nvmm_x86_svm.c revision 1.41 1 /* $NetBSD: nvmm_x86_svm.c,v 1.41 2019/04/27 09:06:18 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.41 2019/04/27 09:06:18 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
206 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
207 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
208 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
209 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
210 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
211 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
212 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
213 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
214 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
215 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
216 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
217 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
218 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
219 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
220 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
221 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
222 #define VMCB_EXITCODE_NPF 0x0400
223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
224 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
225 #define VMCB_EXITCODE_VMGEXIT 0x0403
226 #define VMCB_EXITCODE_INVALID -1
227
228 /* -------------------------------------------------------------------------- */
229
230 struct vmcb_ctrl {
231 uint32_t intercept_cr;
232 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
233 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
234
235 uint32_t intercept_dr;
236 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
237 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
238
239 uint32_t intercept_vec;
240 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
241
242 uint32_t intercept_misc1;
243 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
244 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
245 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
246 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
247 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
249 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
250 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
251 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
252 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
253 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
254 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
255 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
256 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
257 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
258 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
259 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
260 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
261 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
262 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
263 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
264 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
265 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
266 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
267 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
268 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
269 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
271 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
272 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
275
276 uint32_t intercept_misc2;
277 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
278 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
279 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
280 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
281 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
282 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
283 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
284 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
285 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
286 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
287 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
288 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
289 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
292
293 uint8_t rsvd1[40];
294 uint16_t pause_filt_thresh;
295 uint16_t pause_filt_cnt;
296 uint64_t iopm_base_pa;
297 uint64_t msrpm_base_pa;
298 uint64_t tsc_offset;
299 uint32_t guest_asid;
300
301 uint32_t tlb_ctrl;
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
305
306 uint64_t v;
307 #define VMCB_CTRL_V_TPR __BITS(3,0)
308 #define VMCB_CTRL_V_IRQ __BIT(8)
309 #define VMCB_CTRL_V_VGIF __BIT(9)
310 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
311 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
312 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
313 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
314 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
315 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
316
317 uint64_t intr;
318 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
319
320 uint64_t exitcode;
321 uint64_t exitinfo1;
322 uint64_t exitinfo2;
323
324 uint64_t exitintinfo;
325 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
326 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
327 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
328 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
330
331 uint64_t enable1;
332 #define VMCB_CTRL_ENABLE_NP __BIT(0)
333 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
334 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
335
336 uint64_t avic;
337 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
338
339 uint64_t ghcb;
340
341 uint64_t eventinj;
342 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
345 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
346 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
347
348 uint64_t n_cr3;
349
350 uint64_t enable2;
351 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
352 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
353
354 uint32_t vmcb_clean;
355 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
356 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
357 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
358 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
359 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
360 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
361 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
362 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
363 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
364 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
365 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
366 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
367
368 uint32_t rsvd2;
369 uint64_t nrip;
370 uint8_t inst_len;
371 uint8_t inst_bytes[15];
372 uint64_t avic_abpp;
373 uint64_t rsvd3;
374 uint64_t avic_ltp;
375
376 uint64_t avic_phys;
377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
379
380 uint64_t rsvd4;
381 uint64_t vmcb_ptr;
382
383 uint8_t pad[752];
384 } __packed;
385
386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
387
388 struct vmcb_segment {
389 uint16_t selector;
390 uint16_t attrib; /* hidden */
391 uint32_t limit; /* hidden */
392 uint64_t base; /* hidden */
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_segment) == 16);
396
397 struct vmcb_state {
398 struct vmcb_segment es;
399 struct vmcb_segment cs;
400 struct vmcb_segment ss;
401 struct vmcb_segment ds;
402 struct vmcb_segment fs;
403 struct vmcb_segment gs;
404 struct vmcb_segment gdt;
405 struct vmcb_segment ldt;
406 struct vmcb_segment idt;
407 struct vmcb_segment tr;
408 uint8_t rsvd1[43];
409 uint8_t cpl;
410 uint8_t rsvd2[4];
411 uint64_t efer;
412 uint8_t rsvd3[112];
413 uint64_t cr4;
414 uint64_t cr3;
415 uint64_t cr0;
416 uint64_t dr7;
417 uint64_t dr6;
418 uint64_t rflags;
419 uint64_t rip;
420 uint8_t rsvd4[88];
421 uint64_t rsp;
422 uint8_t rsvd5[24];
423 uint64_t rax;
424 uint64_t star;
425 uint64_t lstar;
426 uint64_t cstar;
427 uint64_t sfmask;
428 uint64_t kernelgsbase;
429 uint64_t sysenter_cs;
430 uint64_t sysenter_esp;
431 uint64_t sysenter_eip;
432 uint64_t cr2;
433 uint8_t rsvd6[32];
434 uint64_t g_pat;
435 uint64_t dbgctl;
436 uint64_t br_from;
437 uint64_t br_to;
438 uint64_t int_from;
439 uint64_t int_to;
440 uint8_t pad[2408];
441 } __packed;
442
443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
444
445 struct vmcb {
446 struct vmcb_ctrl ctrl;
447 struct vmcb_state state;
448 } __packed;
449
450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
452
453 /* -------------------------------------------------------------------------- */
454
455 struct svm_hsave {
456 paddr_t pa;
457 };
458
459 static struct svm_hsave hsave[MAXCPUS];
460
461 static uint8_t *svm_asidmap __read_mostly;
462 static uint32_t svm_maxasid __read_mostly;
463 static kmutex_t svm_asidlock __cacheline_aligned;
464
465 static bool svm_decode_assist __read_mostly;
466 static uint32_t svm_ctrl_tlb_flush __read_mostly;
467
468 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
469 static uint64_t svm_xcr0_mask __read_mostly;
470
471 #define SVM_NCPUIDS 32
472
473 #define VMCB_NPAGES 1
474
475 #define MSRBM_NPAGES 2
476 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
477
478 #define IOBM_NPAGES 3
479 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
480
481 /* Does not include EFER_LMSLE. */
482 #define EFER_VALID \
483 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
484
485 #define EFER_TLB_FLUSH \
486 (EFER_NXE|EFER_LMA|EFER_LME)
487 #define CR0_TLB_FLUSH \
488 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
489 #define CR4_TLB_FLUSH \
490 (CR4_PGE|CR4_PAE|CR4_PSE)
491
492 /* -------------------------------------------------------------------------- */
493
494 struct svm_machdata {
495 bool cpuidpresent[SVM_NCPUIDS];
496 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
497 volatile uint64_t mach_htlb_gen;
498 };
499
500 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
501 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
502 };
503
504 struct svm_cpudata {
505 /* General */
506 bool shared_asid;
507 bool gtlb_want_flush;
508 bool gtsc_want_update;
509 uint64_t vcpu_htlb_gen;
510
511 /* VMCB */
512 struct vmcb *vmcb;
513 paddr_t vmcb_pa;
514
515 /* I/O bitmap */
516 uint8_t *iobm;
517 paddr_t iobm_pa;
518
519 /* MSR bitmap */
520 uint8_t *msrbm;
521 paddr_t msrbm_pa;
522
523 /* Host state */
524 uint64_t hxcr0;
525 uint64_t star;
526 uint64_t lstar;
527 uint64_t cstar;
528 uint64_t sfmask;
529 uint64_t fsbase;
530 uint64_t kernelgsbase;
531 bool ts_set;
532 struct xsave_header hfpu __aligned(64);
533
534 /* Intr state */
535 bool int_window_exit;
536 bool nmi_window_exit;
537 bool evt_pending;
538
539 /* Guest state */
540 uint64_t gxcr0;
541 uint64_t gprs[NVMM_X64_NGPR];
542 uint64_t drs[NVMM_X64_NDR];
543 uint64_t gtsc;
544 struct xsave_header gfpu __aligned(64);
545 };
546
547 static void
548 svm_vmcb_cache_default(struct vmcb *vmcb)
549 {
550 vmcb->ctrl.vmcb_clean =
551 VMCB_CTRL_VMCB_CLEAN_I |
552 VMCB_CTRL_VMCB_CLEAN_IOPM |
553 VMCB_CTRL_VMCB_CLEAN_ASID |
554 VMCB_CTRL_VMCB_CLEAN_TPR |
555 VMCB_CTRL_VMCB_CLEAN_NP |
556 VMCB_CTRL_VMCB_CLEAN_CR |
557 VMCB_CTRL_VMCB_CLEAN_DR |
558 VMCB_CTRL_VMCB_CLEAN_DT |
559 VMCB_CTRL_VMCB_CLEAN_SEG |
560 VMCB_CTRL_VMCB_CLEAN_CR2 |
561 VMCB_CTRL_VMCB_CLEAN_LBR |
562 VMCB_CTRL_VMCB_CLEAN_AVIC;
563 }
564
565 static void
566 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
567 {
568 if (flags & NVMM_X64_STATE_SEGS) {
569 vmcb->ctrl.vmcb_clean &=
570 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
571 }
572 if (flags & NVMM_X64_STATE_CRS) {
573 vmcb->ctrl.vmcb_clean &=
574 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
575 VMCB_CTRL_VMCB_CLEAN_TPR);
576 }
577 if (flags & NVMM_X64_STATE_DRS) {
578 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
579 }
580 if (flags & NVMM_X64_STATE_MSRS) {
581 /* CR for EFER, NP for PAT. */
582 vmcb->ctrl.vmcb_clean &=
583 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
584 }
585 }
586
587 static inline void
588 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
589 {
590 vmcb->ctrl.vmcb_clean &= ~flags;
591 }
592
593 static inline void
594 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
595 {
596 vmcb->ctrl.vmcb_clean = 0;
597 }
598
599 #define SVM_EVENT_TYPE_HW_INT 0
600 #define SVM_EVENT_TYPE_NMI 2
601 #define SVM_EVENT_TYPE_EXC 3
602 #define SVM_EVENT_TYPE_SW_INT 4
603
604 static void
605 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
606 {
607 struct svm_cpudata *cpudata = vcpu->cpudata;
608 struct vmcb *vmcb = cpudata->vmcb;
609
610 if (nmi) {
611 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
612 cpudata->nmi_window_exit = true;
613 } else {
614 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
615 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
616 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
617 cpudata->int_window_exit = true;
618 }
619
620 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
621 }
622
623 static void
624 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
625 {
626 struct svm_cpudata *cpudata = vcpu->cpudata;
627 struct vmcb *vmcb = cpudata->vmcb;
628
629 if (nmi) {
630 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
631 cpudata->nmi_window_exit = false;
632 } else {
633 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
634 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
635 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
636 cpudata->int_window_exit = false;
637 }
638
639 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
640 }
641
642 static inline int
643 svm_event_has_error(uint64_t vector)
644 {
645 switch (vector) {
646 case 8: /* #DF */
647 case 10: /* #TS */
648 case 11: /* #NP */
649 case 12: /* #SS */
650 case 13: /* #GP */
651 case 14: /* #PF */
652 case 17: /* #AC */
653 case 30: /* #SX */
654 return 1;
655 default:
656 return 0;
657 }
658 }
659
660 static int
661 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
662 struct nvmm_event *event)
663 {
664 struct svm_cpudata *cpudata = vcpu->cpudata;
665 struct vmcb *vmcb = cpudata->vmcb;
666 int type = 0, err = 0;
667
668 if (event->vector >= 256) {
669 return EINVAL;
670 }
671
672 switch (event->type) {
673 case NVMM_EVENT_INTERRUPT_HW:
674 type = SVM_EVENT_TYPE_HW_INT;
675 if (event->vector == 2) {
676 type = SVM_EVENT_TYPE_NMI;
677 }
678 if (type == SVM_EVENT_TYPE_NMI) {
679 if (cpudata->nmi_window_exit) {
680 return EAGAIN;
681 }
682 svm_event_waitexit_enable(vcpu, true);
683 } else {
684 if (((vmcb->state.rflags & PSL_I) == 0) ||
685 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0)) {
686 svm_event_waitexit_enable(vcpu, false);
687 return EAGAIN;
688 }
689 }
690 err = 0;
691 break;
692 case NVMM_EVENT_INTERRUPT_SW:
693 return EINVAL;
694 case NVMM_EVENT_EXCEPTION:
695 type = SVM_EVENT_TYPE_EXC;
696 if (event->vector == 2 || event->vector >= 32)
697 return EINVAL;
698 if (event->vector == 3 || event->vector == 0)
699 return EINVAL;
700 err = svm_event_has_error(event->vector);
701 break;
702 default:
703 return EINVAL;
704 }
705
706 vmcb->ctrl.eventinj =
707 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
708 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
709 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
710 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
711 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
712
713 cpudata->evt_pending = true;
714
715 return 0;
716 }
717
718 static void
719 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
720 {
721 struct nvmm_event event;
722 int ret __diagused;
723
724 event.type = NVMM_EVENT_EXCEPTION;
725 event.vector = 6;
726 event.u.error = 0;
727
728 ret = svm_vcpu_inject(mach, vcpu, &event);
729 KASSERT(ret == 0);
730 }
731
732 static void
733 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
734 {
735 struct nvmm_event event;
736 int ret __diagused;
737
738 event.type = NVMM_EVENT_EXCEPTION;
739 event.vector = 13;
740 event.u.error = 0;
741
742 ret = svm_vcpu_inject(mach, vcpu, &event);
743 KASSERT(ret == 0);
744 }
745
746 static inline void
747 svm_inkernel_advance(struct vmcb *vmcb)
748 {
749 /*
750 * Maybe we should also apply single-stepping and debug exceptions.
751 * Matters for guest-ring3, because it can execute 'cpuid' under a
752 * debugger.
753 */
754 vmcb->state.rip = vmcb->ctrl.nrip;
755 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
756 }
757
758 static void
759 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
760 {
761 struct svm_cpudata *cpudata = vcpu->cpudata;
762 uint64_t cr4;
763
764 switch (eax) {
765 case 0x00000001:
766 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
767
768 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
769 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
770 CPUID_LOCAL_APIC_ID);
771
772 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
773 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
774
775 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
776
777 /* CPUID2_OSXSAVE depends on CR4. */
778 cr4 = cpudata->vmcb->state.cr4;
779 if (!(cr4 & CR4_OSXSAVE)) {
780 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
781 }
782 break;
783 case 0x00000005:
784 case 0x00000006:
785 cpudata->vmcb->state.rax = 0;
786 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
787 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
788 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
789 break;
790 case 0x00000007:
791 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
792 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
793 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
794 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
795 break;
796 case 0x0000000D:
797 if (svm_xcr0_mask == 0) {
798 break;
799 }
800 switch (ecx) {
801 case 0:
802 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
803 if (cpudata->gxcr0 & XCR0_SSE) {
804 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
805 } else {
806 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
807 }
808 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
809 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
810 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
811 break;
812 case 1:
813 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
814 break;
815 }
816 break;
817 case 0x40000000:
818 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
819 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
820 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
821 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
822 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
823 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
824 break;
825 case 0x80000001:
826 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
827 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
828 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
829 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
830 break;
831 default:
832 break;
833 }
834 }
835
836 static void
837 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
838 struct nvmm_exit *exit)
839 {
840 struct svm_machdata *machdata = mach->machdata;
841 struct svm_cpudata *cpudata = vcpu->cpudata;
842 struct nvmm_x86_conf_cpuid *cpuid;
843 uint64_t eax, ecx;
844 u_int descs[4];
845 size_t i;
846
847 eax = cpudata->vmcb->state.rax;
848 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
849 x86_cpuid2(eax, ecx, descs);
850
851 cpudata->vmcb->state.rax = descs[0];
852 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
853 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
854 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
855
856 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
857
858 for (i = 0; i < SVM_NCPUIDS; i++) {
859 cpuid = &machdata->cpuid[i];
860 if (!machdata->cpuidpresent[i]) {
861 continue;
862 }
863 if (cpuid->leaf != eax) {
864 continue;
865 }
866
867 /* del */
868 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
869 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
870 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
871 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
872
873 /* set */
874 cpudata->vmcb->state.rax |= cpuid->set.eax;
875 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
876 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
877 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
878
879 break;
880 }
881
882 svm_inkernel_advance(cpudata->vmcb);
883 exit->reason = NVMM_EXIT_NONE;
884 }
885
886 static void
887 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
888 struct nvmm_exit *exit)
889 {
890 struct svm_cpudata *cpudata = vcpu->cpudata;
891 struct vmcb *vmcb = cpudata->vmcb;
892
893 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
894 svm_event_waitexit_disable(vcpu, false);
895 }
896
897 svm_inkernel_advance(cpudata->vmcb);
898 exit->reason = NVMM_EXIT_HALTED;
899 }
900
901 #define SVM_EXIT_IO_PORT __BITS(31,16)
902 #define SVM_EXIT_IO_SEG __BITS(12,10)
903 #define SVM_EXIT_IO_A64 __BIT(9)
904 #define SVM_EXIT_IO_A32 __BIT(8)
905 #define SVM_EXIT_IO_A16 __BIT(7)
906 #define SVM_EXIT_IO_SZ32 __BIT(6)
907 #define SVM_EXIT_IO_SZ16 __BIT(5)
908 #define SVM_EXIT_IO_SZ8 __BIT(4)
909 #define SVM_EXIT_IO_REP __BIT(3)
910 #define SVM_EXIT_IO_STR __BIT(2)
911 #define SVM_EXIT_IO_IN __BIT(0)
912
913 static void
914 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
915 struct nvmm_exit *exit)
916 {
917 struct svm_cpudata *cpudata = vcpu->cpudata;
918 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
919 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
920
921 exit->reason = NVMM_EXIT_IO;
922
923 if (info & SVM_EXIT_IO_IN) {
924 exit->u.io.type = NVMM_EXIT_IO_IN;
925 } else {
926 exit->u.io.type = NVMM_EXIT_IO_OUT;
927 }
928
929 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
930
931 if (svm_decode_assist) {
932 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
933 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
934 } else {
935 exit->u.io.seg = -1;
936 }
937
938 if (info & SVM_EXIT_IO_A64) {
939 exit->u.io.address_size = 8;
940 } else if (info & SVM_EXIT_IO_A32) {
941 exit->u.io.address_size = 4;
942 } else if (info & SVM_EXIT_IO_A16) {
943 exit->u.io.address_size = 2;
944 }
945
946 if (info & SVM_EXIT_IO_SZ32) {
947 exit->u.io.operand_size = 4;
948 } else if (info & SVM_EXIT_IO_SZ16) {
949 exit->u.io.operand_size = 2;
950 } else if (info & SVM_EXIT_IO_SZ8) {
951 exit->u.io.operand_size = 1;
952 }
953
954 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
955 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
956 exit->u.io.npc = nextpc;
957 }
958
959 static const uint64_t msr_ignore_list[] = {
960 0xc0010055, /* MSR_CMPHALT */
961 MSR_DE_CFG,
962 MSR_IC_CFG,
963 MSR_UCODE_AMD_PATCHLEVEL
964 };
965
966 static bool
967 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
968 struct nvmm_exit *exit)
969 {
970 struct svm_cpudata *cpudata = vcpu->cpudata;
971 struct vmcb *vmcb = cpudata->vmcb;
972 uint64_t val;
973 size_t i;
974
975 switch (exit->u.msr.type) {
976 case NVMM_EXIT_MSR_RDMSR:
977 if (exit->u.msr.msr == MSR_NB_CFG) {
978 val = NB_CFG_INITAPICCPUIDLO;
979 vmcb->state.rax = (val & 0xFFFFFFFF);
980 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
981 goto handled;
982 }
983 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
984 if (msr_ignore_list[i] != exit->u.msr.msr)
985 continue;
986 val = 0;
987 vmcb->state.rax = (val & 0xFFFFFFFF);
988 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
989 goto handled;
990 }
991 break;
992 case NVMM_EXIT_MSR_WRMSR:
993 if (exit->u.msr.msr == MSR_EFER) {
994 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
995 goto error;
996 }
997 if ((vmcb->state.efer ^ exit->u.msr.val) &
998 EFER_TLB_FLUSH) {
999 cpudata->gtlb_want_flush = true;
1000 }
1001 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
1002 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1003 goto handled;
1004 }
1005 if (exit->u.msr.msr == MSR_TSC) {
1006 cpudata->gtsc = exit->u.msr.val;
1007 cpudata->gtsc_want_update = true;
1008 goto handled;
1009 }
1010 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1011 if (msr_ignore_list[i] != exit->u.msr.msr)
1012 continue;
1013 goto handled;
1014 }
1015 break;
1016 }
1017
1018 return false;
1019
1020 handled:
1021 svm_inkernel_advance(cpudata->vmcb);
1022 return true;
1023
1024 error:
1025 svm_inject_gp(mach, vcpu);
1026 return true;
1027 }
1028
1029 static void
1030 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1031 struct nvmm_exit *exit)
1032 {
1033 struct svm_cpudata *cpudata = vcpu->cpudata;
1034 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1035
1036 if (info == 0) {
1037 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1038 } else {
1039 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1040 }
1041
1042 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1043
1044 if (info == 1) {
1045 uint64_t rdx, rax;
1046 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1047 rax = cpudata->vmcb->state.rax;
1048 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1049 } else {
1050 exit->u.msr.val = 0;
1051 }
1052
1053 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1054 exit->reason = NVMM_EXIT_NONE;
1055 return;
1056 }
1057
1058 exit->reason = NVMM_EXIT_MSR;
1059 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1060 }
1061
1062 static void
1063 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1064 struct nvmm_exit *exit)
1065 {
1066 struct svm_cpudata *cpudata = vcpu->cpudata;
1067 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1068
1069 exit->reason = NVMM_EXIT_MEMORY;
1070 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1071 exit->u.mem.prot = PROT_WRITE;
1072 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1073 exit->u.mem.prot = PROT_EXEC;
1074 else
1075 exit->u.mem.prot = PROT_READ;
1076 exit->u.mem.gpa = gpa;
1077 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1078 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1079 sizeof(exit->u.mem.inst_bytes));
1080 }
1081
1082 static void
1083 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1084 {
1085 exit->u.insn.npc = vmcb->ctrl.nrip;
1086 exit->reason = reason;
1087 }
1088
1089 static void
1090 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1091 struct nvmm_exit *exit)
1092 {
1093 struct svm_cpudata *cpudata = vcpu->cpudata;
1094 struct vmcb *vmcb = cpudata->vmcb;
1095 uint64_t val;
1096
1097 exit->reason = NVMM_EXIT_NONE;
1098
1099 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1100 (vmcb->state.rax & 0xFFFFFFFF);
1101
1102 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1103 goto error;
1104 } else if (__predict_false(vmcb->state.cpl != 0)) {
1105 goto error;
1106 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1107 goto error;
1108 } else if (__predict_false((val & XCR0_X87) == 0)) {
1109 goto error;
1110 }
1111
1112 cpudata->gxcr0 = val;
1113
1114 svm_inkernel_advance(cpudata->vmcb);
1115 return;
1116
1117 error:
1118 svm_inject_gp(mach, vcpu);
1119 }
1120
1121 static void
1122 svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1123 {
1124 exit->u.inv.hwcode = code;
1125 exit->reason = NVMM_EXIT_INVALID;
1126 }
1127
1128 /* -------------------------------------------------------------------------- */
1129
1130 static void
1131 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1132 {
1133 struct svm_cpudata *cpudata = vcpu->cpudata;
1134
1135 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1136
1137 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1138 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1139
1140 if (svm_xcr0_mask != 0) {
1141 cpudata->hxcr0 = rdxcr(0);
1142 wrxcr(0, cpudata->gxcr0);
1143 }
1144 }
1145
1146 static void
1147 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1148 {
1149 struct svm_cpudata *cpudata = vcpu->cpudata;
1150
1151 if (svm_xcr0_mask != 0) {
1152 cpudata->gxcr0 = rdxcr(0);
1153 wrxcr(0, cpudata->hxcr0);
1154 }
1155
1156 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1157 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1158
1159 if (cpudata->ts_set) {
1160 stts();
1161 }
1162 }
1163
1164 static void
1165 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1166 {
1167 struct svm_cpudata *cpudata = vcpu->cpudata;
1168
1169 x86_dbregs_save(curlwp);
1170
1171 ldr7(0);
1172
1173 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1174 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1175 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1176 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1177 }
1178
1179 static void
1180 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1181 {
1182 struct svm_cpudata *cpudata = vcpu->cpudata;
1183
1184 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1185 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1186 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1187 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1188
1189 x86_dbregs_restore(curlwp);
1190 }
1191
1192 static void
1193 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1194 {
1195 struct svm_cpudata *cpudata = vcpu->cpudata;
1196
1197 cpudata->fsbase = rdmsr(MSR_FSBASE);
1198 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1199 }
1200
1201 static void
1202 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1203 {
1204 struct svm_cpudata *cpudata = vcpu->cpudata;
1205
1206 wrmsr(MSR_STAR, cpudata->star);
1207 wrmsr(MSR_LSTAR, cpudata->lstar);
1208 wrmsr(MSR_CSTAR, cpudata->cstar);
1209 wrmsr(MSR_SFMASK, cpudata->sfmask);
1210 wrmsr(MSR_FSBASE, cpudata->fsbase);
1211 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1212 }
1213
1214 /* -------------------------------------------------------------------------- */
1215
1216 static inline void
1217 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1218 {
1219 struct svm_cpudata *cpudata = vcpu->cpudata;
1220
1221 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1222 cpudata->gtlb_want_flush = true;
1223 }
1224 }
1225
1226 static inline void
1227 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1228 {
1229 /*
1230 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1231 * executing on this hCPU and the hTLB already got flushed, or it
1232 * was executing on another hCPU in which case the catchup is done
1233 * in svm_gtlb_catchup().
1234 */
1235 }
1236
1237 static inline uint64_t
1238 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1239 {
1240 struct vmcb *vmcb = cpudata->vmcb;
1241 uint64_t machgen;
1242
1243 machgen = machdata->mach_htlb_gen;
1244 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1245 return machgen;
1246 }
1247
1248 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1249 return machgen;
1250 }
1251
1252 static inline void
1253 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1254 {
1255 struct vmcb *vmcb = cpudata->vmcb;
1256
1257 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1258 cpudata->vcpu_htlb_gen = machgen;
1259 }
1260 }
1261
1262 static inline void
1263 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1264 {
1265 cpudata->evt_pending = false;
1266
1267 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1268 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1269 cpudata->evt_pending = true;
1270 }
1271 }
1272
1273 static int
1274 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1275 struct nvmm_exit *exit)
1276 {
1277 struct svm_machdata *machdata = mach->machdata;
1278 struct svm_cpudata *cpudata = vcpu->cpudata;
1279 struct vmcb *vmcb = cpudata->vmcb;
1280 uint64_t machgen;
1281 int hcpu, s;
1282
1283 kpreempt_disable();
1284 hcpu = cpu_number();
1285
1286 svm_gtlb_catchup(vcpu, hcpu);
1287 svm_htlb_catchup(vcpu, hcpu);
1288
1289 if (vcpu->hcpu_last != hcpu) {
1290 svm_vmcb_cache_flush_all(vmcb);
1291 cpudata->gtsc_want_update = true;
1292 }
1293
1294 svm_vcpu_guest_dbregs_enter(vcpu);
1295 svm_vcpu_guest_misc_enter(vcpu);
1296
1297 while (1) {
1298 if (cpudata->gtlb_want_flush) {
1299 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1300 } else {
1301 vmcb->ctrl.tlb_ctrl = 0;
1302 }
1303
1304 if (__predict_false(cpudata->gtsc_want_update)) {
1305 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1306 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1307 }
1308
1309 s = splhigh();
1310 machgen = svm_htlb_flush(machdata, cpudata);
1311 svm_vcpu_guest_fpu_enter(vcpu);
1312 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1313 svm_vcpu_guest_fpu_leave(vcpu);
1314 svm_htlb_flush_ack(cpudata, machgen);
1315 splx(s);
1316
1317 svm_vmcb_cache_default(vmcb);
1318
1319 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1320 cpudata->gtlb_want_flush = false;
1321 cpudata->gtsc_want_update = false;
1322 vcpu->hcpu_last = hcpu;
1323 }
1324 svm_exit_evt(cpudata, vmcb);
1325
1326 switch (vmcb->ctrl.exitcode) {
1327 case VMCB_EXITCODE_INTR:
1328 case VMCB_EXITCODE_NMI:
1329 exit->reason = NVMM_EXIT_NONE;
1330 break;
1331 case VMCB_EXITCODE_VINTR:
1332 svm_event_waitexit_disable(vcpu, false);
1333 exit->reason = NVMM_EXIT_INT_READY;
1334 break;
1335 case VMCB_EXITCODE_IRET:
1336 svm_event_waitexit_disable(vcpu, true);
1337 exit->reason = NVMM_EXIT_NMI_READY;
1338 break;
1339 case VMCB_EXITCODE_CPUID:
1340 svm_exit_cpuid(mach, vcpu, exit);
1341 break;
1342 case VMCB_EXITCODE_HLT:
1343 svm_exit_hlt(mach, vcpu, exit);
1344 break;
1345 case VMCB_EXITCODE_IOIO:
1346 svm_exit_io(mach, vcpu, exit);
1347 break;
1348 case VMCB_EXITCODE_MSR:
1349 svm_exit_msr(mach, vcpu, exit);
1350 break;
1351 case VMCB_EXITCODE_SHUTDOWN:
1352 exit->reason = NVMM_EXIT_SHUTDOWN;
1353 break;
1354 case VMCB_EXITCODE_RDPMC:
1355 case VMCB_EXITCODE_RSM:
1356 case VMCB_EXITCODE_INVLPGA:
1357 case VMCB_EXITCODE_VMRUN:
1358 case VMCB_EXITCODE_VMMCALL:
1359 case VMCB_EXITCODE_VMLOAD:
1360 case VMCB_EXITCODE_VMSAVE:
1361 case VMCB_EXITCODE_STGI:
1362 case VMCB_EXITCODE_CLGI:
1363 case VMCB_EXITCODE_SKINIT:
1364 case VMCB_EXITCODE_RDTSCP:
1365 svm_inject_ud(mach, vcpu);
1366 exit->reason = NVMM_EXIT_NONE;
1367 break;
1368 case VMCB_EXITCODE_MONITOR:
1369 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1370 break;
1371 case VMCB_EXITCODE_MWAIT:
1372 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1373 break;
1374 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1375 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1376 break;
1377 case VMCB_EXITCODE_XSETBV:
1378 svm_exit_xsetbv(mach, vcpu, exit);
1379 break;
1380 case VMCB_EXITCODE_NPF:
1381 svm_exit_npf(mach, vcpu, exit);
1382 break;
1383 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1384 default:
1385 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1386 break;
1387 }
1388
1389 /* If no reason to return to userland, keep rolling. */
1390 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1391 break;
1392 }
1393 if (curcpu()->ci_data.cpu_softints != 0) {
1394 break;
1395 }
1396 if (curlwp->l_flag & LW_USERRET) {
1397 break;
1398 }
1399 if (exit->reason != NVMM_EXIT_NONE) {
1400 break;
1401 }
1402 }
1403
1404 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1405
1406 svm_vcpu_guest_misc_leave(vcpu);
1407 svm_vcpu_guest_dbregs_leave(vcpu);
1408
1409 kpreempt_enable();
1410
1411 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1412 VMCB_CTRL_V_TPR);
1413 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1414
1415 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1416 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1417 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1418 cpudata->int_window_exit;
1419 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1420 cpudata->nmi_window_exit;
1421 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1422 cpudata->evt_pending;
1423
1424 return 0;
1425 }
1426
1427 /* -------------------------------------------------------------------------- */
1428
1429 static int
1430 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1431 {
1432 struct pglist pglist;
1433 paddr_t _pa;
1434 vaddr_t _va;
1435 size_t i;
1436 int ret;
1437
1438 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1439 &pglist, 1, 0);
1440 if (ret != 0)
1441 return ENOMEM;
1442 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1443 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1444 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1445 if (_va == 0)
1446 goto error;
1447
1448 for (i = 0; i < npages; i++) {
1449 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1450 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1451 }
1452 pmap_update(pmap_kernel());
1453
1454 memset((void *)_va, 0, npages * PAGE_SIZE);
1455
1456 *pa = _pa;
1457 *va = _va;
1458 return 0;
1459
1460 error:
1461 for (i = 0; i < npages; i++) {
1462 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1463 }
1464 return ENOMEM;
1465 }
1466
1467 static void
1468 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1469 {
1470 size_t i;
1471
1472 pmap_kremove(va, npages * PAGE_SIZE);
1473 pmap_update(pmap_kernel());
1474 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1475 for (i = 0; i < npages; i++) {
1476 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1477 }
1478 }
1479
1480 /* -------------------------------------------------------------------------- */
1481
1482 #define SVM_MSRBM_READ __BIT(0)
1483 #define SVM_MSRBM_WRITE __BIT(1)
1484
1485 static void
1486 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1487 {
1488 uint64_t byte;
1489 uint8_t bitoff;
1490
1491 if (msr < 0x00002000) {
1492 /* Range 1 */
1493 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1494 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1495 /* Range 2 */
1496 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1497 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1498 /* Range 3 */
1499 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1500 } else {
1501 panic("%s: wrong range", __func__);
1502 }
1503
1504 bitoff = (msr & 0x3) << 1;
1505
1506 if (read) {
1507 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1508 }
1509 if (write) {
1510 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1511 }
1512 }
1513
1514 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1515 #define SVM_SEG_ATTRIB_S __BIT(4)
1516 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1517 #define SVM_SEG_ATTRIB_P __BIT(7)
1518 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1519 #define SVM_SEG_ATTRIB_L __BIT(9)
1520 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1521 #define SVM_SEG_ATTRIB_G __BIT(11)
1522
1523 static void
1524 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1525 struct vmcb_segment *vseg)
1526 {
1527 vseg->selector = seg->selector;
1528 vseg->attrib =
1529 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1530 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1531 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1532 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1533 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1534 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1535 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1536 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1537 vseg->limit = seg->limit;
1538 vseg->base = seg->base;
1539 }
1540
1541 static void
1542 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1543 {
1544 seg->selector = vseg->selector;
1545 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1546 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1547 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1548 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1549 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1550 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1551 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1552 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1553 seg->limit = vseg->limit;
1554 seg->base = vseg->base;
1555 }
1556
1557 static inline bool
1558 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1559 uint64_t flags)
1560 {
1561 if (flags & NVMM_X64_STATE_CRS) {
1562 if ((vmcb->state.cr0 ^
1563 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1564 return true;
1565 }
1566 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1567 return true;
1568 }
1569 if ((vmcb->state.cr4 ^
1570 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1571 return true;
1572 }
1573 }
1574
1575 if (flags & NVMM_X64_STATE_MSRS) {
1576 if ((vmcb->state.efer ^
1577 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1578 return true;
1579 }
1580 }
1581
1582 return false;
1583 }
1584
1585 static void
1586 svm_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
1587 {
1588 const struct nvmm_x64_state *state = data;
1589 struct svm_cpudata *cpudata = vcpu->cpudata;
1590 struct vmcb *vmcb = cpudata->vmcb;
1591 struct fxsave *fpustate;
1592
1593 if (svm_state_tlb_flush(vmcb, state, flags)) {
1594 cpudata->gtlb_want_flush = true;
1595 }
1596
1597 if (flags & NVMM_X64_STATE_SEGS) {
1598 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1599 &vmcb->state.cs);
1600 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1601 &vmcb->state.ds);
1602 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1603 &vmcb->state.es);
1604 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1605 &vmcb->state.fs);
1606 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1607 &vmcb->state.gs);
1608 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1609 &vmcb->state.ss);
1610 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1611 &vmcb->state.gdt);
1612 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1613 &vmcb->state.idt);
1614 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1615 &vmcb->state.ldt);
1616 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1617 &vmcb->state.tr);
1618
1619 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1620 }
1621
1622 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1623 if (flags & NVMM_X64_STATE_GPRS) {
1624 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1625
1626 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1627 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1628 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1629 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1630 }
1631
1632 if (flags & NVMM_X64_STATE_CRS) {
1633 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1634 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1635 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1636 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1637
1638 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1639 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1640 VMCB_CTRL_V_TPR);
1641
1642 if (svm_xcr0_mask != 0) {
1643 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1644 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1645 cpudata->gxcr0 &= svm_xcr0_mask;
1646 cpudata->gxcr0 |= XCR0_X87;
1647 }
1648 }
1649
1650 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1651 if (flags & NVMM_X64_STATE_DRS) {
1652 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1653
1654 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1655 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1656 }
1657
1658 if (flags & NVMM_X64_STATE_MSRS) {
1659 /*
1660 * EFER_SVME is mandatory.
1661 */
1662 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1663 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1664 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1665 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1666 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1667 vmcb->state.kernelgsbase =
1668 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1669 vmcb->state.sysenter_cs =
1670 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1671 vmcb->state.sysenter_esp =
1672 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1673 vmcb->state.sysenter_eip =
1674 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1675 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1676
1677 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1678 cpudata->gtsc_want_update = true;
1679 }
1680
1681 if (flags & NVMM_X64_STATE_INTR) {
1682 if (state->intr.int_shadow) {
1683 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1684 } else {
1685 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1686 }
1687
1688 if (state->intr.int_window_exiting) {
1689 svm_event_waitexit_enable(vcpu, false);
1690 } else {
1691 svm_event_waitexit_disable(vcpu, false);
1692 }
1693
1694 if (state->intr.nmi_window_exiting) {
1695 svm_event_waitexit_enable(vcpu, true);
1696 } else {
1697 svm_event_waitexit_disable(vcpu, true);
1698 }
1699 }
1700
1701 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1702 if (flags & NVMM_X64_STATE_FPU) {
1703 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1704 sizeof(state->fpu));
1705
1706 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1707 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1708 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1709
1710 if (svm_xcr0_mask != 0) {
1711 /* Reset XSTATE_BV, to force a reload. */
1712 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1713 }
1714 }
1715
1716 svm_vmcb_cache_update(vmcb, flags);
1717 }
1718
1719 static void
1720 svm_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
1721 {
1722 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
1723 struct svm_cpudata *cpudata = vcpu->cpudata;
1724 struct vmcb *vmcb = cpudata->vmcb;
1725
1726 if (flags & NVMM_X64_STATE_SEGS) {
1727 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1728 &vmcb->state.cs);
1729 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1730 &vmcb->state.ds);
1731 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1732 &vmcb->state.es);
1733 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1734 &vmcb->state.fs);
1735 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1736 &vmcb->state.gs);
1737 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1738 &vmcb->state.ss);
1739 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1740 &vmcb->state.gdt);
1741 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1742 &vmcb->state.idt);
1743 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1744 &vmcb->state.ldt);
1745 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1746 &vmcb->state.tr);
1747
1748 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1749 }
1750
1751 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1752 if (flags & NVMM_X64_STATE_GPRS) {
1753 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1754
1755 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1756 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1757 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1758 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1759 }
1760
1761 if (flags & NVMM_X64_STATE_CRS) {
1762 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1763 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1764 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1765 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1766 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1767 VMCB_CTRL_V_TPR);
1768 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1769 }
1770
1771 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1772 if (flags & NVMM_X64_STATE_DRS) {
1773 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1774
1775 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1776 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1777 }
1778
1779 if (flags & NVMM_X64_STATE_MSRS) {
1780 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1781 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1782 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1783 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1784 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1785 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1786 vmcb->state.kernelgsbase;
1787 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1788 vmcb->state.sysenter_cs;
1789 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1790 vmcb->state.sysenter_esp;
1791 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1792 vmcb->state.sysenter_eip;
1793 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1794 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1795
1796 /* Hide SVME. */
1797 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1798 }
1799
1800 if (flags & NVMM_X64_STATE_INTR) {
1801 state->intr.int_shadow =
1802 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1803 state->intr.int_window_exiting = cpudata->int_window_exit;
1804 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1805 state->intr.evt_pending = cpudata->evt_pending;
1806 }
1807
1808 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1809 if (flags & NVMM_X64_STATE_FPU) {
1810 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1811 sizeof(state->fpu));
1812 }
1813 }
1814
1815 /* -------------------------------------------------------------------------- */
1816
1817 static void
1818 svm_asid_alloc(struct nvmm_cpu *vcpu)
1819 {
1820 struct svm_cpudata *cpudata = vcpu->cpudata;
1821 struct vmcb *vmcb = cpudata->vmcb;
1822 size_t i, oct, bit;
1823
1824 mutex_enter(&svm_asidlock);
1825
1826 for (i = 0; i < svm_maxasid; i++) {
1827 oct = i / 8;
1828 bit = i % 8;
1829
1830 if (svm_asidmap[oct] & __BIT(bit)) {
1831 continue;
1832 }
1833
1834 svm_asidmap[oct] |= __BIT(bit);
1835 vmcb->ctrl.guest_asid = i;
1836 mutex_exit(&svm_asidlock);
1837 return;
1838 }
1839
1840 /*
1841 * No free ASID. Use the last one, which is shared and requires
1842 * special TLB handling.
1843 */
1844 cpudata->shared_asid = true;
1845 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1846 mutex_exit(&svm_asidlock);
1847 }
1848
1849 static void
1850 svm_asid_free(struct nvmm_cpu *vcpu)
1851 {
1852 struct svm_cpudata *cpudata = vcpu->cpudata;
1853 struct vmcb *vmcb = cpudata->vmcb;
1854 size_t oct, bit;
1855
1856 if (cpudata->shared_asid) {
1857 return;
1858 }
1859
1860 oct = vmcb->ctrl.guest_asid / 8;
1861 bit = vmcb->ctrl.guest_asid % 8;
1862
1863 mutex_enter(&svm_asidlock);
1864 svm_asidmap[oct] &= ~__BIT(bit);
1865 mutex_exit(&svm_asidlock);
1866 }
1867
1868 static void
1869 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1870 {
1871 struct svm_cpudata *cpudata = vcpu->cpudata;
1872 struct vmcb *vmcb = cpudata->vmcb;
1873
1874 /* Allow reads/writes of Control Registers. */
1875 vmcb->ctrl.intercept_cr = 0;
1876
1877 /* Allow reads/writes of Debug Registers. */
1878 vmcb->ctrl.intercept_dr = 0;
1879
1880 /* Allow exceptions 0 to 31. */
1881 vmcb->ctrl.intercept_vec = 0;
1882
1883 /*
1884 * Allow:
1885 * - SMI [smm interrupts]
1886 * - VINTR [virtual interrupts]
1887 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1888 * - RIDTR [reads of IDTR]
1889 * - RGDTR [reads of GDTR]
1890 * - RLDTR [reads of LDTR]
1891 * - RTR [reads of TR]
1892 * - WIDTR [writes of IDTR]
1893 * - WGDTR [writes of GDTR]
1894 * - WLDTR [writes of LDTR]
1895 * - WTR [writes of TR]
1896 * - RDTSC [rdtsc instruction]
1897 * - PUSHF [pushf instruction]
1898 * - POPF [popf instruction]
1899 * - IRET [iret instruction]
1900 * - INTN [int $n instructions]
1901 * - INVD [invd instruction]
1902 * - PAUSE [pause instruction]
1903 * - INVLPG [invplg instruction]
1904 * - TASKSW [task switches]
1905 *
1906 * Intercept the rest below.
1907 */
1908 vmcb->ctrl.intercept_misc1 =
1909 VMCB_CTRL_INTERCEPT_INTR |
1910 VMCB_CTRL_INTERCEPT_NMI |
1911 VMCB_CTRL_INTERCEPT_INIT |
1912 VMCB_CTRL_INTERCEPT_RDPMC |
1913 VMCB_CTRL_INTERCEPT_CPUID |
1914 VMCB_CTRL_INTERCEPT_RSM |
1915 VMCB_CTRL_INTERCEPT_HLT |
1916 VMCB_CTRL_INTERCEPT_INVLPGA |
1917 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1918 VMCB_CTRL_INTERCEPT_MSR_PROT |
1919 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1920 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1921
1922 /*
1923 * Allow:
1924 * - ICEBP [icebp instruction]
1925 * - WBINVD [wbinvd instruction]
1926 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1927 *
1928 * Intercept the rest below.
1929 */
1930 vmcb->ctrl.intercept_misc2 =
1931 VMCB_CTRL_INTERCEPT_VMRUN |
1932 VMCB_CTRL_INTERCEPT_VMMCALL |
1933 VMCB_CTRL_INTERCEPT_VMLOAD |
1934 VMCB_CTRL_INTERCEPT_VMSAVE |
1935 VMCB_CTRL_INTERCEPT_STGI |
1936 VMCB_CTRL_INTERCEPT_CLGI |
1937 VMCB_CTRL_INTERCEPT_SKINIT |
1938 VMCB_CTRL_INTERCEPT_RDTSCP |
1939 VMCB_CTRL_INTERCEPT_MONITOR |
1940 VMCB_CTRL_INTERCEPT_MWAIT |
1941 VMCB_CTRL_INTERCEPT_XSETBV;
1942
1943 /* Intercept all I/O accesses. */
1944 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1945 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1946
1947 /* Allow direct access to certain MSRs. */
1948 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1949 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1950 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1951 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1952 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1953 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1954 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1955 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1956 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1957 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1958 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1959 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1960 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1961 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1962 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1963
1964 /* Generate ASID. */
1965 svm_asid_alloc(vcpu);
1966
1967 /* Virtual TPR. */
1968 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
1969
1970 /* Enable Nested Paging. */
1971 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
1972 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
1973
1974 /* Init XSAVE header. */
1975 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1976 cpudata->gfpu.xsh_xcomp_bv = 0;
1977
1978 /* These MSRs are static. */
1979 cpudata->star = rdmsr(MSR_STAR);
1980 cpudata->lstar = rdmsr(MSR_LSTAR);
1981 cpudata->cstar = rdmsr(MSR_CSTAR);
1982 cpudata->sfmask = rdmsr(MSR_SFMASK);
1983
1984 /* Install the RESET state. */
1985 svm_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
1986 }
1987
1988 static int
1989 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1990 {
1991 struct svm_cpudata *cpudata;
1992 int error;
1993
1994 /* Allocate the SVM cpudata. */
1995 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
1996 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
1997 UVM_KMF_WIRED|UVM_KMF_ZERO);
1998 vcpu->cpudata = cpudata;
1999
2000 /* VMCB */
2001 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2002 VMCB_NPAGES);
2003 if (error)
2004 goto error;
2005
2006 /* I/O Bitmap */
2007 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2008 IOBM_NPAGES);
2009 if (error)
2010 goto error;
2011
2012 /* MSR Bitmap */
2013 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2014 MSRBM_NPAGES);
2015 if (error)
2016 goto error;
2017
2018 /* Init the VCPU info. */
2019 svm_vcpu_init(mach, vcpu);
2020
2021 return 0;
2022
2023 error:
2024 if (cpudata->vmcb_pa) {
2025 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2026 VMCB_NPAGES);
2027 }
2028 if (cpudata->iobm_pa) {
2029 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2030 IOBM_NPAGES);
2031 }
2032 if (cpudata->msrbm_pa) {
2033 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2034 MSRBM_NPAGES);
2035 }
2036 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2037 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2038 return error;
2039 }
2040
2041 static void
2042 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2043 {
2044 struct svm_cpudata *cpudata = vcpu->cpudata;
2045
2046 svm_asid_free(vcpu);
2047
2048 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2049 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2050 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2051
2052 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2053 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2054 }
2055
2056 /* -------------------------------------------------------------------------- */
2057
2058 static void
2059 svm_tlb_flush(struct pmap *pm)
2060 {
2061 struct nvmm_machine *mach = pm->pm_data;
2062 struct svm_machdata *machdata = mach->machdata;
2063
2064 atomic_inc_64(&machdata->mach_htlb_gen);
2065
2066 /* Generates IPIs, which cause #VMEXITs. */
2067 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2068 }
2069
2070 static void
2071 svm_machine_create(struct nvmm_machine *mach)
2072 {
2073 struct svm_machdata *machdata;
2074
2075 /* Fill in pmap info. */
2076 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2077 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2078
2079 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2080 mach->machdata = machdata;
2081
2082 /* Start with an hTLB flush everywhere. */
2083 machdata->mach_htlb_gen = 1;
2084 }
2085
2086 static void
2087 svm_machine_destroy(struct nvmm_machine *mach)
2088 {
2089 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2090 }
2091
2092 static int
2093 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2094 {
2095 struct nvmm_x86_conf_cpuid *cpuid = data;
2096 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2097 size_t i;
2098
2099 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2100 return EINVAL;
2101 }
2102
2103 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2104 (cpuid->set.ebx & cpuid->del.ebx) ||
2105 (cpuid->set.ecx & cpuid->del.ecx) ||
2106 (cpuid->set.edx & cpuid->del.edx))) {
2107 return EINVAL;
2108 }
2109
2110 /* If already here, replace. */
2111 for (i = 0; i < SVM_NCPUIDS; i++) {
2112 if (!machdata->cpuidpresent[i]) {
2113 continue;
2114 }
2115 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2116 memcpy(&machdata->cpuid[i], cpuid,
2117 sizeof(struct nvmm_x86_conf_cpuid));
2118 return 0;
2119 }
2120 }
2121
2122 /* Not here, insert. */
2123 for (i = 0; i < SVM_NCPUIDS; i++) {
2124 if (!machdata->cpuidpresent[i]) {
2125 machdata->cpuidpresent[i] = true;
2126 memcpy(&machdata->cpuid[i], cpuid,
2127 sizeof(struct nvmm_x86_conf_cpuid));
2128 return 0;
2129 }
2130 }
2131
2132 return ENOBUFS;
2133 }
2134
2135 /* -------------------------------------------------------------------------- */
2136
2137 static bool
2138 svm_ident(void)
2139 {
2140 u_int descs[4];
2141 uint64_t msr;
2142
2143 if (cpu_vendor != CPUVENDOR_AMD) {
2144 return false;
2145 }
2146 if (!(cpu_feature[3] & CPUID_SVM)) {
2147 return false;
2148 }
2149
2150 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2151 return false;
2152 }
2153 x86_cpuid(0x8000000a, descs);
2154
2155 /* Want Nested Paging. */
2156 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2157 return false;
2158 }
2159
2160 /* Want nRIP. */
2161 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2162 return false;
2163 }
2164
2165 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2166
2167 msr = rdmsr(MSR_VMCR);
2168 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2169 return false;
2170 }
2171
2172 return true;
2173 }
2174
2175 static void
2176 svm_init_asid(uint32_t maxasid)
2177 {
2178 size_t i, j, allocsz;
2179
2180 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2181
2182 /* Arbitrarily limit. */
2183 maxasid = uimin(maxasid, 8192);
2184
2185 svm_maxasid = maxasid;
2186 allocsz = roundup(maxasid, 8) / 8;
2187 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2188
2189 /* ASID 0 is reserved for the host. */
2190 svm_asidmap[0] |= __BIT(0);
2191
2192 /* ASID n-1 is special, we share it. */
2193 i = (maxasid - 1) / 8;
2194 j = (maxasid - 1) % 8;
2195 svm_asidmap[i] |= __BIT(j);
2196 }
2197
2198 static void
2199 svm_change_cpu(void *arg1, void *arg2)
2200 {
2201 bool enable = (bool)arg1;
2202 uint64_t msr;
2203
2204 msr = rdmsr(MSR_VMCR);
2205 if (msr & VMCR_SVMED) {
2206 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2207 }
2208
2209 if (!enable) {
2210 wrmsr(MSR_VM_HSAVE_PA, 0);
2211 }
2212
2213 msr = rdmsr(MSR_EFER);
2214 if (enable) {
2215 msr |= EFER_SVME;
2216 } else {
2217 msr &= ~EFER_SVME;
2218 }
2219 wrmsr(MSR_EFER, msr);
2220
2221 if (enable) {
2222 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2223 }
2224 }
2225
2226 static void
2227 svm_init(void)
2228 {
2229 CPU_INFO_ITERATOR cii;
2230 struct cpu_info *ci;
2231 struct vm_page *pg;
2232 u_int descs[4];
2233 uint64_t xc;
2234
2235 x86_cpuid(0x8000000a, descs);
2236
2237 /* The guest TLB flush command. */
2238 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2239 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2240 } else {
2241 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2242 }
2243
2244 /* Init the ASID. */
2245 svm_init_asid(descs[1]);
2246
2247 /* Init the XCR0 mask. */
2248 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2249
2250 memset(hsave, 0, sizeof(hsave));
2251 for (CPU_INFO_FOREACH(cii, ci)) {
2252 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2253 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2254 }
2255
2256 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2257 xc_wait(xc);
2258 }
2259
2260 static void
2261 svm_fini_asid(void)
2262 {
2263 size_t allocsz;
2264
2265 allocsz = roundup(svm_maxasid, 8) / 8;
2266 kmem_free(svm_asidmap, allocsz);
2267
2268 mutex_destroy(&svm_asidlock);
2269 }
2270
2271 static void
2272 svm_fini(void)
2273 {
2274 uint64_t xc;
2275 size_t i;
2276
2277 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2278 xc_wait(xc);
2279
2280 for (i = 0; i < MAXCPUS; i++) {
2281 if (hsave[i].pa != 0)
2282 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2283 }
2284
2285 svm_fini_asid();
2286 }
2287
2288 static void
2289 svm_capability(struct nvmm_capability *cap)
2290 {
2291 cap->u.x86.xcr0_mask = svm_xcr0_mask;
2292 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2293 cap->u.x86.conf_cpuid_maxops = SVM_NCPUIDS;
2294 }
2295
2296 const struct nvmm_impl nvmm_x86_svm = {
2297 .ident = svm_ident,
2298 .init = svm_init,
2299 .fini = svm_fini,
2300 .capability = svm_capability,
2301 .conf_max = NVMM_X86_NCONF,
2302 .conf_sizes = svm_conf_sizes,
2303 .state_size = sizeof(struct nvmm_x64_state),
2304 .machine_create = svm_machine_create,
2305 .machine_destroy = svm_machine_destroy,
2306 .machine_configure = svm_machine_configure,
2307 .vcpu_create = svm_vcpu_create,
2308 .vcpu_destroy = svm_vcpu_destroy,
2309 .vcpu_setstate = svm_vcpu_setstate,
2310 .vcpu_getstate = svm_vcpu_getstate,
2311 .vcpu_inject = svm_vcpu_inject,
2312 .vcpu_run = svm_vcpu_run
2313 };
2314