Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.41
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.41 2019/04/27 09:06:18 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.41 2019/04/27 09:06:18 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int svm_vmrun(paddr_t, uint64_t *);
     58 
     59 #define	MSR_VM_HSAVE_PA	0xC0010117
     60 
     61 /* -------------------------------------------------------------------------- */
     62 
     63 #define VMCB_EXITCODE_CR0_READ		0x0000
     64 #define VMCB_EXITCODE_CR1_READ		0x0001
     65 #define VMCB_EXITCODE_CR2_READ		0x0002
     66 #define VMCB_EXITCODE_CR3_READ		0x0003
     67 #define VMCB_EXITCODE_CR4_READ		0x0004
     68 #define VMCB_EXITCODE_CR5_READ		0x0005
     69 #define VMCB_EXITCODE_CR6_READ		0x0006
     70 #define VMCB_EXITCODE_CR7_READ		0x0007
     71 #define VMCB_EXITCODE_CR8_READ		0x0008
     72 #define VMCB_EXITCODE_CR9_READ		0x0009
     73 #define VMCB_EXITCODE_CR10_READ		0x000A
     74 #define VMCB_EXITCODE_CR11_READ		0x000B
     75 #define VMCB_EXITCODE_CR12_READ		0x000C
     76 #define VMCB_EXITCODE_CR13_READ		0x000D
     77 #define VMCB_EXITCODE_CR14_READ		0x000E
     78 #define VMCB_EXITCODE_CR15_READ		0x000F
     79 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     80 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     81 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     82 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     83 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     84 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     85 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     86 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     87 #define VMCB_EXITCODE_CR8_WRITE		0x0018
     88 #define VMCB_EXITCODE_CR9_WRITE		0x0019
     89 #define VMCB_EXITCODE_CR10_WRITE	0x001A
     90 #define VMCB_EXITCODE_CR11_WRITE	0x001B
     91 #define VMCB_EXITCODE_CR12_WRITE	0x001C
     92 #define VMCB_EXITCODE_CR13_WRITE	0x001D
     93 #define VMCB_EXITCODE_CR14_WRITE	0x001E
     94 #define VMCB_EXITCODE_CR15_WRITE	0x001F
     95 #define VMCB_EXITCODE_DR0_READ		0x0020
     96 #define VMCB_EXITCODE_DR1_READ		0x0021
     97 #define VMCB_EXITCODE_DR2_READ		0x0022
     98 #define VMCB_EXITCODE_DR3_READ		0x0023
     99 #define VMCB_EXITCODE_DR4_READ		0x0024
    100 #define VMCB_EXITCODE_DR5_READ		0x0025
    101 #define VMCB_EXITCODE_DR6_READ		0x0026
    102 #define VMCB_EXITCODE_DR7_READ		0x0027
    103 #define VMCB_EXITCODE_DR8_READ		0x0028
    104 #define VMCB_EXITCODE_DR9_READ		0x0029
    105 #define VMCB_EXITCODE_DR10_READ		0x002A
    106 #define VMCB_EXITCODE_DR11_READ		0x002B
    107 #define VMCB_EXITCODE_DR12_READ		0x002C
    108 #define VMCB_EXITCODE_DR13_READ		0x002D
    109 #define VMCB_EXITCODE_DR14_READ		0x002E
    110 #define VMCB_EXITCODE_DR15_READ		0x002F
    111 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    112 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    113 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    114 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    115 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    116 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    117 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    118 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    119 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    120 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    121 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    122 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    123 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    124 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    125 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    126 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    127 #define VMCB_EXITCODE_EXCP0		0x0040
    128 #define VMCB_EXITCODE_EXCP1		0x0041
    129 #define VMCB_EXITCODE_EXCP2		0x0042
    130 #define VMCB_EXITCODE_EXCP3		0x0043
    131 #define VMCB_EXITCODE_EXCP4		0x0044
    132 #define VMCB_EXITCODE_EXCP5		0x0045
    133 #define VMCB_EXITCODE_EXCP6		0x0046
    134 #define VMCB_EXITCODE_EXCP7		0x0047
    135 #define VMCB_EXITCODE_EXCP8		0x0048
    136 #define VMCB_EXITCODE_EXCP9		0x0049
    137 #define VMCB_EXITCODE_EXCP10		0x004A
    138 #define VMCB_EXITCODE_EXCP11		0x004B
    139 #define VMCB_EXITCODE_EXCP12		0x004C
    140 #define VMCB_EXITCODE_EXCP13		0x004D
    141 #define VMCB_EXITCODE_EXCP14		0x004E
    142 #define VMCB_EXITCODE_EXCP15		0x004F
    143 #define VMCB_EXITCODE_EXCP16		0x0050
    144 #define VMCB_EXITCODE_EXCP17		0x0051
    145 #define VMCB_EXITCODE_EXCP18		0x0052
    146 #define VMCB_EXITCODE_EXCP19		0x0053
    147 #define VMCB_EXITCODE_EXCP20		0x0054
    148 #define VMCB_EXITCODE_EXCP21		0x0055
    149 #define VMCB_EXITCODE_EXCP22		0x0056
    150 #define VMCB_EXITCODE_EXCP23		0x0057
    151 #define VMCB_EXITCODE_EXCP24		0x0058
    152 #define VMCB_EXITCODE_EXCP25		0x0059
    153 #define VMCB_EXITCODE_EXCP26		0x005A
    154 #define VMCB_EXITCODE_EXCP27		0x005B
    155 #define VMCB_EXITCODE_EXCP28		0x005C
    156 #define VMCB_EXITCODE_EXCP29		0x005D
    157 #define VMCB_EXITCODE_EXCP30		0x005E
    158 #define VMCB_EXITCODE_EXCP31		0x005F
    159 #define VMCB_EXITCODE_INTR		0x0060
    160 #define VMCB_EXITCODE_NMI		0x0061
    161 #define VMCB_EXITCODE_SMI		0x0062
    162 #define VMCB_EXITCODE_INIT		0x0063
    163 #define VMCB_EXITCODE_VINTR		0x0064
    164 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    165 #define VMCB_EXITCODE_IDTR_READ		0x0066
    166 #define VMCB_EXITCODE_GDTR_READ		0x0067
    167 #define VMCB_EXITCODE_LDTR_READ		0x0068
    168 #define VMCB_EXITCODE_TR_READ		0x0069
    169 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    170 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    171 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    172 #define VMCB_EXITCODE_TR_WRITE		0x006D
    173 #define VMCB_EXITCODE_RDTSC		0x006E
    174 #define VMCB_EXITCODE_RDPMC		0x006F
    175 #define VMCB_EXITCODE_PUSHF		0x0070
    176 #define VMCB_EXITCODE_POPF		0x0071
    177 #define VMCB_EXITCODE_CPUID		0x0072
    178 #define VMCB_EXITCODE_RSM		0x0073
    179 #define VMCB_EXITCODE_IRET		0x0074
    180 #define VMCB_EXITCODE_SWINT		0x0075
    181 #define VMCB_EXITCODE_INVD		0x0076
    182 #define VMCB_EXITCODE_PAUSE		0x0077
    183 #define VMCB_EXITCODE_HLT		0x0078
    184 #define VMCB_EXITCODE_INVLPG		0x0079
    185 #define VMCB_EXITCODE_INVLPGA		0x007A
    186 #define VMCB_EXITCODE_IOIO		0x007B
    187 #define VMCB_EXITCODE_MSR		0x007C
    188 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    189 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    190 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    191 #define VMCB_EXITCODE_VMRUN		0x0080
    192 #define VMCB_EXITCODE_VMMCALL		0x0081
    193 #define VMCB_EXITCODE_VMLOAD		0x0082
    194 #define VMCB_EXITCODE_VMSAVE		0x0083
    195 #define VMCB_EXITCODE_STGI		0x0084
    196 #define VMCB_EXITCODE_CLGI		0x0085
    197 #define VMCB_EXITCODE_SKINIT		0x0086
    198 #define VMCB_EXITCODE_RDTSCP		0x0087
    199 #define VMCB_EXITCODE_ICEBP		0x0088
    200 #define VMCB_EXITCODE_WBINVD		0x0089
    201 #define VMCB_EXITCODE_MONITOR		0x008A
    202 #define VMCB_EXITCODE_MWAIT		0x008B
    203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    204 #define VMCB_EXITCODE_XSETBV		0x008D
    205 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    206 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    207 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    208 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    209 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    210 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    211 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    212 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    213 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    214 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    215 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    216 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    217 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    218 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    219 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    220 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    221 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    222 #define VMCB_EXITCODE_NPF		0x0400
    223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    224 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    225 #define VMCB_EXITCODE_VMGEXIT		0x0403
    226 #define VMCB_EXITCODE_INVALID		-1
    227 
    228 /* -------------------------------------------------------------------------- */
    229 
    230 struct vmcb_ctrl {
    231 	uint32_t intercept_cr;
    232 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    233 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    234 
    235 	uint32_t intercept_dr;
    236 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    237 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    238 
    239 	uint32_t intercept_vec;
    240 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    241 
    242 	uint32_t intercept_misc1;
    243 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    244 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    245 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    246 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    247 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    249 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    250 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    251 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    252 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    253 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    254 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    255 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    256 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    257 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    258 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    259 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    260 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    261 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    262 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    263 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    264 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    265 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    266 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    267 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    268 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    269 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    271 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    272 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    275 
    276 	uint32_t intercept_misc2;
    277 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    278 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    279 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    280 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    281 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    282 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    283 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    284 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    285 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    286 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    287 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    288 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
    289 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    292 
    293 	uint8_t  rsvd1[40];
    294 	uint16_t pause_filt_thresh;
    295 	uint16_t pause_filt_cnt;
    296 	uint64_t iopm_base_pa;
    297 	uint64_t msrpm_base_pa;
    298 	uint64_t tsc_offset;
    299 	uint32_t guest_asid;
    300 
    301 	uint32_t tlb_ctrl;
    302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    305 
    306 	uint64_t v;
    307 #define VMCB_CTRL_V_TPR			__BITS(3,0)
    308 #define VMCB_CTRL_V_IRQ			__BIT(8)
    309 #define VMCB_CTRL_V_VGIF		__BIT(9)
    310 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    311 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    312 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    313 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    314 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    315 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    316 
    317 	uint64_t intr;
    318 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    319 
    320 	uint64_t exitcode;
    321 	uint64_t exitinfo1;
    322 	uint64_t exitinfo2;
    323 
    324 	uint64_t exitintinfo;
    325 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    326 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    327 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    328 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    330 
    331 	uint64_t enable1;
    332 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    333 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    334 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    335 
    336 	uint64_t avic;
    337 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    338 
    339 	uint64_t ghcb;
    340 
    341 	uint64_t eventinj;
    342 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    343 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    344 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    345 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    346 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    347 
    348 	uint64_t n_cr3;
    349 
    350 	uint64_t enable2;
    351 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    352 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    353 
    354 	uint32_t vmcb_clean;
    355 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    356 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    357 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    358 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    359 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    360 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    361 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    362 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    363 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    364 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    365 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    366 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    367 
    368 	uint32_t rsvd2;
    369 	uint64_t nrip;
    370 	uint8_t	inst_len;
    371 	uint8_t	inst_bytes[15];
    372 	uint64_t avic_abpp;
    373 	uint64_t rsvd3;
    374 	uint64_t avic_ltp;
    375 
    376 	uint64_t avic_phys;
    377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    379 
    380 	uint64_t rsvd4;
    381 	uint64_t vmcb_ptr;
    382 
    383 	uint8_t	pad[752];
    384 } __packed;
    385 
    386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    387 
    388 struct vmcb_segment {
    389 	uint16_t selector;
    390 	uint16_t attrib;	/* hidden */
    391 	uint32_t limit;		/* hidden */
    392 	uint64_t base;		/* hidden */
    393 } __packed;
    394 
    395 CTASSERT(sizeof(struct vmcb_segment) == 16);
    396 
    397 struct vmcb_state {
    398 	struct   vmcb_segment es;
    399 	struct   vmcb_segment cs;
    400 	struct   vmcb_segment ss;
    401 	struct   vmcb_segment ds;
    402 	struct   vmcb_segment fs;
    403 	struct   vmcb_segment gs;
    404 	struct   vmcb_segment gdt;
    405 	struct   vmcb_segment ldt;
    406 	struct   vmcb_segment idt;
    407 	struct   vmcb_segment tr;
    408 	uint8_t	 rsvd1[43];
    409 	uint8_t	 cpl;
    410 	uint8_t  rsvd2[4];
    411 	uint64_t efer;
    412 	uint8_t	 rsvd3[112];
    413 	uint64_t cr4;
    414 	uint64_t cr3;
    415 	uint64_t cr0;
    416 	uint64_t dr7;
    417 	uint64_t dr6;
    418 	uint64_t rflags;
    419 	uint64_t rip;
    420 	uint8_t	 rsvd4[88];
    421 	uint64_t rsp;
    422 	uint8_t	 rsvd5[24];
    423 	uint64_t rax;
    424 	uint64_t star;
    425 	uint64_t lstar;
    426 	uint64_t cstar;
    427 	uint64_t sfmask;
    428 	uint64_t kernelgsbase;
    429 	uint64_t sysenter_cs;
    430 	uint64_t sysenter_esp;
    431 	uint64_t sysenter_eip;
    432 	uint64_t cr2;
    433 	uint8_t	 rsvd6[32];
    434 	uint64_t g_pat;
    435 	uint64_t dbgctl;
    436 	uint64_t br_from;
    437 	uint64_t br_to;
    438 	uint64_t int_from;
    439 	uint64_t int_to;
    440 	uint8_t	 pad[2408];
    441 } __packed;
    442 
    443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    444 
    445 struct vmcb {
    446 	struct vmcb_ctrl ctrl;
    447 	struct vmcb_state state;
    448 } __packed;
    449 
    450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    452 
    453 /* -------------------------------------------------------------------------- */
    454 
    455 struct svm_hsave {
    456 	paddr_t pa;
    457 };
    458 
    459 static struct svm_hsave hsave[MAXCPUS];
    460 
    461 static uint8_t *svm_asidmap __read_mostly;
    462 static uint32_t svm_maxasid __read_mostly;
    463 static kmutex_t svm_asidlock __cacheline_aligned;
    464 
    465 static bool svm_decode_assist __read_mostly;
    466 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    467 
    468 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    469 static uint64_t svm_xcr0_mask __read_mostly;
    470 
    471 #define SVM_NCPUIDS	32
    472 
    473 #define VMCB_NPAGES	1
    474 
    475 #define MSRBM_NPAGES	2
    476 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    477 
    478 #define IOBM_NPAGES	3
    479 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    480 
    481 /* Does not include EFER_LMSLE. */
    482 #define EFER_VALID \
    483 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    484 
    485 #define EFER_TLB_FLUSH \
    486 	(EFER_NXE|EFER_LMA|EFER_LME)
    487 #define CR0_TLB_FLUSH \
    488 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    489 #define CR4_TLB_FLUSH \
    490 	(CR4_PGE|CR4_PAE|CR4_PSE)
    491 
    492 /* -------------------------------------------------------------------------- */
    493 
    494 struct svm_machdata {
    495 	bool cpuidpresent[SVM_NCPUIDS];
    496 	struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
    497 	volatile uint64_t mach_htlb_gen;
    498 };
    499 
    500 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
    501 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    502 };
    503 
    504 struct svm_cpudata {
    505 	/* General */
    506 	bool shared_asid;
    507 	bool gtlb_want_flush;
    508 	bool gtsc_want_update;
    509 	uint64_t vcpu_htlb_gen;
    510 
    511 	/* VMCB */
    512 	struct vmcb *vmcb;
    513 	paddr_t vmcb_pa;
    514 
    515 	/* I/O bitmap */
    516 	uint8_t *iobm;
    517 	paddr_t iobm_pa;
    518 
    519 	/* MSR bitmap */
    520 	uint8_t *msrbm;
    521 	paddr_t msrbm_pa;
    522 
    523 	/* Host state */
    524 	uint64_t hxcr0;
    525 	uint64_t star;
    526 	uint64_t lstar;
    527 	uint64_t cstar;
    528 	uint64_t sfmask;
    529 	uint64_t fsbase;
    530 	uint64_t kernelgsbase;
    531 	bool ts_set;
    532 	struct xsave_header hfpu __aligned(64);
    533 
    534 	/* Intr state */
    535 	bool int_window_exit;
    536 	bool nmi_window_exit;
    537 	bool evt_pending;
    538 
    539 	/* Guest state */
    540 	uint64_t gxcr0;
    541 	uint64_t gprs[NVMM_X64_NGPR];
    542 	uint64_t drs[NVMM_X64_NDR];
    543 	uint64_t gtsc;
    544 	struct xsave_header gfpu __aligned(64);
    545 };
    546 
    547 static void
    548 svm_vmcb_cache_default(struct vmcb *vmcb)
    549 {
    550 	vmcb->ctrl.vmcb_clean =
    551 	    VMCB_CTRL_VMCB_CLEAN_I |
    552 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    553 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    554 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    555 	    VMCB_CTRL_VMCB_CLEAN_NP |
    556 	    VMCB_CTRL_VMCB_CLEAN_CR |
    557 	    VMCB_CTRL_VMCB_CLEAN_DR |
    558 	    VMCB_CTRL_VMCB_CLEAN_DT |
    559 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    560 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    561 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    562 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    563 }
    564 
    565 static void
    566 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    567 {
    568 	if (flags & NVMM_X64_STATE_SEGS) {
    569 		vmcb->ctrl.vmcb_clean &=
    570 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    571 	}
    572 	if (flags & NVMM_X64_STATE_CRS) {
    573 		vmcb->ctrl.vmcb_clean &=
    574 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    575 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    576 	}
    577 	if (flags & NVMM_X64_STATE_DRS) {
    578 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    579 	}
    580 	if (flags & NVMM_X64_STATE_MSRS) {
    581 		/* CR for EFER, NP for PAT. */
    582 		vmcb->ctrl.vmcb_clean &=
    583 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    584 	}
    585 }
    586 
    587 static inline void
    588 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    589 {
    590 	vmcb->ctrl.vmcb_clean &= ~flags;
    591 }
    592 
    593 static inline void
    594 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    595 {
    596 	vmcb->ctrl.vmcb_clean = 0;
    597 }
    598 
    599 #define SVM_EVENT_TYPE_HW_INT	0
    600 #define SVM_EVENT_TYPE_NMI	2
    601 #define SVM_EVENT_TYPE_EXC	3
    602 #define SVM_EVENT_TYPE_SW_INT	4
    603 
    604 static void
    605 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    606 {
    607 	struct svm_cpudata *cpudata = vcpu->cpudata;
    608 	struct vmcb *vmcb = cpudata->vmcb;
    609 
    610 	if (nmi) {
    611 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    612 		cpudata->nmi_window_exit = true;
    613 	} else {
    614 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    615 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    616 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    617 		cpudata->int_window_exit = true;
    618 	}
    619 
    620 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    621 }
    622 
    623 static void
    624 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    625 {
    626 	struct svm_cpudata *cpudata = vcpu->cpudata;
    627 	struct vmcb *vmcb = cpudata->vmcb;
    628 
    629 	if (nmi) {
    630 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    631 		cpudata->nmi_window_exit = false;
    632 	} else {
    633 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    634 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    635 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    636 		cpudata->int_window_exit = false;
    637 	}
    638 
    639 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    640 }
    641 
    642 static inline int
    643 svm_event_has_error(uint64_t vector)
    644 {
    645 	switch (vector) {
    646 	case 8:		/* #DF */
    647 	case 10:	/* #TS */
    648 	case 11:	/* #NP */
    649 	case 12:	/* #SS */
    650 	case 13:	/* #GP */
    651 	case 14:	/* #PF */
    652 	case 17:	/* #AC */
    653 	case 30:	/* #SX */
    654 		return 1;
    655 	default:
    656 		return 0;
    657 	}
    658 }
    659 
    660 static int
    661 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    662     struct nvmm_event *event)
    663 {
    664 	struct svm_cpudata *cpudata = vcpu->cpudata;
    665 	struct vmcb *vmcb = cpudata->vmcb;
    666 	int type = 0, err = 0;
    667 
    668 	if (event->vector >= 256) {
    669 		return EINVAL;
    670 	}
    671 
    672 	switch (event->type) {
    673 	case NVMM_EVENT_INTERRUPT_HW:
    674 		type = SVM_EVENT_TYPE_HW_INT;
    675 		if (event->vector == 2) {
    676 			type = SVM_EVENT_TYPE_NMI;
    677 		}
    678 		if (type == SVM_EVENT_TYPE_NMI) {
    679 			if (cpudata->nmi_window_exit) {
    680 				return EAGAIN;
    681 			}
    682 			svm_event_waitexit_enable(vcpu, true);
    683 		} else {
    684 			if (((vmcb->state.rflags & PSL_I) == 0) ||
    685 			    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
    686 				svm_event_waitexit_enable(vcpu, false);
    687 				return EAGAIN;
    688 			}
    689 		}
    690 		err = 0;
    691 		break;
    692 	case NVMM_EVENT_INTERRUPT_SW:
    693 		return EINVAL;
    694 	case NVMM_EVENT_EXCEPTION:
    695 		type = SVM_EVENT_TYPE_EXC;
    696 		if (event->vector == 2 || event->vector >= 32)
    697 			return EINVAL;
    698 		if (event->vector == 3 || event->vector == 0)
    699 			return EINVAL;
    700 		err = svm_event_has_error(event->vector);
    701 		break;
    702 	default:
    703 		return EINVAL;
    704 	}
    705 
    706 	vmcb->ctrl.eventinj =
    707 	    __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    708 	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
    709 	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
    710 	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
    711 	    __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    712 
    713 	cpudata->evt_pending = true;
    714 
    715 	return 0;
    716 }
    717 
    718 static void
    719 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    720 {
    721 	struct nvmm_event event;
    722 	int ret __diagused;
    723 
    724 	event.type = NVMM_EVENT_EXCEPTION;
    725 	event.vector = 6;
    726 	event.u.error = 0;
    727 
    728 	ret = svm_vcpu_inject(mach, vcpu, &event);
    729 	KASSERT(ret == 0);
    730 }
    731 
    732 static void
    733 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    734 {
    735 	struct nvmm_event event;
    736 	int ret __diagused;
    737 
    738 	event.type = NVMM_EVENT_EXCEPTION;
    739 	event.vector = 13;
    740 	event.u.error = 0;
    741 
    742 	ret = svm_vcpu_inject(mach, vcpu, &event);
    743 	KASSERT(ret == 0);
    744 }
    745 
    746 static inline void
    747 svm_inkernel_advance(struct vmcb *vmcb)
    748 {
    749 	/*
    750 	 * Maybe we should also apply single-stepping and debug exceptions.
    751 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    752 	 * debugger.
    753 	 */
    754 	vmcb->state.rip = vmcb->ctrl.nrip;
    755 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    756 }
    757 
    758 static void
    759 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    760 {
    761 	struct svm_cpudata *cpudata = vcpu->cpudata;
    762 	uint64_t cr4;
    763 
    764 	switch (eax) {
    765 	case 0x00000001:
    766 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
    767 
    768 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    769 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    770 		    CPUID_LOCAL_APIC_ID);
    771 
    772 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
    773 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
    774 
    775 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
    776 
    777 		/* CPUID2_OSXSAVE depends on CR4. */
    778 		cr4 = cpudata->vmcb->state.cr4;
    779 		if (!(cr4 & CR4_OSXSAVE)) {
    780 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
    781 		}
    782 		break;
    783 	case 0x00000005:
    784 	case 0x00000006:
    785 		cpudata->vmcb->state.rax = 0;
    786 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    787 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    788 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    789 		break;
    790 	case 0x00000007:
    791 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
    792 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
    793 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
    794 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
    795 		break;
    796 	case 0x0000000D:
    797 		if (svm_xcr0_mask == 0) {
    798 			break;
    799 		}
    800 		switch (ecx) {
    801 		case 0:
    802 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    803 			if (cpudata->gxcr0 & XCR0_SSE) {
    804 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    805 			} else {
    806 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    807 			}
    808 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    809 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
    810 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    811 			break;
    812 		case 1:
    813 			cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
    814 			break;
    815 		}
    816 		break;
    817 	case 0x40000000:
    818 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    819 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    820 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    821 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    822 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    823 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    824 		break;
    825 	case 0x80000001:
    826 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
    827 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
    828 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
    829 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
    830 		break;
    831 	default:
    832 		break;
    833 	}
    834 }
    835 
    836 static void
    837 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    838     struct nvmm_exit *exit)
    839 {
    840 	struct svm_machdata *machdata = mach->machdata;
    841 	struct svm_cpudata *cpudata = vcpu->cpudata;
    842 	struct nvmm_x86_conf_cpuid *cpuid;
    843 	uint64_t eax, ecx;
    844 	u_int descs[4];
    845 	size_t i;
    846 
    847 	eax = cpudata->vmcb->state.rax;
    848 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    849 	x86_cpuid2(eax, ecx, descs);
    850 
    851 	cpudata->vmcb->state.rax = descs[0];
    852 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    853 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    854 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    855 
    856 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    857 
    858 	for (i = 0; i < SVM_NCPUIDS; i++) {
    859 		cpuid = &machdata->cpuid[i];
    860 		if (!machdata->cpuidpresent[i]) {
    861 			continue;
    862 		}
    863 		if (cpuid->leaf != eax) {
    864 			continue;
    865 		}
    866 
    867 		/* del */
    868 		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
    869 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
    870 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
    871 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
    872 
    873 		/* set */
    874 		cpudata->vmcb->state.rax |= cpuid->set.eax;
    875 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
    876 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
    877 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
    878 
    879 		break;
    880 	}
    881 
    882 	svm_inkernel_advance(cpudata->vmcb);
    883 	exit->reason = NVMM_EXIT_NONE;
    884 }
    885 
    886 static void
    887 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    888     struct nvmm_exit *exit)
    889 {
    890 	struct svm_cpudata *cpudata = vcpu->cpudata;
    891 	struct vmcb *vmcb = cpudata->vmcb;
    892 
    893 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
    894 		svm_event_waitexit_disable(vcpu, false);
    895 	}
    896 
    897 	svm_inkernel_advance(cpudata->vmcb);
    898 	exit->reason = NVMM_EXIT_HALTED;
    899 }
    900 
    901 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    902 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    903 #define SVM_EXIT_IO_A64		__BIT(9)
    904 #define SVM_EXIT_IO_A32		__BIT(8)
    905 #define SVM_EXIT_IO_A16		__BIT(7)
    906 #define SVM_EXIT_IO_SZ32	__BIT(6)
    907 #define SVM_EXIT_IO_SZ16	__BIT(5)
    908 #define SVM_EXIT_IO_SZ8		__BIT(4)
    909 #define SVM_EXIT_IO_REP		__BIT(3)
    910 #define SVM_EXIT_IO_STR		__BIT(2)
    911 #define SVM_EXIT_IO_IN		__BIT(0)
    912 
    913 static void
    914 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    915     struct nvmm_exit *exit)
    916 {
    917 	struct svm_cpudata *cpudata = vcpu->cpudata;
    918 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    919 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    920 
    921 	exit->reason = NVMM_EXIT_IO;
    922 
    923 	if (info & SVM_EXIT_IO_IN) {
    924 		exit->u.io.type = NVMM_EXIT_IO_IN;
    925 	} else {
    926 		exit->u.io.type = NVMM_EXIT_IO_OUT;
    927 	}
    928 
    929 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
    930 
    931 	if (svm_decode_assist) {
    932 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
    933 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
    934 	} else {
    935 		exit->u.io.seg = -1;
    936 	}
    937 
    938 	if (info & SVM_EXIT_IO_A64) {
    939 		exit->u.io.address_size = 8;
    940 	} else if (info & SVM_EXIT_IO_A32) {
    941 		exit->u.io.address_size = 4;
    942 	} else if (info & SVM_EXIT_IO_A16) {
    943 		exit->u.io.address_size = 2;
    944 	}
    945 
    946 	if (info & SVM_EXIT_IO_SZ32) {
    947 		exit->u.io.operand_size = 4;
    948 	} else if (info & SVM_EXIT_IO_SZ16) {
    949 		exit->u.io.operand_size = 2;
    950 	} else if (info & SVM_EXIT_IO_SZ8) {
    951 		exit->u.io.operand_size = 1;
    952 	}
    953 
    954 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
    955 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
    956 	exit->u.io.npc = nextpc;
    957 }
    958 
    959 static const uint64_t msr_ignore_list[] = {
    960 	0xc0010055, /* MSR_CMPHALT */
    961 	MSR_DE_CFG,
    962 	MSR_IC_CFG,
    963 	MSR_UCODE_AMD_PATCHLEVEL
    964 };
    965 
    966 static bool
    967 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    968     struct nvmm_exit *exit)
    969 {
    970 	struct svm_cpudata *cpudata = vcpu->cpudata;
    971 	struct vmcb *vmcb = cpudata->vmcb;
    972 	uint64_t val;
    973 	size_t i;
    974 
    975 	switch (exit->u.msr.type) {
    976 	case NVMM_EXIT_MSR_RDMSR:
    977 		if (exit->u.msr.msr == MSR_NB_CFG) {
    978 			val = NB_CFG_INITAPICCPUIDLO;
    979 			vmcb->state.rax = (val & 0xFFFFFFFF);
    980 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    981 			goto handled;
    982 		}
    983 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    984 			if (msr_ignore_list[i] != exit->u.msr.msr)
    985 				continue;
    986 			val = 0;
    987 			vmcb->state.rax = (val & 0xFFFFFFFF);
    988 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    989 			goto handled;
    990 		}
    991 		break;
    992 	case NVMM_EXIT_MSR_WRMSR:
    993 		if (exit->u.msr.msr == MSR_EFER) {
    994 			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
    995 				goto error;
    996 			}
    997 			if ((vmcb->state.efer ^ exit->u.msr.val) &
    998 			     EFER_TLB_FLUSH) {
    999 				cpudata->gtlb_want_flush = true;
   1000 			}
   1001 			vmcb->state.efer = exit->u.msr.val | EFER_SVME;
   1002 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
   1003 			goto handled;
   1004 		}
   1005 		if (exit->u.msr.msr == MSR_TSC) {
   1006 			cpudata->gtsc = exit->u.msr.val;
   1007 			cpudata->gtsc_want_update = true;
   1008 			goto handled;
   1009 		}
   1010 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1011 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1012 				continue;
   1013 			goto handled;
   1014 		}
   1015 		break;
   1016 	}
   1017 
   1018 	return false;
   1019 
   1020 handled:
   1021 	svm_inkernel_advance(cpudata->vmcb);
   1022 	return true;
   1023 
   1024 error:
   1025 	svm_inject_gp(mach, vcpu);
   1026 	return true;
   1027 }
   1028 
   1029 static void
   1030 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1031     struct nvmm_exit *exit)
   1032 {
   1033 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1034 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1035 
   1036 	if (info == 0) {
   1037 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1038 	} else {
   1039 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1040 	}
   1041 
   1042 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1043 
   1044 	if (info == 1) {
   1045 		uint64_t rdx, rax;
   1046 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1047 		rax = cpudata->vmcb->state.rax;
   1048 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1049 	} else {
   1050 		exit->u.msr.val = 0;
   1051 	}
   1052 
   1053 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1054 		exit->reason = NVMM_EXIT_NONE;
   1055 		return;
   1056 	}
   1057 
   1058 	exit->reason = NVMM_EXIT_MSR;
   1059 	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
   1060 }
   1061 
   1062 static void
   1063 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1064     struct nvmm_exit *exit)
   1065 {
   1066 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1067 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1068 
   1069 	exit->reason = NVMM_EXIT_MEMORY;
   1070 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1071 		exit->u.mem.prot = PROT_WRITE;
   1072 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1073 		exit->u.mem.prot = PROT_EXEC;
   1074 	else
   1075 		exit->u.mem.prot = PROT_READ;
   1076 	exit->u.mem.gpa = gpa;
   1077 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1078 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1079 	    sizeof(exit->u.mem.inst_bytes));
   1080 }
   1081 
   1082 static void
   1083 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
   1084 {
   1085 	exit->u.insn.npc = vmcb->ctrl.nrip;
   1086 	exit->reason = reason;
   1087 }
   1088 
   1089 static void
   1090 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1091     struct nvmm_exit *exit)
   1092 {
   1093 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1094 	struct vmcb *vmcb = cpudata->vmcb;
   1095 	uint64_t val;
   1096 
   1097 	exit->reason = NVMM_EXIT_NONE;
   1098 
   1099 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1100 	    (vmcb->state.rax & 0xFFFFFFFF);
   1101 
   1102 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1103 		goto error;
   1104 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1105 		goto error;
   1106 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1107 		goto error;
   1108 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1109 		goto error;
   1110 	}
   1111 
   1112 	cpudata->gxcr0 = val;
   1113 
   1114 	svm_inkernel_advance(cpudata->vmcb);
   1115 	return;
   1116 
   1117 error:
   1118 	svm_inject_gp(mach, vcpu);
   1119 }
   1120 
   1121 static void
   1122 svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
   1123 {
   1124 	exit->u.inv.hwcode = code;
   1125 	exit->reason = NVMM_EXIT_INVALID;
   1126 }
   1127 
   1128 /* -------------------------------------------------------------------------- */
   1129 
   1130 static void
   1131 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1132 {
   1133 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1134 
   1135 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1136 
   1137 	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
   1138 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
   1139 
   1140 	if (svm_xcr0_mask != 0) {
   1141 		cpudata->hxcr0 = rdxcr(0);
   1142 		wrxcr(0, cpudata->gxcr0);
   1143 	}
   1144 }
   1145 
   1146 static void
   1147 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1148 {
   1149 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1150 
   1151 	if (svm_xcr0_mask != 0) {
   1152 		cpudata->gxcr0 = rdxcr(0);
   1153 		wrxcr(0, cpudata->hxcr0);
   1154 	}
   1155 
   1156 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
   1157 	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
   1158 
   1159 	if (cpudata->ts_set) {
   1160 		stts();
   1161 	}
   1162 }
   1163 
   1164 static void
   1165 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1166 {
   1167 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1168 
   1169 	x86_dbregs_save(curlwp);
   1170 
   1171 	ldr7(0);
   1172 
   1173 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1174 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1175 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1176 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1177 }
   1178 
   1179 static void
   1180 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1181 {
   1182 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1183 
   1184 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1185 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1186 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1187 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1188 
   1189 	x86_dbregs_restore(curlwp);
   1190 }
   1191 
   1192 static void
   1193 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1194 {
   1195 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1196 
   1197 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1198 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1199 }
   1200 
   1201 static void
   1202 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1203 {
   1204 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1205 
   1206 	wrmsr(MSR_STAR, cpudata->star);
   1207 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1208 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1209 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1210 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1211 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1212 }
   1213 
   1214 /* -------------------------------------------------------------------------- */
   1215 
   1216 static inline void
   1217 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1218 {
   1219 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1220 
   1221 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1222 		cpudata->gtlb_want_flush = true;
   1223 	}
   1224 }
   1225 
   1226 static inline void
   1227 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1228 {
   1229 	/*
   1230 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
   1231 	 * executing on this hCPU and the hTLB already got flushed, or it
   1232 	 * was executing on another hCPU in which case the catchup is done
   1233 	 * in svm_gtlb_catchup().
   1234 	 */
   1235 }
   1236 
   1237 static inline uint64_t
   1238 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
   1239 {
   1240 	struct vmcb *vmcb = cpudata->vmcb;
   1241 	uint64_t machgen;
   1242 
   1243 	machgen = machdata->mach_htlb_gen;
   1244 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1245 		return machgen;
   1246 	}
   1247 
   1248 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1249 	return machgen;
   1250 }
   1251 
   1252 static inline void
   1253 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
   1254 {
   1255 	struct vmcb *vmcb = cpudata->vmcb;
   1256 
   1257 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
   1258 		cpudata->vcpu_htlb_gen = machgen;
   1259 	}
   1260 }
   1261 
   1262 static inline void
   1263 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
   1264 {
   1265 	cpudata->evt_pending = false;
   1266 
   1267 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
   1268 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
   1269 		cpudata->evt_pending = true;
   1270 	}
   1271 }
   1272 
   1273 static int
   1274 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1275     struct nvmm_exit *exit)
   1276 {
   1277 	struct svm_machdata *machdata = mach->machdata;
   1278 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1279 	struct vmcb *vmcb = cpudata->vmcb;
   1280 	uint64_t machgen;
   1281 	int hcpu, s;
   1282 
   1283 	kpreempt_disable();
   1284 	hcpu = cpu_number();
   1285 
   1286 	svm_gtlb_catchup(vcpu, hcpu);
   1287 	svm_htlb_catchup(vcpu, hcpu);
   1288 
   1289 	if (vcpu->hcpu_last != hcpu) {
   1290 		svm_vmcb_cache_flush_all(vmcb);
   1291 		cpudata->gtsc_want_update = true;
   1292 	}
   1293 
   1294 	svm_vcpu_guest_dbregs_enter(vcpu);
   1295 	svm_vcpu_guest_misc_enter(vcpu);
   1296 
   1297 	while (1) {
   1298 		if (cpudata->gtlb_want_flush) {
   1299 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1300 		} else {
   1301 			vmcb->ctrl.tlb_ctrl = 0;
   1302 		}
   1303 
   1304 		if (__predict_false(cpudata->gtsc_want_update)) {
   1305 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
   1306 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
   1307 		}
   1308 
   1309 		s = splhigh();
   1310 		machgen = svm_htlb_flush(machdata, cpudata);
   1311 		svm_vcpu_guest_fpu_enter(vcpu);
   1312 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1313 		svm_vcpu_guest_fpu_leave(vcpu);
   1314 		svm_htlb_flush_ack(cpudata, machgen);
   1315 		splx(s);
   1316 
   1317 		svm_vmcb_cache_default(vmcb);
   1318 
   1319 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1320 			cpudata->gtlb_want_flush = false;
   1321 			cpudata->gtsc_want_update = false;
   1322 			vcpu->hcpu_last = hcpu;
   1323 		}
   1324 		svm_exit_evt(cpudata, vmcb);
   1325 
   1326 		switch (vmcb->ctrl.exitcode) {
   1327 		case VMCB_EXITCODE_INTR:
   1328 		case VMCB_EXITCODE_NMI:
   1329 			exit->reason = NVMM_EXIT_NONE;
   1330 			break;
   1331 		case VMCB_EXITCODE_VINTR:
   1332 			svm_event_waitexit_disable(vcpu, false);
   1333 			exit->reason = NVMM_EXIT_INT_READY;
   1334 			break;
   1335 		case VMCB_EXITCODE_IRET:
   1336 			svm_event_waitexit_disable(vcpu, true);
   1337 			exit->reason = NVMM_EXIT_NMI_READY;
   1338 			break;
   1339 		case VMCB_EXITCODE_CPUID:
   1340 			svm_exit_cpuid(mach, vcpu, exit);
   1341 			break;
   1342 		case VMCB_EXITCODE_HLT:
   1343 			svm_exit_hlt(mach, vcpu, exit);
   1344 			break;
   1345 		case VMCB_EXITCODE_IOIO:
   1346 			svm_exit_io(mach, vcpu, exit);
   1347 			break;
   1348 		case VMCB_EXITCODE_MSR:
   1349 			svm_exit_msr(mach, vcpu, exit);
   1350 			break;
   1351 		case VMCB_EXITCODE_SHUTDOWN:
   1352 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1353 			break;
   1354 		case VMCB_EXITCODE_RDPMC:
   1355 		case VMCB_EXITCODE_RSM:
   1356 		case VMCB_EXITCODE_INVLPGA:
   1357 		case VMCB_EXITCODE_VMRUN:
   1358 		case VMCB_EXITCODE_VMMCALL:
   1359 		case VMCB_EXITCODE_VMLOAD:
   1360 		case VMCB_EXITCODE_VMSAVE:
   1361 		case VMCB_EXITCODE_STGI:
   1362 		case VMCB_EXITCODE_CLGI:
   1363 		case VMCB_EXITCODE_SKINIT:
   1364 		case VMCB_EXITCODE_RDTSCP:
   1365 			svm_inject_ud(mach, vcpu);
   1366 			exit->reason = NVMM_EXIT_NONE;
   1367 			break;
   1368 		case VMCB_EXITCODE_MONITOR:
   1369 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
   1370 			break;
   1371 		case VMCB_EXITCODE_MWAIT:
   1372 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
   1373 			break;
   1374 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1375 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
   1376 			break;
   1377 		case VMCB_EXITCODE_XSETBV:
   1378 			svm_exit_xsetbv(mach, vcpu, exit);
   1379 			break;
   1380 		case VMCB_EXITCODE_NPF:
   1381 			svm_exit_npf(mach, vcpu, exit);
   1382 			break;
   1383 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1384 		default:
   1385 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
   1386 			break;
   1387 		}
   1388 
   1389 		/* If no reason to return to userland, keep rolling. */
   1390 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1391 			break;
   1392 		}
   1393 		if (curcpu()->ci_data.cpu_softints != 0) {
   1394 			break;
   1395 		}
   1396 		if (curlwp->l_flag & LW_USERRET) {
   1397 			break;
   1398 		}
   1399 		if (exit->reason != NVMM_EXIT_NONE) {
   1400 			break;
   1401 		}
   1402 	}
   1403 
   1404 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
   1405 
   1406 	svm_vcpu_guest_misc_leave(vcpu);
   1407 	svm_vcpu_guest_dbregs_leave(vcpu);
   1408 
   1409 	kpreempt_enable();
   1410 
   1411 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1412 	    VMCB_CTRL_V_TPR);
   1413 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
   1414 
   1415 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1416 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1417 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1418 	    cpudata->int_window_exit;
   1419 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1420 	    cpudata->nmi_window_exit;
   1421 	exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
   1422 	    cpudata->evt_pending;
   1423 
   1424 	return 0;
   1425 }
   1426 
   1427 /* -------------------------------------------------------------------------- */
   1428 
   1429 static int
   1430 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1431 {
   1432 	struct pglist pglist;
   1433 	paddr_t _pa;
   1434 	vaddr_t _va;
   1435 	size_t i;
   1436 	int ret;
   1437 
   1438 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1439 	    &pglist, 1, 0);
   1440 	if (ret != 0)
   1441 		return ENOMEM;
   1442 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1443 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1444 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1445 	if (_va == 0)
   1446 		goto error;
   1447 
   1448 	for (i = 0; i < npages; i++) {
   1449 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1450 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1451 	}
   1452 	pmap_update(pmap_kernel());
   1453 
   1454 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1455 
   1456 	*pa = _pa;
   1457 	*va = _va;
   1458 	return 0;
   1459 
   1460 error:
   1461 	for (i = 0; i < npages; i++) {
   1462 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1463 	}
   1464 	return ENOMEM;
   1465 }
   1466 
   1467 static void
   1468 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1469 {
   1470 	size_t i;
   1471 
   1472 	pmap_kremove(va, npages * PAGE_SIZE);
   1473 	pmap_update(pmap_kernel());
   1474 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1475 	for (i = 0; i < npages; i++) {
   1476 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1477 	}
   1478 }
   1479 
   1480 /* -------------------------------------------------------------------------- */
   1481 
   1482 #define SVM_MSRBM_READ	__BIT(0)
   1483 #define SVM_MSRBM_WRITE	__BIT(1)
   1484 
   1485 static void
   1486 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1487 {
   1488 	uint64_t byte;
   1489 	uint8_t bitoff;
   1490 
   1491 	if (msr < 0x00002000) {
   1492 		/* Range 1 */
   1493 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1494 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1495 		/* Range 2 */
   1496 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1497 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1498 		/* Range 3 */
   1499 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1500 	} else {
   1501 		panic("%s: wrong range", __func__);
   1502 	}
   1503 
   1504 	bitoff = (msr & 0x3) << 1;
   1505 
   1506 	if (read) {
   1507 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1508 	}
   1509 	if (write) {
   1510 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1511 	}
   1512 }
   1513 
   1514 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
   1515 #define SVM_SEG_ATTRIB_S		__BIT(4)
   1516 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1517 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1518 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1519 #define SVM_SEG_ATTRIB_L		__BIT(9)
   1520 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
   1521 #define SVM_SEG_ATTRIB_G		__BIT(11)
   1522 
   1523 static void
   1524 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
   1525     struct vmcb_segment *vseg)
   1526 {
   1527 	vseg->selector = seg->selector;
   1528 	vseg->attrib =
   1529 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1530 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
   1531 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1532 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1533 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1534 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
   1535 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
   1536 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
   1537 	vseg->limit = seg->limit;
   1538 	vseg->base = seg->base;
   1539 }
   1540 
   1541 static void
   1542 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1543 {
   1544 	seg->selector = vseg->selector;
   1545 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1546 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
   1547 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1548 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1549 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1550 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
   1551 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
   1552 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
   1553 	seg->limit = vseg->limit;
   1554 	seg->base = vseg->base;
   1555 }
   1556 
   1557 static inline bool
   1558 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
   1559     uint64_t flags)
   1560 {
   1561 	if (flags & NVMM_X64_STATE_CRS) {
   1562 		if ((vmcb->state.cr0 ^
   1563 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1564 			return true;
   1565 		}
   1566 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1567 			return true;
   1568 		}
   1569 		if ((vmcb->state.cr4 ^
   1570 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1571 			return true;
   1572 		}
   1573 	}
   1574 
   1575 	if (flags & NVMM_X64_STATE_MSRS) {
   1576 		if ((vmcb->state.efer ^
   1577 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1578 			return true;
   1579 		}
   1580 	}
   1581 
   1582 	return false;
   1583 }
   1584 
   1585 static void
   1586 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   1587 {
   1588 	const struct nvmm_x64_state *state = data;
   1589 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1590 	struct vmcb *vmcb = cpudata->vmcb;
   1591 	struct fxsave *fpustate;
   1592 
   1593 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1594 		cpudata->gtlb_want_flush = true;
   1595 	}
   1596 
   1597 	if (flags & NVMM_X64_STATE_SEGS) {
   1598 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1599 		    &vmcb->state.cs);
   1600 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1601 		    &vmcb->state.ds);
   1602 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1603 		    &vmcb->state.es);
   1604 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1605 		    &vmcb->state.fs);
   1606 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1607 		    &vmcb->state.gs);
   1608 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1609 		    &vmcb->state.ss);
   1610 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1611 		    &vmcb->state.gdt);
   1612 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1613 		    &vmcb->state.idt);
   1614 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1615 		    &vmcb->state.ldt);
   1616 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1617 		    &vmcb->state.tr);
   1618 
   1619 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1620 	}
   1621 
   1622 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1623 	if (flags & NVMM_X64_STATE_GPRS) {
   1624 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1625 
   1626 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1627 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1628 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1629 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1630 	}
   1631 
   1632 	if (flags & NVMM_X64_STATE_CRS) {
   1633 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1634 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1635 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1636 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1637 
   1638 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1639 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1640 		    VMCB_CTRL_V_TPR);
   1641 
   1642 		if (svm_xcr0_mask != 0) {
   1643 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1644 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1645 			cpudata->gxcr0 &= svm_xcr0_mask;
   1646 			cpudata->gxcr0 |= XCR0_X87;
   1647 		}
   1648 	}
   1649 
   1650 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1651 	if (flags & NVMM_X64_STATE_DRS) {
   1652 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1653 
   1654 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1655 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1656 	}
   1657 
   1658 	if (flags & NVMM_X64_STATE_MSRS) {
   1659 		/*
   1660 		 * EFER_SVME is mandatory.
   1661 		 */
   1662 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1663 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1664 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1665 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1666 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1667 		vmcb->state.kernelgsbase =
   1668 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1669 		vmcb->state.sysenter_cs =
   1670 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1671 		vmcb->state.sysenter_esp =
   1672 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1673 		vmcb->state.sysenter_eip =
   1674 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1675 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1676 
   1677 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   1678 		cpudata->gtsc_want_update = true;
   1679 	}
   1680 
   1681 	if (flags & NVMM_X64_STATE_INTR) {
   1682 		if (state->intr.int_shadow) {
   1683 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1684 		} else {
   1685 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1686 		}
   1687 
   1688 		if (state->intr.int_window_exiting) {
   1689 			svm_event_waitexit_enable(vcpu, false);
   1690 		} else {
   1691 			svm_event_waitexit_disable(vcpu, false);
   1692 		}
   1693 
   1694 		if (state->intr.nmi_window_exiting) {
   1695 			svm_event_waitexit_enable(vcpu, true);
   1696 		} else {
   1697 			svm_event_waitexit_disable(vcpu, true);
   1698 		}
   1699 	}
   1700 
   1701 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1702 	if (flags & NVMM_X64_STATE_FPU) {
   1703 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1704 		    sizeof(state->fpu));
   1705 
   1706 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1707 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1708 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1709 
   1710 		if (svm_xcr0_mask != 0) {
   1711 			/* Reset XSTATE_BV, to force a reload. */
   1712 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1713 		}
   1714 	}
   1715 
   1716 	svm_vmcb_cache_update(vmcb, flags);
   1717 }
   1718 
   1719 static void
   1720 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   1721 {
   1722 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   1723 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1724 	struct vmcb *vmcb = cpudata->vmcb;
   1725 
   1726 	if (flags & NVMM_X64_STATE_SEGS) {
   1727 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1728 		    &vmcb->state.cs);
   1729 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1730 		    &vmcb->state.ds);
   1731 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1732 		    &vmcb->state.es);
   1733 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1734 		    &vmcb->state.fs);
   1735 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1736 		    &vmcb->state.gs);
   1737 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1738 		    &vmcb->state.ss);
   1739 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1740 		    &vmcb->state.gdt);
   1741 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1742 		    &vmcb->state.idt);
   1743 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1744 		    &vmcb->state.ldt);
   1745 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1746 		    &vmcb->state.tr);
   1747 
   1748 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   1749 	}
   1750 
   1751 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1752 	if (flags & NVMM_X64_STATE_GPRS) {
   1753 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1754 
   1755 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1756 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1757 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1758 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1759 	}
   1760 
   1761 	if (flags & NVMM_X64_STATE_CRS) {
   1762 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1763 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1764 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1765 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1766 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1767 		    VMCB_CTRL_V_TPR);
   1768 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1769 	}
   1770 
   1771 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1772 	if (flags & NVMM_X64_STATE_DRS) {
   1773 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1774 
   1775 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1776 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1777 	}
   1778 
   1779 	if (flags & NVMM_X64_STATE_MSRS) {
   1780 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1781 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1782 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1783 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1784 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1785 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1786 		    vmcb->state.kernelgsbase;
   1787 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1788 		    vmcb->state.sysenter_cs;
   1789 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1790 		    vmcb->state.sysenter_esp;
   1791 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1792 		    vmcb->state.sysenter_eip;
   1793 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1794 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   1795 
   1796 		/* Hide SVME. */
   1797 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1798 	}
   1799 
   1800 	if (flags & NVMM_X64_STATE_INTR) {
   1801 		state->intr.int_shadow =
   1802 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1803 		state->intr.int_window_exiting = cpudata->int_window_exit;
   1804 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   1805 		state->intr.evt_pending = cpudata->evt_pending;
   1806 	}
   1807 
   1808 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1809 	if (flags & NVMM_X64_STATE_FPU) {
   1810 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1811 		    sizeof(state->fpu));
   1812 	}
   1813 }
   1814 
   1815 /* -------------------------------------------------------------------------- */
   1816 
   1817 static void
   1818 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1819 {
   1820 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1821 	struct vmcb *vmcb = cpudata->vmcb;
   1822 	size_t i, oct, bit;
   1823 
   1824 	mutex_enter(&svm_asidlock);
   1825 
   1826 	for (i = 0; i < svm_maxasid; i++) {
   1827 		oct = i / 8;
   1828 		bit = i % 8;
   1829 
   1830 		if (svm_asidmap[oct] & __BIT(bit)) {
   1831 			continue;
   1832 		}
   1833 
   1834 		svm_asidmap[oct] |= __BIT(bit);
   1835 		vmcb->ctrl.guest_asid = i;
   1836 		mutex_exit(&svm_asidlock);
   1837 		return;
   1838 	}
   1839 
   1840 	/*
   1841 	 * No free ASID. Use the last one, which is shared and requires
   1842 	 * special TLB handling.
   1843 	 */
   1844 	cpudata->shared_asid = true;
   1845 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1846 	mutex_exit(&svm_asidlock);
   1847 }
   1848 
   1849 static void
   1850 svm_asid_free(struct nvmm_cpu *vcpu)
   1851 {
   1852 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1853 	struct vmcb *vmcb = cpudata->vmcb;
   1854 	size_t oct, bit;
   1855 
   1856 	if (cpudata->shared_asid) {
   1857 		return;
   1858 	}
   1859 
   1860 	oct = vmcb->ctrl.guest_asid / 8;
   1861 	bit = vmcb->ctrl.guest_asid % 8;
   1862 
   1863 	mutex_enter(&svm_asidlock);
   1864 	svm_asidmap[oct] &= ~__BIT(bit);
   1865 	mutex_exit(&svm_asidlock);
   1866 }
   1867 
   1868 static void
   1869 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1870 {
   1871 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1872 	struct vmcb *vmcb = cpudata->vmcb;
   1873 
   1874 	/* Allow reads/writes of Control Registers. */
   1875 	vmcb->ctrl.intercept_cr = 0;
   1876 
   1877 	/* Allow reads/writes of Debug Registers. */
   1878 	vmcb->ctrl.intercept_dr = 0;
   1879 
   1880 	/* Allow exceptions 0 to 31. */
   1881 	vmcb->ctrl.intercept_vec = 0;
   1882 
   1883 	/*
   1884 	 * Allow:
   1885 	 *  - SMI [smm interrupts]
   1886 	 *  - VINTR [virtual interrupts]
   1887 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   1888 	 *  - RIDTR [reads of IDTR]
   1889 	 *  - RGDTR [reads of GDTR]
   1890 	 *  - RLDTR [reads of LDTR]
   1891 	 *  - RTR [reads of TR]
   1892 	 *  - WIDTR [writes of IDTR]
   1893 	 *  - WGDTR [writes of GDTR]
   1894 	 *  - WLDTR [writes of LDTR]
   1895 	 *  - WTR [writes of TR]
   1896 	 *  - RDTSC [rdtsc instruction]
   1897 	 *  - PUSHF [pushf instruction]
   1898 	 *  - POPF [popf instruction]
   1899 	 *  - IRET [iret instruction]
   1900 	 *  - INTN [int $n instructions]
   1901 	 *  - INVD [invd instruction]
   1902 	 *  - PAUSE [pause instruction]
   1903 	 *  - INVLPG [invplg instruction]
   1904 	 *  - TASKSW [task switches]
   1905 	 *
   1906 	 * Intercept the rest below.
   1907 	 */
   1908 	vmcb->ctrl.intercept_misc1 =
   1909 	    VMCB_CTRL_INTERCEPT_INTR |
   1910 	    VMCB_CTRL_INTERCEPT_NMI |
   1911 	    VMCB_CTRL_INTERCEPT_INIT |
   1912 	    VMCB_CTRL_INTERCEPT_RDPMC |
   1913 	    VMCB_CTRL_INTERCEPT_CPUID |
   1914 	    VMCB_CTRL_INTERCEPT_RSM |
   1915 	    VMCB_CTRL_INTERCEPT_HLT |
   1916 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   1917 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   1918 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   1919 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   1920 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   1921 
   1922 	/*
   1923 	 * Allow:
   1924 	 *  - ICEBP [icebp instruction]
   1925 	 *  - WBINVD [wbinvd instruction]
   1926 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   1927 	 *
   1928 	 * Intercept the rest below.
   1929 	 */
   1930 	vmcb->ctrl.intercept_misc2 =
   1931 	    VMCB_CTRL_INTERCEPT_VMRUN |
   1932 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   1933 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   1934 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   1935 	    VMCB_CTRL_INTERCEPT_STGI |
   1936 	    VMCB_CTRL_INTERCEPT_CLGI |
   1937 	    VMCB_CTRL_INTERCEPT_SKINIT |
   1938 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   1939 	    VMCB_CTRL_INTERCEPT_MONITOR |
   1940 	    VMCB_CTRL_INTERCEPT_MWAIT |
   1941 	    VMCB_CTRL_INTERCEPT_XSETBV;
   1942 
   1943 	/* Intercept all I/O accesses. */
   1944 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   1945 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   1946 
   1947 	/* Allow direct access to certain MSRs. */
   1948 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1949 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   1950 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1951 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1952 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1953 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1954 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1955 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1956 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1957 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1958 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1959 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1960 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   1961 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1962 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   1963 
   1964 	/* Generate ASID. */
   1965 	svm_asid_alloc(vcpu);
   1966 
   1967 	/* Virtual TPR. */
   1968 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   1969 
   1970 	/* Enable Nested Paging. */
   1971 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   1972 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   1973 
   1974 	/* Init XSAVE header. */
   1975 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1976 	cpudata->gfpu.xsh_xcomp_bv = 0;
   1977 
   1978 	/* These MSRs are static. */
   1979 	cpudata->star = rdmsr(MSR_STAR);
   1980 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1981 	cpudata->cstar = rdmsr(MSR_CSTAR);
   1982 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   1983 
   1984 	/* Install the RESET state. */
   1985 	svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   1986 }
   1987 
   1988 static int
   1989 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1990 {
   1991 	struct svm_cpudata *cpudata;
   1992 	int error;
   1993 
   1994 	/* Allocate the SVM cpudata. */
   1995 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   1996 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   1997 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   1998 	vcpu->cpudata = cpudata;
   1999 
   2000 	/* VMCB */
   2001 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   2002 	    VMCB_NPAGES);
   2003 	if (error)
   2004 		goto error;
   2005 
   2006 	/* I/O Bitmap */
   2007 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   2008 	    IOBM_NPAGES);
   2009 	if (error)
   2010 		goto error;
   2011 
   2012 	/* MSR Bitmap */
   2013 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2014 	    MSRBM_NPAGES);
   2015 	if (error)
   2016 		goto error;
   2017 
   2018 	/* Init the VCPU info. */
   2019 	svm_vcpu_init(mach, vcpu);
   2020 
   2021 	return 0;
   2022 
   2023 error:
   2024 	if (cpudata->vmcb_pa) {
   2025 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   2026 		    VMCB_NPAGES);
   2027 	}
   2028 	if (cpudata->iobm_pa) {
   2029 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   2030 		    IOBM_NPAGES);
   2031 	}
   2032 	if (cpudata->msrbm_pa) {
   2033 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2034 		    MSRBM_NPAGES);
   2035 	}
   2036 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2037 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2038 	return error;
   2039 }
   2040 
   2041 static void
   2042 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2043 {
   2044 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2045 
   2046 	svm_asid_free(vcpu);
   2047 
   2048 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   2049 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   2050 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2051 
   2052 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2053 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2054 }
   2055 
   2056 /* -------------------------------------------------------------------------- */
   2057 
   2058 static void
   2059 svm_tlb_flush(struct pmap *pm)
   2060 {
   2061 	struct nvmm_machine *mach = pm->pm_data;
   2062 	struct svm_machdata *machdata = mach->machdata;
   2063 
   2064 	atomic_inc_64(&machdata->mach_htlb_gen);
   2065 
   2066 	/* Generates IPIs, which cause #VMEXITs. */
   2067 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2068 }
   2069 
   2070 static void
   2071 svm_machine_create(struct nvmm_machine *mach)
   2072 {
   2073 	struct svm_machdata *machdata;
   2074 
   2075 	/* Fill in pmap info. */
   2076 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   2077 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   2078 
   2079 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   2080 	mach->machdata = machdata;
   2081 
   2082 	/* Start with an hTLB flush everywhere. */
   2083 	machdata->mach_htlb_gen = 1;
   2084 }
   2085 
   2086 static void
   2087 svm_machine_destroy(struct nvmm_machine *mach)
   2088 {
   2089 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   2090 }
   2091 
   2092 static int
   2093 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2094 {
   2095 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2096 	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
   2097 	size_t i;
   2098 
   2099 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2100 		return EINVAL;
   2101 	}
   2102 
   2103 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2104 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2105 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2106 	    (cpuid->set.edx & cpuid->del.edx))) {
   2107 		return EINVAL;
   2108 	}
   2109 
   2110 	/* If already here, replace. */
   2111 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2112 		if (!machdata->cpuidpresent[i]) {
   2113 			continue;
   2114 		}
   2115 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2116 			memcpy(&machdata->cpuid[i], cpuid,
   2117 			    sizeof(struct nvmm_x86_conf_cpuid));
   2118 			return 0;
   2119 		}
   2120 	}
   2121 
   2122 	/* Not here, insert. */
   2123 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2124 		if (!machdata->cpuidpresent[i]) {
   2125 			machdata->cpuidpresent[i] = true;
   2126 			memcpy(&machdata->cpuid[i], cpuid,
   2127 			    sizeof(struct nvmm_x86_conf_cpuid));
   2128 			return 0;
   2129 		}
   2130 	}
   2131 
   2132 	return ENOBUFS;
   2133 }
   2134 
   2135 /* -------------------------------------------------------------------------- */
   2136 
   2137 static bool
   2138 svm_ident(void)
   2139 {
   2140 	u_int descs[4];
   2141 	uint64_t msr;
   2142 
   2143 	if (cpu_vendor != CPUVENDOR_AMD) {
   2144 		return false;
   2145 	}
   2146 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2147 		return false;
   2148 	}
   2149 
   2150 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2151 		return false;
   2152 	}
   2153 	x86_cpuid(0x8000000a, descs);
   2154 
   2155 	/* Want Nested Paging. */
   2156 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2157 		return false;
   2158 	}
   2159 
   2160 	/* Want nRIP. */
   2161 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2162 		return false;
   2163 	}
   2164 
   2165 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2166 
   2167 	msr = rdmsr(MSR_VMCR);
   2168 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2169 		return false;
   2170 	}
   2171 
   2172 	return true;
   2173 }
   2174 
   2175 static void
   2176 svm_init_asid(uint32_t maxasid)
   2177 {
   2178 	size_t i, j, allocsz;
   2179 
   2180 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2181 
   2182 	/* Arbitrarily limit. */
   2183 	maxasid = uimin(maxasid, 8192);
   2184 
   2185 	svm_maxasid = maxasid;
   2186 	allocsz = roundup(maxasid, 8) / 8;
   2187 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2188 
   2189 	/* ASID 0 is reserved for the host. */
   2190 	svm_asidmap[0] |= __BIT(0);
   2191 
   2192 	/* ASID n-1 is special, we share it. */
   2193 	i = (maxasid - 1) / 8;
   2194 	j = (maxasid - 1) % 8;
   2195 	svm_asidmap[i] |= __BIT(j);
   2196 }
   2197 
   2198 static void
   2199 svm_change_cpu(void *arg1, void *arg2)
   2200 {
   2201 	bool enable = (bool)arg1;
   2202 	uint64_t msr;
   2203 
   2204 	msr = rdmsr(MSR_VMCR);
   2205 	if (msr & VMCR_SVMED) {
   2206 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2207 	}
   2208 
   2209 	if (!enable) {
   2210 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2211 	}
   2212 
   2213 	msr = rdmsr(MSR_EFER);
   2214 	if (enable) {
   2215 		msr |= EFER_SVME;
   2216 	} else {
   2217 		msr &= ~EFER_SVME;
   2218 	}
   2219 	wrmsr(MSR_EFER, msr);
   2220 
   2221 	if (enable) {
   2222 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2223 	}
   2224 }
   2225 
   2226 static void
   2227 svm_init(void)
   2228 {
   2229 	CPU_INFO_ITERATOR cii;
   2230 	struct cpu_info *ci;
   2231 	struct vm_page *pg;
   2232 	u_int descs[4];
   2233 	uint64_t xc;
   2234 
   2235 	x86_cpuid(0x8000000a, descs);
   2236 
   2237 	/* The guest TLB flush command. */
   2238 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2239 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2240 	} else {
   2241 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2242 	}
   2243 
   2244 	/* Init the ASID. */
   2245 	svm_init_asid(descs[1]);
   2246 
   2247 	/* Init the XCR0 mask. */
   2248 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2249 
   2250 	memset(hsave, 0, sizeof(hsave));
   2251 	for (CPU_INFO_FOREACH(cii, ci)) {
   2252 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2253 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2254 	}
   2255 
   2256 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2257 	xc_wait(xc);
   2258 }
   2259 
   2260 static void
   2261 svm_fini_asid(void)
   2262 {
   2263 	size_t allocsz;
   2264 
   2265 	allocsz = roundup(svm_maxasid, 8) / 8;
   2266 	kmem_free(svm_asidmap, allocsz);
   2267 
   2268 	mutex_destroy(&svm_asidlock);
   2269 }
   2270 
   2271 static void
   2272 svm_fini(void)
   2273 {
   2274 	uint64_t xc;
   2275 	size_t i;
   2276 
   2277 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2278 	xc_wait(xc);
   2279 
   2280 	for (i = 0; i < MAXCPUS; i++) {
   2281 		if (hsave[i].pa != 0)
   2282 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2283 	}
   2284 
   2285 	svm_fini_asid();
   2286 }
   2287 
   2288 static void
   2289 svm_capability(struct nvmm_capability *cap)
   2290 {
   2291 	cap->u.x86.xcr0_mask = svm_xcr0_mask;
   2292 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2293 	cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
   2294 }
   2295 
   2296 const struct nvmm_impl nvmm_x86_svm = {
   2297 	.ident = svm_ident,
   2298 	.init = svm_init,
   2299 	.fini = svm_fini,
   2300 	.capability = svm_capability,
   2301 	.conf_max = NVMM_X86_NCONF,
   2302 	.conf_sizes = svm_conf_sizes,
   2303 	.state_size = sizeof(struct nvmm_x64_state),
   2304 	.machine_create = svm_machine_create,
   2305 	.machine_destroy = svm_machine_destroy,
   2306 	.machine_configure = svm_machine_configure,
   2307 	.vcpu_create = svm_vcpu_create,
   2308 	.vcpu_destroy = svm_vcpu_destroy,
   2309 	.vcpu_setstate = svm_vcpu_setstate,
   2310 	.vcpu_getstate = svm_vcpu_getstate,
   2311 	.vcpu_inject = svm_vcpu_inject,
   2312 	.vcpu_run = svm_vcpu_run
   2313 };
   2314