nvmm_x86_svm.c revision 1.4 1 /* $NetBSD: nvmm_x86_svm.c,v 1.4 2018/11/19 17:35:12 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.4 2018/11/19 17:35:12 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <machine/cpuvar.h>
50
51 #include <dev/nvmm/nvmm.h>
52 #include <dev/nvmm/nvmm_internal.h>
53 #include <dev/nvmm/x86/nvmm_x86.h>
54
55 int svm_vmrun(paddr_t, uint64_t *);
56
57 #define MSR_VM_HSAVE_PA 0xC0010117
58
59 /* -------------------------------------------------------------------------- */
60
61 #define VMCB_EXITCODE_CR0_READ 0x0000
62 #define VMCB_EXITCODE_CR1_READ 0x0001
63 #define VMCB_EXITCODE_CR2_READ 0x0002
64 #define VMCB_EXITCODE_CR3_READ 0x0003
65 #define VMCB_EXITCODE_CR4_READ 0x0004
66 #define VMCB_EXITCODE_CR5_READ 0x0005
67 #define VMCB_EXITCODE_CR6_READ 0x0006
68 #define VMCB_EXITCODE_CR7_READ 0x0007
69 #define VMCB_EXITCODE_CR8_READ 0x0008
70 #define VMCB_EXITCODE_CR9_READ 0x0009
71 #define VMCB_EXITCODE_CR10_READ 0x000A
72 #define VMCB_EXITCODE_CR11_READ 0x000B
73 #define VMCB_EXITCODE_CR12_READ 0x000C
74 #define VMCB_EXITCODE_CR13_READ 0x000D
75 #define VMCB_EXITCODE_CR14_READ 0x000E
76 #define VMCB_EXITCODE_CR15_READ 0x000F
77 #define VMCB_EXITCODE_CR0_WRITE 0x0010
78 #define VMCB_EXITCODE_CR1_WRITE 0x0011
79 #define VMCB_EXITCODE_CR2_WRITE 0x0012
80 #define VMCB_EXITCODE_CR3_WRITE 0x0013
81 #define VMCB_EXITCODE_CR4_WRITE 0x0014
82 #define VMCB_EXITCODE_CR5_WRITE 0x0015
83 #define VMCB_EXITCODE_CR6_WRITE 0x0016
84 #define VMCB_EXITCODE_CR7_WRITE 0x0017
85 #define VMCB_EXITCODE_CR8_WRITE 0x0018
86 #define VMCB_EXITCODE_CR9_WRITE 0x0019
87 #define VMCB_EXITCODE_CR10_WRITE 0x001A
88 #define VMCB_EXITCODE_CR11_WRITE 0x001B
89 #define VMCB_EXITCODE_CR12_WRITE 0x001C
90 #define VMCB_EXITCODE_CR13_WRITE 0x001D
91 #define VMCB_EXITCODE_CR14_WRITE 0x001E
92 #define VMCB_EXITCODE_CR15_WRITE 0x001F
93 #define VMCB_EXITCODE_DR0_READ 0x0020
94 #define VMCB_EXITCODE_DR1_READ 0x0021
95 #define VMCB_EXITCODE_DR2_READ 0x0022
96 #define VMCB_EXITCODE_DR3_READ 0x0023
97 #define VMCB_EXITCODE_DR4_READ 0x0024
98 #define VMCB_EXITCODE_DR5_READ 0x0025
99 #define VMCB_EXITCODE_DR6_READ 0x0026
100 #define VMCB_EXITCODE_DR7_READ 0x0027
101 #define VMCB_EXITCODE_DR8_READ 0x0028
102 #define VMCB_EXITCODE_DR9_READ 0x0029
103 #define VMCB_EXITCODE_DR10_READ 0x002A
104 #define VMCB_EXITCODE_DR11_READ 0x002B
105 #define VMCB_EXITCODE_DR12_READ 0x002C
106 #define VMCB_EXITCODE_DR13_READ 0x002D
107 #define VMCB_EXITCODE_DR14_READ 0x002E
108 #define VMCB_EXITCODE_DR15_READ 0x002F
109 #define VMCB_EXITCODE_DR0_WRITE 0x0030
110 #define VMCB_EXITCODE_DR1_WRITE 0x0031
111 #define VMCB_EXITCODE_DR2_WRITE 0x0032
112 #define VMCB_EXITCODE_DR3_WRITE 0x0033
113 #define VMCB_EXITCODE_DR4_WRITE 0x0034
114 #define VMCB_EXITCODE_DR5_WRITE 0x0035
115 #define VMCB_EXITCODE_DR6_WRITE 0x0036
116 #define VMCB_EXITCODE_DR7_WRITE 0x0037
117 #define VMCB_EXITCODE_DR8_WRITE 0x0038
118 #define VMCB_EXITCODE_DR9_WRITE 0x0039
119 #define VMCB_EXITCODE_DR10_WRITE 0x003A
120 #define VMCB_EXITCODE_DR11_WRITE 0x003B
121 #define VMCB_EXITCODE_DR12_WRITE 0x003C
122 #define VMCB_EXITCODE_DR13_WRITE 0x003D
123 #define VMCB_EXITCODE_DR14_WRITE 0x003E
124 #define VMCB_EXITCODE_DR15_WRITE 0x003F
125 #define VMCB_EXITCODE_EXCP0 0x0040
126 #define VMCB_EXITCODE_EXCP1 0x0041
127 #define VMCB_EXITCODE_EXCP2 0x0042
128 #define VMCB_EXITCODE_EXCP3 0x0043
129 #define VMCB_EXITCODE_EXCP4 0x0044
130 #define VMCB_EXITCODE_EXCP5 0x0045
131 #define VMCB_EXITCODE_EXCP6 0x0046
132 #define VMCB_EXITCODE_EXCP7 0x0047
133 #define VMCB_EXITCODE_EXCP8 0x0048
134 #define VMCB_EXITCODE_EXCP9 0x0049
135 #define VMCB_EXITCODE_EXCP10 0x004A
136 #define VMCB_EXITCODE_EXCP11 0x004B
137 #define VMCB_EXITCODE_EXCP12 0x004C
138 #define VMCB_EXITCODE_EXCP13 0x004D
139 #define VMCB_EXITCODE_EXCP14 0x004E
140 #define VMCB_EXITCODE_EXCP15 0x004F
141 #define VMCB_EXITCODE_EXCP16 0x0050
142 #define VMCB_EXITCODE_EXCP17 0x0051
143 #define VMCB_EXITCODE_EXCP18 0x0052
144 #define VMCB_EXITCODE_EXCP19 0x0053
145 #define VMCB_EXITCODE_EXCP20 0x0054
146 #define VMCB_EXITCODE_EXCP21 0x0055
147 #define VMCB_EXITCODE_EXCP22 0x0056
148 #define VMCB_EXITCODE_EXCP23 0x0057
149 #define VMCB_EXITCODE_EXCP24 0x0058
150 #define VMCB_EXITCODE_EXCP25 0x0059
151 #define VMCB_EXITCODE_EXCP26 0x005A
152 #define VMCB_EXITCODE_EXCP27 0x005B
153 #define VMCB_EXITCODE_EXCP28 0x005C
154 #define VMCB_EXITCODE_EXCP29 0x005D
155 #define VMCB_EXITCODE_EXCP30 0x005E
156 #define VMCB_EXITCODE_EXCP31 0x005F
157 #define VMCB_EXITCODE_INTR 0x0060
158 #define VMCB_EXITCODE_NMI 0x0061
159 #define VMCB_EXITCODE_SMI 0x0062
160 #define VMCB_EXITCODE_INIT 0x0063
161 #define VMCB_EXITCODE_VINTR 0x0064
162 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
163 #define VMCB_EXITCODE_IDTR_READ 0x0066
164 #define VMCB_EXITCODE_GDTR_READ 0x0067
165 #define VMCB_EXITCODE_LDTR_READ 0x0068
166 #define VMCB_EXITCODE_TR_READ 0x0069
167 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
168 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
169 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
170 #define VMCB_EXITCODE_TR_WRITE 0x006D
171 #define VMCB_EXITCODE_RDTSC 0x006E
172 #define VMCB_EXITCODE_RDPMC 0x006F
173 #define VMCB_EXITCODE_PUSHF 0x0070
174 #define VMCB_EXITCODE_POPF 0x0071
175 #define VMCB_EXITCODE_CPUID 0x0072
176 #define VMCB_EXITCODE_RSM 0x0073
177 #define VMCB_EXITCODE_IRET 0x0074
178 #define VMCB_EXITCODE_SWINT 0x0075
179 #define VMCB_EXITCODE_INVD 0x0076
180 #define VMCB_EXITCODE_PAUSE 0x0077
181 #define VMCB_EXITCODE_HLT 0x0078
182 #define VMCB_EXITCODE_INVLPG 0x0079
183 #define VMCB_EXITCODE_INVLPGA 0x007A
184 #define VMCB_EXITCODE_IOIO 0x007B
185 #define VMCB_EXITCODE_MSR 0x007C
186 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
187 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
188 #define VMCB_EXITCODE_SHUTDOWN 0x007F
189 #define VMCB_EXITCODE_VMRUN 0x0080
190 #define VMCB_EXITCODE_VMMCALL 0x0081
191 #define VMCB_EXITCODE_VMLOAD 0x0082
192 #define VMCB_EXITCODE_VMSAVE 0x0083
193 #define VMCB_EXITCODE_STGI 0x0084
194 #define VMCB_EXITCODE_CLGI 0x0085
195 #define VMCB_EXITCODE_SKINIT 0x0086
196 #define VMCB_EXITCODE_RDTSCP 0x0087
197 #define VMCB_EXITCODE_ICEBP 0x0088
198 #define VMCB_EXITCODE_WBINVD 0x0089
199 #define VMCB_EXITCODE_MONITOR 0x008A
200 #define VMCB_EXITCODE_MWAIT 0x008B
201 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
202 #define VMCB_EXITCODE_XSETBV 0x008D
203 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
204 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
205 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
206 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
207 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
208 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
209 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
210 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
211 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
212 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
213 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
214 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
215 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
216 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
217 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
218 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
219 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
220 #define VMCB_EXITCODE_NPF 0x0400
221 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
222 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
223 #define VMCB_EXITCODE_VMGEXIT 0x0403
224 #define VMCB_EXITCODE_INVALID -1
225
226 /* -------------------------------------------------------------------------- */
227
228 struct vmcb_ctrl {
229 uint32_t intercept_cr;
230 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
231 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
232
233 uint32_t intercept_dr;
234 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
236
237 uint32_t intercept_vec;
238 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
239
240 uint32_t intercept_misc1;
241 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
242 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
243 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
244 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
245 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
246 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
247 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
248 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
249 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
250 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
251 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
252 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
253 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
254 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
255 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
256 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
257 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
258 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
259 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
260 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
261 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
262 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
263 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
264 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
265 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
266 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
267 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
268 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
269 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
270 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
271 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
272 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
273
274 uint32_t intercept_misc2;
275 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
276 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
277 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
278 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
279 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
280 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
281 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
282 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
283 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
284 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
285 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
286 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
287 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
288 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
289 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
290
291 uint8_t rsvd1[40];
292 uint16_t pause_filt_thresh;
293 uint16_t pause_filt_cnt;
294 uint64_t iopm_base_pa;
295 uint64_t msrpm_base_pa;
296 uint64_t tsc_offset;
297 uint32_t guest_asid;
298
299 uint32_t tlb_ctrl;
300 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
301 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
303
304 uint64_t v;
305 #define VMCB_CTRL_V_TPR __BITS(7,0)
306 #define VMCB_CTRL_V_IRQ __BIT(8)
307 #define VMCB_CTRL_V_VGIF __BIT(9)
308 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
309 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
310 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
311 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
312 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
313 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
314
315 uint64_t intr;
316 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
317 #define VMCB_CTRL_GUEST_INTR_MASK __BIT(1)
318
319 uint64_t exitcode;
320 uint64_t exitinfo1;
321 uint64_t exitinfo2;
322
323 uint64_t exitintinfo;
324 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
325 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
326 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
327 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
328 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
329
330 uint64_t enable1;
331 #define VMCB_CTRL_ENABLE_NP __BIT(0)
332 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
333 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
334
335 uint64_t avic;
336 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
337
338 uint64_t ghcb;
339
340 uint64_t eventinj;
341 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
342 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
343 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
344 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
345 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
346
347 uint64_t n_cr3;
348
349 uint64_t enable2;
350 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
351 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
352
353 uint32_t vmcb_clean;
354 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
355 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
356 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
357 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
358 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
359 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
360 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
361 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
362 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
363 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
364 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
365 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
366
367 uint32_t rsvd2;
368 uint64_t nrip;
369 uint8_t inst_len;
370 uint8_t inst_bytes[15];
371 uint8_t pad[800];
372 } __packed;
373
374 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
375
376 struct vmcb_segment {
377 uint16_t selector;
378 uint16_t attrib; /* hidden */
379 uint32_t limit; /* hidden */
380 uint64_t base; /* hidden */
381 } __packed;
382
383 CTASSERT(sizeof(struct vmcb_segment) == 16);
384
385 struct vmcb_state {
386 struct vmcb_segment es;
387 struct vmcb_segment cs;
388 struct vmcb_segment ss;
389 struct vmcb_segment ds;
390 struct vmcb_segment fs;
391 struct vmcb_segment gs;
392 struct vmcb_segment gdt;
393 struct vmcb_segment ldt;
394 struct vmcb_segment idt;
395 struct vmcb_segment tr;
396 uint8_t rsvd1[43];
397 uint8_t cpl;
398 uint8_t rsvd2[4];
399 uint64_t efer;
400 uint8_t rsvd3[112];
401 uint64_t cr4;
402 uint64_t cr3;
403 uint64_t cr0;
404 uint64_t dr7;
405 uint64_t dr6;
406 uint64_t rflags;
407 uint64_t rip;
408 uint8_t rsvd4[88];
409 uint64_t rsp;
410 uint8_t rsvd5[24];
411 uint64_t rax;
412 uint64_t star;
413 uint64_t lstar;
414 uint64_t cstar;
415 uint64_t sfmask;
416 uint64_t kernelgsbase;
417 uint64_t sysenter_cs;
418 uint64_t sysenter_esp;
419 uint64_t sysenter_eip;
420 uint64_t cr2;
421 uint8_t rsvd6[32];
422 uint64_t g_pat;
423 uint64_t dbgctl;
424 uint64_t br_from;
425 uint64_t br_to;
426 uint64_t int_from;
427 uint64_t int_to;
428 uint8_t pad[2408];
429 } __packed;
430
431 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
432
433 struct vmcb {
434 struct vmcb_ctrl ctrl;
435 struct vmcb_state state;
436 } __packed;
437
438 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
439 CTASSERT(offsetof(struct vmcb, state) == 0x400);
440
441 /* -------------------------------------------------------------------------- */
442
443 struct svm_hsave {
444 paddr_t pa;
445 };
446
447 static struct svm_hsave hsave[MAXCPUS];
448
449 static uint8_t *svm_asidmap __read_mostly;
450 static uint32_t svm_maxasid __read_mostly;
451 static kmutex_t svm_asidlock __cacheline_aligned;
452
453 static bool svm_decode_assist __read_mostly;
454 static uint32_t svm_ctrl_tlb_flush __read_mostly;
455
456 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
457 static uint64_t svm_xcr0_mask __read_mostly;
458
459 #define SVM_NCPUIDS 32
460
461 #define VMCB_NPAGES 1
462
463 #define MSRBM_NPAGES 2
464 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
465
466 #define IOBM_NPAGES 3
467 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
468
469 /* Does not include EFER_LMSLE. */
470 #define EFER_VALID \
471 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
472
473 #define EFER_TLB_FLUSH \
474 (EFER_NXE|EFER_LMA|EFER_LME)
475 #define CR0_TLB_FLUSH \
476 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
477 #define CR4_TLB_FLUSH \
478 (CR4_PGE|CR4_PAE|CR4_PSE)
479
480 /* -------------------------------------------------------------------------- */
481
482 struct svm_machdata {
483 bool cpuidpresent[SVM_NCPUIDS];
484 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
485 };
486
487 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
488 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
489 };
490
491 struct svm_cpudata {
492 /* x64-specific */
493 struct nvmm_x64_state state;
494
495 /* General */
496 bool shared_asid;
497 bool tlb_want_flush;
498
499 /* VMCB */
500 struct vmcb *vmcb;
501 paddr_t vmcb_pa;
502
503 /* I/O bitmap */
504 uint8_t *iobm;
505 paddr_t iobm_pa;
506
507 /* MSR bitmap */
508 uint8_t *msrbm;
509 paddr_t msrbm_pa;
510
511 /* Host state */
512 uint64_t xcr0;
513 uint64_t star;
514 uint64_t lstar;
515 uint64_t cstar;
516 uint64_t sfmask;
517 uint64_t cr2;
518 bool ts_set;
519 struct xsave_header hfpu __aligned(16);
520
521 /* Guest state */
522 bool in_nmi;
523 uint64_t tsc_offset;
524 struct xsave_header gfpu __aligned(16);
525 };
526
527 #define SVM_EVENT_TYPE_HW_INT 0
528 #define SVM_EVENT_TYPE_NMI 2
529 #define SVM_EVENT_TYPE_EXC 3
530 #define SVM_EVENT_TYPE_SW_INT 4
531
532 static void
533 svm_event_waitexit_enable(struct vmcb *vmcb, bool nmi)
534 {
535 if (nmi) {
536 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
537 } else {
538 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
539 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ |
540 __SHIFTIN(0, VMCB_CTRL_V_INTR_VECTOR));
541 }
542 }
543
544 static void
545 svm_event_waitexit_disable(struct vmcb *vmcb, bool nmi)
546 {
547 if (nmi) {
548 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
549 } else {
550 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
551 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ |
552 __SHIFTIN(0, VMCB_CTRL_V_INTR_VECTOR));
553 }
554 }
555
556 static inline int
557 svm_event_has_error(uint64_t vector)
558 {
559 switch (vector) {
560 case 8: /* #DF */
561 case 10: /* #TS */
562 case 11: /* #NP */
563 case 12: /* #SS */
564 case 13: /* #GP */
565 case 14: /* #PF */
566 case 17: /* #AC */
567 case 30: /* #SX */
568 return 1;
569 default:
570 return 0;
571 }
572 }
573
574 static int
575 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
576 struct nvmm_event *event)
577 {
578 struct svm_cpudata *cpudata = vcpu->cpudata;
579 struct vmcb *vmcb = cpudata->vmcb;
580 uint64_t rflags = vmcb->state.rflags;
581 int type = 0, err = 0;
582 uint64_t tpr;
583
584 if (event->vector >= 256) {
585 return EINVAL;
586 }
587
588 switch (event->type) {
589 case NVMM_EVENT_INTERRUPT_HW:
590 type = SVM_EVENT_TYPE_HW_INT;
591 if (event->vector == 2) {
592 type = SVM_EVENT_TYPE_NMI;
593 }
594 if (type == SVM_EVENT_TYPE_NMI) {
595 if (cpudata->in_nmi) {
596 svm_event_waitexit_enable(vmcb, true);
597 return EAGAIN;
598 }
599 cpudata->in_nmi = true;
600 } else {
601 tpr = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
602 if ((rflags & PSL_I) == 0 || event->u.prio <= tpr) {
603 svm_event_waitexit_enable(vmcb, false);
604 return EAGAIN;
605 }
606 }
607 err = 0;
608 break;
609 case NVMM_EVENT_INTERRUPT_SW:
610 type = SVM_EVENT_TYPE_SW_INT;
611 err = 0;
612 break;
613 case NVMM_EVENT_EXCEPTION:
614 type = SVM_EVENT_TYPE_EXC;
615 if (event->vector == 2 || event->vector >= 32)
616 return EINVAL;
617 err = svm_event_has_error(event->vector);
618 break;
619 default:
620 return EINVAL;
621 }
622
623 vmcb->ctrl.eventinj =
624 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
625 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
626 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
627 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
628 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
629
630 return 0;
631 }
632
633 static void
634 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
635 {
636 struct nvmm_event event;
637 int ret __diagused;
638
639 event.type = NVMM_EVENT_EXCEPTION;
640 event.vector = 6;
641 event.u.error = 0;
642
643 ret = svm_vcpu_inject(mach, vcpu, &event);
644 KASSERT(ret == 0);
645 }
646
647 static void
648 svm_inject_db(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
649 {
650 struct nvmm_event event;
651 int ret __diagused;
652
653 event.type = NVMM_EVENT_EXCEPTION;
654 event.vector = 1;
655 event.u.error = 0;
656
657 ret = svm_vcpu_inject(mach, vcpu, &event);
658 KASSERT(ret == 0);
659 }
660
661 static void
662 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
663 {
664 struct nvmm_event event;
665 int ret __diagused;
666
667 event.type = NVMM_EVENT_EXCEPTION;
668 event.vector = 13;
669 event.u.error = 0;
670
671 ret = svm_vcpu_inject(mach, vcpu, &event);
672 KASSERT(ret == 0);
673 }
674
675 static void
676 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
677 {
678 struct svm_cpudata *cpudata = vcpu->cpudata;
679 struct nvmm_x64_state *state = &cpudata->state;
680
681 switch (eax) {
682 case 0x00000001: /* APIC number in RBX. The rest is tunable. */
683 state->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
684 state->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
685 CPUID_LOCAL_APIC_ID);
686 break;
687 case 0x0000000D: /* FPU description. Not tunable. */
688 if (ecx != 0 || svm_xcr0_mask == 0) {
689 break;
690 }
691 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
692 if (state->crs[NVMM_X64_CR_XCR0] & XCR0_SSE) {
693 state->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
694 } else {
695 state->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
696 }
697 state->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
698 state->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
699 state->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
700 break;
701 default:
702 break;
703 }
704 }
705
706 static void
707 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
708 struct nvmm_exit *exit)
709 {
710 struct svm_machdata *machdata = mach->machdata;
711 struct svm_cpudata *cpudata = vcpu->cpudata;
712 struct nvmm_x64_state *state = &cpudata->state;
713 struct nvmm_x86_conf_cpuid *cpuid;
714 uint64_t eax, ecx;
715 u_int descs[4];
716 size_t i;
717
718 eax = cpudata->vmcb->state.rax;
719 ecx = state->gprs[NVMM_X64_GPR_RCX];
720 x86_cpuid2(eax, ecx, descs);
721
722 cpudata->vmcb->state.rax = descs[0];
723 state->gprs[NVMM_X64_GPR_RBX] = descs[1];
724 state->gprs[NVMM_X64_GPR_RCX] = descs[2];
725 state->gprs[NVMM_X64_GPR_RDX] = descs[3];
726
727 for (i = 0; i < SVM_NCPUIDS; i++) {
728 cpuid = &machdata->cpuid[i];
729 if (!machdata->cpuidpresent[i]) {
730 continue;
731 }
732 if (cpuid->leaf != eax) {
733 continue;
734 }
735
736 /* del */
737 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
738 state->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
739 state->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
740 state->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
741
742 /* set */
743 cpudata->vmcb->state.rax |= cpuid->set.eax;
744 state->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
745 state->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
746 state->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
747
748 break;
749 }
750
751 /* Overwrite non-tunable leaves. */
752 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
753
754 /* For now we omit DBREGS. */
755 if (__predict_false(cpudata->vmcb->state.rflags & PSL_T)) {
756 svm_inject_db(mach, vcpu);
757 }
758
759 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
760 exit->reason = NVMM_EXIT_NONE;
761 }
762
763 #define SVM_EXIT_IO_PORT __BITS(31,16)
764 #define SVM_EXIT_IO_SEG __BITS(12,10)
765 #define SVM_EXIT_IO_A64 __BIT(9)
766 #define SVM_EXIT_IO_A32 __BIT(8)
767 #define SVM_EXIT_IO_A16 __BIT(7)
768 #define SVM_EXIT_IO_SZ32 __BIT(6)
769 #define SVM_EXIT_IO_SZ16 __BIT(5)
770 #define SVM_EXIT_IO_SZ8 __BIT(4)
771 #define SVM_EXIT_IO_REP __BIT(3)
772 #define SVM_EXIT_IO_STR __BIT(2)
773 #define SVM_EXIT_IO_IN __BIT(0)
774
775 static const int seg_to_nvmm[] = {
776 [0] = NVMM_X64_SEG_ES,
777 [1] = NVMM_X64_SEG_CS,
778 [2] = NVMM_X64_SEG_SS,
779 [3] = NVMM_X64_SEG_DS,
780 [4] = NVMM_X64_SEG_FS,
781 [5] = NVMM_X64_SEG_GS
782 };
783
784 static void
785 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
786 struct nvmm_exit *exit)
787 {
788 struct svm_cpudata *cpudata = vcpu->cpudata;
789 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
790 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
791
792 exit->reason = NVMM_EXIT_IO;
793
794 if (info & SVM_EXIT_IO_IN) {
795 exit->u.io.type = NVMM_EXIT_IO_IN;
796 } else {
797 exit->u.io.type = NVMM_EXIT_IO_OUT;
798 }
799
800 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
801
802 if (svm_decode_assist) {
803 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
804 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, SVM_EXIT_IO_SEG)];
805 } else {
806 if (exit->u.io.type == NVMM_EXIT_IO_IN) {
807 exit->u.io.seg = NVMM_X64_SEG_ES;
808 } else {
809 exit->u.io.seg = NVMM_X64_SEG_DS;
810 }
811 }
812
813 if (info & SVM_EXIT_IO_A64) {
814 exit->u.io.address_size = 8;
815 } else if (info & SVM_EXIT_IO_A32) {
816 exit->u.io.address_size = 4;
817 } else if (info & SVM_EXIT_IO_A16) {
818 exit->u.io.address_size = 2;
819 }
820
821 if (info & SVM_EXIT_IO_SZ32) {
822 exit->u.io.operand_size = 4;
823 } else if (info & SVM_EXIT_IO_SZ16) {
824 exit->u.io.operand_size = 2;
825 } else if (info & SVM_EXIT_IO_SZ8) {
826 exit->u.io.operand_size = 1;
827 }
828
829 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
830 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
831 exit->u.io.npc = nextpc;
832 }
833
834 static bool
835 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
836 struct nvmm_exit *exit)
837 {
838 struct svm_cpudata *cpudata = vcpu->cpudata;
839 struct nvmm_x64_state *state = &cpudata->state;
840 uint64_t pat;
841
842 switch (exit->u.msr.type) {
843 case NVMM_EXIT_MSR_RDMSR:
844 if (exit->u.msr.msr == MSR_CR_PAT) {
845 pat = cpudata->vmcb->state.g_pat;
846 cpudata->vmcb->state.rax = (pat & 0xFFFFFFFF);
847 state->gprs[NVMM_X64_GPR_RDX] = (pat >> 32);
848 goto handled;
849 }
850 break;
851 case NVMM_EXIT_MSR_WRMSR:
852 if (exit->u.msr.msr == MSR_EFER) {
853 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
854 svm_inject_gp(mach, vcpu);
855 goto handled;
856 }
857 if ((cpudata->vmcb->state.efer ^ exit->u.msr.val) &
858 EFER_TLB_FLUSH) {
859 cpudata->tlb_want_flush = true;
860 }
861 cpudata->vmcb->state.efer = exit->u.msr.val | EFER_SVME;
862 goto handled;
863 }
864 if (exit->u.msr.msr == MSR_CR_PAT) {
865 cpudata->vmcb->state.g_pat = exit->u.msr.val;
866 goto handled;
867 }
868 break;
869 }
870
871 return false;
872
873 handled:
874 cpudata->vmcb->state.rip = cpudata->vmcb->ctrl.nrip;
875 return true;
876 }
877
878 static void
879 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
880 struct nvmm_exit *exit)
881 {
882 struct svm_cpudata *cpudata = vcpu->cpudata;
883 struct nvmm_x64_state *state = &cpudata->state;
884 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
885
886 if (info == 0) {
887 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
888 } else {
889 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
890 }
891
892 exit->u.msr.msr = state->gprs[NVMM_X64_GPR_RCX];
893
894 if (info == 1) {
895 uint64_t rdx, rax;
896 rdx = state->gprs[NVMM_X64_GPR_RDX];
897 rax = cpudata->vmcb->state.rax;
898 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
899 } else {
900 exit->u.msr.val = 0;
901 }
902
903 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
904 exit->reason = NVMM_EXIT_NONE;
905 return;
906 }
907
908 exit->reason = NVMM_EXIT_MSR;
909 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
910 }
911
912 static void
913 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
914 struct nvmm_exit *exit)
915 {
916 struct svm_cpudata *cpudata = vcpu->cpudata;
917 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
918 int error;
919
920 error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
921
922 if (error) {
923 exit->reason = NVMM_EXIT_MEMORY;
924 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
925 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
926 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
927 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
928 else
929 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
930 exit->u.mem.gpa = gpa;
931 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
932 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
933 sizeof(exit->u.mem.inst_bytes));
934 exit->u.mem.npc = cpudata->vmcb->ctrl.nrip;
935 } else {
936 exit->reason = NVMM_EXIT_NONE;
937 }
938 }
939
940 static void
941 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
942 struct nvmm_exit *exit)
943 {
944 struct svm_cpudata *cpudata = vcpu->cpudata;
945 struct nvmm_x64_state *state = &cpudata->state;
946 struct vmcb *vmcb = cpudata->vmcb;
947 uint64_t val;
948
949 exit->reason = NVMM_EXIT_NONE;
950
951 val = (state->gprs[NVMM_X64_GPR_RDX] << 32) |
952 (vmcb->state.rax & 0xFFFFFFFF);
953
954 if (__predict_false(state->gprs[NVMM_X64_GPR_RCX] != 0)) {
955 goto error;
956 } else if (__predict_false(vmcb->state.cpl != 0)) {
957 goto error;
958 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
959 goto error;
960 } else if (__predict_false((val & XCR0_X87) == 0)) {
961 goto error;
962 }
963
964 state->crs[NVMM_X64_CR_XCR0] = val;
965
966 return;
967
968 error:
969 svm_inject_gp(mach, vcpu);
970 }
971
972 static void
973 svm_vmcb_cache_default(struct vmcb *vmcb)
974 {
975 vmcb->ctrl.vmcb_clean =
976 VMCB_CTRL_VMCB_CLEAN_I |
977 VMCB_CTRL_VMCB_CLEAN_IOPM |
978 VMCB_CTRL_VMCB_CLEAN_ASID |
979 VMCB_CTRL_VMCB_CLEAN_LBR |
980 VMCB_CTRL_VMCB_CLEAN_AVIC;
981 }
982
983 static void
984 svm_vmcb_cache_flush(struct vmcb *vmcb)
985 {
986 vmcb->ctrl.vmcb_clean = 0;
987 }
988
989 static void
990 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
991 {
992 struct svm_cpudata *cpudata = vcpu->cpudata;
993
994 if (x86_xsave_features != 0) {
995 cpudata->xcr0 = rdxcr(0);
996 wrxcr(0, cpudata->state.crs[NVMM_X64_CR_XCR0]);
997 }
998
999 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1000
1001 fpu_area_save(&cpudata->hfpu);
1002 fpu_area_restore(&cpudata->gfpu);
1003 }
1004
1005 static void
1006 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1007 {
1008 struct svm_cpudata *cpudata = vcpu->cpudata;
1009
1010 fpu_area_save(&cpudata->gfpu);
1011 fpu_area_restore(&cpudata->hfpu);
1012
1013 if (cpudata->ts_set) {
1014 stts();
1015 }
1016
1017 if (x86_xsave_features != 0) {
1018 cpudata->state.crs[NVMM_X64_CR_XCR0] = rdxcr(0);
1019 wrxcr(0, cpudata->xcr0);
1020 }
1021 }
1022
1023 static void
1024 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1025 {
1026 struct svm_cpudata *cpudata = vcpu->cpudata;
1027 struct nvmm_x64_state *state = &cpudata->state;
1028
1029 x86_dbregs_save(curlwp);
1030
1031 ldr0(state->drs[NVMM_X64_DR_DR0]);
1032 ldr1(state->drs[NVMM_X64_DR_DR1]);
1033 ldr2(state->drs[NVMM_X64_DR_DR2]);
1034 ldr3(state->drs[NVMM_X64_DR_DR3]);
1035 }
1036
1037 static void
1038 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1039 {
1040 struct svm_cpudata *cpudata = vcpu->cpudata;
1041 struct nvmm_x64_state *state = &cpudata->state;
1042
1043 state->drs[NVMM_X64_DR_DR0] = rdr0();
1044 state->drs[NVMM_X64_DR_DR1] = rdr1();
1045 state->drs[NVMM_X64_DR_DR2] = rdr2();
1046 state->drs[NVMM_X64_DR_DR3] = rdr3();
1047
1048 x86_dbregs_restore(curlwp);
1049 }
1050
1051 static void
1052 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1053 {
1054 struct svm_cpudata *cpudata = vcpu->cpudata;
1055
1056 /* Save the fixed Host MSRs. */
1057 cpudata->star = rdmsr(MSR_STAR);
1058 cpudata->lstar = rdmsr(MSR_LSTAR);
1059 cpudata->cstar = rdmsr(MSR_CSTAR);
1060 cpudata->sfmask = rdmsr(MSR_SFMASK);
1061
1062 /* Save the Host CR2. */
1063 cpudata->cr2 = rcr2();
1064 }
1065
1066 static void
1067 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1068 {
1069 struct svm_cpudata *cpudata = vcpu->cpudata;
1070
1071 /* Restore the fixed Host MSRs. */
1072 wrmsr(MSR_STAR, cpudata->star);
1073 wrmsr(MSR_LSTAR, cpudata->lstar);
1074 wrmsr(MSR_CSTAR, cpudata->cstar);
1075 wrmsr(MSR_SFMASK, cpudata->sfmask);
1076
1077 /* Restore the Host CR2. */
1078 lcr2(cpudata->cr2);
1079 }
1080
1081 static int
1082 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1083 struct nvmm_exit *exit)
1084 {
1085 struct svm_cpudata *cpudata = vcpu->cpudata;
1086 struct vmcb *vmcb = cpudata->vmcb;
1087 bool tlb_need_flush = false;
1088 int hcpu, s;
1089
1090 kpreempt_disable();
1091 hcpu = cpu_number();
1092
1093 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1094 tlb_need_flush = true;
1095 }
1096
1097 if (cpudata->tlb_want_flush || tlb_need_flush) {
1098 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1099 } else {
1100 vmcb->ctrl.tlb_ctrl = 0;
1101 }
1102
1103 if (vcpu->hcpu_last != hcpu) {
1104 vmcb->ctrl.tsc_offset = cpudata->tsc_offset +
1105 curcpu()->ci_data.cpu_cc_skew;
1106 svm_vmcb_cache_flush(vmcb);
1107 }
1108
1109 svm_vcpu_guest_dbregs_enter(vcpu);
1110 svm_vcpu_guest_misc_enter(vcpu);
1111
1112 while (1) {
1113 s = splhigh();
1114 svm_vcpu_guest_fpu_enter(vcpu);
1115 svm_vmrun(cpudata->vmcb_pa, cpudata->state.gprs);
1116 svm_vcpu_guest_fpu_leave(vcpu);
1117 splx(s);
1118
1119 svm_vmcb_cache_default(vmcb);
1120
1121 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1122 if (cpudata->tlb_want_flush) {
1123 cpudata->tlb_want_flush = false;
1124 }
1125 vcpu->hcpu_last = hcpu;
1126 }
1127
1128 switch (vmcb->ctrl.exitcode) {
1129 case VMCB_EXITCODE_INTR:
1130 case VMCB_EXITCODE_NMI:
1131 exit->reason = NVMM_EXIT_NONE;
1132 break;
1133 case VMCB_EXITCODE_VINTR:
1134 svm_event_waitexit_disable(vmcb, false);
1135 exit->reason = NVMM_EXIT_INT_READY;
1136 break;
1137 case VMCB_EXITCODE_IRET:
1138 svm_event_waitexit_disable(vmcb, true);
1139 cpudata->in_nmi = false;
1140 exit->reason = NVMM_EXIT_NMI_READY;
1141 break;
1142 case VMCB_EXITCODE_CPUID:
1143 svm_exit_cpuid(mach, vcpu, exit);
1144 break;
1145 case VMCB_EXITCODE_HLT:
1146 exit->reason = NVMM_EXIT_HLT;
1147 break;
1148 case VMCB_EXITCODE_IOIO:
1149 svm_exit_io(mach, vcpu, exit);
1150 break;
1151 case VMCB_EXITCODE_MSR:
1152 svm_exit_msr(mach, vcpu, exit);
1153 break;
1154 case VMCB_EXITCODE_SHUTDOWN:
1155 exit->reason = NVMM_EXIT_SHUTDOWN;
1156 break;
1157 case VMCB_EXITCODE_RDPMC:
1158 case VMCB_EXITCODE_RSM:
1159 case VMCB_EXITCODE_INVLPGA:
1160 case VMCB_EXITCODE_VMRUN:
1161 case VMCB_EXITCODE_VMMCALL:
1162 case VMCB_EXITCODE_VMLOAD:
1163 case VMCB_EXITCODE_VMSAVE:
1164 case VMCB_EXITCODE_STGI:
1165 case VMCB_EXITCODE_CLGI:
1166 case VMCB_EXITCODE_SKINIT:
1167 case VMCB_EXITCODE_RDTSCP:
1168 svm_inject_ud(mach, vcpu);
1169 exit->reason = NVMM_EXIT_NONE;
1170 break;
1171 case VMCB_EXITCODE_MONITOR:
1172 exit->reason = NVMM_EXIT_MONITOR;
1173 break;
1174 case VMCB_EXITCODE_MWAIT:
1175 exit->reason = NVMM_EXIT_MWAIT;
1176 break;
1177 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1178 exit->reason = NVMM_EXIT_MWAIT_COND;
1179 break;
1180 case VMCB_EXITCODE_XSETBV:
1181 svm_exit_xsetbv(mach, vcpu, exit);
1182 break;
1183 case VMCB_EXITCODE_NPF:
1184 svm_exit_npf(mach, vcpu, exit);
1185 break;
1186 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1187 default:
1188 exit->reason = NVMM_EXIT_INVALID;
1189 break;
1190 }
1191
1192 /* If no reason to return to userland, keep rolling. */
1193 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1194 break;
1195 }
1196 if (exit->reason != NVMM_EXIT_NONE) {
1197 break;
1198 }
1199 }
1200
1201 svm_vcpu_guest_misc_leave(vcpu);
1202 svm_vcpu_guest_dbregs_leave(vcpu);
1203
1204 kpreempt_enable();
1205
1206 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1207 VMCB_CTRL_V_TPR);
1208
1209 return 0;
1210 }
1211
1212 /* -------------------------------------------------------------------------- */
1213
1214 static int
1215 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1216 {
1217 struct pglist pglist;
1218 paddr_t _pa;
1219 vaddr_t _va;
1220 size_t i;
1221 int ret;
1222
1223 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1224 &pglist, 1, 0);
1225 if (ret != 0)
1226 return ENOMEM;
1227 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1228 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1229 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1230 if (_va == 0)
1231 goto error;
1232
1233 for (i = 0; i < npages; i++) {
1234 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1235 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1236 }
1237
1238 memset((void *)_va, 0, npages * PAGE_SIZE);
1239
1240 *pa = _pa;
1241 *va = _va;
1242 return 0;
1243
1244 error:
1245 for (i = 0; i < npages; i++) {
1246 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1247 }
1248 return ENOMEM;
1249 }
1250
1251 static void
1252 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1253 {
1254 size_t i;
1255
1256 pmap_kremove(va, npages * PAGE_SIZE);
1257 pmap_update(pmap_kernel());
1258 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1259 for (i = 0; i < npages; i++) {
1260 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1261 }
1262 }
1263
1264 /* -------------------------------------------------------------------------- */
1265
1266 #define SVM_MSRBM_READ __BIT(0)
1267 #define SVM_MSRBM_WRITE __BIT(1)
1268
1269 static void
1270 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1271 {
1272 uint64_t byte;
1273 uint8_t bitoff;
1274
1275 if (msr < 0x00002000) {
1276 /* Range 1 */
1277 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1278 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1279 /* Range 2 */
1280 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1281 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1282 /* Range 3 */
1283 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1284 } else {
1285 panic("%s: wrong range", __func__);
1286 }
1287
1288 bitoff = (msr & 0x3) << 1;
1289
1290 if (read) {
1291 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1292 }
1293 if (write) {
1294 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1295 }
1296 }
1297
1298 static void
1299 svm_asid_alloc(struct nvmm_cpu *vcpu)
1300 {
1301 struct svm_cpudata *cpudata = vcpu->cpudata;
1302 struct vmcb *vmcb = cpudata->vmcb;
1303 size_t i, oct, bit;
1304
1305 mutex_enter(&svm_asidlock);
1306
1307 for (i = 0; i < svm_maxasid; i++) {
1308 oct = i / 8;
1309 bit = i % 8;
1310
1311 if (svm_asidmap[oct] & __BIT(bit)) {
1312 continue;
1313 }
1314
1315 svm_asidmap[oct] |= __BIT(bit);
1316 vmcb->ctrl.guest_asid = i;
1317 mutex_exit(&svm_asidlock);
1318 return;
1319 }
1320
1321 /*
1322 * No free ASID. Use the last one, which is shared and requires
1323 * special TLB handling.
1324 */
1325 cpudata->shared_asid = true;
1326 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1327 mutex_exit(&svm_asidlock);
1328 }
1329
1330 static void
1331 svm_asid_free(struct nvmm_cpu *vcpu)
1332 {
1333 struct svm_cpudata *cpudata = vcpu->cpudata;
1334 struct vmcb *vmcb = cpudata->vmcb;
1335 size_t oct, bit;
1336
1337 if (cpudata->shared_asid) {
1338 return;
1339 }
1340
1341 oct = vmcb->ctrl.guest_asid / 8;
1342 bit = vmcb->ctrl.guest_asid % 8;
1343
1344 mutex_enter(&svm_asidlock);
1345 svm_asidmap[oct] &= ~__BIT(bit);
1346 mutex_exit(&svm_asidlock);
1347 }
1348
1349 static void
1350 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1351 {
1352 struct svm_cpudata *cpudata = vcpu->cpudata;
1353 struct vmcb *vmcb = cpudata->vmcb;
1354
1355 /* Allow reads/writes of Control Registers. */
1356 vmcb->ctrl.intercept_cr = 0;
1357
1358 /* Allow reads/writes of Debug Registers. */
1359 vmcb->ctrl.intercept_dr = 0;
1360
1361 /* Allow exceptions 0 to 31. */
1362 vmcb->ctrl.intercept_vec = 0;
1363
1364 /*
1365 * Allow:
1366 * - SMI [smm interrupts]
1367 * - VINTR [virtual interrupts]
1368 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1369 * - RIDTR [reads of IDTR]
1370 * - RGDTR [reads of GDTR]
1371 * - RLDTR [reads of LDTR]
1372 * - RTR [reads of TR]
1373 * - WIDTR [writes of IDTR]
1374 * - WGDTR [writes of GDTR]
1375 * - WLDTR [writes of LDTR]
1376 * - WTR [writes of TR]
1377 * - RDTSC [rdtsc instruction]
1378 * - PUSHF [pushf instruction]
1379 * - POPF [popf instruction]
1380 * - IRET [iret instruction]
1381 * - INTN [int $n instructions]
1382 * - INVD [invd instruction]
1383 * - PAUSE [pause instruction]
1384 * - INVLPG [invplg instruction]
1385 * - TASKSW [task switches]
1386 *
1387 * Intercept the rest below.
1388 */
1389 vmcb->ctrl.intercept_misc1 =
1390 VMCB_CTRL_INTERCEPT_INTR |
1391 VMCB_CTRL_INTERCEPT_NMI |
1392 VMCB_CTRL_INTERCEPT_INIT |
1393 VMCB_CTRL_INTERCEPT_RDPMC |
1394 VMCB_CTRL_INTERCEPT_CPUID |
1395 VMCB_CTRL_INTERCEPT_RSM |
1396 VMCB_CTRL_INTERCEPT_HLT |
1397 VMCB_CTRL_INTERCEPT_INVLPGA |
1398 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1399 VMCB_CTRL_INTERCEPT_MSR_PROT |
1400 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1401 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1402
1403 /*
1404 * Allow:
1405 * - ICEBP [icebp instruction]
1406 * - WBINVD [wbinvd instruction]
1407 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1408 *
1409 * Intercept the rest below.
1410 */
1411 vmcb->ctrl.intercept_misc2 =
1412 VMCB_CTRL_INTERCEPT_VMRUN |
1413 VMCB_CTRL_INTERCEPT_VMMCALL |
1414 VMCB_CTRL_INTERCEPT_VMLOAD |
1415 VMCB_CTRL_INTERCEPT_VMSAVE |
1416 VMCB_CTRL_INTERCEPT_STGI |
1417 VMCB_CTRL_INTERCEPT_CLGI |
1418 VMCB_CTRL_INTERCEPT_SKINIT |
1419 VMCB_CTRL_INTERCEPT_RDTSCP |
1420 VMCB_CTRL_INTERCEPT_MONITOR |
1421 VMCB_CTRL_INTERCEPT_MWAIT |
1422 VMCB_CTRL_INTERCEPT_XSETBV;
1423
1424 /* Intercept all I/O accesses. */
1425 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1426 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1427
1428 /*
1429 * Allow:
1430 * - EFER [read]
1431 * - STAR [read, write]
1432 * - LSTAR [read, write]
1433 * - CSTAR [read, write]
1434 * - SFMASK [read, write]
1435 * - KERNELGSBASE [read, write]
1436 * - SYSENTER_CS [read, write]
1437 * - SYSENTER_ESP [read, write]
1438 * - SYSENTER_EIP [read, write]
1439 * - FSBASE [read, write]
1440 * - GSBASE [read, write]
1441 *
1442 * Intercept the rest.
1443 */
1444 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1445 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1446 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1447 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1448 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1449 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1450 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1451 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1452 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1453 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1454 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1455 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1456 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1457
1458 /* Generate ASID. */
1459 svm_asid_alloc(vcpu);
1460
1461 /* Virtual TPR. */
1462 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1463
1464 /* Enable Nested Paging. */
1465 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1466 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1467
1468 /* Must always be set. */
1469 vmcb->state.efer = EFER_SVME;
1470
1471 /* Init XSAVE header. */
1472 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1473 cpudata->gfpu.xsh_xcomp_bv = 0;
1474
1475 /* Bluntly hide the host TSC. */
1476 cpudata->tsc_offset = rdtsc();
1477 }
1478
1479 static int
1480 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1481 {
1482 struct svm_cpudata *cpudata;
1483 int error;
1484
1485 /* Allocate the SVM cpudata. */
1486 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1487 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1488 UVM_KMF_WIRED|UVM_KMF_ZERO);
1489 vcpu->cpudata = cpudata;
1490
1491 /* VMCB */
1492 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
1493 VMCB_NPAGES);
1494 if (error)
1495 goto error;
1496
1497 /* I/O Bitmap */
1498 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
1499 IOBM_NPAGES);
1500 if (error)
1501 goto error;
1502
1503 /* MSR Bitmap */
1504 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
1505 MSRBM_NPAGES);
1506 if (error)
1507 goto error;
1508
1509 /* Init the VCPU info. */
1510 svm_vcpu_init(mach, vcpu);
1511
1512 return 0;
1513
1514 error:
1515 if (cpudata->vmcb_pa) {
1516 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
1517 VMCB_NPAGES);
1518 }
1519 if (cpudata->iobm_pa) {
1520 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
1521 IOBM_NPAGES);
1522 }
1523 if (cpudata->msrbm_pa) {
1524 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
1525 MSRBM_NPAGES);
1526 }
1527 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1528 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1529 return error;
1530 }
1531
1532 static void
1533 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1534 {
1535 struct svm_cpudata *cpudata = vcpu->cpudata;
1536
1537 svm_asid_free(vcpu);
1538
1539 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
1540 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
1541 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
1542
1543 uvm_km_free(kernel_map, (vaddr_t)cpudata,
1544 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
1545 }
1546
1547 #define SVM_SEG_ATTRIB_TYPE __BITS(4,0)
1548 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1549 #define SVM_SEG_ATTRIB_P __BIT(7)
1550 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1551 #define SVM_SEG_ATTRIB_LONG __BIT(9)
1552 #define SVM_SEG_ATTRIB_DEF32 __BIT(10)
1553 #define SVM_SEG_ATTRIB_GRAN __BIT(11)
1554
1555 static void
1556 svm_vcpu_setstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1557 {
1558 vseg->selector = seg->selector;
1559 vseg->attrib =
1560 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1561 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1562 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1563 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1564 __SHIFTIN(seg->attrib.lng, SVM_SEG_ATTRIB_LONG) |
1565 __SHIFTIN(seg->attrib.def32, SVM_SEG_ATTRIB_DEF32) |
1566 __SHIFTIN(seg->attrib.gran, SVM_SEG_ATTRIB_GRAN);
1567 vseg->limit = seg->limit;
1568 vseg->base = seg->base;
1569 }
1570
1571 static void
1572 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1573 {
1574 seg->selector = vseg->selector;
1575 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1576 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1577 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1578 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1579 seg->attrib.lng = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_LONG);
1580 seg->attrib.def32 = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF32);
1581 seg->attrib.gran = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_GRAN);
1582 seg->limit = vseg->limit;
1583 seg->base = vseg->base;
1584 }
1585
1586 static bool
1587 svm_state_tlb_flush(struct nvmm_x64_state *cstate,
1588 struct nvmm_x64_state *nstate, uint64_t flags)
1589 {
1590 if (flags & NVMM_X64_STATE_CRS) {
1591 if ((cstate->crs[NVMM_X64_CR_CR0] ^
1592 nstate->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1593 return true;
1594 }
1595 if (cstate->crs[NVMM_X64_CR_CR3] !=
1596 nstate->crs[NVMM_X64_CR_CR3]) {
1597 return true;
1598 }
1599 if ((cstate->crs[NVMM_X64_CR_CR4] ^
1600 nstate->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1601 return true;
1602 }
1603 }
1604
1605 if (flags & NVMM_X64_STATE_MSRS) {
1606 if ((cstate->msrs[NVMM_X64_MSR_EFER] ^
1607 nstate->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1608 return true;
1609 }
1610 }
1611
1612 return false;
1613 }
1614
1615 static void
1616 svm_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1617 {
1618 struct svm_cpudata *cpudata = vcpu->cpudata;
1619 struct nvmm_x64_state *cstate = &cpudata->state;
1620 struct nvmm_x64_state *nstate = (struct nvmm_x64_state *)data;
1621 struct vmcb *vmcb = cpudata->vmcb;
1622 struct fxsave *fpustate;
1623
1624 if (svm_state_tlb_flush(cstate, nstate, flags)) {
1625 cpudata->tlb_want_flush = true;
1626 }
1627
1628 if (flags & NVMM_X64_STATE_SEGS) {
1629 memcpy(cstate->segs, nstate->segs, sizeof(nstate->segs));
1630
1631 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_CS],
1632 &vmcb->state.cs);
1633 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_DS],
1634 &vmcb->state.ds);
1635 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_ES],
1636 &vmcb->state.es);
1637 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_FS],
1638 &vmcb->state.fs);
1639 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_GS],
1640 &vmcb->state.gs);
1641 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_SS],
1642 &vmcb->state.ss);
1643 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_GDT],
1644 &vmcb->state.gdt);
1645 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_IDT],
1646 &vmcb->state.idt);
1647 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_LDT],
1648 &vmcb->state.ldt);
1649 svm_vcpu_setstate_seg(&cstate->segs[NVMM_X64_SEG_TR],
1650 &vmcb->state.tr);
1651 }
1652
1653 if (flags & NVMM_X64_STATE_GPRS) {
1654 memcpy(cstate->gprs, nstate->gprs, sizeof(nstate->gprs));
1655
1656 vmcb->state.rip = cstate->gprs[NVMM_X64_GPR_RIP];
1657 vmcb->state.rsp = cstate->gprs[NVMM_X64_GPR_RSP];
1658 vmcb->state.rax = cstate->gprs[NVMM_X64_GPR_RAX];
1659 vmcb->state.rflags = cstate->gprs[NVMM_X64_GPR_RFLAGS];
1660 }
1661
1662 if (flags & NVMM_X64_STATE_CRS) {
1663 memcpy(cstate->crs, nstate->crs, sizeof(nstate->crs));
1664
1665 vmcb->state.cr0 = cstate->crs[NVMM_X64_CR_CR0];
1666 vmcb->state.cr2 = cstate->crs[NVMM_X64_CR_CR2];
1667 vmcb->state.cr3 = cstate->crs[NVMM_X64_CR_CR3];
1668 vmcb->state.cr4 = cstate->crs[NVMM_X64_CR_CR4];
1669
1670 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1671 vmcb->ctrl.v |= __SHIFTIN(cstate->crs[NVMM_X64_CR_CR8],
1672 VMCB_CTRL_V_TPR);
1673
1674 /* Clear unsupported XCR0 bits, set mandatory X87 bit. */
1675 if (svm_xcr0_mask != 0) {
1676 cstate->crs[NVMM_X64_CR_XCR0] &= svm_xcr0_mask;
1677 cstate->crs[NVMM_X64_CR_XCR0] |= XCR0_X87;
1678 } else {
1679 cstate->crs[NVMM_X64_CR_XCR0] = 0;
1680 }
1681 }
1682
1683 if (flags & NVMM_X64_STATE_DRS) {
1684 memcpy(cstate->drs, nstate->drs, sizeof(nstate->drs));
1685
1686 vmcb->state.dr6 = cstate->drs[NVMM_X64_DR_DR6];
1687 vmcb->state.dr7 = cstate->drs[NVMM_X64_DR_DR7];
1688 }
1689
1690 if (flags & NVMM_X64_STATE_MSRS) {
1691 memcpy(cstate->msrs, nstate->msrs, sizeof(nstate->msrs));
1692
1693 /* Bit EFER_SVME is mandatory. */
1694 cstate->msrs[NVMM_X64_MSR_EFER] |= EFER_SVME;
1695
1696 vmcb->state.efer = cstate->msrs[NVMM_X64_MSR_EFER];
1697 vmcb->state.star = cstate->msrs[NVMM_X64_MSR_STAR];
1698 vmcb->state.lstar = cstate->msrs[NVMM_X64_MSR_LSTAR];
1699 vmcb->state.cstar = cstate->msrs[NVMM_X64_MSR_CSTAR];
1700 vmcb->state.sfmask = cstate->msrs[NVMM_X64_MSR_SFMASK];
1701 vmcb->state.kernelgsbase =
1702 cstate->msrs[NVMM_X64_MSR_KERNELGSBASE];
1703 vmcb->state.sysenter_cs =
1704 cstate->msrs[NVMM_X64_MSR_SYSENTER_CS];
1705 vmcb->state.sysenter_esp =
1706 cstate->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1707 vmcb->state.sysenter_eip =
1708 cstate->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1709 vmcb->state.g_pat = cstate->msrs[NVMM_X64_MSR_PAT];
1710 }
1711
1712 if (flags & NVMM_X64_STATE_MISC) {
1713 memcpy(cstate->misc, nstate->misc, sizeof(nstate->misc));
1714
1715 vmcb->state.cpl = cstate->misc[NVMM_X64_MISC_CPL];
1716 }
1717
1718 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(cstate->fpu));
1719 if (flags & NVMM_X64_STATE_FPU) {
1720 memcpy(&cstate->fpu, &nstate->fpu, sizeof(nstate->fpu));
1721
1722 memcpy(cpudata->gfpu.xsh_fxsave, &cstate->fpu,
1723 sizeof(cstate->fpu));
1724
1725 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1726 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1727 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1728 }
1729 }
1730
1731 static void
1732 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1733 {
1734 struct svm_cpudata *cpudata = vcpu->cpudata;
1735 struct nvmm_x64_state *cstate = &cpudata->state;
1736 struct nvmm_x64_state *nstate = (struct nvmm_x64_state *)data;
1737 struct vmcb *vmcb = cpudata->vmcb;
1738
1739 if (flags & NVMM_X64_STATE_SEGS) {
1740 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_CS],
1741 &vmcb->state.cs);
1742 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_DS],
1743 &vmcb->state.ds);
1744 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_ES],
1745 &vmcb->state.es);
1746 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_FS],
1747 &vmcb->state.fs);
1748 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_GS],
1749 &vmcb->state.gs);
1750 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_SS],
1751 &vmcb->state.ss);
1752 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_GDT],
1753 &vmcb->state.gdt);
1754 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_IDT],
1755 &vmcb->state.idt);
1756 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_LDT],
1757 &vmcb->state.ldt);
1758 svm_vcpu_getstate_seg(&cstate->segs[NVMM_X64_SEG_TR],
1759 &vmcb->state.tr);
1760
1761 memcpy(nstate->segs, cstate->segs, sizeof(cstate->segs));
1762 }
1763
1764 if (flags & NVMM_X64_STATE_GPRS) {
1765 cstate->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1766 cstate->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1767 cstate->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1768 cstate->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1769
1770 memcpy(nstate->gprs, cstate->gprs, sizeof(cstate->gprs));
1771 }
1772
1773 if (flags & NVMM_X64_STATE_CRS) {
1774 cstate->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1775 cstate->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1776 cstate->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1777 cstate->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1778 cstate->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1779 VMCB_CTRL_V_TPR);
1780
1781 memcpy(nstate->crs, cstate->crs, sizeof(cstate->crs));
1782 }
1783
1784 if (flags & NVMM_X64_STATE_DRS) {
1785 cstate->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1786 cstate->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1787
1788 memcpy(nstate->drs, cstate->drs, sizeof(cstate->drs));
1789 }
1790
1791 if (flags & NVMM_X64_STATE_MSRS) {
1792 cstate->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1793 cstate->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1794 cstate->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1795 cstate->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1796 cstate->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1797 cstate->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1798 vmcb->state.kernelgsbase;
1799 cstate->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1800 vmcb->state.sysenter_cs;
1801 cstate->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1802 vmcb->state.sysenter_esp;
1803 cstate->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1804 vmcb->state.sysenter_eip;
1805 cstate->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1806
1807 memcpy(nstate->msrs, cstate->msrs, sizeof(cstate->msrs));
1808
1809 /* Hide SVME. */
1810 nstate->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1811 }
1812
1813 if (flags & NVMM_X64_STATE_MISC) {
1814 cstate->misc[NVMM_X64_MISC_CPL] = vmcb->state.cpl;
1815
1816 memcpy(nstate->misc, cstate->misc, sizeof(cstate->misc));
1817 }
1818
1819 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(cstate->fpu));
1820 if (flags & NVMM_X64_STATE_FPU) {
1821 memcpy(&cstate->fpu, cpudata->gfpu.xsh_fxsave,
1822 sizeof(cstate->fpu));
1823
1824 memcpy(&cstate->fpu, &nstate->fpu, sizeof(cstate->fpu));
1825 }
1826 }
1827
1828 /* -------------------------------------------------------------------------- */
1829
1830 static void
1831 svm_tlb_flush(struct pmap *pm)
1832 {
1833 struct nvmm_machine *mach = pm->pm_data;
1834 struct svm_cpudata *cpudata;
1835 struct nvmm_cpu *vcpu;
1836 int error;
1837 size_t i;
1838
1839 /* Request TLB flushes. */
1840 for (i = 0; i < NVMM_MAX_VCPUS; i++) {
1841 error = nvmm_vcpu_get(mach, i, &vcpu);
1842 if (error)
1843 continue;
1844 cpudata = vcpu->cpudata;
1845 cpudata->tlb_want_flush = true;
1846 nvmm_vcpu_put(vcpu);
1847 }
1848 }
1849
1850 static void
1851 svm_machine_create(struct nvmm_machine *mach)
1852 {
1853 /* Fill in pmap info. */
1854 mach->vm->vm_map.pmap->pm_data = (void *)mach;
1855 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
1856
1857 mach->machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
1858 }
1859
1860 static void
1861 svm_machine_destroy(struct nvmm_machine *mach)
1862 {
1863 kmem_free(mach->machdata, sizeof(struct svm_machdata));
1864 }
1865
1866 static int
1867 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
1868 {
1869 struct nvmm_x86_conf_cpuid *cpuid = data;
1870 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
1871 size_t i;
1872
1873 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
1874 return EINVAL;
1875 }
1876
1877 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
1878 (cpuid->set.ebx & cpuid->del.ebx) ||
1879 (cpuid->set.ecx & cpuid->del.ecx) ||
1880 (cpuid->set.edx & cpuid->del.edx))) {
1881 return EINVAL;
1882 }
1883
1884 /* If already here, replace. */
1885 for (i = 0; i < SVM_NCPUIDS; i++) {
1886 if (!machdata->cpuidpresent[i]) {
1887 continue;
1888 }
1889 if (machdata->cpuid[i].leaf == cpuid->leaf) {
1890 memcpy(&machdata->cpuid[i], cpuid,
1891 sizeof(struct nvmm_x86_conf_cpuid));
1892 return 0;
1893 }
1894 }
1895
1896 /* Not here, insert. */
1897 for (i = 0; i < SVM_NCPUIDS; i++) {
1898 if (!machdata->cpuidpresent[i]) {
1899 machdata->cpuidpresent[i] = true;
1900 memcpy(&machdata->cpuid[i], cpuid,
1901 sizeof(struct nvmm_x86_conf_cpuid));
1902 return 0;
1903 }
1904 }
1905
1906 return ENOBUFS;
1907 }
1908
1909 /* -------------------------------------------------------------------------- */
1910
1911 static bool
1912 svm_ident(void)
1913 {
1914 u_int descs[4];
1915 uint64_t msr;
1916
1917 if (cpu_vendor != CPUVENDOR_AMD) {
1918 return false;
1919 }
1920 if (!(cpu_feature[3] & CPUID_SVM)) {
1921 return false;
1922 }
1923
1924 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
1925 return false;
1926 }
1927 x86_cpuid(0x8000000a, descs);
1928
1929 /* Want Nested Paging. */
1930 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
1931 return false;
1932 }
1933
1934 /* Want nRIP. */
1935 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
1936 return false;
1937 }
1938
1939 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
1940
1941 msr = rdmsr(MSR_VMCR);
1942 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
1943 return false;
1944 }
1945
1946 return true;
1947 }
1948
1949 static void
1950 svm_init_asid(uint32_t maxasid)
1951 {
1952 size_t i, j, allocsz;
1953
1954 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
1955
1956 /* Arbitrarily limit. */
1957 maxasid = uimin(maxasid, 8192);
1958
1959 svm_maxasid = maxasid;
1960 allocsz = roundup(maxasid, 8) / 8;
1961 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
1962
1963 /* ASID 0 is reserved for the host. */
1964 svm_asidmap[0] |= __BIT(0);
1965
1966 /* ASID n-1 is special, we share it. */
1967 i = (maxasid - 1) / 8;
1968 j = (maxasid - 1) % 8;
1969 svm_asidmap[i] |= __BIT(j);
1970 }
1971
1972 static void
1973 svm_change_cpu(void *arg1, void *arg2)
1974 {
1975 bool enable = (bool)arg1;
1976 uint64_t msr;
1977
1978 msr = rdmsr(MSR_VMCR);
1979 if (msr & VMCR_SVMED) {
1980 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
1981 }
1982
1983 if (!enable) {
1984 wrmsr(MSR_VM_HSAVE_PA, 0);
1985 }
1986
1987 msr = rdmsr(MSR_EFER);
1988 if (enable) {
1989 msr |= EFER_SVME;
1990 } else {
1991 msr &= ~EFER_SVME;
1992 }
1993 wrmsr(MSR_EFER, msr);
1994
1995 if (enable) {
1996 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
1997 }
1998 }
1999
2000 static void
2001 svm_init(void)
2002 {
2003 CPU_INFO_ITERATOR cii;
2004 struct cpu_info *ci;
2005 struct vm_page *pg;
2006 u_int descs[4];
2007 uint64_t xc;
2008
2009 x86_cpuid(0x8000000a, descs);
2010
2011 /* The guest TLB flush command. */
2012 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2013 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2014 } else {
2015 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2016 }
2017
2018 /* Init the ASID. */
2019 svm_init_asid(descs[1]);
2020
2021 /* Init the XCR0 mask. */
2022 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2023
2024 memset(hsave, 0, sizeof(hsave));
2025 for (CPU_INFO_FOREACH(cii, ci)) {
2026 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2027 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2028 }
2029
2030 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2031 xc_wait(xc);
2032 }
2033
2034 static void
2035 svm_fini_asid(void)
2036 {
2037 size_t allocsz;
2038
2039 allocsz = roundup(svm_maxasid, 8) / 8;
2040 kmem_free(svm_asidmap, allocsz);
2041
2042 mutex_destroy(&svm_asidlock);
2043 }
2044
2045 static void
2046 svm_fini(void)
2047 {
2048 uint64_t xc;
2049 size_t i;
2050
2051 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2052 xc_wait(xc);
2053
2054 for (i = 0; i < MAXCPUS; i++) {
2055 if (hsave[i].pa != 0)
2056 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2057 }
2058
2059 svm_fini_asid();
2060 }
2061
2062 static void
2063 svm_capability(struct nvmm_capability *cap)
2064 {
2065 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2066 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2067 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2068 }
2069
2070 const struct nvmm_impl nvmm_x86_svm = {
2071 .ident = svm_ident,
2072 .init = svm_init,
2073 .fini = svm_fini,
2074 .capability = svm_capability,
2075 .conf_max = NVMM_X86_NCONF,
2076 .conf_sizes = svm_conf_sizes,
2077 .state_size = sizeof(struct nvmm_x64_state),
2078 .machine_create = svm_machine_create,
2079 .machine_destroy = svm_machine_destroy,
2080 .machine_configure = svm_machine_configure,
2081 .vcpu_create = svm_vcpu_create,
2082 .vcpu_destroy = svm_vcpu_destroy,
2083 .vcpu_setstate = svm_vcpu_setstate,
2084 .vcpu_getstate = svm_vcpu_getstate,
2085 .vcpu_inject = svm_vcpu_inject,
2086 .vcpu_run = svm_vcpu_run
2087 };
2088