nvmm_x86_svm.c revision 1.36 1 /* $NetBSD: nvmm_x86_svm.c,v 1.36 2019/04/03 17:32:58 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.36 2019/04/03 17:32:58 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
206 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
207 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
208 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
209 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
210 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
211 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
212 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
213 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
214 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
215 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
216 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
217 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
218 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
219 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
220 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
221 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
222 #define VMCB_EXITCODE_NPF 0x0400
223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
224 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
225 #define VMCB_EXITCODE_VMGEXIT 0x0403
226 #define VMCB_EXITCODE_INVALID -1
227
228 /* -------------------------------------------------------------------------- */
229
230 struct vmcb_ctrl {
231 uint32_t intercept_cr;
232 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
233 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
234
235 uint32_t intercept_dr;
236 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
237 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
238
239 uint32_t intercept_vec;
240 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
241
242 uint32_t intercept_misc1;
243 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
244 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
245 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
246 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
247 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
249 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
250 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
251 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
252 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
253 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
254 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
255 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
256 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
257 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
258 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
259 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
260 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
261 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
262 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
263 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
264 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
265 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
266 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
267 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
268 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
269 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
271 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
272 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
275
276 uint32_t intercept_misc2;
277 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
278 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
279 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
280 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
281 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
282 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
283 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
284 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
285 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
286 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
287 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
288 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
289 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
292
293 uint8_t rsvd1[40];
294 uint16_t pause_filt_thresh;
295 uint16_t pause_filt_cnt;
296 uint64_t iopm_base_pa;
297 uint64_t msrpm_base_pa;
298 uint64_t tsc_offset;
299 uint32_t guest_asid;
300
301 uint32_t tlb_ctrl;
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
305
306 uint64_t v;
307 #define VMCB_CTRL_V_TPR __BITS(3,0)
308 #define VMCB_CTRL_V_IRQ __BIT(8)
309 #define VMCB_CTRL_V_VGIF __BIT(9)
310 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
311 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
312 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
313 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
314 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
315 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
316
317 uint64_t intr;
318 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
319
320 uint64_t exitcode;
321 uint64_t exitinfo1;
322 uint64_t exitinfo2;
323
324 uint64_t exitintinfo;
325 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
326 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
327 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
328 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
330
331 uint64_t enable1;
332 #define VMCB_CTRL_ENABLE_NP __BIT(0)
333 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
334 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
335
336 uint64_t avic;
337 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
338
339 uint64_t ghcb;
340
341 uint64_t eventinj;
342 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
345 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
346 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
347
348 uint64_t n_cr3;
349
350 uint64_t enable2;
351 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
352 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
353
354 uint32_t vmcb_clean;
355 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
356 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
357 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
358 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
359 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
360 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
361 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
362 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
363 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
364 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
365 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
366 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
367
368 uint32_t rsvd2;
369 uint64_t nrip;
370 uint8_t inst_len;
371 uint8_t inst_bytes[15];
372 uint64_t avic_abpp;
373 uint64_t rsvd3;
374 uint64_t avic_ltp;
375
376 uint64_t avic_phys;
377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
379
380 uint64_t rsvd4;
381 uint64_t vmcb_ptr;
382
383 uint8_t pad[752];
384 } __packed;
385
386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
387
388 struct vmcb_segment {
389 uint16_t selector;
390 uint16_t attrib; /* hidden */
391 uint32_t limit; /* hidden */
392 uint64_t base; /* hidden */
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_segment) == 16);
396
397 struct vmcb_state {
398 struct vmcb_segment es;
399 struct vmcb_segment cs;
400 struct vmcb_segment ss;
401 struct vmcb_segment ds;
402 struct vmcb_segment fs;
403 struct vmcb_segment gs;
404 struct vmcb_segment gdt;
405 struct vmcb_segment ldt;
406 struct vmcb_segment idt;
407 struct vmcb_segment tr;
408 uint8_t rsvd1[43];
409 uint8_t cpl;
410 uint8_t rsvd2[4];
411 uint64_t efer;
412 uint8_t rsvd3[112];
413 uint64_t cr4;
414 uint64_t cr3;
415 uint64_t cr0;
416 uint64_t dr7;
417 uint64_t dr6;
418 uint64_t rflags;
419 uint64_t rip;
420 uint8_t rsvd4[88];
421 uint64_t rsp;
422 uint8_t rsvd5[24];
423 uint64_t rax;
424 uint64_t star;
425 uint64_t lstar;
426 uint64_t cstar;
427 uint64_t sfmask;
428 uint64_t kernelgsbase;
429 uint64_t sysenter_cs;
430 uint64_t sysenter_esp;
431 uint64_t sysenter_eip;
432 uint64_t cr2;
433 uint8_t rsvd6[32];
434 uint64_t g_pat;
435 uint64_t dbgctl;
436 uint64_t br_from;
437 uint64_t br_to;
438 uint64_t int_from;
439 uint64_t int_to;
440 uint8_t pad[2408];
441 } __packed;
442
443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
444
445 struct vmcb {
446 struct vmcb_ctrl ctrl;
447 struct vmcb_state state;
448 } __packed;
449
450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
452
453 /* -------------------------------------------------------------------------- */
454
455 struct svm_hsave {
456 paddr_t pa;
457 };
458
459 static struct svm_hsave hsave[MAXCPUS];
460
461 static uint8_t *svm_asidmap __read_mostly;
462 static uint32_t svm_maxasid __read_mostly;
463 static kmutex_t svm_asidlock __cacheline_aligned;
464
465 static bool svm_decode_assist __read_mostly;
466 static uint32_t svm_ctrl_tlb_flush __read_mostly;
467
468 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
469 static uint64_t svm_xcr0_mask __read_mostly;
470
471 #define SVM_NCPUIDS 32
472
473 #define VMCB_NPAGES 1
474
475 #define MSRBM_NPAGES 2
476 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
477
478 #define IOBM_NPAGES 3
479 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
480
481 /* Does not include EFER_LMSLE. */
482 #define EFER_VALID \
483 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
484
485 #define EFER_TLB_FLUSH \
486 (EFER_NXE|EFER_LMA|EFER_LME)
487 #define CR0_TLB_FLUSH \
488 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
489 #define CR4_TLB_FLUSH \
490 (CR4_PGE|CR4_PAE|CR4_PSE)
491
492 /* -------------------------------------------------------------------------- */
493
494 struct svm_machdata {
495 bool cpuidpresent[SVM_NCPUIDS];
496 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
497 volatile uint64_t mach_htlb_gen;
498 };
499
500 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
501 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
502 };
503
504 struct svm_cpudata {
505 /* General */
506 bool shared_asid;
507 bool gtlb_want_flush;
508 bool gtsc_want_update;
509 uint64_t vcpu_htlb_gen;
510
511 /* VMCB */
512 struct vmcb *vmcb;
513 paddr_t vmcb_pa;
514
515 /* I/O bitmap */
516 uint8_t *iobm;
517 paddr_t iobm_pa;
518
519 /* MSR bitmap */
520 uint8_t *msrbm;
521 paddr_t msrbm_pa;
522
523 /* Host state */
524 uint64_t hxcr0;
525 uint64_t star;
526 uint64_t lstar;
527 uint64_t cstar;
528 uint64_t sfmask;
529 uint64_t fsbase;
530 uint64_t kernelgsbase;
531 bool ts_set;
532 struct xsave_header hfpu __aligned(64);
533
534 /* Event state */
535 bool int_window_exit;
536 bool nmi_window_exit;
537
538 /* Guest state */
539 uint64_t gxcr0;
540 uint64_t gprs[NVMM_X64_NGPR];
541 uint64_t drs[NVMM_X64_NDR];
542 uint64_t gtsc;
543 struct xsave_header gfpu __aligned(64);
544 };
545
546 static void
547 svm_vmcb_cache_default(struct vmcb *vmcb)
548 {
549 vmcb->ctrl.vmcb_clean =
550 VMCB_CTRL_VMCB_CLEAN_I |
551 VMCB_CTRL_VMCB_CLEAN_IOPM |
552 VMCB_CTRL_VMCB_CLEAN_ASID |
553 VMCB_CTRL_VMCB_CLEAN_TPR |
554 VMCB_CTRL_VMCB_CLEAN_NP |
555 VMCB_CTRL_VMCB_CLEAN_CR |
556 VMCB_CTRL_VMCB_CLEAN_DR |
557 VMCB_CTRL_VMCB_CLEAN_DT |
558 VMCB_CTRL_VMCB_CLEAN_SEG |
559 VMCB_CTRL_VMCB_CLEAN_CR2 |
560 VMCB_CTRL_VMCB_CLEAN_LBR |
561 VMCB_CTRL_VMCB_CLEAN_AVIC;
562 }
563
564 static void
565 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
566 {
567 if (flags & NVMM_X64_STATE_SEGS) {
568 vmcb->ctrl.vmcb_clean &=
569 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
570 }
571 if (flags & NVMM_X64_STATE_CRS) {
572 vmcb->ctrl.vmcb_clean &=
573 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
574 VMCB_CTRL_VMCB_CLEAN_TPR);
575 }
576 if (flags & NVMM_X64_STATE_DRS) {
577 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
578 }
579 if (flags & NVMM_X64_STATE_MSRS) {
580 /* CR for EFER, NP for PAT. */
581 vmcb->ctrl.vmcb_clean &=
582 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
583 }
584 }
585
586 static inline void
587 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
588 {
589 vmcb->ctrl.vmcb_clean &= ~flags;
590 }
591
592 static inline void
593 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
594 {
595 vmcb->ctrl.vmcb_clean = 0;
596 }
597
598 #define SVM_EVENT_TYPE_HW_INT 0
599 #define SVM_EVENT_TYPE_NMI 2
600 #define SVM_EVENT_TYPE_EXC 3
601 #define SVM_EVENT_TYPE_SW_INT 4
602
603 static void
604 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
605 {
606 struct svm_cpudata *cpudata = vcpu->cpudata;
607 struct vmcb *vmcb = cpudata->vmcb;
608
609 if (nmi) {
610 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
611 cpudata->nmi_window_exit = true;
612 } else {
613 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
614 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
615 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
616 cpudata->int_window_exit = true;
617 }
618
619 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
620 }
621
622 static void
623 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
624 {
625 struct svm_cpudata *cpudata = vcpu->cpudata;
626 struct vmcb *vmcb = cpudata->vmcb;
627
628 if (nmi) {
629 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
630 cpudata->nmi_window_exit = false;
631 } else {
632 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
633 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
634 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
635 cpudata->int_window_exit = false;
636 }
637
638 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
639 }
640
641 static inline int
642 svm_event_has_error(uint64_t vector)
643 {
644 switch (vector) {
645 case 8: /* #DF */
646 case 10: /* #TS */
647 case 11: /* #NP */
648 case 12: /* #SS */
649 case 13: /* #GP */
650 case 14: /* #PF */
651 case 17: /* #AC */
652 case 30: /* #SX */
653 return 1;
654 default:
655 return 0;
656 }
657 }
658
659 static int
660 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
661 struct nvmm_event *event)
662 {
663 struct svm_cpudata *cpudata = vcpu->cpudata;
664 struct vmcb *vmcb = cpudata->vmcb;
665 int type = 0, err = 0;
666
667 if (event->vector >= 256) {
668 return EINVAL;
669 }
670
671 switch (event->type) {
672 case NVMM_EVENT_INTERRUPT_HW:
673 type = SVM_EVENT_TYPE_HW_INT;
674 if (event->vector == 2) {
675 type = SVM_EVENT_TYPE_NMI;
676 }
677 if (type == SVM_EVENT_TYPE_NMI) {
678 if (cpudata->nmi_window_exit) {
679 return EAGAIN;
680 }
681 svm_event_waitexit_enable(vcpu, true);
682 } else {
683 if (((vmcb->state.rflags & PSL_I) == 0) ||
684 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
685 svm_event_waitexit_enable(vcpu, false);
686 return EAGAIN;
687 }
688 }
689 err = 0;
690 break;
691 case NVMM_EVENT_INTERRUPT_SW:
692 return EINVAL;
693 case NVMM_EVENT_EXCEPTION:
694 type = SVM_EVENT_TYPE_EXC;
695 if (event->vector == 2 || event->vector >= 32)
696 return EINVAL;
697 if (event->vector == 3 || event->vector == 0)
698 return EINVAL;
699 err = svm_event_has_error(event->vector);
700 break;
701 default:
702 return EINVAL;
703 }
704
705 vmcb->ctrl.eventinj =
706 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
707 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
708 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
709 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
710 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
711
712 return 0;
713 }
714
715 static void
716 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
717 {
718 struct nvmm_event event;
719 int ret __diagused;
720
721 event.type = NVMM_EVENT_EXCEPTION;
722 event.vector = 6;
723 event.u.error = 0;
724
725 ret = svm_vcpu_inject(mach, vcpu, &event);
726 KASSERT(ret == 0);
727 }
728
729 static void
730 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
731 {
732 struct nvmm_event event;
733 int ret __diagused;
734
735 event.type = NVMM_EVENT_EXCEPTION;
736 event.vector = 13;
737 event.u.error = 0;
738
739 ret = svm_vcpu_inject(mach, vcpu, &event);
740 KASSERT(ret == 0);
741 }
742
743 static inline void
744 svm_inkernel_advance(struct vmcb *vmcb)
745 {
746 /*
747 * Maybe we should also apply single-stepping and debug exceptions.
748 * Matters for guest-ring3, because it can execute 'cpuid' under a
749 * debugger.
750 */
751 vmcb->state.rip = vmcb->ctrl.nrip;
752 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
753 }
754
755 static void
756 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
757 {
758 struct svm_cpudata *cpudata = vcpu->cpudata;
759 uint64_t cr4;
760
761 switch (eax) {
762 case 0x00000001:
763 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
764
765 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
766 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
767 CPUID_LOCAL_APIC_ID);
768
769 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
770 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
771
772 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
773
774 /* CPUID2_OSXSAVE depends on CR4. */
775 cr4 = cpudata->vmcb->state.cr4;
776 if (!(cr4 & CR4_OSXSAVE)) {
777 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
778 }
779 break;
780 case 0x00000005:
781 case 0x00000006:
782 cpudata->vmcb->state.rax = 0;
783 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
784 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
785 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
786 break;
787 case 0x00000007:
788 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
789 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
790 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
791 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
792 break;
793 case 0x0000000D:
794 if (svm_xcr0_mask == 0) {
795 break;
796 }
797 switch (ecx) {
798 case 0:
799 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
800 if (cpudata->gxcr0 & XCR0_SSE) {
801 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
802 } else {
803 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
804 }
805 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
806 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
807 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
808 break;
809 case 1:
810 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
811 break;
812 }
813 break;
814 case 0x40000000:
815 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
816 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
817 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
818 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
819 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
820 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
821 break;
822 case 0x80000001:
823 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
824 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
825 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
826 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
827 break;
828 default:
829 break;
830 }
831 }
832
833 static void
834 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
835 struct nvmm_exit *exit)
836 {
837 struct svm_machdata *machdata = mach->machdata;
838 struct svm_cpudata *cpudata = vcpu->cpudata;
839 struct nvmm_x86_conf_cpuid *cpuid;
840 uint64_t eax, ecx;
841 u_int descs[4];
842 size_t i;
843
844 eax = cpudata->vmcb->state.rax;
845 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
846 x86_cpuid2(eax, ecx, descs);
847
848 cpudata->vmcb->state.rax = descs[0];
849 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
850 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
851 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
852
853 for (i = 0; i < SVM_NCPUIDS; i++) {
854 cpuid = &machdata->cpuid[i];
855 if (!machdata->cpuidpresent[i]) {
856 continue;
857 }
858 if (cpuid->leaf != eax) {
859 continue;
860 }
861
862 /* del */
863 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
864 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
865 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
866 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
867
868 /* set */
869 cpudata->vmcb->state.rax |= cpuid->set.eax;
870 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
871 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
872 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
873
874 break;
875 }
876
877 /* Overwrite non-tunable leaves. */
878 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
879
880 svm_inkernel_advance(cpudata->vmcb);
881 exit->reason = NVMM_EXIT_NONE;
882 }
883
884 static void
885 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
886 struct nvmm_exit *exit)
887 {
888 struct svm_cpudata *cpudata = vcpu->cpudata;
889 struct vmcb *vmcb = cpudata->vmcb;
890
891 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
892 svm_event_waitexit_disable(vcpu, false);
893 }
894
895 svm_inkernel_advance(cpudata->vmcb);
896 exit->reason = NVMM_EXIT_HALTED;
897 }
898
899 #define SVM_EXIT_IO_PORT __BITS(31,16)
900 #define SVM_EXIT_IO_SEG __BITS(12,10)
901 #define SVM_EXIT_IO_A64 __BIT(9)
902 #define SVM_EXIT_IO_A32 __BIT(8)
903 #define SVM_EXIT_IO_A16 __BIT(7)
904 #define SVM_EXIT_IO_SZ32 __BIT(6)
905 #define SVM_EXIT_IO_SZ16 __BIT(5)
906 #define SVM_EXIT_IO_SZ8 __BIT(4)
907 #define SVM_EXIT_IO_REP __BIT(3)
908 #define SVM_EXIT_IO_STR __BIT(2)
909 #define SVM_EXIT_IO_IN __BIT(0)
910
911 static void
912 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
913 struct nvmm_exit *exit)
914 {
915 struct svm_cpudata *cpudata = vcpu->cpudata;
916 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
917 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
918
919 exit->reason = NVMM_EXIT_IO;
920
921 if (info & SVM_EXIT_IO_IN) {
922 exit->u.io.type = NVMM_EXIT_IO_IN;
923 } else {
924 exit->u.io.type = NVMM_EXIT_IO_OUT;
925 }
926
927 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
928
929 if (svm_decode_assist) {
930 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
931 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
932 } else {
933 exit->u.io.seg = -1;
934 }
935
936 if (info & SVM_EXIT_IO_A64) {
937 exit->u.io.address_size = 8;
938 } else if (info & SVM_EXIT_IO_A32) {
939 exit->u.io.address_size = 4;
940 } else if (info & SVM_EXIT_IO_A16) {
941 exit->u.io.address_size = 2;
942 }
943
944 if (info & SVM_EXIT_IO_SZ32) {
945 exit->u.io.operand_size = 4;
946 } else if (info & SVM_EXIT_IO_SZ16) {
947 exit->u.io.operand_size = 2;
948 } else if (info & SVM_EXIT_IO_SZ8) {
949 exit->u.io.operand_size = 1;
950 }
951
952 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
953 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
954 exit->u.io.npc = nextpc;
955 }
956
957 static const uint64_t msr_ignore_list[] = {
958 0xc0010055, /* MSR_CMPHALT */
959 MSR_DE_CFG,
960 MSR_IC_CFG,
961 MSR_UCODE_AMD_PATCHLEVEL
962 };
963
964 static bool
965 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
966 struct nvmm_exit *exit)
967 {
968 struct svm_cpudata *cpudata = vcpu->cpudata;
969 struct vmcb *vmcb = cpudata->vmcb;
970 uint64_t val;
971 size_t i;
972
973 switch (exit->u.msr.type) {
974 case NVMM_EXIT_MSR_RDMSR:
975 if (exit->u.msr.msr == MSR_NB_CFG) {
976 val = NB_CFG_INITAPICCPUIDLO;
977 vmcb->state.rax = (val & 0xFFFFFFFF);
978 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
979 goto handled;
980 }
981 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
982 if (msr_ignore_list[i] != exit->u.msr.msr)
983 continue;
984 val = 0;
985 vmcb->state.rax = (val & 0xFFFFFFFF);
986 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
987 goto handled;
988 }
989 break;
990 case NVMM_EXIT_MSR_WRMSR:
991 if (exit->u.msr.msr == MSR_EFER) {
992 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
993 goto error;
994 }
995 if ((vmcb->state.efer ^ exit->u.msr.val) &
996 EFER_TLB_FLUSH) {
997 cpudata->gtlb_want_flush = true;
998 }
999 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
1000 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1001 goto handled;
1002 }
1003 if (exit->u.msr.msr == MSR_TSC) {
1004 cpudata->gtsc = exit->u.msr.val;
1005 cpudata->gtsc_want_update = true;
1006 goto handled;
1007 }
1008 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1009 if (msr_ignore_list[i] != exit->u.msr.msr)
1010 continue;
1011 goto handled;
1012 }
1013 break;
1014 }
1015
1016 return false;
1017
1018 handled:
1019 svm_inkernel_advance(cpudata->vmcb);
1020 return true;
1021
1022 error:
1023 svm_inject_gp(mach, vcpu);
1024 return true;
1025 }
1026
1027 static void
1028 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1029 struct nvmm_exit *exit)
1030 {
1031 struct svm_cpudata *cpudata = vcpu->cpudata;
1032 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1033
1034 if (info == 0) {
1035 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1036 } else {
1037 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1038 }
1039
1040 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1041
1042 if (info == 1) {
1043 uint64_t rdx, rax;
1044 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1045 rax = cpudata->vmcb->state.rax;
1046 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1047 } else {
1048 exit->u.msr.val = 0;
1049 }
1050
1051 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1052 exit->reason = NVMM_EXIT_NONE;
1053 return;
1054 }
1055
1056 exit->reason = NVMM_EXIT_MSR;
1057 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1058 }
1059
1060 static void
1061 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1062 struct nvmm_exit *exit)
1063 {
1064 struct svm_cpudata *cpudata = vcpu->cpudata;
1065 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1066
1067 exit->reason = NVMM_EXIT_MEMORY;
1068 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1069 exit->u.mem.prot = PROT_WRITE;
1070 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1071 exit->u.mem.prot = PROT_EXEC;
1072 else
1073 exit->u.mem.prot = PROT_READ;
1074 exit->u.mem.gpa = gpa;
1075 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1076 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1077 sizeof(exit->u.mem.inst_bytes));
1078 }
1079
1080 static void
1081 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1082 {
1083 exit->u.insn.npc = vmcb->ctrl.nrip;
1084 exit->reason = reason;
1085 }
1086
1087 static void
1088 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1089 struct nvmm_exit *exit)
1090 {
1091 struct svm_cpudata *cpudata = vcpu->cpudata;
1092 struct vmcb *vmcb = cpudata->vmcb;
1093 uint64_t val;
1094
1095 exit->reason = NVMM_EXIT_NONE;
1096
1097 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1098 (vmcb->state.rax & 0xFFFFFFFF);
1099
1100 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1101 goto error;
1102 } else if (__predict_false(vmcb->state.cpl != 0)) {
1103 goto error;
1104 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1105 goto error;
1106 } else if (__predict_false((val & XCR0_X87) == 0)) {
1107 goto error;
1108 }
1109
1110 cpudata->gxcr0 = val;
1111
1112 svm_inkernel_advance(cpudata->vmcb);
1113 return;
1114
1115 error:
1116 svm_inject_gp(mach, vcpu);
1117 }
1118
1119 /* -------------------------------------------------------------------------- */
1120
1121 static void
1122 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1123 {
1124 struct svm_cpudata *cpudata = vcpu->cpudata;
1125
1126 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1127
1128 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1129 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1130
1131 if (svm_xcr0_mask != 0) {
1132 cpudata->hxcr0 = rdxcr(0);
1133 wrxcr(0, cpudata->gxcr0);
1134 }
1135 }
1136
1137 static void
1138 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1139 {
1140 struct svm_cpudata *cpudata = vcpu->cpudata;
1141
1142 if (svm_xcr0_mask != 0) {
1143 cpudata->gxcr0 = rdxcr(0);
1144 wrxcr(0, cpudata->hxcr0);
1145 }
1146
1147 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1148 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1149
1150 if (cpudata->ts_set) {
1151 stts();
1152 }
1153 }
1154
1155 static void
1156 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1157 {
1158 struct svm_cpudata *cpudata = vcpu->cpudata;
1159
1160 x86_dbregs_save(curlwp);
1161
1162 ldr7(0);
1163
1164 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1165 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1166 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1167 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1168 }
1169
1170 static void
1171 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1172 {
1173 struct svm_cpudata *cpudata = vcpu->cpudata;
1174
1175 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1176 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1177 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1178 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1179
1180 x86_dbregs_restore(curlwp);
1181 }
1182
1183 static void
1184 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1185 {
1186 struct svm_cpudata *cpudata = vcpu->cpudata;
1187
1188 cpudata->fsbase = rdmsr(MSR_FSBASE);
1189 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1190 }
1191
1192 static void
1193 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1194 {
1195 struct svm_cpudata *cpudata = vcpu->cpudata;
1196
1197 wrmsr(MSR_STAR, cpudata->star);
1198 wrmsr(MSR_LSTAR, cpudata->lstar);
1199 wrmsr(MSR_CSTAR, cpudata->cstar);
1200 wrmsr(MSR_SFMASK, cpudata->sfmask);
1201 wrmsr(MSR_FSBASE, cpudata->fsbase);
1202 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1203 }
1204
1205 /* -------------------------------------------------------------------------- */
1206
1207 static inline void
1208 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1209 {
1210 struct svm_cpudata *cpudata = vcpu->cpudata;
1211
1212 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1213 cpudata->gtlb_want_flush = true;
1214 }
1215 }
1216
1217 static inline void
1218 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1219 {
1220 /*
1221 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1222 * executing on this hCPU and the hTLB already got flushed, or it
1223 * was executing on another hCPU in which case the catchup is done
1224 * in svm_gtlb_catchup().
1225 */
1226 }
1227
1228 static inline uint64_t
1229 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1230 {
1231 struct vmcb *vmcb = cpudata->vmcb;
1232 uint64_t machgen;
1233
1234 machgen = machdata->mach_htlb_gen;
1235 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1236 return machgen;
1237 }
1238
1239 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1240 return machgen;
1241 }
1242
1243 static inline void
1244 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1245 {
1246 struct vmcb *vmcb = cpudata->vmcb;
1247
1248 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1249 cpudata->vcpu_htlb_gen = machgen;
1250 }
1251 }
1252
1253 static int
1254 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1255 struct nvmm_exit *exit)
1256 {
1257 struct svm_machdata *machdata = mach->machdata;
1258 struct svm_cpudata *cpudata = vcpu->cpudata;
1259 struct vmcb *vmcb = cpudata->vmcb;
1260 uint64_t machgen;
1261 int hcpu, s;
1262
1263 kpreempt_disable();
1264 hcpu = cpu_number();
1265
1266 svm_gtlb_catchup(vcpu, hcpu);
1267 svm_htlb_catchup(vcpu, hcpu);
1268
1269 if (vcpu->hcpu_last != hcpu) {
1270 svm_vmcb_cache_flush_all(vmcb);
1271 cpudata->gtsc_want_update = true;
1272 }
1273
1274 svm_vcpu_guest_dbregs_enter(vcpu);
1275 svm_vcpu_guest_misc_enter(vcpu);
1276
1277 while (1) {
1278 if (cpudata->gtlb_want_flush) {
1279 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1280 } else {
1281 vmcb->ctrl.tlb_ctrl = 0;
1282 }
1283
1284 if (__predict_false(cpudata->gtsc_want_update)) {
1285 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1286 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1287 }
1288
1289 s = splhigh();
1290 machgen = svm_htlb_flush(machdata, cpudata);
1291 svm_vcpu_guest_fpu_enter(vcpu);
1292 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1293 svm_vcpu_guest_fpu_leave(vcpu);
1294 svm_htlb_flush_ack(cpudata, machgen);
1295 splx(s);
1296
1297 svm_vmcb_cache_default(vmcb);
1298
1299 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1300 cpudata->gtlb_want_flush = false;
1301 cpudata->gtsc_want_update = false;
1302 vcpu->hcpu_last = hcpu;
1303 }
1304
1305 switch (vmcb->ctrl.exitcode) {
1306 case VMCB_EXITCODE_INTR:
1307 case VMCB_EXITCODE_NMI:
1308 exit->reason = NVMM_EXIT_NONE;
1309 break;
1310 case VMCB_EXITCODE_VINTR:
1311 svm_event_waitexit_disable(vcpu, false);
1312 exit->reason = NVMM_EXIT_INT_READY;
1313 break;
1314 case VMCB_EXITCODE_IRET:
1315 svm_event_waitexit_disable(vcpu, true);
1316 exit->reason = NVMM_EXIT_NMI_READY;
1317 break;
1318 case VMCB_EXITCODE_CPUID:
1319 svm_exit_cpuid(mach, vcpu, exit);
1320 break;
1321 case VMCB_EXITCODE_HLT:
1322 svm_exit_hlt(mach, vcpu, exit);
1323 break;
1324 case VMCB_EXITCODE_IOIO:
1325 svm_exit_io(mach, vcpu, exit);
1326 break;
1327 case VMCB_EXITCODE_MSR:
1328 svm_exit_msr(mach, vcpu, exit);
1329 break;
1330 case VMCB_EXITCODE_SHUTDOWN:
1331 exit->reason = NVMM_EXIT_SHUTDOWN;
1332 break;
1333 case VMCB_EXITCODE_RDPMC:
1334 case VMCB_EXITCODE_RSM:
1335 case VMCB_EXITCODE_INVLPGA:
1336 case VMCB_EXITCODE_VMRUN:
1337 case VMCB_EXITCODE_VMMCALL:
1338 case VMCB_EXITCODE_VMLOAD:
1339 case VMCB_EXITCODE_VMSAVE:
1340 case VMCB_EXITCODE_STGI:
1341 case VMCB_EXITCODE_CLGI:
1342 case VMCB_EXITCODE_SKINIT:
1343 case VMCB_EXITCODE_RDTSCP:
1344 svm_inject_ud(mach, vcpu);
1345 exit->reason = NVMM_EXIT_NONE;
1346 break;
1347 case VMCB_EXITCODE_MONITOR:
1348 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1349 break;
1350 case VMCB_EXITCODE_MWAIT:
1351 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1352 break;
1353 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1354 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1355 break;
1356 case VMCB_EXITCODE_XSETBV:
1357 svm_exit_xsetbv(mach, vcpu, exit);
1358 break;
1359 case VMCB_EXITCODE_NPF:
1360 svm_exit_npf(mach, vcpu, exit);
1361 break;
1362 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1363 default:
1364 exit->reason = NVMM_EXIT_INVALID;
1365 break;
1366 }
1367
1368 /* If no reason to return to userland, keep rolling. */
1369 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1370 break;
1371 }
1372 if (curcpu()->ci_data.cpu_softints != 0) {
1373 break;
1374 }
1375 if (curlwp->l_flag & LW_USERRET) {
1376 break;
1377 }
1378 if (exit->reason != NVMM_EXIT_NONE) {
1379 break;
1380 }
1381 }
1382
1383 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1384
1385 svm_vcpu_guest_misc_leave(vcpu);
1386 svm_vcpu_guest_dbregs_leave(vcpu);
1387
1388 kpreempt_enable();
1389
1390 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1391 VMCB_CTRL_V_TPR);
1392 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1393
1394 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1395 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1396 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1397 cpudata->int_window_exit;
1398 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1399 cpudata->nmi_window_exit;
1400
1401 return 0;
1402 }
1403
1404 /* -------------------------------------------------------------------------- */
1405
1406 static int
1407 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1408 {
1409 struct pglist pglist;
1410 paddr_t _pa;
1411 vaddr_t _va;
1412 size_t i;
1413 int ret;
1414
1415 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1416 &pglist, 1, 0);
1417 if (ret != 0)
1418 return ENOMEM;
1419 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1420 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1421 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1422 if (_va == 0)
1423 goto error;
1424
1425 for (i = 0; i < npages; i++) {
1426 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1427 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1428 }
1429 pmap_update(pmap_kernel());
1430
1431 memset((void *)_va, 0, npages * PAGE_SIZE);
1432
1433 *pa = _pa;
1434 *va = _va;
1435 return 0;
1436
1437 error:
1438 for (i = 0; i < npages; i++) {
1439 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1440 }
1441 return ENOMEM;
1442 }
1443
1444 static void
1445 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1446 {
1447 size_t i;
1448
1449 pmap_kremove(va, npages * PAGE_SIZE);
1450 pmap_update(pmap_kernel());
1451 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1452 for (i = 0; i < npages; i++) {
1453 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1454 }
1455 }
1456
1457 /* -------------------------------------------------------------------------- */
1458
1459 #define SVM_MSRBM_READ __BIT(0)
1460 #define SVM_MSRBM_WRITE __BIT(1)
1461
1462 static void
1463 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1464 {
1465 uint64_t byte;
1466 uint8_t bitoff;
1467
1468 if (msr < 0x00002000) {
1469 /* Range 1 */
1470 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1471 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1472 /* Range 2 */
1473 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1474 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1475 /* Range 3 */
1476 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1477 } else {
1478 panic("%s: wrong range", __func__);
1479 }
1480
1481 bitoff = (msr & 0x3) << 1;
1482
1483 if (read) {
1484 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1485 }
1486 if (write) {
1487 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1488 }
1489 }
1490
1491 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1492 #define SVM_SEG_ATTRIB_S __BIT(4)
1493 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1494 #define SVM_SEG_ATTRIB_P __BIT(7)
1495 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1496 #define SVM_SEG_ATTRIB_L __BIT(9)
1497 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1498 #define SVM_SEG_ATTRIB_G __BIT(11)
1499
1500 static void
1501 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1502 struct vmcb_segment *vseg)
1503 {
1504 vseg->selector = seg->selector;
1505 vseg->attrib =
1506 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1507 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1508 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1509 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1510 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1511 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1512 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1513 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1514 vseg->limit = seg->limit;
1515 vseg->base = seg->base;
1516 }
1517
1518 static void
1519 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1520 {
1521 seg->selector = vseg->selector;
1522 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1523 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1524 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1525 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1526 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1527 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1528 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1529 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1530 seg->limit = vseg->limit;
1531 seg->base = vseg->base;
1532 }
1533
1534 static inline bool
1535 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1536 uint64_t flags)
1537 {
1538 if (flags & NVMM_X64_STATE_CRS) {
1539 if ((vmcb->state.cr0 ^
1540 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1541 return true;
1542 }
1543 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1544 return true;
1545 }
1546 if ((vmcb->state.cr4 ^
1547 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1548 return true;
1549 }
1550 }
1551
1552 if (flags & NVMM_X64_STATE_MSRS) {
1553 if ((vmcb->state.efer ^
1554 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1555 return true;
1556 }
1557 }
1558
1559 return false;
1560 }
1561
1562 static void
1563 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
1564 {
1565 const struct nvmm_x64_state *state = data;
1566 struct svm_cpudata *cpudata = vcpu->cpudata;
1567 struct vmcb *vmcb = cpudata->vmcb;
1568 struct fxsave *fpustate;
1569
1570 if (svm_state_tlb_flush(vmcb, state, flags)) {
1571 cpudata->gtlb_want_flush = true;
1572 }
1573
1574 if (flags & NVMM_X64_STATE_SEGS) {
1575 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1576 &vmcb->state.cs);
1577 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1578 &vmcb->state.ds);
1579 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1580 &vmcb->state.es);
1581 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1582 &vmcb->state.fs);
1583 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1584 &vmcb->state.gs);
1585 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1586 &vmcb->state.ss);
1587 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1588 &vmcb->state.gdt);
1589 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1590 &vmcb->state.idt);
1591 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1592 &vmcb->state.ldt);
1593 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1594 &vmcb->state.tr);
1595
1596 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1597 }
1598
1599 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1600 if (flags & NVMM_X64_STATE_GPRS) {
1601 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1602
1603 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1604 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1605 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1606 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1607 }
1608
1609 if (flags & NVMM_X64_STATE_CRS) {
1610 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1611 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1612 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1613 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1614
1615 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1616 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1617 VMCB_CTRL_V_TPR);
1618
1619 if (svm_xcr0_mask != 0) {
1620 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1621 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1622 cpudata->gxcr0 &= svm_xcr0_mask;
1623 cpudata->gxcr0 |= XCR0_X87;
1624 }
1625 }
1626
1627 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1628 if (flags & NVMM_X64_STATE_DRS) {
1629 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1630
1631 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1632 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1633 }
1634
1635 if (flags & NVMM_X64_STATE_MSRS) {
1636 /*
1637 * EFER_SVME is mandatory.
1638 */
1639 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1640 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1641 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1642 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1643 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1644 vmcb->state.kernelgsbase =
1645 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1646 vmcb->state.sysenter_cs =
1647 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1648 vmcb->state.sysenter_esp =
1649 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1650 vmcb->state.sysenter_eip =
1651 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1652 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1653
1654 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1655 cpudata->gtsc_want_update = true;
1656 }
1657
1658 if (flags & NVMM_X64_STATE_MISC) {
1659 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
1660 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1661 } else {
1662 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1663 }
1664
1665 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
1666 svm_event_waitexit_enable(vcpu, false);
1667 } else {
1668 svm_event_waitexit_disable(vcpu, false);
1669 }
1670
1671 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
1672 svm_event_waitexit_enable(vcpu, true);
1673 } else {
1674 svm_event_waitexit_disable(vcpu, true);
1675 }
1676 }
1677
1678 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1679 if (flags & NVMM_X64_STATE_FPU) {
1680 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1681 sizeof(state->fpu));
1682
1683 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1684 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1685 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1686
1687 if (svm_xcr0_mask != 0) {
1688 /* Reset XSTATE_BV, to force a reload. */
1689 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1690 }
1691 }
1692
1693 svm_vmcb_cache_update(vmcb, flags);
1694 }
1695
1696 static void
1697 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1698 {
1699 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1700 struct svm_cpudata *cpudata = vcpu->cpudata;
1701 struct vmcb *vmcb = cpudata->vmcb;
1702
1703 if (flags & NVMM_X64_STATE_SEGS) {
1704 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1705 &vmcb->state.cs);
1706 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1707 &vmcb->state.ds);
1708 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1709 &vmcb->state.es);
1710 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1711 &vmcb->state.fs);
1712 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1713 &vmcb->state.gs);
1714 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1715 &vmcb->state.ss);
1716 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1717 &vmcb->state.gdt);
1718 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1719 &vmcb->state.idt);
1720 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1721 &vmcb->state.ldt);
1722 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1723 &vmcb->state.tr);
1724
1725 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1726 }
1727
1728 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1729 if (flags & NVMM_X64_STATE_GPRS) {
1730 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1731
1732 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1733 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1734 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1735 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1736 }
1737
1738 if (flags & NVMM_X64_STATE_CRS) {
1739 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1740 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1741 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1742 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1743 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1744 VMCB_CTRL_V_TPR);
1745 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1746 }
1747
1748 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1749 if (flags & NVMM_X64_STATE_DRS) {
1750 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1751
1752 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1753 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1754 }
1755
1756 if (flags & NVMM_X64_STATE_MSRS) {
1757 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1758 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1759 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1760 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1761 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1762 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1763 vmcb->state.kernelgsbase;
1764 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1765 vmcb->state.sysenter_cs;
1766 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1767 vmcb->state.sysenter_esp;
1768 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1769 vmcb->state.sysenter_eip;
1770 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1771 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1772
1773 /* Hide SVME. */
1774 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1775 }
1776
1777 if (flags & NVMM_X64_STATE_MISC) {
1778 state->misc[NVMM_X64_MISC_INT_SHADOW] =
1779 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1780 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
1781 cpudata->int_window_exit;
1782 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
1783 cpudata->nmi_window_exit;
1784 }
1785
1786 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1787 if (flags & NVMM_X64_STATE_FPU) {
1788 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1789 sizeof(state->fpu));
1790 }
1791 }
1792
1793 /* -------------------------------------------------------------------------- */
1794
1795 static void
1796 svm_asid_alloc(struct nvmm_cpu *vcpu)
1797 {
1798 struct svm_cpudata *cpudata = vcpu->cpudata;
1799 struct vmcb *vmcb = cpudata->vmcb;
1800 size_t i, oct, bit;
1801
1802 mutex_enter(&svm_asidlock);
1803
1804 for (i = 0; i < svm_maxasid; i++) {
1805 oct = i / 8;
1806 bit = i % 8;
1807
1808 if (svm_asidmap[oct] & __BIT(bit)) {
1809 continue;
1810 }
1811
1812 svm_asidmap[oct] |= __BIT(bit);
1813 vmcb->ctrl.guest_asid = i;
1814 mutex_exit(&svm_asidlock);
1815 return;
1816 }
1817
1818 /*
1819 * No free ASID. Use the last one, which is shared and requires
1820 * special TLB handling.
1821 */
1822 cpudata->shared_asid = true;
1823 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1824 mutex_exit(&svm_asidlock);
1825 }
1826
1827 static void
1828 svm_asid_free(struct nvmm_cpu *vcpu)
1829 {
1830 struct svm_cpudata *cpudata = vcpu->cpudata;
1831 struct vmcb *vmcb = cpudata->vmcb;
1832 size_t oct, bit;
1833
1834 if (cpudata->shared_asid) {
1835 return;
1836 }
1837
1838 oct = vmcb->ctrl.guest_asid / 8;
1839 bit = vmcb->ctrl.guest_asid % 8;
1840
1841 mutex_enter(&svm_asidlock);
1842 svm_asidmap[oct] &= ~__BIT(bit);
1843 mutex_exit(&svm_asidlock);
1844 }
1845
1846 static void
1847 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1848 {
1849 struct svm_cpudata *cpudata = vcpu->cpudata;
1850 struct vmcb *vmcb = cpudata->vmcb;
1851
1852 /* Allow reads/writes of Control Registers. */
1853 vmcb->ctrl.intercept_cr = 0;
1854
1855 /* Allow reads/writes of Debug Registers. */
1856 vmcb->ctrl.intercept_dr = 0;
1857
1858 /* Allow exceptions 0 to 31. */
1859 vmcb->ctrl.intercept_vec = 0;
1860
1861 /*
1862 * Allow:
1863 * - SMI [smm interrupts]
1864 * - VINTR [virtual interrupts]
1865 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1866 * - RIDTR [reads of IDTR]
1867 * - RGDTR [reads of GDTR]
1868 * - RLDTR [reads of LDTR]
1869 * - RTR [reads of TR]
1870 * - WIDTR [writes of IDTR]
1871 * - WGDTR [writes of GDTR]
1872 * - WLDTR [writes of LDTR]
1873 * - WTR [writes of TR]
1874 * - RDTSC [rdtsc instruction]
1875 * - PUSHF [pushf instruction]
1876 * - POPF [popf instruction]
1877 * - IRET [iret instruction]
1878 * - INTN [int $n instructions]
1879 * - INVD [invd instruction]
1880 * - PAUSE [pause instruction]
1881 * - INVLPG [invplg instruction]
1882 * - TASKSW [task switches]
1883 *
1884 * Intercept the rest below.
1885 */
1886 vmcb->ctrl.intercept_misc1 =
1887 VMCB_CTRL_INTERCEPT_INTR |
1888 VMCB_CTRL_INTERCEPT_NMI |
1889 VMCB_CTRL_INTERCEPT_INIT |
1890 VMCB_CTRL_INTERCEPT_RDPMC |
1891 VMCB_CTRL_INTERCEPT_CPUID |
1892 VMCB_CTRL_INTERCEPT_RSM |
1893 VMCB_CTRL_INTERCEPT_HLT |
1894 VMCB_CTRL_INTERCEPT_INVLPGA |
1895 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1896 VMCB_CTRL_INTERCEPT_MSR_PROT |
1897 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1898 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1899
1900 /*
1901 * Allow:
1902 * - ICEBP [icebp instruction]
1903 * - WBINVD [wbinvd instruction]
1904 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1905 *
1906 * Intercept the rest below.
1907 */
1908 vmcb->ctrl.intercept_misc2 =
1909 VMCB_CTRL_INTERCEPT_VMRUN |
1910 VMCB_CTRL_INTERCEPT_VMMCALL |
1911 VMCB_CTRL_INTERCEPT_VMLOAD |
1912 VMCB_CTRL_INTERCEPT_VMSAVE |
1913 VMCB_CTRL_INTERCEPT_STGI |
1914 VMCB_CTRL_INTERCEPT_CLGI |
1915 VMCB_CTRL_INTERCEPT_SKINIT |
1916 VMCB_CTRL_INTERCEPT_RDTSCP |
1917 VMCB_CTRL_INTERCEPT_MONITOR |
1918 VMCB_CTRL_INTERCEPT_MWAIT |
1919 VMCB_CTRL_INTERCEPT_XSETBV;
1920
1921 /* Intercept all I/O accesses. */
1922 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1923 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1924
1925 /* Allow direct access to certain MSRs. */
1926 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1927 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1928 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1929 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1930 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1931 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1932 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1933 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1934 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1935 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1936 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1937 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1938 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1939 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1940 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1941
1942 /* Generate ASID. */
1943 svm_asid_alloc(vcpu);
1944
1945 /* Virtual TPR. */
1946 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1947
1948 /* Enable Nested Paging. */
1949 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1950 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1951
1952 /* Init XSAVE header. */
1953 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1954 cpudata->gfpu.xsh_xcomp_bv = 0;
1955
1956 /* These MSRs are static. */
1957 cpudata->star = rdmsr(MSR_STAR);
1958 cpudata->lstar = rdmsr(MSR_LSTAR);
1959 cpudata->cstar = rdmsr(MSR_CSTAR);
1960 cpudata->sfmask = rdmsr(MSR_SFMASK);
1961
1962 /* Install the RESET state. */
1963 svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
1964 }
1965
1966 static int
1967 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1968 {
1969 struct svm_cpudata *cpudata;
1970 int error;
1971
1972 /* Allocate the SVM cpudata. */
1973 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1974 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1975 UVM_KMF_WIRED|UVM_KMF_ZERO);
1976 vcpu->cpudata = cpudata;
1977
1978 /* VMCB */
1979 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1980 VMCB_NPAGES);
1981 if (error)
1982 goto error;
1983
1984 /* I/O Bitmap */
1985 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1986 IOBM_NPAGES);
1987 if (error)
1988 goto error;
1989
1990 /* MSR Bitmap */
1991 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1992 MSRBM_NPAGES);
1993 if (error)
1994 goto error;
1995
1996 /* Init the VCPU info. */
1997 svm_vcpu_init(mach, vcpu);
1998
1999 return 0;
2000
2001 error:
2002 if (cpudata->vmcb_pa) {
2003 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2004 VMCB_NPAGES);
2005 }
2006 if (cpudata->iobm_pa) {
2007 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2008 IOBM_NPAGES);
2009 }
2010 if (cpudata->msrbm_pa) {
2011 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2012 MSRBM_NPAGES);
2013 }
2014 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2015 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2016 return error;
2017 }
2018
2019 static void
2020 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2021 {
2022 struct svm_cpudata *cpudata = vcpu->cpudata;
2023
2024 svm_asid_free(vcpu);
2025
2026 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2027 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2028 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2029
2030 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2031 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2032 }
2033
2034 /* -------------------------------------------------------------------------- */
2035
2036 static void
2037 svm_tlb_flush(struct pmap *pm)
2038 {
2039 struct nvmm_machine *mach = pm->pm_data;
2040 struct svm_machdata *machdata = mach->machdata;
2041
2042 atomic_inc_64(&machdata->mach_htlb_gen);
2043
2044 /* Generates IPIs, which cause #VMEXITs. */
2045 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2046 }
2047
2048 static void
2049 svm_machine_create(struct nvmm_machine *mach)
2050 {
2051 struct svm_machdata *machdata;
2052
2053 /* Fill in pmap info. */
2054 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2055 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2056
2057 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2058 mach->machdata = machdata;
2059
2060 /* Start with an hTLB flush everywhere. */
2061 machdata->mach_htlb_gen = 1;
2062 }
2063
2064 static void
2065 svm_machine_destroy(struct nvmm_machine *mach)
2066 {
2067 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2068 }
2069
2070 static int
2071 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2072 {
2073 struct nvmm_x86_conf_cpuid *cpuid = data;
2074 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2075 size_t i;
2076
2077 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2078 return EINVAL;
2079 }
2080
2081 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2082 (cpuid->set.ebx & cpuid->del.ebx) ||
2083 (cpuid->set.ecx & cpuid->del.ecx) ||
2084 (cpuid->set.edx & cpuid->del.edx))) {
2085 return EINVAL;
2086 }
2087
2088 /* If already here, replace. */
2089 for (i = 0; i < SVM_NCPUIDS; i++) {
2090 if (!machdata->cpuidpresent[i]) {
2091 continue;
2092 }
2093 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2094 memcpy(&machdata->cpuid[i], cpuid,
2095 sizeof(struct nvmm_x86_conf_cpuid));
2096 return 0;
2097 }
2098 }
2099
2100 /* Not here, insert. */
2101 for (i = 0; i < SVM_NCPUIDS; i++) {
2102 if (!machdata->cpuidpresent[i]) {
2103 machdata->cpuidpresent[i] = true;
2104 memcpy(&machdata->cpuid[i], cpuid,
2105 sizeof(struct nvmm_x86_conf_cpuid));
2106 return 0;
2107 }
2108 }
2109
2110 return ENOBUFS;
2111 }
2112
2113 /* -------------------------------------------------------------------------- */
2114
2115 static bool
2116 svm_ident(void)
2117 {
2118 u_int descs[4];
2119 uint64_t msr;
2120
2121 if (cpu_vendor != CPUVENDOR_AMD) {
2122 return false;
2123 }
2124 if (!(cpu_feature[3] & CPUID_SVM)) {
2125 return false;
2126 }
2127
2128 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2129 return false;
2130 }
2131 x86_cpuid(0x8000000a, descs);
2132
2133 /* Want Nested Paging. */
2134 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2135 return false;
2136 }
2137
2138 /* Want nRIP. */
2139 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2140 return false;
2141 }
2142
2143 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2144
2145 msr = rdmsr(MSR_VMCR);
2146 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2147 return false;
2148 }
2149
2150 return true;
2151 }
2152
2153 static void
2154 svm_init_asid(uint32_t maxasid)
2155 {
2156 size_t i, j, allocsz;
2157
2158 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2159
2160 /* Arbitrarily limit. */
2161 maxasid = uimin(maxasid, 8192);
2162
2163 svm_maxasid = maxasid;
2164 allocsz = roundup(maxasid, 8) / 8;
2165 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2166
2167 /* ASID 0 is reserved for the host. */
2168 svm_asidmap[0] |= __BIT(0);
2169
2170 /* ASID n-1 is special, we share it. */
2171 i = (maxasid - 1) / 8;
2172 j = (maxasid - 1) % 8;
2173 svm_asidmap[i] |= __BIT(j);
2174 }
2175
2176 static void
2177 svm_change_cpu(void *arg1, void *arg2)
2178 {
2179 bool enable = (bool)arg1;
2180 uint64_t msr;
2181
2182 msr = rdmsr(MSR_VMCR);
2183 if (msr & VMCR_SVMED) {
2184 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2185 }
2186
2187 if (!enable) {
2188 wrmsr(MSR_VM_HSAVE_PA, 0);
2189 }
2190
2191 msr = rdmsr(MSR_EFER);
2192 if (enable) {
2193 msr |= EFER_SVME;
2194 } else {
2195 msr &= ~EFER_SVME;
2196 }
2197 wrmsr(MSR_EFER, msr);
2198
2199 if (enable) {
2200 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2201 }
2202 }
2203
2204 static void
2205 svm_init(void)
2206 {
2207 CPU_INFO_ITERATOR cii;
2208 struct cpu_info *ci;
2209 struct vm_page *pg;
2210 u_int descs[4];
2211 uint64_t xc;
2212
2213 x86_cpuid(0x8000000a, descs);
2214
2215 /* The guest TLB flush command. */
2216 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2217 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2218 } else {
2219 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2220 }
2221
2222 /* Init the ASID. */
2223 svm_init_asid(descs[1]);
2224
2225 /* Init the XCR0 mask. */
2226 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2227
2228 memset(hsave, 0, sizeof(hsave));
2229 for (CPU_INFO_FOREACH(cii, ci)) {
2230 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2231 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2232 }
2233
2234 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2235 xc_wait(xc);
2236 }
2237
2238 static void
2239 svm_fini_asid(void)
2240 {
2241 size_t allocsz;
2242
2243 allocsz = roundup(svm_maxasid, 8) / 8;
2244 kmem_free(svm_asidmap, allocsz);
2245
2246 mutex_destroy(&svm_asidlock);
2247 }
2248
2249 static void
2250 svm_fini(void)
2251 {
2252 uint64_t xc;
2253 size_t i;
2254
2255 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2256 xc_wait(xc);
2257
2258 for (i = 0; i < MAXCPUS; i++) {
2259 if (hsave[i].pa != 0)
2260 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2261 }
2262
2263 svm_fini_asid();
2264 }
2265
2266 static void
2267 svm_capability(struct nvmm_capability *cap)
2268 {
2269 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2270 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2271 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2272 }
2273
2274 const struct nvmm_impl nvmm_x86_svm = {
2275 .ident = svm_ident,
2276 .init = svm_init,
2277 .fini = svm_fini,
2278 .capability = svm_capability,
2279 .conf_max = NVMM_X86_NCONF,
2280 .conf_sizes = svm_conf_sizes,
2281 .state_size = sizeof(struct nvmm_x64_state),
2282 .machine_create = svm_machine_create,
2283 .machine_destroy = svm_machine_destroy,
2284 .machine_configure = svm_machine_configure,
2285 .vcpu_create = svm_vcpu_create,
2286 .vcpu_destroy = svm_vcpu_destroy,
2287 .vcpu_setstate = svm_vcpu_setstate,
2288 .vcpu_getstate = svm_vcpu_getstate,
2289 .vcpu_inject = svm_vcpu_inject,
2290 .vcpu_run = svm_vcpu_run
2291 };
2292