Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.37
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.37 2019/04/06 11:49:53 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.37 2019/04/06 11:49:53 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int svm_vmrun(paddr_t, uint64_t *);
     58 
     59 #define	MSR_VM_HSAVE_PA	0xC0010117
     60 
     61 /* -------------------------------------------------------------------------- */
     62 
     63 #define VMCB_EXITCODE_CR0_READ		0x0000
     64 #define VMCB_EXITCODE_CR1_READ		0x0001
     65 #define VMCB_EXITCODE_CR2_READ		0x0002
     66 #define VMCB_EXITCODE_CR3_READ		0x0003
     67 #define VMCB_EXITCODE_CR4_READ		0x0004
     68 #define VMCB_EXITCODE_CR5_READ		0x0005
     69 #define VMCB_EXITCODE_CR6_READ		0x0006
     70 #define VMCB_EXITCODE_CR7_READ		0x0007
     71 #define VMCB_EXITCODE_CR8_READ		0x0008
     72 #define VMCB_EXITCODE_CR9_READ		0x0009
     73 #define VMCB_EXITCODE_CR10_READ		0x000A
     74 #define VMCB_EXITCODE_CR11_READ		0x000B
     75 #define VMCB_EXITCODE_CR12_READ		0x000C
     76 #define VMCB_EXITCODE_CR13_READ		0x000D
     77 #define VMCB_EXITCODE_CR14_READ		0x000E
     78 #define VMCB_EXITCODE_CR15_READ		0x000F
     79 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     80 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     81 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     82 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     83 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     84 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     85 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     86 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     87 #define VMCB_EXITCODE_CR8_WRITE		0x0018
     88 #define VMCB_EXITCODE_CR9_WRITE		0x0019
     89 #define VMCB_EXITCODE_CR10_WRITE	0x001A
     90 #define VMCB_EXITCODE_CR11_WRITE	0x001B
     91 #define VMCB_EXITCODE_CR12_WRITE	0x001C
     92 #define VMCB_EXITCODE_CR13_WRITE	0x001D
     93 #define VMCB_EXITCODE_CR14_WRITE	0x001E
     94 #define VMCB_EXITCODE_CR15_WRITE	0x001F
     95 #define VMCB_EXITCODE_DR0_READ		0x0020
     96 #define VMCB_EXITCODE_DR1_READ		0x0021
     97 #define VMCB_EXITCODE_DR2_READ		0x0022
     98 #define VMCB_EXITCODE_DR3_READ		0x0023
     99 #define VMCB_EXITCODE_DR4_READ		0x0024
    100 #define VMCB_EXITCODE_DR5_READ		0x0025
    101 #define VMCB_EXITCODE_DR6_READ		0x0026
    102 #define VMCB_EXITCODE_DR7_READ		0x0027
    103 #define VMCB_EXITCODE_DR8_READ		0x0028
    104 #define VMCB_EXITCODE_DR9_READ		0x0029
    105 #define VMCB_EXITCODE_DR10_READ		0x002A
    106 #define VMCB_EXITCODE_DR11_READ		0x002B
    107 #define VMCB_EXITCODE_DR12_READ		0x002C
    108 #define VMCB_EXITCODE_DR13_READ		0x002D
    109 #define VMCB_EXITCODE_DR14_READ		0x002E
    110 #define VMCB_EXITCODE_DR15_READ		0x002F
    111 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    112 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    113 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    114 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    115 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    116 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    117 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    118 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    119 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    120 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    121 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    122 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    123 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    124 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    125 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    126 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    127 #define VMCB_EXITCODE_EXCP0		0x0040
    128 #define VMCB_EXITCODE_EXCP1		0x0041
    129 #define VMCB_EXITCODE_EXCP2		0x0042
    130 #define VMCB_EXITCODE_EXCP3		0x0043
    131 #define VMCB_EXITCODE_EXCP4		0x0044
    132 #define VMCB_EXITCODE_EXCP5		0x0045
    133 #define VMCB_EXITCODE_EXCP6		0x0046
    134 #define VMCB_EXITCODE_EXCP7		0x0047
    135 #define VMCB_EXITCODE_EXCP8		0x0048
    136 #define VMCB_EXITCODE_EXCP9		0x0049
    137 #define VMCB_EXITCODE_EXCP10		0x004A
    138 #define VMCB_EXITCODE_EXCP11		0x004B
    139 #define VMCB_EXITCODE_EXCP12		0x004C
    140 #define VMCB_EXITCODE_EXCP13		0x004D
    141 #define VMCB_EXITCODE_EXCP14		0x004E
    142 #define VMCB_EXITCODE_EXCP15		0x004F
    143 #define VMCB_EXITCODE_EXCP16		0x0050
    144 #define VMCB_EXITCODE_EXCP17		0x0051
    145 #define VMCB_EXITCODE_EXCP18		0x0052
    146 #define VMCB_EXITCODE_EXCP19		0x0053
    147 #define VMCB_EXITCODE_EXCP20		0x0054
    148 #define VMCB_EXITCODE_EXCP21		0x0055
    149 #define VMCB_EXITCODE_EXCP22		0x0056
    150 #define VMCB_EXITCODE_EXCP23		0x0057
    151 #define VMCB_EXITCODE_EXCP24		0x0058
    152 #define VMCB_EXITCODE_EXCP25		0x0059
    153 #define VMCB_EXITCODE_EXCP26		0x005A
    154 #define VMCB_EXITCODE_EXCP27		0x005B
    155 #define VMCB_EXITCODE_EXCP28		0x005C
    156 #define VMCB_EXITCODE_EXCP29		0x005D
    157 #define VMCB_EXITCODE_EXCP30		0x005E
    158 #define VMCB_EXITCODE_EXCP31		0x005F
    159 #define VMCB_EXITCODE_INTR		0x0060
    160 #define VMCB_EXITCODE_NMI		0x0061
    161 #define VMCB_EXITCODE_SMI		0x0062
    162 #define VMCB_EXITCODE_INIT		0x0063
    163 #define VMCB_EXITCODE_VINTR		0x0064
    164 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    165 #define VMCB_EXITCODE_IDTR_READ		0x0066
    166 #define VMCB_EXITCODE_GDTR_READ		0x0067
    167 #define VMCB_EXITCODE_LDTR_READ		0x0068
    168 #define VMCB_EXITCODE_TR_READ		0x0069
    169 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    170 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    171 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    172 #define VMCB_EXITCODE_TR_WRITE		0x006D
    173 #define VMCB_EXITCODE_RDTSC		0x006E
    174 #define VMCB_EXITCODE_RDPMC		0x006F
    175 #define VMCB_EXITCODE_PUSHF		0x0070
    176 #define VMCB_EXITCODE_POPF		0x0071
    177 #define VMCB_EXITCODE_CPUID		0x0072
    178 #define VMCB_EXITCODE_RSM		0x0073
    179 #define VMCB_EXITCODE_IRET		0x0074
    180 #define VMCB_EXITCODE_SWINT		0x0075
    181 #define VMCB_EXITCODE_INVD		0x0076
    182 #define VMCB_EXITCODE_PAUSE		0x0077
    183 #define VMCB_EXITCODE_HLT		0x0078
    184 #define VMCB_EXITCODE_INVLPG		0x0079
    185 #define VMCB_EXITCODE_INVLPGA		0x007A
    186 #define VMCB_EXITCODE_IOIO		0x007B
    187 #define VMCB_EXITCODE_MSR		0x007C
    188 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    189 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    190 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    191 #define VMCB_EXITCODE_VMRUN		0x0080
    192 #define VMCB_EXITCODE_VMMCALL		0x0081
    193 #define VMCB_EXITCODE_VMLOAD		0x0082
    194 #define VMCB_EXITCODE_VMSAVE		0x0083
    195 #define VMCB_EXITCODE_STGI		0x0084
    196 #define VMCB_EXITCODE_CLGI		0x0085
    197 #define VMCB_EXITCODE_SKINIT		0x0086
    198 #define VMCB_EXITCODE_RDTSCP		0x0087
    199 #define VMCB_EXITCODE_ICEBP		0x0088
    200 #define VMCB_EXITCODE_WBINVD		0x0089
    201 #define VMCB_EXITCODE_MONITOR		0x008A
    202 #define VMCB_EXITCODE_MWAIT		0x008B
    203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    204 #define VMCB_EXITCODE_XSETBV		0x008D
    205 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    206 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    207 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    208 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    209 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    210 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    211 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    212 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    213 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    214 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    215 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    216 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    217 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    218 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    219 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    220 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    221 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    222 #define VMCB_EXITCODE_NPF		0x0400
    223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    224 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    225 #define VMCB_EXITCODE_VMGEXIT		0x0403
    226 #define VMCB_EXITCODE_INVALID		-1
    227 
    228 /* -------------------------------------------------------------------------- */
    229 
    230 struct vmcb_ctrl {
    231 	uint32_t intercept_cr;
    232 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    233 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    234 
    235 	uint32_t intercept_dr;
    236 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    237 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    238 
    239 	uint32_t intercept_vec;
    240 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    241 
    242 	uint32_t intercept_misc1;
    243 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    244 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    245 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    246 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    247 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    249 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    250 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    251 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    252 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    253 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    254 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    255 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    256 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    257 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    258 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    259 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    260 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    261 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    262 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    263 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    264 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    265 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    266 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    267 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    268 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    269 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    271 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    272 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    275 
    276 	uint32_t intercept_misc2;
    277 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    278 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    279 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    280 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    281 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    282 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    283 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    284 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    285 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    286 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    287 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    288 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
    289 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    292 
    293 	uint8_t  rsvd1[40];
    294 	uint16_t pause_filt_thresh;
    295 	uint16_t pause_filt_cnt;
    296 	uint64_t iopm_base_pa;
    297 	uint64_t msrpm_base_pa;
    298 	uint64_t tsc_offset;
    299 	uint32_t guest_asid;
    300 
    301 	uint32_t tlb_ctrl;
    302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    305 
    306 	uint64_t v;
    307 #define VMCB_CTRL_V_TPR			__BITS(3,0)
    308 #define VMCB_CTRL_V_IRQ			__BIT(8)
    309 #define VMCB_CTRL_V_VGIF		__BIT(9)
    310 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    311 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    312 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    313 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    314 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    315 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    316 
    317 	uint64_t intr;
    318 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    319 
    320 	uint64_t exitcode;
    321 	uint64_t exitinfo1;
    322 	uint64_t exitinfo2;
    323 
    324 	uint64_t exitintinfo;
    325 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    326 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    327 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    328 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    330 
    331 	uint64_t enable1;
    332 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    333 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    334 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    335 
    336 	uint64_t avic;
    337 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    338 
    339 	uint64_t ghcb;
    340 
    341 	uint64_t eventinj;
    342 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    343 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    344 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    345 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    346 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    347 
    348 	uint64_t n_cr3;
    349 
    350 	uint64_t enable2;
    351 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    352 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    353 
    354 	uint32_t vmcb_clean;
    355 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    356 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    357 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    358 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    359 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    360 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    361 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    362 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    363 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    364 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    365 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    366 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    367 
    368 	uint32_t rsvd2;
    369 	uint64_t nrip;
    370 	uint8_t	inst_len;
    371 	uint8_t	inst_bytes[15];
    372 	uint64_t avic_abpp;
    373 	uint64_t rsvd3;
    374 	uint64_t avic_ltp;
    375 
    376 	uint64_t avic_phys;
    377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    379 
    380 	uint64_t rsvd4;
    381 	uint64_t vmcb_ptr;
    382 
    383 	uint8_t	pad[752];
    384 } __packed;
    385 
    386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    387 
    388 struct vmcb_segment {
    389 	uint16_t selector;
    390 	uint16_t attrib;	/* hidden */
    391 	uint32_t limit;		/* hidden */
    392 	uint64_t base;		/* hidden */
    393 } __packed;
    394 
    395 CTASSERT(sizeof(struct vmcb_segment) == 16);
    396 
    397 struct vmcb_state {
    398 	struct   vmcb_segment es;
    399 	struct   vmcb_segment cs;
    400 	struct   vmcb_segment ss;
    401 	struct   vmcb_segment ds;
    402 	struct   vmcb_segment fs;
    403 	struct   vmcb_segment gs;
    404 	struct   vmcb_segment gdt;
    405 	struct   vmcb_segment ldt;
    406 	struct   vmcb_segment idt;
    407 	struct   vmcb_segment tr;
    408 	uint8_t	 rsvd1[43];
    409 	uint8_t	 cpl;
    410 	uint8_t  rsvd2[4];
    411 	uint64_t efer;
    412 	uint8_t	 rsvd3[112];
    413 	uint64_t cr4;
    414 	uint64_t cr3;
    415 	uint64_t cr0;
    416 	uint64_t dr7;
    417 	uint64_t dr6;
    418 	uint64_t rflags;
    419 	uint64_t rip;
    420 	uint8_t	 rsvd4[88];
    421 	uint64_t rsp;
    422 	uint8_t	 rsvd5[24];
    423 	uint64_t rax;
    424 	uint64_t star;
    425 	uint64_t lstar;
    426 	uint64_t cstar;
    427 	uint64_t sfmask;
    428 	uint64_t kernelgsbase;
    429 	uint64_t sysenter_cs;
    430 	uint64_t sysenter_esp;
    431 	uint64_t sysenter_eip;
    432 	uint64_t cr2;
    433 	uint8_t	 rsvd6[32];
    434 	uint64_t g_pat;
    435 	uint64_t dbgctl;
    436 	uint64_t br_from;
    437 	uint64_t br_to;
    438 	uint64_t int_from;
    439 	uint64_t int_to;
    440 	uint8_t	 pad[2408];
    441 } __packed;
    442 
    443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    444 
    445 struct vmcb {
    446 	struct vmcb_ctrl ctrl;
    447 	struct vmcb_state state;
    448 } __packed;
    449 
    450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    452 
    453 /* -------------------------------------------------------------------------- */
    454 
    455 struct svm_hsave {
    456 	paddr_t pa;
    457 };
    458 
    459 static struct svm_hsave hsave[MAXCPUS];
    460 
    461 static uint8_t *svm_asidmap __read_mostly;
    462 static uint32_t svm_maxasid __read_mostly;
    463 static kmutex_t svm_asidlock __cacheline_aligned;
    464 
    465 static bool svm_decode_assist __read_mostly;
    466 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    467 
    468 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    469 static uint64_t svm_xcr0_mask __read_mostly;
    470 
    471 #define SVM_NCPUIDS	32
    472 
    473 #define VMCB_NPAGES	1
    474 
    475 #define MSRBM_NPAGES	2
    476 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    477 
    478 #define IOBM_NPAGES	3
    479 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    480 
    481 /* Does not include EFER_LMSLE. */
    482 #define EFER_VALID \
    483 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    484 
    485 #define EFER_TLB_FLUSH \
    486 	(EFER_NXE|EFER_LMA|EFER_LME)
    487 #define CR0_TLB_FLUSH \
    488 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    489 #define CR4_TLB_FLUSH \
    490 	(CR4_PGE|CR4_PAE|CR4_PSE)
    491 
    492 /* -------------------------------------------------------------------------- */
    493 
    494 struct svm_machdata {
    495 	bool cpuidpresent[SVM_NCPUIDS];
    496 	struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
    497 	volatile uint64_t mach_htlb_gen;
    498 };
    499 
    500 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
    501 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    502 };
    503 
    504 struct svm_cpudata {
    505 	/* General */
    506 	bool shared_asid;
    507 	bool gtlb_want_flush;
    508 	bool gtsc_want_update;
    509 	uint64_t vcpu_htlb_gen;
    510 
    511 	/* VMCB */
    512 	struct vmcb *vmcb;
    513 	paddr_t vmcb_pa;
    514 
    515 	/* I/O bitmap */
    516 	uint8_t *iobm;
    517 	paddr_t iobm_pa;
    518 
    519 	/* MSR bitmap */
    520 	uint8_t *msrbm;
    521 	paddr_t msrbm_pa;
    522 
    523 	/* Host state */
    524 	uint64_t hxcr0;
    525 	uint64_t star;
    526 	uint64_t lstar;
    527 	uint64_t cstar;
    528 	uint64_t sfmask;
    529 	uint64_t fsbase;
    530 	uint64_t kernelgsbase;
    531 	bool ts_set;
    532 	struct xsave_header hfpu __aligned(64);
    533 
    534 	/* Intr state */
    535 	bool int_window_exit;
    536 	bool nmi_window_exit;
    537 	bool evt_pending;
    538 
    539 	/* Guest state */
    540 	uint64_t gxcr0;
    541 	uint64_t gprs[NVMM_X64_NGPR];
    542 	uint64_t drs[NVMM_X64_NDR];
    543 	uint64_t gtsc;
    544 	struct xsave_header gfpu __aligned(64);
    545 };
    546 
    547 static void
    548 svm_vmcb_cache_default(struct vmcb *vmcb)
    549 {
    550 	vmcb->ctrl.vmcb_clean =
    551 	    VMCB_CTRL_VMCB_CLEAN_I |
    552 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    553 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    554 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    555 	    VMCB_CTRL_VMCB_CLEAN_NP |
    556 	    VMCB_CTRL_VMCB_CLEAN_CR |
    557 	    VMCB_CTRL_VMCB_CLEAN_DR |
    558 	    VMCB_CTRL_VMCB_CLEAN_DT |
    559 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    560 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    561 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    562 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    563 }
    564 
    565 static void
    566 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    567 {
    568 	if (flags & NVMM_X64_STATE_SEGS) {
    569 		vmcb->ctrl.vmcb_clean &=
    570 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    571 	}
    572 	if (flags & NVMM_X64_STATE_CRS) {
    573 		vmcb->ctrl.vmcb_clean &=
    574 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    575 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    576 	}
    577 	if (flags & NVMM_X64_STATE_DRS) {
    578 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    579 	}
    580 	if (flags & NVMM_X64_STATE_MSRS) {
    581 		/* CR for EFER, NP for PAT. */
    582 		vmcb->ctrl.vmcb_clean &=
    583 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    584 	}
    585 }
    586 
    587 static inline void
    588 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    589 {
    590 	vmcb->ctrl.vmcb_clean &= ~flags;
    591 }
    592 
    593 static inline void
    594 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    595 {
    596 	vmcb->ctrl.vmcb_clean = 0;
    597 }
    598 
    599 #define SVM_EVENT_TYPE_HW_INT	0
    600 #define SVM_EVENT_TYPE_NMI	2
    601 #define SVM_EVENT_TYPE_EXC	3
    602 #define SVM_EVENT_TYPE_SW_INT	4
    603 
    604 static void
    605 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    606 {
    607 	struct svm_cpudata *cpudata = vcpu->cpudata;
    608 	struct vmcb *vmcb = cpudata->vmcb;
    609 
    610 	if (nmi) {
    611 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    612 		cpudata->nmi_window_exit = true;
    613 	} else {
    614 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    615 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    616 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    617 		cpudata->int_window_exit = true;
    618 	}
    619 
    620 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    621 }
    622 
    623 static void
    624 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    625 {
    626 	struct svm_cpudata *cpudata = vcpu->cpudata;
    627 	struct vmcb *vmcb = cpudata->vmcb;
    628 
    629 	if (nmi) {
    630 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    631 		cpudata->nmi_window_exit = false;
    632 	} else {
    633 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    634 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    635 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    636 		cpudata->int_window_exit = false;
    637 	}
    638 
    639 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    640 }
    641 
    642 static inline int
    643 svm_event_has_error(uint64_t vector)
    644 {
    645 	switch (vector) {
    646 	case 8:		/* #DF */
    647 	case 10:	/* #TS */
    648 	case 11:	/* #NP */
    649 	case 12:	/* #SS */
    650 	case 13:	/* #GP */
    651 	case 14:	/* #PF */
    652 	case 17:	/* #AC */
    653 	case 30:	/* #SX */
    654 		return 1;
    655 	default:
    656 		return 0;
    657 	}
    658 }
    659 
    660 static int
    661 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    662     struct nvmm_event *event)
    663 {
    664 	struct svm_cpudata *cpudata = vcpu->cpudata;
    665 	struct vmcb *vmcb = cpudata->vmcb;
    666 	int type = 0, err = 0;
    667 
    668 	if (event->vector >= 256) {
    669 		return EINVAL;
    670 	}
    671 
    672 	switch (event->type) {
    673 	case NVMM_EVENT_INTERRUPT_HW:
    674 		type = SVM_EVENT_TYPE_HW_INT;
    675 		if (event->vector == 2) {
    676 			type = SVM_EVENT_TYPE_NMI;
    677 		}
    678 		if (type == SVM_EVENT_TYPE_NMI) {
    679 			if (cpudata->nmi_window_exit) {
    680 				return EAGAIN;
    681 			}
    682 			svm_event_waitexit_enable(vcpu, true);
    683 		} else {
    684 			if (((vmcb->state.rflags & PSL_I) == 0) ||
    685 			    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
    686 				svm_event_waitexit_enable(vcpu, false);
    687 				return EAGAIN;
    688 			}
    689 		}
    690 		err = 0;
    691 		break;
    692 	case NVMM_EVENT_INTERRUPT_SW:
    693 		return EINVAL;
    694 	case NVMM_EVENT_EXCEPTION:
    695 		type = SVM_EVENT_TYPE_EXC;
    696 		if (event->vector == 2 || event->vector >= 32)
    697 			return EINVAL;
    698 		if (event->vector == 3 || event->vector == 0)
    699 			return EINVAL;
    700 		err = svm_event_has_error(event->vector);
    701 		break;
    702 	default:
    703 		return EINVAL;
    704 	}
    705 
    706 	vmcb->ctrl.eventinj =
    707 	    __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    708 	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
    709 	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
    710 	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
    711 	    __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    712 
    713 	cpudata->evt_pending = true;
    714 
    715 	return 0;
    716 }
    717 
    718 static void
    719 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    720 {
    721 	struct nvmm_event event;
    722 	int ret __diagused;
    723 
    724 	event.type = NVMM_EVENT_EXCEPTION;
    725 	event.vector = 6;
    726 	event.u.error = 0;
    727 
    728 	ret = svm_vcpu_inject(mach, vcpu, &event);
    729 	KASSERT(ret == 0);
    730 }
    731 
    732 static void
    733 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    734 {
    735 	struct nvmm_event event;
    736 	int ret __diagused;
    737 
    738 	event.type = NVMM_EVENT_EXCEPTION;
    739 	event.vector = 13;
    740 	event.u.error = 0;
    741 
    742 	ret = svm_vcpu_inject(mach, vcpu, &event);
    743 	KASSERT(ret == 0);
    744 }
    745 
    746 static inline void
    747 svm_inkernel_advance(struct vmcb *vmcb)
    748 {
    749 	/*
    750 	 * Maybe we should also apply single-stepping and debug exceptions.
    751 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    752 	 * debugger.
    753 	 */
    754 	vmcb->state.rip = vmcb->ctrl.nrip;
    755 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    756 }
    757 
    758 static void
    759 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    760 {
    761 	struct svm_cpudata *cpudata = vcpu->cpudata;
    762 	uint64_t cr4;
    763 
    764 	switch (eax) {
    765 	case 0x00000001:
    766 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
    767 
    768 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    769 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    770 		    CPUID_LOCAL_APIC_ID);
    771 
    772 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
    773 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
    774 
    775 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
    776 
    777 		/* CPUID2_OSXSAVE depends on CR4. */
    778 		cr4 = cpudata->vmcb->state.cr4;
    779 		if (!(cr4 & CR4_OSXSAVE)) {
    780 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
    781 		}
    782 		break;
    783 	case 0x00000005:
    784 	case 0x00000006:
    785 		cpudata->vmcb->state.rax = 0;
    786 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    787 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    788 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    789 		break;
    790 	case 0x00000007:
    791 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
    792 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
    793 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
    794 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
    795 		break;
    796 	case 0x0000000D:
    797 		if (svm_xcr0_mask == 0) {
    798 			break;
    799 		}
    800 		switch (ecx) {
    801 		case 0:
    802 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    803 			if (cpudata->gxcr0 & XCR0_SSE) {
    804 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    805 			} else {
    806 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    807 			}
    808 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    809 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
    810 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    811 			break;
    812 		case 1:
    813 			cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
    814 			break;
    815 		}
    816 		break;
    817 	case 0x40000000:
    818 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    819 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    820 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    821 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    822 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    823 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    824 		break;
    825 	case 0x80000001:
    826 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
    827 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
    828 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
    829 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
    830 		break;
    831 	default:
    832 		break;
    833 	}
    834 }
    835 
    836 static void
    837 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    838     struct nvmm_exit *exit)
    839 {
    840 	struct svm_machdata *machdata = mach->machdata;
    841 	struct svm_cpudata *cpudata = vcpu->cpudata;
    842 	struct nvmm_x86_conf_cpuid *cpuid;
    843 	uint64_t eax, ecx;
    844 	u_int descs[4];
    845 	size_t i;
    846 
    847 	eax = cpudata->vmcb->state.rax;
    848 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    849 	x86_cpuid2(eax, ecx, descs);
    850 
    851 	cpudata->vmcb->state.rax = descs[0];
    852 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    853 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    854 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    855 
    856 	for (i = 0; i < SVM_NCPUIDS; i++) {
    857 		cpuid = &machdata->cpuid[i];
    858 		if (!machdata->cpuidpresent[i]) {
    859 			continue;
    860 		}
    861 		if (cpuid->leaf != eax) {
    862 			continue;
    863 		}
    864 
    865 		/* del */
    866 		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
    867 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
    868 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
    869 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
    870 
    871 		/* set */
    872 		cpudata->vmcb->state.rax |= cpuid->set.eax;
    873 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
    874 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
    875 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
    876 
    877 		break;
    878 	}
    879 
    880 	/* Overwrite non-tunable leaves. */
    881 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    882 
    883 	svm_inkernel_advance(cpudata->vmcb);
    884 	exit->reason = NVMM_EXIT_NONE;
    885 }
    886 
    887 static void
    888 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    889     struct nvmm_exit *exit)
    890 {
    891 	struct svm_cpudata *cpudata = vcpu->cpudata;
    892 	struct vmcb *vmcb = cpudata->vmcb;
    893 
    894 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
    895 		svm_event_waitexit_disable(vcpu, false);
    896 	}
    897 
    898 	svm_inkernel_advance(cpudata->vmcb);
    899 	exit->reason = NVMM_EXIT_HALTED;
    900 }
    901 
    902 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    903 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    904 #define SVM_EXIT_IO_A64		__BIT(9)
    905 #define SVM_EXIT_IO_A32		__BIT(8)
    906 #define SVM_EXIT_IO_A16		__BIT(7)
    907 #define SVM_EXIT_IO_SZ32	__BIT(6)
    908 #define SVM_EXIT_IO_SZ16	__BIT(5)
    909 #define SVM_EXIT_IO_SZ8		__BIT(4)
    910 #define SVM_EXIT_IO_REP		__BIT(3)
    911 #define SVM_EXIT_IO_STR		__BIT(2)
    912 #define SVM_EXIT_IO_IN		__BIT(0)
    913 
    914 static void
    915 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    916     struct nvmm_exit *exit)
    917 {
    918 	struct svm_cpudata *cpudata = vcpu->cpudata;
    919 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    920 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    921 
    922 	exit->reason = NVMM_EXIT_IO;
    923 
    924 	if (info & SVM_EXIT_IO_IN) {
    925 		exit->u.io.type = NVMM_EXIT_IO_IN;
    926 	} else {
    927 		exit->u.io.type = NVMM_EXIT_IO_OUT;
    928 	}
    929 
    930 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
    931 
    932 	if (svm_decode_assist) {
    933 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
    934 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
    935 	} else {
    936 		exit->u.io.seg = -1;
    937 	}
    938 
    939 	if (info & SVM_EXIT_IO_A64) {
    940 		exit->u.io.address_size = 8;
    941 	} else if (info & SVM_EXIT_IO_A32) {
    942 		exit->u.io.address_size = 4;
    943 	} else if (info & SVM_EXIT_IO_A16) {
    944 		exit->u.io.address_size = 2;
    945 	}
    946 
    947 	if (info & SVM_EXIT_IO_SZ32) {
    948 		exit->u.io.operand_size = 4;
    949 	} else if (info & SVM_EXIT_IO_SZ16) {
    950 		exit->u.io.operand_size = 2;
    951 	} else if (info & SVM_EXIT_IO_SZ8) {
    952 		exit->u.io.operand_size = 1;
    953 	}
    954 
    955 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
    956 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
    957 	exit->u.io.npc = nextpc;
    958 }
    959 
    960 static const uint64_t msr_ignore_list[] = {
    961 	0xc0010055, /* MSR_CMPHALT */
    962 	MSR_DE_CFG,
    963 	MSR_IC_CFG,
    964 	MSR_UCODE_AMD_PATCHLEVEL
    965 };
    966 
    967 static bool
    968 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    969     struct nvmm_exit *exit)
    970 {
    971 	struct svm_cpudata *cpudata = vcpu->cpudata;
    972 	struct vmcb *vmcb = cpudata->vmcb;
    973 	uint64_t val;
    974 	size_t i;
    975 
    976 	switch (exit->u.msr.type) {
    977 	case NVMM_EXIT_MSR_RDMSR:
    978 		if (exit->u.msr.msr == MSR_NB_CFG) {
    979 			val = NB_CFG_INITAPICCPUIDLO;
    980 			vmcb->state.rax = (val & 0xFFFFFFFF);
    981 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    982 			goto handled;
    983 		}
    984 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    985 			if (msr_ignore_list[i] != exit->u.msr.msr)
    986 				continue;
    987 			val = 0;
    988 			vmcb->state.rax = (val & 0xFFFFFFFF);
    989 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    990 			goto handled;
    991 		}
    992 		break;
    993 	case NVMM_EXIT_MSR_WRMSR:
    994 		if (exit->u.msr.msr == MSR_EFER) {
    995 			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
    996 				goto error;
    997 			}
    998 			if ((vmcb->state.efer ^ exit->u.msr.val) &
    999 			     EFER_TLB_FLUSH) {
   1000 				cpudata->gtlb_want_flush = true;
   1001 			}
   1002 			vmcb->state.efer = exit->u.msr.val | EFER_SVME;
   1003 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
   1004 			goto handled;
   1005 		}
   1006 		if (exit->u.msr.msr == MSR_TSC) {
   1007 			cpudata->gtsc = exit->u.msr.val;
   1008 			cpudata->gtsc_want_update = true;
   1009 			goto handled;
   1010 		}
   1011 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1012 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1013 				continue;
   1014 			goto handled;
   1015 		}
   1016 		break;
   1017 	}
   1018 
   1019 	return false;
   1020 
   1021 handled:
   1022 	svm_inkernel_advance(cpudata->vmcb);
   1023 	return true;
   1024 
   1025 error:
   1026 	svm_inject_gp(mach, vcpu);
   1027 	return true;
   1028 }
   1029 
   1030 static void
   1031 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1032     struct nvmm_exit *exit)
   1033 {
   1034 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1035 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1036 
   1037 	if (info == 0) {
   1038 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1039 	} else {
   1040 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1041 	}
   1042 
   1043 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1044 
   1045 	if (info == 1) {
   1046 		uint64_t rdx, rax;
   1047 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1048 		rax = cpudata->vmcb->state.rax;
   1049 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1050 	} else {
   1051 		exit->u.msr.val = 0;
   1052 	}
   1053 
   1054 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1055 		exit->reason = NVMM_EXIT_NONE;
   1056 		return;
   1057 	}
   1058 
   1059 	exit->reason = NVMM_EXIT_MSR;
   1060 	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
   1061 }
   1062 
   1063 static void
   1064 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1065     struct nvmm_exit *exit)
   1066 {
   1067 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1068 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1069 
   1070 	exit->reason = NVMM_EXIT_MEMORY;
   1071 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1072 		exit->u.mem.prot = PROT_WRITE;
   1073 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1074 		exit->u.mem.prot = PROT_EXEC;
   1075 	else
   1076 		exit->u.mem.prot = PROT_READ;
   1077 	exit->u.mem.gpa = gpa;
   1078 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1079 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1080 	    sizeof(exit->u.mem.inst_bytes));
   1081 }
   1082 
   1083 static void
   1084 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
   1085 {
   1086 	exit->u.insn.npc = vmcb->ctrl.nrip;
   1087 	exit->reason = reason;
   1088 }
   1089 
   1090 static void
   1091 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1092     struct nvmm_exit *exit)
   1093 {
   1094 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1095 	struct vmcb *vmcb = cpudata->vmcb;
   1096 	uint64_t val;
   1097 
   1098 	exit->reason = NVMM_EXIT_NONE;
   1099 
   1100 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1101 	    (vmcb->state.rax & 0xFFFFFFFF);
   1102 
   1103 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1104 		goto error;
   1105 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1106 		goto error;
   1107 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1108 		goto error;
   1109 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1110 		goto error;
   1111 	}
   1112 
   1113 	cpudata->gxcr0 = val;
   1114 
   1115 	svm_inkernel_advance(cpudata->vmcb);
   1116 	return;
   1117 
   1118 error:
   1119 	svm_inject_gp(mach, vcpu);
   1120 }
   1121 
   1122 /* -------------------------------------------------------------------------- */
   1123 
   1124 static void
   1125 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1126 {
   1127 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1128 
   1129 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1130 
   1131 	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
   1132 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
   1133 
   1134 	if (svm_xcr0_mask != 0) {
   1135 		cpudata->hxcr0 = rdxcr(0);
   1136 		wrxcr(0, cpudata->gxcr0);
   1137 	}
   1138 }
   1139 
   1140 static void
   1141 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1142 {
   1143 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1144 
   1145 	if (svm_xcr0_mask != 0) {
   1146 		cpudata->gxcr0 = rdxcr(0);
   1147 		wrxcr(0, cpudata->hxcr0);
   1148 	}
   1149 
   1150 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
   1151 	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
   1152 
   1153 	if (cpudata->ts_set) {
   1154 		stts();
   1155 	}
   1156 }
   1157 
   1158 static void
   1159 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1160 {
   1161 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1162 
   1163 	x86_dbregs_save(curlwp);
   1164 
   1165 	ldr7(0);
   1166 
   1167 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1168 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1169 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1170 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1171 }
   1172 
   1173 static void
   1174 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1175 {
   1176 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1177 
   1178 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1179 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1180 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1181 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1182 
   1183 	x86_dbregs_restore(curlwp);
   1184 }
   1185 
   1186 static void
   1187 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1188 {
   1189 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1190 
   1191 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1192 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1193 }
   1194 
   1195 static void
   1196 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1197 {
   1198 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1199 
   1200 	wrmsr(MSR_STAR, cpudata->star);
   1201 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1202 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1203 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1204 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1205 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1206 }
   1207 
   1208 /* -------------------------------------------------------------------------- */
   1209 
   1210 static inline void
   1211 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1212 {
   1213 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1214 
   1215 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1216 		cpudata->gtlb_want_flush = true;
   1217 	}
   1218 }
   1219 
   1220 static inline void
   1221 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1222 {
   1223 	/*
   1224 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
   1225 	 * executing on this hCPU and the hTLB already got flushed, or it
   1226 	 * was executing on another hCPU in which case the catchup is done
   1227 	 * in svm_gtlb_catchup().
   1228 	 */
   1229 }
   1230 
   1231 static inline uint64_t
   1232 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
   1233 {
   1234 	struct vmcb *vmcb = cpudata->vmcb;
   1235 	uint64_t machgen;
   1236 
   1237 	machgen = machdata->mach_htlb_gen;
   1238 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1239 		return machgen;
   1240 	}
   1241 
   1242 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1243 	return machgen;
   1244 }
   1245 
   1246 static inline void
   1247 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
   1248 {
   1249 	struct vmcb *vmcb = cpudata->vmcb;
   1250 
   1251 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
   1252 		cpudata->vcpu_htlb_gen = machgen;
   1253 	}
   1254 }
   1255 
   1256 static int
   1257 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1258     struct nvmm_exit *exit)
   1259 {
   1260 	struct svm_machdata *machdata = mach->machdata;
   1261 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1262 	struct vmcb *vmcb = cpudata->vmcb;
   1263 	uint64_t machgen;
   1264 	int hcpu, s;
   1265 
   1266 	kpreempt_disable();
   1267 	hcpu = cpu_number();
   1268 
   1269 	svm_gtlb_catchup(vcpu, hcpu);
   1270 	svm_htlb_catchup(vcpu, hcpu);
   1271 
   1272 	if (vcpu->hcpu_last != hcpu) {
   1273 		svm_vmcb_cache_flush_all(vmcb);
   1274 		cpudata->gtsc_want_update = true;
   1275 	}
   1276 
   1277 	svm_vcpu_guest_dbregs_enter(vcpu);
   1278 	svm_vcpu_guest_misc_enter(vcpu);
   1279 
   1280 	while (1) {
   1281 		if (cpudata->gtlb_want_flush) {
   1282 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1283 		} else {
   1284 			vmcb->ctrl.tlb_ctrl = 0;
   1285 		}
   1286 
   1287 		if (__predict_false(cpudata->gtsc_want_update)) {
   1288 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
   1289 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
   1290 		}
   1291 
   1292 		s = splhigh();
   1293 		machgen = svm_htlb_flush(machdata, cpudata);
   1294 		svm_vcpu_guest_fpu_enter(vcpu);
   1295 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1296 		svm_vcpu_guest_fpu_leave(vcpu);
   1297 		svm_htlb_flush_ack(cpudata, machgen);
   1298 		splx(s);
   1299 
   1300 		svm_vmcb_cache_default(vmcb);
   1301 
   1302 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1303 			cpudata->gtlb_want_flush = false;
   1304 			cpudata->gtsc_want_update = false;
   1305 			vcpu->hcpu_last = hcpu;
   1306 		}
   1307 		cpudata->evt_pending = false;
   1308 
   1309 		switch (vmcb->ctrl.exitcode) {
   1310 		case VMCB_EXITCODE_INTR:
   1311 		case VMCB_EXITCODE_NMI:
   1312 			exit->reason = NVMM_EXIT_NONE;
   1313 			break;
   1314 		case VMCB_EXITCODE_VINTR:
   1315 			svm_event_waitexit_disable(vcpu, false);
   1316 			exit->reason = NVMM_EXIT_INT_READY;
   1317 			break;
   1318 		case VMCB_EXITCODE_IRET:
   1319 			svm_event_waitexit_disable(vcpu, true);
   1320 			exit->reason = NVMM_EXIT_NMI_READY;
   1321 			break;
   1322 		case VMCB_EXITCODE_CPUID:
   1323 			svm_exit_cpuid(mach, vcpu, exit);
   1324 			break;
   1325 		case VMCB_EXITCODE_HLT:
   1326 			svm_exit_hlt(mach, vcpu, exit);
   1327 			break;
   1328 		case VMCB_EXITCODE_IOIO:
   1329 			svm_exit_io(mach, vcpu, exit);
   1330 			break;
   1331 		case VMCB_EXITCODE_MSR:
   1332 			svm_exit_msr(mach, vcpu, exit);
   1333 			break;
   1334 		case VMCB_EXITCODE_SHUTDOWN:
   1335 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1336 			break;
   1337 		case VMCB_EXITCODE_RDPMC:
   1338 		case VMCB_EXITCODE_RSM:
   1339 		case VMCB_EXITCODE_INVLPGA:
   1340 		case VMCB_EXITCODE_VMRUN:
   1341 		case VMCB_EXITCODE_VMMCALL:
   1342 		case VMCB_EXITCODE_VMLOAD:
   1343 		case VMCB_EXITCODE_VMSAVE:
   1344 		case VMCB_EXITCODE_STGI:
   1345 		case VMCB_EXITCODE_CLGI:
   1346 		case VMCB_EXITCODE_SKINIT:
   1347 		case VMCB_EXITCODE_RDTSCP:
   1348 			svm_inject_ud(mach, vcpu);
   1349 			exit->reason = NVMM_EXIT_NONE;
   1350 			break;
   1351 		case VMCB_EXITCODE_MONITOR:
   1352 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
   1353 			break;
   1354 		case VMCB_EXITCODE_MWAIT:
   1355 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
   1356 			break;
   1357 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1358 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
   1359 			break;
   1360 		case VMCB_EXITCODE_XSETBV:
   1361 			svm_exit_xsetbv(mach, vcpu, exit);
   1362 			break;
   1363 		case VMCB_EXITCODE_NPF:
   1364 			svm_exit_npf(mach, vcpu, exit);
   1365 			break;
   1366 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1367 		default:
   1368 			exit->reason = NVMM_EXIT_INVALID;
   1369 			break;
   1370 		}
   1371 
   1372 		/* If no reason to return to userland, keep rolling. */
   1373 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1374 			break;
   1375 		}
   1376 		if (curcpu()->ci_data.cpu_softints != 0) {
   1377 			break;
   1378 		}
   1379 		if (curlwp->l_flag & LW_USERRET) {
   1380 			break;
   1381 		}
   1382 		if (exit->reason != NVMM_EXIT_NONE) {
   1383 			break;
   1384 		}
   1385 	}
   1386 
   1387 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
   1388 
   1389 	svm_vcpu_guest_misc_leave(vcpu);
   1390 	svm_vcpu_guest_dbregs_leave(vcpu);
   1391 
   1392 	kpreempt_enable();
   1393 
   1394 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1395 	    VMCB_CTRL_V_TPR);
   1396 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
   1397 
   1398 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1399 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1400 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1401 	    cpudata->int_window_exit;
   1402 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1403 	    cpudata->nmi_window_exit;
   1404 	exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
   1405 	    cpudata->evt_pending;
   1406 
   1407 	return 0;
   1408 }
   1409 
   1410 /* -------------------------------------------------------------------------- */
   1411 
   1412 static int
   1413 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1414 {
   1415 	struct pglist pglist;
   1416 	paddr_t _pa;
   1417 	vaddr_t _va;
   1418 	size_t i;
   1419 	int ret;
   1420 
   1421 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1422 	    &pglist, 1, 0);
   1423 	if (ret != 0)
   1424 		return ENOMEM;
   1425 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1426 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1427 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1428 	if (_va == 0)
   1429 		goto error;
   1430 
   1431 	for (i = 0; i < npages; i++) {
   1432 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1433 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1434 	}
   1435 	pmap_update(pmap_kernel());
   1436 
   1437 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1438 
   1439 	*pa = _pa;
   1440 	*va = _va;
   1441 	return 0;
   1442 
   1443 error:
   1444 	for (i = 0; i < npages; i++) {
   1445 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1446 	}
   1447 	return ENOMEM;
   1448 }
   1449 
   1450 static void
   1451 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1452 {
   1453 	size_t i;
   1454 
   1455 	pmap_kremove(va, npages * PAGE_SIZE);
   1456 	pmap_update(pmap_kernel());
   1457 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1458 	for (i = 0; i < npages; i++) {
   1459 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1460 	}
   1461 }
   1462 
   1463 /* -------------------------------------------------------------------------- */
   1464 
   1465 #define SVM_MSRBM_READ	__BIT(0)
   1466 #define SVM_MSRBM_WRITE	__BIT(1)
   1467 
   1468 static void
   1469 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1470 {
   1471 	uint64_t byte;
   1472 	uint8_t bitoff;
   1473 
   1474 	if (msr < 0x00002000) {
   1475 		/* Range 1 */
   1476 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1477 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1478 		/* Range 2 */
   1479 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1480 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1481 		/* Range 3 */
   1482 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1483 	} else {
   1484 		panic("%s: wrong range", __func__);
   1485 	}
   1486 
   1487 	bitoff = (msr & 0x3) << 1;
   1488 
   1489 	if (read) {
   1490 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1491 	}
   1492 	if (write) {
   1493 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1494 	}
   1495 }
   1496 
   1497 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
   1498 #define SVM_SEG_ATTRIB_S		__BIT(4)
   1499 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1500 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1501 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1502 #define SVM_SEG_ATTRIB_L		__BIT(9)
   1503 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
   1504 #define SVM_SEG_ATTRIB_G		__BIT(11)
   1505 
   1506 static void
   1507 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
   1508     struct vmcb_segment *vseg)
   1509 {
   1510 	vseg->selector = seg->selector;
   1511 	vseg->attrib =
   1512 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1513 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
   1514 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1515 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1516 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1517 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
   1518 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
   1519 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
   1520 	vseg->limit = seg->limit;
   1521 	vseg->base = seg->base;
   1522 }
   1523 
   1524 static void
   1525 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1526 {
   1527 	seg->selector = vseg->selector;
   1528 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1529 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
   1530 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1531 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1532 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1533 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
   1534 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
   1535 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
   1536 	seg->limit = vseg->limit;
   1537 	seg->base = vseg->base;
   1538 }
   1539 
   1540 static inline bool
   1541 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
   1542     uint64_t flags)
   1543 {
   1544 	if (flags & NVMM_X64_STATE_CRS) {
   1545 		if ((vmcb->state.cr0 ^
   1546 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1547 			return true;
   1548 		}
   1549 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1550 			return true;
   1551 		}
   1552 		if ((vmcb->state.cr4 ^
   1553 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1554 			return true;
   1555 		}
   1556 	}
   1557 
   1558 	if (flags & NVMM_X64_STATE_MSRS) {
   1559 		if ((vmcb->state.efer ^
   1560 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1561 			return true;
   1562 		}
   1563 	}
   1564 
   1565 	return false;
   1566 }
   1567 
   1568 static void
   1569 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   1570 {
   1571 	const struct nvmm_x64_state *state = data;
   1572 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1573 	struct vmcb *vmcb = cpudata->vmcb;
   1574 	struct fxsave *fpustate;
   1575 
   1576 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1577 		cpudata->gtlb_want_flush = true;
   1578 	}
   1579 
   1580 	if (flags & NVMM_X64_STATE_SEGS) {
   1581 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1582 		    &vmcb->state.cs);
   1583 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1584 		    &vmcb->state.ds);
   1585 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1586 		    &vmcb->state.es);
   1587 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1588 		    &vmcb->state.fs);
   1589 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1590 		    &vmcb->state.gs);
   1591 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1592 		    &vmcb->state.ss);
   1593 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1594 		    &vmcb->state.gdt);
   1595 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1596 		    &vmcb->state.idt);
   1597 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1598 		    &vmcb->state.ldt);
   1599 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1600 		    &vmcb->state.tr);
   1601 
   1602 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1603 	}
   1604 
   1605 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1606 	if (flags & NVMM_X64_STATE_GPRS) {
   1607 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1608 
   1609 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1610 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1611 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1612 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1613 	}
   1614 
   1615 	if (flags & NVMM_X64_STATE_CRS) {
   1616 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1617 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1618 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1619 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1620 
   1621 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1622 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1623 		    VMCB_CTRL_V_TPR);
   1624 
   1625 		if (svm_xcr0_mask != 0) {
   1626 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1627 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1628 			cpudata->gxcr0 &= svm_xcr0_mask;
   1629 			cpudata->gxcr0 |= XCR0_X87;
   1630 		}
   1631 	}
   1632 
   1633 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1634 	if (flags & NVMM_X64_STATE_DRS) {
   1635 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1636 
   1637 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1638 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1639 	}
   1640 
   1641 	if (flags & NVMM_X64_STATE_MSRS) {
   1642 		/*
   1643 		 * EFER_SVME is mandatory.
   1644 		 */
   1645 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1646 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1647 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1648 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1649 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1650 		vmcb->state.kernelgsbase =
   1651 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1652 		vmcb->state.sysenter_cs =
   1653 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1654 		vmcb->state.sysenter_esp =
   1655 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1656 		vmcb->state.sysenter_eip =
   1657 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1658 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1659 
   1660 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   1661 		cpudata->gtsc_want_update = true;
   1662 	}
   1663 
   1664 	if (flags & NVMM_X64_STATE_INTR) {
   1665 		if (state->intr.int_shadow) {
   1666 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1667 		} else {
   1668 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1669 		}
   1670 
   1671 		if (state->intr.int_window_exiting) {
   1672 			svm_event_waitexit_enable(vcpu, false);
   1673 		} else {
   1674 			svm_event_waitexit_disable(vcpu, false);
   1675 		}
   1676 
   1677 		if (state->intr.nmi_window_exiting) {
   1678 			svm_event_waitexit_enable(vcpu, true);
   1679 		} else {
   1680 			svm_event_waitexit_disable(vcpu, true);
   1681 		}
   1682 	}
   1683 
   1684 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1685 	if (flags & NVMM_X64_STATE_FPU) {
   1686 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1687 		    sizeof(state->fpu));
   1688 
   1689 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1690 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1691 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1692 
   1693 		if (svm_xcr0_mask != 0) {
   1694 			/* Reset XSTATE_BV, to force a reload. */
   1695 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1696 		}
   1697 	}
   1698 
   1699 	svm_vmcb_cache_update(vmcb, flags);
   1700 }
   1701 
   1702 static void
   1703 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1704 {
   1705 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1706 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1707 	struct vmcb *vmcb = cpudata->vmcb;
   1708 
   1709 	if (flags & NVMM_X64_STATE_SEGS) {
   1710 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1711 		    &vmcb->state.cs);
   1712 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1713 		    &vmcb->state.ds);
   1714 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1715 		    &vmcb->state.es);
   1716 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1717 		    &vmcb->state.fs);
   1718 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1719 		    &vmcb->state.gs);
   1720 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1721 		    &vmcb->state.ss);
   1722 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1723 		    &vmcb->state.gdt);
   1724 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1725 		    &vmcb->state.idt);
   1726 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1727 		    &vmcb->state.ldt);
   1728 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1729 		    &vmcb->state.tr);
   1730 
   1731 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   1732 	}
   1733 
   1734 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1735 	if (flags & NVMM_X64_STATE_GPRS) {
   1736 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1737 
   1738 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1739 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1740 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1741 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1742 	}
   1743 
   1744 	if (flags & NVMM_X64_STATE_CRS) {
   1745 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1746 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1747 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1748 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1749 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1750 		    VMCB_CTRL_V_TPR);
   1751 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1752 	}
   1753 
   1754 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1755 	if (flags & NVMM_X64_STATE_DRS) {
   1756 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1757 
   1758 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1759 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1760 	}
   1761 
   1762 	if (flags & NVMM_X64_STATE_MSRS) {
   1763 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1764 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1765 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1766 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1767 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1768 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1769 		    vmcb->state.kernelgsbase;
   1770 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1771 		    vmcb->state.sysenter_cs;
   1772 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1773 		    vmcb->state.sysenter_esp;
   1774 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1775 		    vmcb->state.sysenter_eip;
   1776 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1777 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   1778 
   1779 		/* Hide SVME. */
   1780 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1781 	}
   1782 
   1783 	if (flags & NVMM_X64_STATE_INTR) {
   1784 		state->intr.int_shadow =
   1785 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1786 		state->intr.int_window_exiting = cpudata->int_window_exit;
   1787 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   1788 		state->intr.evt_pending = cpudata->evt_pending;
   1789 	}
   1790 
   1791 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1792 	if (flags & NVMM_X64_STATE_FPU) {
   1793 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1794 		    sizeof(state->fpu));
   1795 	}
   1796 }
   1797 
   1798 /* -------------------------------------------------------------------------- */
   1799 
   1800 static void
   1801 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1802 {
   1803 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1804 	struct vmcb *vmcb = cpudata->vmcb;
   1805 	size_t i, oct, bit;
   1806 
   1807 	mutex_enter(&svm_asidlock);
   1808 
   1809 	for (i = 0; i < svm_maxasid; i++) {
   1810 		oct = i / 8;
   1811 		bit = i % 8;
   1812 
   1813 		if (svm_asidmap[oct] & __BIT(bit)) {
   1814 			continue;
   1815 		}
   1816 
   1817 		svm_asidmap[oct] |= __BIT(bit);
   1818 		vmcb->ctrl.guest_asid = i;
   1819 		mutex_exit(&svm_asidlock);
   1820 		return;
   1821 	}
   1822 
   1823 	/*
   1824 	 * No free ASID. Use the last one, which is shared and requires
   1825 	 * special TLB handling.
   1826 	 */
   1827 	cpudata->shared_asid = true;
   1828 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1829 	mutex_exit(&svm_asidlock);
   1830 }
   1831 
   1832 static void
   1833 svm_asid_free(struct nvmm_cpu *vcpu)
   1834 {
   1835 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1836 	struct vmcb *vmcb = cpudata->vmcb;
   1837 	size_t oct, bit;
   1838 
   1839 	if (cpudata->shared_asid) {
   1840 		return;
   1841 	}
   1842 
   1843 	oct = vmcb->ctrl.guest_asid / 8;
   1844 	bit = vmcb->ctrl.guest_asid % 8;
   1845 
   1846 	mutex_enter(&svm_asidlock);
   1847 	svm_asidmap[oct] &= ~__BIT(bit);
   1848 	mutex_exit(&svm_asidlock);
   1849 }
   1850 
   1851 static void
   1852 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1853 {
   1854 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1855 	struct vmcb *vmcb = cpudata->vmcb;
   1856 
   1857 	/* Allow reads/writes of Control Registers. */
   1858 	vmcb->ctrl.intercept_cr = 0;
   1859 
   1860 	/* Allow reads/writes of Debug Registers. */
   1861 	vmcb->ctrl.intercept_dr = 0;
   1862 
   1863 	/* Allow exceptions 0 to 31. */
   1864 	vmcb->ctrl.intercept_vec = 0;
   1865 
   1866 	/*
   1867 	 * Allow:
   1868 	 *  - SMI [smm interrupts]
   1869 	 *  - VINTR [virtual interrupts]
   1870 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   1871 	 *  - RIDTR [reads of IDTR]
   1872 	 *  - RGDTR [reads of GDTR]
   1873 	 *  - RLDTR [reads of LDTR]
   1874 	 *  - RTR [reads of TR]
   1875 	 *  - WIDTR [writes of IDTR]
   1876 	 *  - WGDTR [writes of GDTR]
   1877 	 *  - WLDTR [writes of LDTR]
   1878 	 *  - WTR [writes of TR]
   1879 	 *  - RDTSC [rdtsc instruction]
   1880 	 *  - PUSHF [pushf instruction]
   1881 	 *  - POPF [popf instruction]
   1882 	 *  - IRET [iret instruction]
   1883 	 *  - INTN [int $n instructions]
   1884 	 *  - INVD [invd instruction]
   1885 	 *  - PAUSE [pause instruction]
   1886 	 *  - INVLPG [invplg instruction]
   1887 	 *  - TASKSW [task switches]
   1888 	 *
   1889 	 * Intercept the rest below.
   1890 	 */
   1891 	vmcb->ctrl.intercept_misc1 =
   1892 	    VMCB_CTRL_INTERCEPT_INTR |
   1893 	    VMCB_CTRL_INTERCEPT_NMI |
   1894 	    VMCB_CTRL_INTERCEPT_INIT |
   1895 	    VMCB_CTRL_INTERCEPT_RDPMC |
   1896 	    VMCB_CTRL_INTERCEPT_CPUID |
   1897 	    VMCB_CTRL_INTERCEPT_RSM |
   1898 	    VMCB_CTRL_INTERCEPT_HLT |
   1899 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   1900 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   1901 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   1902 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   1903 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   1904 
   1905 	/*
   1906 	 * Allow:
   1907 	 *  - ICEBP [icebp instruction]
   1908 	 *  - WBINVD [wbinvd instruction]
   1909 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   1910 	 *
   1911 	 * Intercept the rest below.
   1912 	 */
   1913 	vmcb->ctrl.intercept_misc2 =
   1914 	    VMCB_CTRL_INTERCEPT_VMRUN |
   1915 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   1916 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   1917 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   1918 	    VMCB_CTRL_INTERCEPT_STGI |
   1919 	    VMCB_CTRL_INTERCEPT_CLGI |
   1920 	    VMCB_CTRL_INTERCEPT_SKINIT |
   1921 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   1922 	    VMCB_CTRL_INTERCEPT_MONITOR |
   1923 	    VMCB_CTRL_INTERCEPT_MWAIT |
   1924 	    VMCB_CTRL_INTERCEPT_XSETBV;
   1925 
   1926 	/* Intercept all I/O accesses. */
   1927 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   1928 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   1929 
   1930 	/* Allow direct access to certain MSRs. */
   1931 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1932 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   1933 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1934 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1935 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1936 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1937 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1938 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1939 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1940 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1941 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1942 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1943 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   1944 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1945 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   1946 
   1947 	/* Generate ASID. */
   1948 	svm_asid_alloc(vcpu);
   1949 
   1950 	/* Virtual TPR. */
   1951 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   1952 
   1953 	/* Enable Nested Paging. */
   1954 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   1955 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   1956 
   1957 	/* Init XSAVE header. */
   1958 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1959 	cpudata->gfpu.xsh_xcomp_bv = 0;
   1960 
   1961 	/* These MSRs are static. */
   1962 	cpudata->star = rdmsr(MSR_STAR);
   1963 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1964 	cpudata->cstar = rdmsr(MSR_CSTAR);
   1965 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   1966 
   1967 	/* Install the RESET state. */
   1968 	svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   1969 }
   1970 
   1971 static int
   1972 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1973 {
   1974 	struct svm_cpudata *cpudata;
   1975 	int error;
   1976 
   1977 	/* Allocate the SVM cpudata. */
   1978 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   1979 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   1980 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1981 	vcpu->cpudata = cpudata;
   1982 
   1983 	/* VMCB */
   1984 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   1985 	    VMCB_NPAGES);
   1986 	if (error)
   1987 		goto error;
   1988 
   1989 	/* I/O Bitmap */
   1990 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   1991 	    IOBM_NPAGES);
   1992 	if (error)
   1993 		goto error;
   1994 
   1995 	/* MSR Bitmap */
   1996 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   1997 	    MSRBM_NPAGES);
   1998 	if (error)
   1999 		goto error;
   2000 
   2001 	/* Init the VCPU info. */
   2002 	svm_vcpu_init(mach, vcpu);
   2003 
   2004 	return 0;
   2005 
   2006 error:
   2007 	if (cpudata->vmcb_pa) {
   2008 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   2009 		    VMCB_NPAGES);
   2010 	}
   2011 	if (cpudata->iobm_pa) {
   2012 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   2013 		    IOBM_NPAGES);
   2014 	}
   2015 	if (cpudata->msrbm_pa) {
   2016 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2017 		    MSRBM_NPAGES);
   2018 	}
   2019 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2020 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2021 	return error;
   2022 }
   2023 
   2024 static void
   2025 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2026 {
   2027 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2028 
   2029 	svm_asid_free(vcpu);
   2030 
   2031 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   2032 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   2033 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2034 
   2035 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2036 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2037 }
   2038 
   2039 /* -------------------------------------------------------------------------- */
   2040 
   2041 static void
   2042 svm_tlb_flush(struct pmap *pm)
   2043 {
   2044 	struct nvmm_machine *mach = pm->pm_data;
   2045 	struct svm_machdata *machdata = mach->machdata;
   2046 
   2047 	atomic_inc_64(&machdata->mach_htlb_gen);
   2048 
   2049 	/* Generates IPIs, which cause #VMEXITs. */
   2050 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2051 }
   2052 
   2053 static void
   2054 svm_machine_create(struct nvmm_machine *mach)
   2055 {
   2056 	struct svm_machdata *machdata;
   2057 
   2058 	/* Fill in pmap info. */
   2059 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   2060 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   2061 
   2062 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   2063 	mach->machdata = machdata;
   2064 
   2065 	/* Start with an hTLB flush everywhere. */
   2066 	machdata->mach_htlb_gen = 1;
   2067 }
   2068 
   2069 static void
   2070 svm_machine_destroy(struct nvmm_machine *mach)
   2071 {
   2072 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   2073 }
   2074 
   2075 static int
   2076 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2077 {
   2078 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2079 	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
   2080 	size_t i;
   2081 
   2082 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2083 		return EINVAL;
   2084 	}
   2085 
   2086 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2087 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2088 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2089 	    (cpuid->set.edx & cpuid->del.edx))) {
   2090 		return EINVAL;
   2091 	}
   2092 
   2093 	/* If already here, replace. */
   2094 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2095 		if (!machdata->cpuidpresent[i]) {
   2096 			continue;
   2097 		}
   2098 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2099 			memcpy(&machdata->cpuid[i], cpuid,
   2100 			    sizeof(struct nvmm_x86_conf_cpuid));
   2101 			return 0;
   2102 		}
   2103 	}
   2104 
   2105 	/* Not here, insert. */
   2106 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2107 		if (!machdata->cpuidpresent[i]) {
   2108 			machdata->cpuidpresent[i] = true;
   2109 			memcpy(&machdata->cpuid[i], cpuid,
   2110 			    sizeof(struct nvmm_x86_conf_cpuid));
   2111 			return 0;
   2112 		}
   2113 	}
   2114 
   2115 	return ENOBUFS;
   2116 }
   2117 
   2118 /* -------------------------------------------------------------------------- */
   2119 
   2120 static bool
   2121 svm_ident(void)
   2122 {
   2123 	u_int descs[4];
   2124 	uint64_t msr;
   2125 
   2126 	if (cpu_vendor != CPUVENDOR_AMD) {
   2127 		return false;
   2128 	}
   2129 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2130 		return false;
   2131 	}
   2132 
   2133 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2134 		return false;
   2135 	}
   2136 	x86_cpuid(0x8000000a, descs);
   2137 
   2138 	/* Want Nested Paging. */
   2139 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2140 		return false;
   2141 	}
   2142 
   2143 	/* Want nRIP. */
   2144 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2145 		return false;
   2146 	}
   2147 
   2148 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2149 
   2150 	msr = rdmsr(MSR_VMCR);
   2151 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2152 		return false;
   2153 	}
   2154 
   2155 	return true;
   2156 }
   2157 
   2158 static void
   2159 svm_init_asid(uint32_t maxasid)
   2160 {
   2161 	size_t i, j, allocsz;
   2162 
   2163 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2164 
   2165 	/* Arbitrarily limit. */
   2166 	maxasid = uimin(maxasid, 8192);
   2167 
   2168 	svm_maxasid = maxasid;
   2169 	allocsz = roundup(maxasid, 8) / 8;
   2170 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2171 
   2172 	/* ASID 0 is reserved for the host. */
   2173 	svm_asidmap[0] |= __BIT(0);
   2174 
   2175 	/* ASID n-1 is special, we share it. */
   2176 	i = (maxasid - 1) / 8;
   2177 	j = (maxasid - 1) % 8;
   2178 	svm_asidmap[i] |= __BIT(j);
   2179 }
   2180 
   2181 static void
   2182 svm_change_cpu(void *arg1, void *arg2)
   2183 {
   2184 	bool enable = (bool)arg1;
   2185 	uint64_t msr;
   2186 
   2187 	msr = rdmsr(MSR_VMCR);
   2188 	if (msr & VMCR_SVMED) {
   2189 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2190 	}
   2191 
   2192 	if (!enable) {
   2193 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2194 	}
   2195 
   2196 	msr = rdmsr(MSR_EFER);
   2197 	if (enable) {
   2198 		msr |= EFER_SVME;
   2199 	} else {
   2200 		msr &= ~EFER_SVME;
   2201 	}
   2202 	wrmsr(MSR_EFER, msr);
   2203 
   2204 	if (enable) {
   2205 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2206 	}
   2207 }
   2208 
   2209 static void
   2210 svm_init(void)
   2211 {
   2212 	CPU_INFO_ITERATOR cii;
   2213 	struct cpu_info *ci;
   2214 	struct vm_page *pg;
   2215 	u_int descs[4];
   2216 	uint64_t xc;
   2217 
   2218 	x86_cpuid(0x8000000a, descs);
   2219 
   2220 	/* The guest TLB flush command. */
   2221 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2222 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2223 	} else {
   2224 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2225 	}
   2226 
   2227 	/* Init the ASID. */
   2228 	svm_init_asid(descs[1]);
   2229 
   2230 	/* Init the XCR0 mask. */
   2231 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2232 
   2233 	memset(hsave, 0, sizeof(hsave));
   2234 	for (CPU_INFO_FOREACH(cii, ci)) {
   2235 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2236 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2237 	}
   2238 
   2239 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2240 	xc_wait(xc);
   2241 }
   2242 
   2243 static void
   2244 svm_fini_asid(void)
   2245 {
   2246 	size_t allocsz;
   2247 
   2248 	allocsz = roundup(svm_maxasid, 8) / 8;
   2249 	kmem_free(svm_asidmap, allocsz);
   2250 
   2251 	mutex_destroy(&svm_asidlock);
   2252 }
   2253 
   2254 static void
   2255 svm_fini(void)
   2256 {
   2257 	uint64_t xc;
   2258 	size_t i;
   2259 
   2260 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2261 	xc_wait(xc);
   2262 
   2263 	for (i = 0; i < MAXCPUS; i++) {
   2264 		if (hsave[i].pa != 0)
   2265 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2266 	}
   2267 
   2268 	svm_fini_asid();
   2269 }
   2270 
   2271 static void
   2272 svm_capability(struct nvmm_capability *cap)
   2273 {
   2274 	cap->u.x86.xcr0_mask = svm_xcr0_mask;
   2275 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2276 	cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
   2277 }
   2278 
   2279 const struct nvmm_impl nvmm_x86_svm = {
   2280 	.ident = svm_ident,
   2281 	.init = svm_init,
   2282 	.fini = svm_fini,
   2283 	.capability = svm_capability,
   2284 	.conf_max = NVMM_X86_NCONF,
   2285 	.conf_sizes = svm_conf_sizes,
   2286 	.state_size = sizeof(struct nvmm_x64_state),
   2287 	.machine_create = svm_machine_create,
   2288 	.machine_destroy = svm_machine_destroy,
   2289 	.machine_configure = svm_machine_configure,
   2290 	.vcpu_create = svm_vcpu_create,
   2291 	.vcpu_destroy = svm_vcpu_destroy,
   2292 	.vcpu_setstate = svm_vcpu_setstate,
   2293 	.vcpu_getstate = svm_vcpu_getstate,
   2294 	.vcpu_inject = svm_vcpu_inject,
   2295 	.vcpu_run = svm_vcpu_run
   2296 };
   2297