint64_t rip;
    420 	uint8_t	 rsvd4[88];
    421 	uint64_t rsp;
    422 	uint8_t	 rsvd5[24];
    423 	uint64_t rax;
    424 	uint64_t star;
    425 	uint64_t lstar;
    426 	uint64_t cstar;
    427 	uint64_t sfmask;
    428 	uint64_t kernelgsbase;
    429 	uint64_t sysenter_cs;
    430 	uint64_t sysenter_esp;
    431 	uint64_t sysenter_eip;
    432 	uint64_t cr2;
    433 	uint8_t	 rsvd6[32];
    434 	uint64_t g_pat;
    435 	uint64_t dbgctl;
    436 	uint64_t br_from;
    437 	uint64_t br_to;
    438 	uint64_t int_from;
    439 	uint64_t int_to;
    440 	uint8_t	 pad[2408];
    441 } __packed;
    442 
    443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    444 
    445 struct vmcb {
    446 	struct vmcb_ctrl ctrl;
    447 	struct vmcb_state state;
    448 } __packed;
    449 
    450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    452 
    453 /* -------------------------------------------------------------------------- */
    454 
    455 struct svm_hsave {
    456 	paddr_t pa;
    457 };
    458 
    459 static struct svm_hsave hsave[MAXCPUS];
    460 
    461 static uint8_t *svm_asidmap __read_mostly;
    462 static uint32_t svm_maxasid __read_mostly;
    463 static kmutex_t svm_asidlock __cacheline_aligned;
    464 
    465 static bool svm_decode_assist __read_mostly;
    466 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    467 
    468 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    469 static uint64_t svm_xcr0_mask __read_mostly;
    470 
    471 #define SVM_NCPUIDS	32
    472 
    473 #define VMCB_NPAGES	1
    474 
    475 #define MSRBM_NPAGES	2
    476 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    477 
    478 #define IOBM_NPAGES	3
    479 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    480 
    481 /* Does not include EFER_LMSLE. */
    482 #define EFER_VALID \
    483 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    484 
    485 #define EFER_TLB_FLUSH \
    486 	(EFER_NXE|EFER_LMA|EFER_LME)
    487 #define CR0_TLB_FLUSH \
    488 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    489 #define CR4_TLB_FLUSH \
    490 	(CR4_PGE|CR4_PAE|CR4_PSE)
    491 
    492 /* -------------------------------------------------------------------------- */
    493 
    494 struct svm_machdata {
    495 	bool cpuidpresent[SVM_NCPUIDS];
    496 	struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
    497 	volatile uint64_t mach_htlb_gen;
    498 };
    499 
    500 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
    501 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    502 };
    503 
    504 struct svm_cpudata {
    505 	/* General */
    506 	bool shared_asid;
    507 	bool gtlb_want_flush;
    508 	uint64_t vcpu_htlb_gen;
    509 
    510 	/* VMCB */
    511 	struct vmcb *vmcb;
    512 	paddr_t vmcb_pa;
    513 
    514 	/* I/O bitmap */
    515 	uint8_t *iobm;
    516 	paddr_t iobm_pa;
    517 
    518 	/* MSR bitmap */
    519 	uint8_t *msrbm;
    520 	paddr_t msrbm_pa;
    521 
    522 	/* Host state */
    523 	uint64_t hxcr0;
    524 	uint64_t star;
    525 	uint64_t lstar;
    526 	uint64_t cstar;
    527 	uint64_t sfmask;
    528 	uint64_t fsbase;
    529 	uint64_t kernelgsbase;
    530 	bool ts_set;
    531 	struct xsave_header hfpu __aligned(64);
    532 
    533 	/* Event state */
    534 	bool int_window_exit;
    535 	bool nmi_window_exit;
    536 
    537 	/* Guest state */
    538 	uint64_t gxcr0;
    539 	uint64_t gprs[NVMM_X64_NGPR];
    540 	uint64_t drs[NVMM_X64_NDR];
    541 	uint64_t tsc_offset;
    542 	struct xsave_header gfpu __aligned(64);
    543 };
    544 
    545 static void
    546 svm_vmcb_cache_default(struct vmcb *vmcb)
    547 {
    548 	vmcb->ctrl.vmcb_clean =
    549 	    VMCB_CTRL_VMCB_CLEAN_I |
    550 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    551 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    552 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    553 	    VMCB_CTRL_VMCB_CLEAN_NP |
    554 	    VMCB_CTRL_VMCB_CLEAN_CR |
    555 	    VMCB_CTRL_VMCB_CLEAN_DR |
    556 	    VMCB_CTRL_VMCB_CLEAN_DT |
    557 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    558 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    559 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    560 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    561 }
    562 
    563 static void
    564 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    565 {
    566 	if (flags & NVMM_X64_STATE_SEGS) {
    567 		vmcb->ctrl.vmcb_clean &=
    568 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    569 	}
    570 	if (flags & NVMM_X64_STATE_CRS) {
    571 		vmcb->ctrl.vmcb_clean &=
    572 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    573 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    574 	}
    575 	if (flags & NVMM_X64_STATE_DRS) {
    576 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    577 	}
    578 	if (flags & NVMM_X64_STATE_MSRS) {
    579 		/* CR for EFER, NP for PAT. */
    580 		vmcb->ctrl.vmcb_clean &=
    581 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    582 	}
    583 }
    584 
    585 static inline void
    586 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    587 {
    588 	vmcb->ctrl.vmcb_clean &= ~flags;
    589 }
    590 
    591 static inline void
    592 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    593 {
    594 	vmcb->ctrl.vmcb_clean = 0;
    595 }
    596 
    597 #define SVM_EVENT_TYPE_HW_INT	0
    598 #define SVM_EVENT_TYPE_NMI	2
    599 #define SVM_EVENT_TYPE_EXC	3
    600 #define SVM_EVENT_TYPE_SW_INT	4
    601 
    602 static void
    603 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    604 {
    605 	struct svm_cpudata *cpudata = vcpu->cpudata;
    606 	struct vmcb *vmcb = cpudata->vmcb;
    607 
    608 	if (nmi) {
    609 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    610 		cpudata->nmi_window_exit = true;
    611 	} else {
    612 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    613 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    614 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    615 		cpudata->int_window_exit = true;
    616 	}
    617 
    618 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    619 }
    620 
    621 static void
    622 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    623 {
    624 	struct svm_cpudata *cpudata = vcpu->cpudata;
    625 	struct vmcb *vmcb = cpudata->vmcb;
    626 
    627 	if (nmi) {
    628 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    629 		cpudata->nmi_window_exit = false;
    630 	} else {
    631 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    632 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    633 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    634 		cpudata->int_window_exit = false;
    635 	}
    636 
    637 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    638 }
    639 
    640 static inline int
    641 svm_event_has_error(uint64_t vector)
    642 {
    643 	switch (vector) {
    644 	case 8:		/* #DF */
    645 	case 10:	/* #TS */
    646 	case 11:	/* #NP */
    647 	case 12:	/* #SS */
    648 	case 13:	/* #GP */
    649 	case 14:	/* #PF */
    650 	case 17:	/* #AC */
    651 	case 30:	/* #SX */
    652 		return 1;
    653 	default:
    654 		return 0;
    655 	}
    656 }
    657 
    658 static int
    659 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    660     struct nvmm_event *event)
    661 {
    662 	struct svm_cpudata *cpudata = vcpu->cpudata;
    663 	struct vmcb *vmcb = cpudata->vmcb;
    664 	int type = 0, err = 0;
    665 
    666 	if (event->vector >= 256) {
    667 		return EINVAL;
    668 	}
    669 
    670 	switch (event->type) {
    671 	case NVMM_EVENT_INTERRUPT_HW:
    672 		type = SVM_EVENT_TYPE_HW_INT;
    673 		if (event->vector == 2) {
    674 			type = SVM_EVENT_TYPE_NMI;
    675 		}
    676 		if (type == SVM_EVENT_TYPE_NMI) {
    677 			if (cpudata->nmi_window_exit) {
    678 				return EAGAIN;
    679 			}
    680 			svm_event_waitexit_enable(vcpu, true);
    681 		} else {
    682 			if (((vmcb->state.rflags & PSL_I) == 0) ||
    683 			    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
    684 				svm_event_waitexit_enable(vcpu, false);
    685 				return EAGAIN;
    686 			}
    687 		}
    688 		err = 0;
    689 		break;
    690 	case NVMM_EVENT_INTERRUPT_SW:
    691 		return EINVAL;
    692 	case NVMM_EVENT_EXCEPTION:
    693 		type = SVM_EVENT_TYPE_EXC;
    694 		if (event->vector == 2 || event->vector >= 32)
    695 			return EINVAL;
    696 		if (event->vector == 3 || event->vector == 0)
    697 			return EINVAL;
    698 		err = svm_event_has_error(event->vector);
    699 		break;
    700 	default:
    701 		return EINVAL;
    702 	}
    703 
    704 	vmcb->ctrl.eventinj =
    705 	    __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    706 	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
    707 	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
    708 	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
    709 	    __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    710 
    711 	return 0;
    712 }
    713 
    714 static void
    715 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    716 {
    717 	struct nvmm_event event;
    718 	int ret __diagused;
    719 
    720 	event.type = NVMM_EVENT_EXCEPTION;
    721 	event.vector = 6;
    722 	event.u.error = 0;
    723 
    724 	ret = svm_vcpu_inject(mach, vcpu, &event);
    725 	KASSERT(ret == 0);
    726 }
    727 
    728 static void
    729 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    730 {
    731 	struct nvmm_event event;
    732 	int ret __diagused;
    733 
    734 	event.type = NVMM_EVENT_EXCEPTION;
    735 	event.vector = 13;
    736 	event.u.error = 0;
    737 
    738 	ret = svm_vcpu_inject(mach, vcpu, &event);
    739 	KASSERT(ret == 0);
    740 }
    741 
    742 static inline void
    743 svm_inkernel_advance(struct vmcb *vmcb)
    744 {
    745 	/*
    746 	 * Maybe we should also apply single-stepping and debug exceptions.
    747 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    748 	 * debugger.
    749 	 */
    750 	vmcb->state.rip = vmcb->ctrl.nrip;
    751 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    752 }
    753 
    754 static void
    755 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    756 {
    757 	struct svm_cpudata *cpudata = vcpu->cpudata;
    758 	uint64_t cr4;
    759 
    760 	switch (eax) {
    761 	case 0x00000001:
    762 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
    763 
    764 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    765 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    766 		    CPUID_LOCAL_APIC_ID);
    767 
    768 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
    769 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
    770 
    771 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
    772 
    773 		/* CPUID2_OSXSAVE depends on CR4. */
    774 		cr4 = cpudata->vmcb->state.cr4;
    775 		if (!(cr4 & CR4_OSXSAVE)) {
    776 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
    777 		}
    778 		break;
    779 	case 0x00000005:
    780 	case 0x00000006:
    781 		cpudata->vmcb->state.rax = 0;
    782 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    783 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    784 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    785 		break;
    786 	case 0x00000007:
    787 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
    788 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
    789 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
    790 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
    791 		break;
    792 	case 0x0000000D:
    793 		if (svm_xcr0_mask == 0) {
    794 			break;
    795 		}
    796 		switch (ecx) {
    797 		case 0:
    798 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    799 			if (cpudata->gxcr0 & XCR0_SSE) {
    800 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    801 			} else {
    802 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    803 			}
    804 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    805 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
    806 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    807 			break;
    808 		case 1:
    809 			cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
    810 			break;
    811 		}
    812 		break;
    813 	case 0x40000000:
    814 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    815 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    816 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    817 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    818 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    819 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    820 		break;
    821 	case 0x80000001:
    822 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
    823 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
    824 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
    825 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
    826 		break;
    827 	default:
    828 		break;
    829 	}
    830 }
    831 
    832 static void
    833 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    834     struct nvmm_exit *exit)
    835 {
    836 	struct svm_machdata *machdata = mach->machdata;
    837 	struct svm_cpudata *cpudata = vcpu->cpudata;
    838 	struct nvmm_x86_conf_cpuid *cpuid;
    839 	uint64_t eax, ecx;
    840 	u_int descs[4];
    841 	size_t i;
    842 
    843 	eax = cpudata->vmcb->state.rax;
    844 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    845 	x86_cpuid2(eax, ecx, descs);
    846 
    847 	cpudata->vmcb->state.rax = descs[0];
    848 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    849 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    850 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    851 
    852 	for (i = 0; i < SVM_NCPUIDS; i++) {
    853 		cpuid = &machdata->cpuid[i];
    854 		if (!machdata->cpuidpresent[i]) {
    855 			continue;
    856 		}
    857 		if (cpuid->leaf != eax) {
    858 			continue;
    859 		}
    860 
    861 		/* del */
    862 		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
    863 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
    864 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
    865 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
    866 
    867 		/* set */
    868 		cpudata->vmcb->state.rax |= cpuid->set.eax;
    869 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
    870 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
    871 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
    872 
    873 		break;
    874 	}
    875 
    876 	/* Overwrite non-tunable leaves. */
    877 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    878 
    879 	svm_inkernel_advance(cpudata->vmcb);
    880 	exit->reason = NVMM_EXIT_NONE;
    881 }
    882 
    883 static void
    884 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    885     struct nvmm_exit *exit)
    886 {
    887 	struct svm_cpudata *cpudata = vcpu->cpudata;
    888 	struct vmcb *vmcb = cpudata->vmcb;
    889 
    890 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
    891 		svm_event_waitexit_disable(vcpu, false);
    892 	}
    893 
    894 	svm_inkernel_advance(cpudata->vmcb);
    895 	exit->reason = NVMM_EXIT_HALTED;
    896 }
    897 
    898 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    899 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    900 #define SVM_EXIT_IO_A64		__BIT(9)
    901 #define SVM_EXIT_IO_A32		__BIT(8)
    902 #define SVM_EXIT_IO_A16		__BIT(7)
    903 #define SVM_EXIT_IO_SZ32	__BIT(6)
    904 #define SVM_EXIT_IO_SZ16	__BIT(5)
    905 #define SVM_EXIT_IO_SZ8		__BIT(4)
    906 #define SVM_EXIT_IO_REP		__BIT(3)
    907 #define SVM_EXIT_IO_STR		__BIT(2)
    908 #define SVM_EXIT_IO_IN		__BIT(0)
    909 
    910 static void
    911 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    912     struct nvmm_exit *exit)
    913 {
    914 	struct svm_cpudata *cpudata = vcpu->cpudata;
    915 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    916 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    917 
    918 	exit->reason = NVMM_EXIT_IO;
    919 
    920 	if (info & SVM_EXIT_IO_IN) {
    921 		exit->u.io.type = NVMM_EXIT_IO_IN;
    922 	} else {
    923 		exit->u.io.type = NVMM_EXIT_IO_OUT;
    924 	}
    925 
    926 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
    927 
    928 	if (svm_decode_assist) {
    929 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
    930 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
    931 	} else {
    932 		exit->u.io.seg = -1;
    933 	}
    934 
    935 	if (info & SVM_EXIT_IO_A64) {
    936 		exit->u.io.address_size = 8;
    937 	} else if (info & SVM_EXIT_IO_A32) {
    938 		exit->u.io.address_size = 4;
    939 	} else if (info & SVM_EXIT_IO_A16) {
    940 		exit->u.io.address_size = 2;
    941 	}
    942 
    943 	if (info & SVM_EXIT_IO_SZ32) {
    944 		exit->u.io.operand_size = 4;
    945 	} else if (info & SVM_EXIT_IO_SZ16) {
    946 		exit->u.io.operand_size = 2;
    947 	} else if (info & SVM_EXIT_IO_SZ8) {
    948 		exit->u.io.operand_size = 1;
    949 	}
    950 
    951 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
    952 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
    953 	exit->u.io.npc = nextpc;
    954 }
    955 
    956 static const uint64_t msr_ignore_list[] = {
    957 	0xc0010055, /* MSR_CMPHALT */
    958 	MSR_DE_CFG,
    959 	MSR_IC_CFG,
    960 	MSR_UCODE_AMD_PATCHLEVEL
    961 };
    962 
    963 static bool
    964 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    965     struct nvmm_exit *exit)
    966 {
    967 	struct svm_cpudata *cpudata = vcpu->cpudata;
    968 	struct vmcb *vmcb = cpudata->vmcb;
    969 	uint64_t val;
    970 	size_t i;
    971 
    972 	switch (exit->u.msr.type) {
    973 	case NVMM_EXIT_MSR_RDMSR:
    974 		if (exit->u.msr.msr == MSR_NB_CFG) {
    975 			val = NB_CFG_INITAPICCPUIDLO;
    976 			vmcb->state.rax = (val & 0xFFFFFFFF);
    977 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    978 			goto handled;
    979 		}
    980 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    981 			if (msr_ignore_list[i] != exit->u.msr.msr)
    982 				continue;
    983 			val = 0;
    984 			vmcb->state.rax = (val & 0xFFFFFFFF);
    985 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    986 			goto handled;
    987 		}
    988 		break;
    989 	case NVMM_EXIT_MSR_WRMSR:
    990 		if (exit->u.msr.msr == MSR_EFER) {
    991 			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
    992 				goto error;
    993 			}
    994 			if ((vmcb->state.efer ^ exit->u.msr.val) &
    995 			     EFER_TLB_FLUSH) {
    996 				cpudata->gtlb_want_flush = true;
    997 			}
    998 			vmcb->state.efer = exit->u.msr.val | EFER_SVME;
    999 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
   1000 			goto handled;
   1001 		}
   1002 		if (exit->u.msr.msr == MSR_TSC) {
   1003 			cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
   1004 			vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
   1005 			    curcpu()->ci_data.cpu_cc_skew;
   1006 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
   1007 			goto handled;
   1008 		}
   1009 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1010 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1011 				continue;
   1012 			goto handled;
   1013 		}
   1014 		break;
   1015 	}
   1016 
   1017 	return false;
   1018 
   1019 handled:
   1020 	svm_inkernel_advance(cpudata->vmcb);
   1021 	return true;
   1022 
   1023 error:
   1024 	svm_inject_gp(mach, vcpu);
   1025 	return true;
   1026 }
   1027 
   1028 static void
   1029 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1030     struct nvmm_exit *exit)
   1031 {
   1032 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1033 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1034 
   1035 	if (info == 0) {
   1036 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1037 	} else {
   1038 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1039 	}
   1040 
   1041 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1042 
   1043 	if (info == 1) {
   1044 		uint64_t rdx, rax;
   1045 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1046 		rax = cpudata->vmcb->state.rax;
   1047 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1048 	} else {
   1049 		exit->u.msr.val = 0;
   1050 	}
   1051 
   1052 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1053 		exit->reason = NVMM_EXIT_NONE;
   1054 		return;
   1055 	}
   1056 
   1057 	exit->reason = NVMM_EXIT_MSR;
   1058 	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
   1059 }
   1060 
   1061 static void
   1062 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1063     struct nvmm_exit *exit)
   1064 {
   1065 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1066 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1067 
   1068 	exit->reason = NVMM_EXIT_MEMORY;
   1069 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1070 		exit->u.mem.prot = PROT_WRITE;
   1071 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1072 		exit->u.mem.prot = PROT_EXEC;
   1073 	else
   1074 		exit->u.mem.prot = PROT_READ;
   1075 	exit->u.mem.gpa = gpa;
   1076 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1077 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1078 	    sizeof(exit->u.mem.inst_bytes));
   1079 }
   1080 
   1081 static void
   1082 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
   1083 {
   1084 	exit->u.insn.npc = vmcb->ctrl.nrip;
   1085 	exit->reason = reason;
   1086 }
   1087 
   1088 static void
   1089 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1090     struct nvmm_exit *exit)
   1091 {
   1092 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1093 	struct vmcb *vmcb = cpudata->vmcb;
   1094 	uint64_t val;
   1095 
   1096 	exit->reason = NVMM_EXIT_NONE;
   1097 
   1098 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1099 	    (vmcb->state.rax & 0xFFFFFFFF);
   1100 
   1101 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1102 		goto error;
   1103 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1104 		goto error;
   1105 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1106 		goto error;
   1107 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1108 		goto error;
   1109 	}
   1110 
   1111 	cpudata->gxcr0 = val;
   1112 
   1113 	svm_inkernel_advance(cpudata->vmcb);
   1114 	return;
   1115 
   1116 error:
   1117 	svm_inject_gp(mach, vcpu);
   1118 }
   1119 
   1120 /* -------------------------------------------------------------------------- */
   1121 
   1122 static void
   1123 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1124 {
   1125 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1126 
   1127 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1128 
   1129 	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
   1130 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
   1131 
   1132 	if (svm_xcr0_mask != 0) {
   1133 		cpudata->hxcr0 = rdxcr(0);
   1134 		wrxcr(0, cpudata->gxcr0);
   1135 	}
   1136 }
   1137 
   1138 static void
   1139 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1140 {
   1141 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1142 
   1143 	if (svm_xcr0_mask != 0) {
   1144 		cpudata->gxcr0 = rdxcr(0);
   1145 		wrxcr(0, cpudata->hxcr0);
   1146 	}
   1147 
   1148 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
   1149 	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
   1150 
   1151 	if (cpudata->ts_set) {
   1152 		stts();
   1153 	}
   1154 }
   1155 
   1156 static void
   1157 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1158 {
   1159 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1160 
   1161 	x86_dbregs_save(curlwp);
   1162 
   1163 	ldr7(0);
   1164 
   1165 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1166 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1167 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1168 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1169 }
   1170 
   1171 static void
   1172 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1173 {
   1174 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1175 
   1176 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1177 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1178 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1179 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1180 
   1181 	x86_dbregs_restore(curlwp);
   1182 }
   1183 
   1184 static void
   1185 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1186 {
   1187 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1188 
   1189 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1190 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1191 }
   1192 
   1193 static void
   1194 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1195 {
   1196 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1197 
   1198 	wrmsr(MSR_STAR, cpudata->star);
   1199 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1200 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1201 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1202 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1203 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1204 }
   1205 
   1206 /* -------------------------------------------------------------------------- */
   1207 
   1208 static inline void
   1209 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1210 {
   1211 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1212 
   1213 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1214 		cpudata->gtlb_want_flush = true;
   1215 	}
   1216 }
   1217 
   1218 static inline void
   1219 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1220 {
   1221 	/*
   1222 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
   1223 	 * executing on this hCPU and the hTLB already got flushed, or it
   1224 	 * was executing on another hCPU in which case the catchup is done
   1225 	 * in svm_gtlb_catchup().
   1226 	 */
   1227 }
   1228 
   1229 static inline uint64_t
   1230 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
   1231 {
   1232 	struct vmcb *vmcb = cpudata->vmcb;
   1233 	uint64_t machgen;
   1234 
   1235 	machgen = machdata->mach_htlb_gen;
   1236 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1237 		return machgen;
   1238 	}
   1239 
   1240 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1241 	return machgen;
   1242 }
   1243 
   1244 static inline void
   1245 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
   1246 {
   1247 	struct vmcb *vmcb = cpudata->vmcb;
   1248 
   1249 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
   1250 		cpudata->vcpu_htlb_gen = machgen;
   1251 	}
   1252 }
   1253 
   1254 static int
   1255 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1256     struct nvmm_exit *exit)
   1257 {
   1258 	struct svm_machdata *machdata = mach->machdata;
   1259 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1260 	struct vmcb *vmcb = cpudata->vmcb;
   1261 	uint64_t machgen;
   1262 	int hcpu, s;
   1263 
   1264 	kpreempt_disable();
   1265 	hcpu = cpu_number();
   1266 
   1267 	svm_gtlb_catchup(vcpu, hcpu);
   1268 	svm_htlb_catchup(vcpu, hcpu);
   1269 
   1270 	if (vcpu->hcpu_last != hcpu) {
   1271 		vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
   1272 		    curcpu()->ci_data.cpu_cc_skew;
   1273 		svm_vmcb_cache_flush_all(vmcb);
   1274 	}
   1275 
   1276 	svm_vcpu_guest_dbregs_enter(vcpu);
   1277 	svm_vcpu_guest_misc_enter(vcpu);
   1278 
   1279 	while (1) {
   1280 		if (cpudata->gtlb_want_flush) {
   1281 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1282 		} else {
   1283 			vmcb->ctrl.tlb_ctrl = 0;
   1284 		}
   1285 
   1286 		s = splhigh();
   1287 		machgen = svm_htlb_flush(machdata, cpudata);
   1288 		svm_vcpu_guest_fpu_enter(vcpu);
   1289 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1290 		svm_vcpu_guest_fpu_leave(vcpu);
   1291 		svm_htlb_flush_ack(cpudata, machgen);
   1292 		splx(s);
   1293 
   1294 		svm_vmcb_cache_default(vmcb);
   1295 
   1296 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1297 			cpudata->gtlb_want_flush = false;
   1298 			vcpu->hcpu_last = hcpu;
   1299 		}
   1300 
   1301 		switch (vmcb->ctrl.exitcode) {
   1302 		case VMCB_EXITCODE_INTR:
   1303 		case VMCB_EXITCODE_NMI:
   1304 			exit->reason = NVMM_EXIT_NONE;
   1305 			break;
   1306 		case VMCB_EXITCODE_VINTR:
   1307 			svm_event_waitexit_disable(vcpu, false);
   1308 			exit->reason = NVMM_EXIT_INT_READY;
   1309 			break;
   1310 		case VMCB_EXITCODE_IRET:
   1311 			svm_event_waitexit_disable(vcpu, true);
   1312 			exit->reason = NVMM_EXIT_NMI_READY;
   1313 			break;
   1314 		case VMCB_EXITCODE_CPUID:
   1315 			svm_exit_cpuid(mach, vcpu, exit);
   1316 			break;
   1317 		case VMCB_EXITCODE_HLT:
   1318 			svm_exit_hlt(mach, vcpu, exit);
   1319 			break;
   1320 		case VMCB_EXITCODE_IOIO:
   1321 			svm_exit_io(mach, vcpu, exit);
   1322 			break;
   1323 		case VMCB_EXITCODE_MSR:
   1324 			svm_exit_msr(mach, vcpu, exit);
   1325 			break;
   1326 		case VMCB_EXITCODE_SHUTDOWN:
   1327 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1328 			break;
   1329 		case VMCB_EXITCODE_RDPMC:
   1330 		case VMCB_EXITCODE_RSM:
   1331 		case VMCB_EXITCODE_INVLPGA:
   1332 		case VMCB_EXITCODE_VMRUN:
   1333 		case VMCB_EXITCODE_VMMCALL:
   1334 		case VMCB_EXITCODE_VMLOAD:
   1335 		case VMCB_EXITCODE_VMSAVE:
   1336 		case VMCB_EXITCODE_STGI:
   1337 		case VMCB_EXITCODE_CLGI:
   1338 		case VMCB_EXITCODE_SKINIT:
   1339 		case VMCB_EXITCODE_RDTSCP:
   1340 			svm_inject_ud(mach, vcpu);
   1341 			exit->reason = NVMM_EXIT_NONE;
   1342 			break;
   1343 		case VMCB_EXITCODE_MONITOR:
   1344 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
   1345 			break;
   1346 		case VMCB_EXITCODE_MWAIT:
   1347 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
   1348 			break;
   1349 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1350 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
   1351 			break;
   1352 		case VMCB_EXITCODE_XSETBV:
   1353 			svm_exit_xsetbv(mach, vcpu, exit);
   1354 			break;
   1355 		case VMCB_EXITCODE_NPF:
   1356 			svm_exit_npf(mach, vcpu, exit);
   1357 			break;
   1358 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1359 		default:
   1360 			exit->reason = NVMM_EXIT_INVALID;
   1361 			break;
   1362 		}
   1363 
   1364 		/* If no reason to return to userland, keep rolling. */
   1365 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1366 			break;
   1367 		}
   1368 		if (curcpu()->ci_data.cpu_softints != 0) {
   1369 			break;
   1370 		}
   1371 		if (curlwp->l_flag & LW_USERRET) {
   1372 			break;
   1373 		}
   1374 		if (exit->reason != NVMM_EXIT_NONE) {
   1375 			break;
   1376 		}
   1377 	}
   1378 
   1379 	svm_vcpu_guest_misc_leave(vcpu);
   1380 	svm_vcpu_guest_dbregs_leave(vcpu);
   1381 
   1382 	kpreempt_enable();
   1383 
   1384 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1385 	    VMCB_CTRL_V_TPR);
   1386 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
   1387 
   1388 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1389 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1390 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1391 	    cpudata->int_window_exit;
   1392 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1393 	    cpudata->nmi_window_exit;
   1394 
   1395 	return 0;
   1396 }
   1397 
   1398 /* -------------------------------------------------------------------------- */
   1399 
   1400 static int
   1401 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1402 {
   1403 	struct pglist pglist;
   1404 	paddr_t _pa;
   1405 	vaddr_t _va;
   1406 	size_t i;
   1407 	int ret;
   1408 
   1409 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1410 	    &pglist, 1, 0);
   1411 	if (ret != 0)
   1412 		return ENOMEM;
   1413 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1414 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1415 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1416 	if (_va == 0)
   1417 		goto error;
   1418 
   1419 	for (i = 0; i < npages; i++) {
   1420 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1421 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1422 	}
   1423 	pmap_update(pmap_kernel());
   1424 
   1425 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1426 
   1427 	*pa = _pa;
   1428 	*va = _va;
   1429 	return 0;
   1430 
   1431 error:
   1432 	for (i = 0; i < npages; i++) {
   1433 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1434 	}
   1435 	return ENOMEM;
   1436 }
   1437 
   1438 static void
   1439 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1440 {
   1441 	size_t i;
   1442 
   1443 	pmap_kremove(va, npages * PAGE_SIZE);
   1444 	pmap_update(pmap_kernel());
   1445 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1446 	for (i = 0; i < npages; i++) {
   1447 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1448 	}
   1449 }
   1450 
   1451 /* -------------------------------------------------------------------------- */
   1452 
   1453 #define SVM_MSRBM_READ	__BIT(0)
   1454 #define SVM_MSRBM_WRITE	__BIT(1)
   1455 
   1456 static void
   1457 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1458 {
   1459 	uint64_t byte;
   1460 	uint8_t bitoff;
   1461 
   1462 	if (msr < 0x00002000) {
   1463 		/* Range 1 */
   1464 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1465 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1466 		/* Range 2 */
   1467 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1468 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1469 		/* Range 3 */
   1470 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1471 	} else {
   1472 		panic("%s: wrong range", __func__);
   1473 	}
   1474 
   1475 	bitoff = (msr & 0x3) << 1;
   1476 
   1477 	if (read) {
   1478 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1479 	}
   1480 	if (write) {
   1481 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1482 	}
   1483 }
   1484 
   1485 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
   1486 #define SVM_SEG_ATTRIB_S		__BIT(4)
   1487 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1488 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1489 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1490 #define SVM_SEG_ATTRIB_L		__BIT(9)
   1491 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
   1492 #define SVM_SEG_ATTRIB_G		__BIT(11)
   1493 
   1494 static void
   1495 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
   1496     struct vmcb_segment *vseg)
   1497 {
   1498 	vseg->selector = seg->selector;
   1499 	vseg->attrib =
   1500 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1501 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
   1502 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1503 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1504 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1505 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
   1506 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
   1507 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
   1508 	vseg->limit = seg->limit;
   1509 	vseg->base = seg->base;
   1510 }
   1511 
   1512 static void
   1513 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1514 {
   1515 	seg->selector = vseg->selector;
   1516 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1517 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
   1518 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1519 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1520 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1521 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
   1522 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
   1523 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
   1524 	seg->limit = vseg->limit;
   1525 	seg->base = vseg->base;
   1526 }
   1527 
   1528 static inline bool
   1529 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
   1530     uint64_t flags)
   1531 {
   1532 	if (flags & NVMM_X64_STATE_CRS) {
   1533 		if ((vmcb->state.cr0 ^
   1534 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1535 			return true;
   1536 		}
   1537 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1538 			return true;
   1539 		}
   1540 		if ((vmcb->state.cr4 ^
   1541 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1542 			return true;
   1543 		}
   1544 	}
   1545 
   1546 	if (flags & NVMM_X64_STATE_MSRS) {
   1547 		if ((vmcb->state.efer ^
   1548 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1549 			return true;
   1550 		}
   1551 	}
   1552 
   1553 	return false;
   1554 }
   1555 
   1556 static void
   1557 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   1558 {
   1559 	const struct nvmm_x64_state *state = data;
   1560 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1561 	struct vmcb *vmcb = cpudata->vmcb;
   1562 	struct fxsave *fpustate;
   1563 
   1564 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1565 		cpudata->gtlb_want_flush = true;
   1566 	}
   1567 
   1568 	if (flags & NVMM_X64_STATE_SEGS) {
   1569 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1570 		    &vmcb->state.cs);
   1571 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1572 		    &vmcb->state.ds);
   1573 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1574 		    &vmcb->state.es);
   1575 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1576 		    &vmcb->state.fs);
   1577 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1578 		    &vmcb->state.gs);
   1579 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1580 		    &vmcb->state.ss);
   1581 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1582 		    &vmcb->state.gdt);
   1583 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1584 		    &vmcb->state.idt);
   1585 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1586 		    &vmcb->state.ldt);
   1587 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1588 		    &vmcb->state.tr);
   1589 
   1590 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1591 	}
   1592 
   1593 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1594 	if (flags & NVMM_X64_STATE_GPRS) {
   1595 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1596 
   1597 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1598 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1599 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1600 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1601 	}
   1602 
   1603 	if (flags & NVMM_X64_STATE_CRS) {
   1604 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1605 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1606 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1607 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1608 
   1609 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1610 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1611 		    VMCB_CTRL_V_TPR);
   1612 
   1613 		if (svm_xcr0_mask != 0) {
   1614 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1615 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1616 			cpudata->gxcr0 &= svm_xcr0_mask;
   1617 			cpudata->gxcr0 |= XCR0_X87;
   1618 		}
   1619 	}
   1620 
   1621 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1622 	if (flags & NVMM_X64_STATE_DRS) {
   1623 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1624 
   1625 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1626 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1627 	}
   1628 
   1629 	if (flags & NVMM_X64_STATE_MSRS) {
   1630 		/*
   1631 		 * EFER_SVME is mandatory.
   1632 		 */
   1633 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1634 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1635 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1636 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1637 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1638 		vmcb->state.kernelgsbase =
   1639 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1640 		vmcb->state.sysenter_cs =
   1641 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1642 		vmcb->state.sysenter_esp =
   1643 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1644 		vmcb->state.sysenter_eip =
   1645 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1646 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1647 	}
   1648 
   1649 	if (flags & NVMM_X64_STATE_MISC) {
   1650 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   1651 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1652 		} else {
   1653 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1654 		}
   1655 
   1656 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   1657 			svm_event_waitexit_enable(vcpu, false);
   1658 		} else {
   1659 			svm_event_waitexit_disable(vcpu, false);
   1660 		}
   1661 
   1662 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   1663 			svm_event_waitexit_enable(vcpu, true);
   1664 		} else {
   1665 			svm_event_waitexit_disable(vcpu, true);
   1666 		}
   1667 	}
   1668 
   1669 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1670 	if (flags & NVMM_X64_STATE_FPU) {
   1671 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1672 		    sizeof(state->fpu));
   1673 
   1674 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1675 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1676 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1677 
   1678 		if (svm_xcr0_mask != 0) {
   1679 			/* Reset XSTATE_BV, to force a reload. */
   1680 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1681 		}
   1682 	}
   1683 
   1684 	svm_vmcb_cache_update(vmcb, flags);
   1685 }
   1686 
   1687 static void
   1688 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1689 {
   1690 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1691 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1692 	struct vmcb *vmcb = cpudata->vmcb;
   1693 
   1694 	if (flags & NVMM_X64_STATE_SEGS) {
   1695 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1696 		    &vmcb->state.cs);
   1697 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1698 		    &vmcb->state.ds);
   1699 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1700 		    &vmcb->state.es);
   1701 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1702 		    &vmcb->state.fs);
   1703 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1704 		    &vmcb->state.gs);
   1705 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1706 		    &vmcb->state.ss);
   1707 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1708 		    &vmcb->state.gdt);
   1709 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1710 		    &vmcb->state.idt);
   1711 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1712 		    &vmcb->state.ldt);
   1713 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1714 		    &vmcb->state.tr);
   1715 
   1716 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   1717 	}
   1718 
   1719 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1720 	if (flags & NVMM_X64_STATE_GPRS) {
   1721 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1722 
   1723 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1724 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1725 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1726 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1727 	}
   1728 
   1729 	if (flags & NVMM_X64_STATE_CRS) {
   1730 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1731 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1732 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1733 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1734 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1735 		    VMCB_CTRL_V_TPR);
   1736 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1737 	}
   1738 
   1739 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1740 	if (flags & NVMM_X64_STATE_DRS) {
   1741 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1742 
   1743 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1744 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1745 	}
   1746 
   1747 	if (flags & NVMM_X64_STATE_MSRS) {
   1748 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1749 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1750 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1751 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1752 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1753 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1754 		    vmcb->state.kernelgsbase;
   1755 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1756 		    vmcb->state.sysenter_cs;
   1757 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1758 		    vmcb->state.sysenter_esp;
   1759 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1760 		    vmcb->state.sysenter_eip;
   1761 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1762 
   1763 		/* Hide SVME. */
   1764 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1765 	}
   1766 
   1767 	if (flags & NVMM_X64_STATE_MISC) {
   1768 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   1769 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1770 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   1771 		    cpudata->int_window_exit;
   1772 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   1773 		    cpudata->nmi_window_exit;
   1774 	}
   1775 
   1776 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1777 	if (flags & NVMM_X64_STATE_FPU) {
   1778 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1779 		    sizeof(state->fpu));
   1780 	}
   1781 }
   1782 
   1783 /* -------------------------------------------------------------------------- */
   1784 
   1785 static void
   1786 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1787 {
   1788 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1789 	struct vmcb *vmcb = cpudata->vmcb;
   1790 	size_t i, oct, bit;
   1791 
   1792 	mutex_enter(&svm_asidlock);
   1793 
   1794 	for (i = 0; i < svm_maxasid; i++) {
   1795 		oct = i / 8;
   1796 		bit = i % 8;
   1797 
   1798 		if (svm_asidmap[oct] & __BIT(bit)) {
   1799 			continue;
   1800 		}
   1801 
   1802 		svm_asidmap[oct] |= __BIT(bit);
   1803 		vmcb->ctrl.guest_asid = i;
   1804 		mutex_exit(&svm_asidlock);
   1805 		return;
   1806 	}
   1807 
   1808 	/*
   1809 	 * No free ASID. Use the last one, which is shared and requires
   1810 	 * special TLB handling.
   1811 	 */
   1812 	cpudata->shared_asid = true;
   1813 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1814 	mutex_exit(&svm_asidlock);
   1815 }
   1816 
   1817 static void
   1818 svm_asid_free(struct nvmm_cpu *vcpu)
   1819 {
   1820 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1821 	struct vmcb *vmcb = cpudata->vmcb;
   1822 	size_t oct, bit;
   1823 
   1824 	if (cpudata->shared_asid) {
   1825 		return;
   1826 	}
   1827 
   1828 	oct = vmcb->ctrl.guest_asid / 8;
   1829 	bit = vmcb->ctrl.guest_asid % 8;
   1830 
   1831 	mutex_enter(&svm_asidlock);
   1832 	svm_asidmap[oct] &= ~__BIT(bit);
   1833 	mutex_exit(&svm_asidlock);
   1834 }
   1835 
   1836 static void
   1837 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1838 {
   1839 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1840 	struct vmcb *vmcb = cpudata->vmcb;
   1841 
   1842 	/* Allow reads/writes of Control Registers. */
   1843 	vmcb->ctrl.intercept_cr = 0;
   1844 
   1845 	/* Allow reads/writes of Debug Registers. */
   1846 	vmcb->ctrl.intercept_dr = 0;
   1847 
   1848 	/* Allow exceptions 0 to 31. */
   1849 	vmcb->ctrl.intercept_vec = 0;
   1850 
   1851 	/*
   1852 	 * Allow:
   1853 	 *  - SMI [smm interrupts]
   1854 	 *  - VINTR [virtual interrupts]
   1855 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   1856 	 *  - RIDTR [reads of IDTR]
   1857 	 *  - RGDTR [reads of GDTR]
   1858 	 *  - RLDTR [reads of LDTR]
   1859 	 *  - RTR [reads of TR]
   1860 	 *  - WIDTR [writes of IDTR]
   1861 	 *  - WGDTR [writes of GDTR]
   1862 	 *  - WLDTR [writes of LDTR]
   1863 	 *  - WTR [writes of TR]
   1864 	 *  - RDTSC [rdtsc instruction]
   1865 	 *  - PUSHF [pushf instruction]
   1866 	 *  - POPF [popf instruction]
   1867 	 *  - IRET [iret instruction]
   1868 	 *  - INTN [int $n instructions]
   1869 	 *  - INVD [invd instruction]
   1870 	 *  - PAUSE [pause instruction]
   1871 	 *  - INVLPG [invplg instruction]
   1872 	 *  - TASKSW [task switches]
   1873 	 *
   1874 	 * Intercept the rest below.
   1875 	 */
   1876 	vmcb->ctrl.intercept_misc1 =
   1877 	    VMCB_CTRL_INTERCEPT_INTR |
   1878 	    VMCB_CTRL_INTERCEPT_NMI |
   1879 	    VMCB_CTRL_INTERCEPT_INIT |
   1880 	    VMCB_CTRL_INTERCEPT_RDPMC |
   1881 	    VMCB_CTRL_INTERCEPT_CPUID |
   1882 	    VMCB_CTRL_INTERCEPT_RSM |
   1883 	    VMCB_CTRL_INTERCEPT_HLT |
   1884 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   1885 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   1886 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   1887 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   1888 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   1889 
   1890 	/*
   1891 	 * Allow:
   1892 	 *  - ICEBP [icebp instruction]
   1893 	 *  - WBINVD [wbinvd instruction]
   1894 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   1895 	 *
   1896 	 * Intercept the rest below.
   1897 	 */
   1898 	vmcb->ctrl.intercept_misc2 =
   1899 	    VMCB_CTRL_INTERCEPT_VMRUN |
   1900 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   1901 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   1902 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   1903 	    VMCB_CTRL_INTERCEPT_STGI |
   1904 	    VMCB_CTRL_INTERCEPT_CLGI |
   1905 	    VMCB_CTRL_INTERCEPT_SKINIT |
   1906 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   1907 	    VMCB_CTRL_INTERCEPT_MONITOR |
   1908 	    VMCB_CTRL_INTERCEPT_MWAIT |
   1909 	    VMCB_CTRL_INTERCEPT_XSETBV;
   1910 
   1911 	/* Intercept all I/O accesses. */
   1912 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   1913 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   1914 
   1915 	/* Allow direct access to certain MSRs. */
   1916 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1917 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   1918 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1919 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1920 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1921 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1922 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1923 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1924 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1925 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1926 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1927 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1928 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   1929 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1930 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   1931 
   1932 	/* Generate ASID. */
   1933 	svm_asid_alloc(vcpu);
   1934 
   1935 	/* Virtual TPR. */
   1936 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   1937 
   1938 	/* Enable Nested Paging. */
   1939 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   1940 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   1941 
   1942 	/* Init XSAVE header. */
   1943 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1944 	cpudata->gfpu.xsh_xcomp_bv = 0;
   1945 
   1946 	/* Set guest TSC to zero, more or less. */
   1947 	cpudata->tsc_offset = -cpu_counter();
   1948 
   1949 	/* These MSRs are static. */
   1950 	cpudata->star = rdmsr(MSR_STAR);
   1951 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1952 	cpudata->cstar = rdmsr(MSR_CSTAR);
   1953 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   1954 
   1955 	/* Install the RESET state. */
   1956 	svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   1957 }
   1958 
   1959 static int
   1960 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1961 {
   1962 	struct svm_cpudata *cpudata;
   1963 	int error;
   1964 
   1965 	/* Allocate the SVM cpudata. */
   1966 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   1967 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   1968 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1969 	vcpu->cpudata = cpudata;
   1970 
   1971 	/* VMCB */
   1972 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   1973 	    VMCB_NPAGES);
   1974 	if (error)
   1975 		goto error;
   1976 
   1977 	/* I/O Bitmap */
   1978 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   1979 	    IOBM_NPAGES);
   1980 	if (error)
   1981 		goto error;
   1982 
   1983 	/* MSR Bitmap */
   1984 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   1985 	    MSRBM_NPAGES);
   1986 	if (error)
   1987 		goto error;
   1988 
   1989 	/* Init the VCPU info. */
   1990 	svm_vcpu_init(mach, vcpu);
   1991 
   1992 	return 0;
   1993 
   1994 error:
   1995 	if (cpudata->vmcb_pa) {
   1996 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   1997 		    VMCB_NPAGES);
   1998 	}
   1999 	if (cpudata->iobm_pa) {
   2000 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   2001 		    IOBM_NPAGES);
   2002 	}
   2003 	if (cpudata->msrbm_pa) {
   2004 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2005 		    MSRBM_NPAGES);
   2006 	}
   2007 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2008 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2009 	return error;
   2010 }
   2011 
   2012 static void
   2013 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2014 {
   2015 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2016 
   2017 	svm_asid_free(vcpu);
   2018 
   2019 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   2020 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   2021 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2022 
   2023 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2024 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2025 }
   2026 
   2027 /* -------------------------------------------------------------------------- */
   2028 
   2029 static void
   2030 svm_tlb_flush(struct pmap *pm)
   2031 {
   2032 	struct nvmm_machine *mach = pm->pm_data;
   2033 	struct svm_machdata *machdata = mach->machdata;
   2034 
   2035 	atomic_inc_64(&machdata->mach_htlb_gen);
   2036 
   2037 	/* Generates IPIs, which cause #VMEXITs. */
   2038 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2039 }
   2040 
   2041 static void
   2042 svm_machine_create(struct nvmm_machine *mach)
   2043 {
   2044 	struct svm_machdata *machdata;
   2045 
   2046 	/* Fill in pmap info. */
   2047 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   2048 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   2049 
   2050 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   2051 	mach->machdata = machdata;
   2052 
   2053 	/* Start with an hTLB flush everywhere. */
   2054 	machdata->mach_htlb_gen = 1;
   2055 }
   2056 
   2057 static void
   2058 svm_machine_destroy(struct nvmm_machine *mach)
   2059 {
   2060 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   2061 }
   2062 
   2063 static int
   2064 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2065 {
   2066 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2067 	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
   2068 	size_t i;
   2069 
   2070 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2071 		return EINVAL;
   2072 	}
   2073 
   2074 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2075 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2076 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2077 	    (cpuid->set.edx & cpuid->del.edx))) {
   2078 		return EINVAL;
   2079 	}
   2080 
   2081 	/* If already here, replace. */
   2082 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2083 		if (!machdata->cpuidpresent[i]) {
   2084 			continue;
   2085 		}
   2086 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2087 			memcpy(&machdata->cpuid[i], cpuid,
   2088 			    sizeof(struct nvmm_x86_conf_cpuid));
   2089 			return 0;
   2090 		}
   2091 	}
   2092 
   2093 	/* Not here, insert. */
   2094 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2095 		if (!machdata->cpuidpresent[i]) {
   2096 			machdata->cpuidpresent[i] = true;
   2097 			memcpy(&machdata->cpuid[i], cpuid,
   2098 			    sizeof(struct nvmm_x86_conf_cpuid));
   2099 			return 0;
   2100 		}
   2101 	}
   2102 
   2103 	return ENOBUFS;
   2104 }
   2105 
   2106 /* -------------------------------------------------------------------------- */
   2107 
   2108 static bool
   2109 svm_ident(void)
   2110 {
   2111 	u_int descs[4];
   2112 	uint64_t msr;
   2113 
   2114 	if (cpu_vendor != CPUVENDOR_AMD) {
   2115 		return false;
   2116 	}
   2117 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2118 		return false;
   2119 	}
   2120 
   2121 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2122 		return false;
   2123 	}
   2124 	x86_cpuid(0x8000000a, descs);
   2125 
   2126 	/* Want Nested Paging. */
   2127 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2128 		return false;
   2129 	}
   2130 
   2131 	/* Want nRIP. */
   2132 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2133 		return false;
   2134 	}
   2135 
   2136 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2137 
   2138 	msr = rdmsr(MSR_VMCR);
   2139 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2140 		return false;
   2141 	}
   2142 
   2143 	return true;
   2144 }
   2145 
   2146 static void
   2147 svm_init_asid(uint32_t maxasid)
   2148 {
   2149 	size_t i, j, allocsz;
   2150 
   2151 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2152 
   2153 	/* Arbitrarily limit. */
   2154 	maxasid = uimin(maxasid, 8192);
   2155 
   2156 	svm_maxasid = maxasid;
   2157 	allocsz = roundup(maxasid, 8) / 8;
   2158 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2159 
   2160 	/* ASID 0 is reserved for the host. */
   2161 	svm_asidmap[0] |= __BIT(0);
   2162 
   2163 	/* ASID n-1 is special, we share it. */
   2164 	i = (maxasid - 1) / 8;
   2165 	j = (maxasid - 1) % 8;
   2166 	svm_asidmap[i] |= __BIT(j);
   2167 }
   2168 
   2169 static void
   2170 svm_change_cpu(void *arg1, void *arg2)
   2171 {
   2172 	bool enable = (bool)arg1;
   2173 	uint64_t msr;
   2174 
   2175 	msr = rdmsr(MSR_VMCR);
   2176 	if (msr & VMCR_SVMED) {
   2177 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2178 	}
   2179 
   2180 	if (!enable) {
   2181 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2182 	}
   2183 
   2184 	msr = rdmsr(MSR_EFER);
   2185 	if (enable) {
   2186 		msr |= EFER_SVME;
   2187 	} else {
   2188 		msr &= ~EFER_SVME;
   2189 	}
   2190 	wrmsr(MSR_EFER, msr);
   2191 
   2192 	if (enable) {
   2193 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2194 	}
   2195 }
   2196 
   2197 static void
   2198 svm_init(void)
   2199 {
   2200 	CPU_INFO_ITERATOR cii;
   2201 	struct cpu_info *ci;
   2202 	struct vm_page *pg;
   2203 	u_int descs[4];
   2204 	uint64_t xc;
   2205 
   2206 	x86_cpuid(0x8000000a, descs);
   2207 
   2208 	/* The guest TLB flush command. */
   2209 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2210 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2211 	} else {
   2212 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2213 	}
   2214 
   2215 	/* Init the ASID. */
   2216 	svm_init_asid(descs[1]);
   2217 
   2218 	/* Init the XCR0 mask. */
   2219 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2220 
   2221 	memset(hsave, 0, sizeof(hsave));
   2222 	for (CPU_INFO_FOREACH(cii, ci)) {
   2223 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2224 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2225 	}
   2226 
   2227 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2228 	xc_wait(xc);
   2229 }
   2230 
   2231 static void
   2232 svm_fini_asid(void)
   2233 {
   2234 	size_t allocsz;
   2235 
   2236 	allocsz = roundup(svm_maxasid, 8) / 8;
   2237 	kmem_free(svm_asidmap, allocsz);
   2238 
   2239 	mutex_destroy(&svm_asidlock);
   2240 }
   2241 
   2242 static void
   2243 svm_fini(void)
   2244 {
   2245 	uint64_t xc;
   2246 	size_t i;
   2247 
   2248 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2249 	xc_wait(xc);
   2250 
   2251 	for (i = 0; i < MAXCPUS; i++) {
   2252 		if (hsave[i].pa != 0)
   2253 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2254 	}
   2255 
   2256 	svm_fini_asid();
   2257 }
   2258 
   2259 static void
   2260 svm_capability(struct nvmm_capability *cap)
   2261 {
   2262 	cap->u.x86.xcr0_mask = svm_xcr0_mask;
   2263 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2264 	cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
   2265 }
   2266 
   2267 const struct nvmm_impl nvmm_x86_svm = {
   2268 	.ident = svm_ident,
   2269 	.init = svm_init,
   2270 	.fini = svm_fini,
   2271 	.capability = svm_capability,
   2272 	.conf_max = NVMM_X86_NCONF,
   2273 	.conf_sizes = svm_conf_sizes,
   2274 	.state_size = sizeof(struct nvmm_x64_state),
   2275 	.machine_create = svm_machine_create,
   2276 	.machine_destroy = svm_machine_destroy,
   2277 	.machine_configure = svm_machine_configure,
   2278 	.vcpu_create = svm_vcpu_create,
   2279 	.vcpu_destroy = svm_vcpu_destroy,
   2280 	.vcpu_setstate = svm_vcpu_setstate,
   2281 	.vcpu_getstate = svm_vcpu_getstate,
   2282 	.vcpu_inject = svm_vcpu_inject,
   2283 	.vcpu_run = svm_vcpu_run
   2284 };
   2285