nvmm_x86_svm.c revision 1.44 1 /* $NetBSD: nvmm_x86_svm.c,v 1.44 2019/04/29 18:54:25 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.44 2019/04/29 18:54:25 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
206 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
207 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
208 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
209 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
210 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
211 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
212 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
213 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
214 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
215 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
216 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
217 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
218 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
219 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
220 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
221 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
222 #define VMCB_EXITCODE_NPF 0x0400
223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
224 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
225 #define VMCB_EXITCODE_VMGEXIT 0x0403
226 #define VMCB_EXITCODE_INVALID -1
227
228 /* -------------------------------------------------------------------------- */
229
230 struct vmcb_ctrl {
231 uint32_t intercept_cr;
232 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
233 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
234
235 uint32_t intercept_dr;
236 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
237 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
238
239 uint32_t intercept_vec;
240 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
241
242 uint32_t intercept_misc1;
243 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
244 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
245 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
246 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
247 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
249 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
250 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
251 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
252 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
253 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
254 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
255 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
256 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
257 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
258 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
259 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
260 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
261 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
262 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
263 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
264 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
265 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
266 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
267 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
268 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
269 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
271 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
272 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
275
276 uint32_t intercept_misc2;
277 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
278 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
279 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
280 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
281 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
282 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
283 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
284 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
285 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
286 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
287 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
288 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(12)
289 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
292
293 uint8_t rsvd1[40];
294 uint16_t pause_filt_thresh;
295 uint16_t pause_filt_cnt;
296 uint64_t iopm_base_pa;
297 uint64_t msrpm_base_pa;
298 uint64_t tsc_offset;
299 uint32_t guest_asid;
300
301 uint32_t tlb_ctrl;
302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
305
306 uint64_t v;
307 #define VMCB_CTRL_V_TPR __BITS(3,0)
308 #define VMCB_CTRL_V_IRQ __BIT(8)
309 #define VMCB_CTRL_V_VGIF __BIT(9)
310 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
311 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
312 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
313 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
314 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
315 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
316
317 uint64_t intr;
318 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
319
320 uint64_t exitcode;
321 uint64_t exitinfo1;
322 uint64_t exitinfo2;
323
324 uint64_t exitintinfo;
325 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
326 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
327 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
328 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
330
331 uint64_t enable1;
332 #define VMCB_CTRL_ENABLE_NP __BIT(0)
333 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
334 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
335
336 uint64_t avic;
337 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
338
339 uint64_t ghcb;
340
341 uint64_t eventinj;
342 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
345 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
346 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
347
348 uint64_t n_cr3;
349
350 uint64_t enable2;
351 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
352 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
353
354 uint32_t vmcb_clean;
355 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
356 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
357 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
358 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
359 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
360 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
361 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
362 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
363 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
364 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
365 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
366 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
367
368 uint32_t rsvd2;
369 uint64_t nrip;
370 uint8_t inst_len;
371 uint8_t inst_bytes[15];
372 uint64_t avic_abpp;
373 uint64_t rsvd3;
374 uint64_t avic_ltp;
375
376 uint64_t avic_phys;
377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
379
380 uint64_t rsvd4;
381 uint64_t vmcb_ptr;
382
383 uint8_t pad[752];
384 } __packed;
385
386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
387
388 struct vmcb_segment {
389 uint16_t selector;
390 uint16_t attrib; /* hidden */
391 uint32_t limit; /* hidden */
392 uint64_t base; /* hidden */
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_segment) == 16);
396
397 struct vmcb_state {
398 struct vmcb_segment es;
399 struct vmcb_segment cs;
400 struct vmcb_segment ss;
401 struct vmcb_segment ds;
402 struct vmcb_segment fs;
403 struct vmcb_segment gs;
404 struct vmcb_segment gdt;
405 struct vmcb_segment ldt;
406 struct vmcb_segment idt;
407 struct vmcb_segment tr;
408 uint8_t rsvd1[43];
409 uint8_t cpl;
410 uint8_t rsvd2[4];
411 uint64_t efer;
412 uint8_t rsvd3[112];
413 uint64_t cr4;
414 uint64_t cr3;
415 uint64_t cr0;
416 uint64_t dr7;
417 uint64_t dr6;
418 uint64_t rflags;
419 uint64_t rip;
420 uint8_t rsvd4[88];
421 uint64_t rsp;
422 uint8_t rsvd5[24];
423 uint64_t rax;
424 uint64_t star;
425 uint64_t lstar;
426 uint64_t cstar;
427 uint64_t sfmask;
428 uint64_t kernelgsbase;
429 uint64_t sysenter_cs;
430 uint64_t sysenter_esp;
431 uint64_t sysenter_eip;
432 uint64_t cr2;
433 uint8_t rsvd6[32];
434 uint64_t g_pat;
435 uint64_t dbgctl;
436 uint64_t br_from;
437 uint64_t br_to;
438 uint64_t int_from;
439 uint64_t int_to;
440 uint8_t pad[2408];
441 } __packed;
442
443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
444
445 struct vmcb {
446 struct vmcb_ctrl ctrl;
447 struct vmcb_state state;
448 } __packed;
449
450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
452
453 /* -------------------------------------------------------------------------- */
454
455 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
456 static void svm_vcpu_state_commit(struct nvmm_cpu *);
457
458 struct svm_hsave {
459 paddr_t pa;
460 };
461
462 static struct svm_hsave hsave[MAXCPUS];
463
464 static uint8_t *svm_asidmap __read_mostly;
465 static uint32_t svm_maxasid __read_mostly;
466 static kmutex_t svm_asidlock __cacheline_aligned;
467
468 static bool svm_decode_assist __read_mostly;
469 static uint32_t svm_ctrl_tlb_flush __read_mostly;
470
471 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
472 static uint64_t svm_xcr0_mask __read_mostly;
473
474 #define SVM_NCPUIDS 32
475
476 #define VMCB_NPAGES 1
477
478 #define MSRBM_NPAGES 2
479 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
480
481 #define IOBM_NPAGES 3
482 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
483
484 /* Does not include EFER_LMSLE. */
485 #define EFER_VALID \
486 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
487
488 #define EFER_TLB_FLUSH \
489 (EFER_NXE|EFER_LMA|EFER_LME)
490 #define CR0_TLB_FLUSH \
491 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
492 #define CR4_TLB_FLUSH \
493 (CR4_PGE|CR4_PAE|CR4_PSE)
494
495 /* -------------------------------------------------------------------------- */
496
497 struct svm_machdata {
498 bool cpuidpresent[SVM_NCPUIDS];
499 struct nvmm_x86_conf_cpuid cpuid[SVM_NCPUIDS];
500 volatile uint64_t mach_htlb_gen;
501 };
502
503 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
504 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
505 };
506
507 struct svm_cpudata {
508 /* General */
509 bool shared_asid;
510 bool gtlb_want_flush;
511 bool gtsc_want_update;
512 uint64_t vcpu_htlb_gen;
513
514 /* VMCB */
515 struct vmcb *vmcb;
516 paddr_t vmcb_pa;
517
518 /* I/O bitmap */
519 uint8_t *iobm;
520 paddr_t iobm_pa;
521
522 /* MSR bitmap */
523 uint8_t *msrbm;
524 paddr_t msrbm_pa;
525
526 /* Host state */
527 uint64_t hxcr0;
528 uint64_t star;
529 uint64_t lstar;
530 uint64_t cstar;
531 uint64_t sfmask;
532 uint64_t fsbase;
533 uint64_t kernelgsbase;
534 bool ts_set;
535 struct xsave_header hfpu __aligned(64);
536
537 /* Intr state */
538 bool int_window_exit;
539 bool nmi_window_exit;
540 bool evt_pending;
541
542 /* Guest state */
543 uint64_t gxcr0;
544 uint64_t gprs[NVMM_X64_NGPR];
545 uint64_t drs[NVMM_X64_NDR];
546 uint64_t gtsc;
547 struct xsave_header gfpu __aligned(64);
548 };
549
550 static void
551 svm_vmcb_cache_default(struct vmcb *vmcb)
552 {
553 vmcb->ctrl.vmcb_clean =
554 VMCB_CTRL_VMCB_CLEAN_I |
555 VMCB_CTRL_VMCB_CLEAN_IOPM |
556 VMCB_CTRL_VMCB_CLEAN_ASID |
557 VMCB_CTRL_VMCB_CLEAN_TPR |
558 VMCB_CTRL_VMCB_CLEAN_NP |
559 VMCB_CTRL_VMCB_CLEAN_CR |
560 VMCB_CTRL_VMCB_CLEAN_DR |
561 VMCB_CTRL_VMCB_CLEAN_DT |
562 VMCB_CTRL_VMCB_CLEAN_SEG |
563 VMCB_CTRL_VMCB_CLEAN_CR2 |
564 VMCB_CTRL_VMCB_CLEAN_LBR |
565 VMCB_CTRL_VMCB_CLEAN_AVIC;
566 }
567
568 static void
569 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
570 {
571 if (flags & NVMM_X64_STATE_SEGS) {
572 vmcb->ctrl.vmcb_clean &=
573 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
574 }
575 if (flags & NVMM_X64_STATE_CRS) {
576 vmcb->ctrl.vmcb_clean &=
577 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
578 VMCB_CTRL_VMCB_CLEAN_TPR);
579 }
580 if (flags & NVMM_X64_STATE_DRS) {
581 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
582 }
583 if (flags & NVMM_X64_STATE_MSRS) {
584 /* CR for EFER, NP for PAT. */
585 vmcb->ctrl.vmcb_clean &=
586 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
587 }
588 }
589
590 static inline void
591 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
592 {
593 vmcb->ctrl.vmcb_clean &= ~flags;
594 }
595
596 static inline void
597 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
598 {
599 vmcb->ctrl.vmcb_clean = 0;
600 }
601
602 #define SVM_EVENT_TYPE_HW_INT 0
603 #define SVM_EVENT_TYPE_NMI 2
604 #define SVM_EVENT_TYPE_EXC 3
605 #define SVM_EVENT_TYPE_SW_INT 4
606
607 static void
608 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
609 {
610 struct svm_cpudata *cpudata = vcpu->cpudata;
611 struct vmcb *vmcb = cpudata->vmcb;
612
613 if (nmi) {
614 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
615 cpudata->nmi_window_exit = true;
616 } else {
617 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
618 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
619 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
620 cpudata->int_window_exit = true;
621 }
622
623 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
624 }
625
626 static void
627 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
628 {
629 struct svm_cpudata *cpudata = vcpu->cpudata;
630 struct vmcb *vmcb = cpudata->vmcb;
631
632 if (nmi) {
633 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
634 cpudata->nmi_window_exit = false;
635 } else {
636 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
637 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
638 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
639 cpudata->int_window_exit = false;
640 }
641
642 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
643 }
644
645 static inline int
646 svm_event_has_error(uint64_t vector)
647 {
648 switch (vector) {
649 case 8: /* #DF */
650 case 10: /* #TS */
651 case 11: /* #NP */
652 case 12: /* #SS */
653 case 13: /* #GP */
654 case 14: /* #PF */
655 case 17: /* #AC */
656 case 30: /* #SX */
657 return 1;
658 default:
659 return 0;
660 }
661 }
662
663 static int
664 svm_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
665 struct nvmm_event *event)
666 {
667 struct svm_cpudata *cpudata = vcpu->cpudata;
668 struct vmcb *vmcb = cpudata->vmcb;
669 int type = 0, err = 0;
670
671 if (event->vector >= 256) {
672 return EINVAL;
673 }
674
675 switch (event->type) {
676 case NVMM_EVENT_INTERRUPT_HW:
677 type = SVM_EVENT_TYPE_HW_INT;
678 if (event->vector == 2) {
679 type = SVM_EVENT_TYPE_NMI;
680 svm_event_waitexit_enable(vcpu, true);
681 }
682 err = 0;
683 break;
684 case NVMM_EVENT_INTERRUPT_SW:
685 return EINVAL;
686 case NVMM_EVENT_EXCEPTION:
687 type = SVM_EVENT_TYPE_EXC;
688 if (event->vector == 2 || event->vector >= 32)
689 return EINVAL;
690 if (event->vector == 3 || event->vector == 0)
691 return EINVAL;
692 err = svm_event_has_error(event->vector);
693 break;
694 default:
695 return EINVAL;
696 }
697
698 vmcb->ctrl.eventinj =
699 __SHIFTIN(event->vector, VMCB_CTRL_EVENTINJ_VECTOR) |
700 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
701 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
702 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
703 __SHIFTIN(event->u.error, VMCB_CTRL_EVENTINJ_ERRORCODE);
704
705 cpudata->evt_pending = true;
706
707 return 0;
708 }
709
710 static void
711 svm_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
712 {
713 struct nvmm_event event;
714 int ret __diagused;
715
716 event.type = NVMM_EVENT_EXCEPTION;
717 event.vector = 6;
718 event.u.error = 0;
719
720 ret = svm_vcpu_inject(mach, vcpu, &event);
721 KASSERT(ret == 0);
722 }
723
724 static void
725 svm_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
726 {
727 struct nvmm_event event;
728 int ret __diagused;
729
730 event.type = NVMM_EVENT_EXCEPTION;
731 event.vector = 13;
732 event.u.error = 0;
733
734 ret = svm_vcpu_inject(mach, vcpu, &event);
735 KASSERT(ret == 0);
736 }
737
738 static inline void
739 svm_inkernel_advance(struct vmcb *vmcb)
740 {
741 /*
742 * Maybe we should also apply single-stepping and debug exceptions.
743 * Matters for guest-ring3, because it can execute 'cpuid' under a
744 * debugger.
745 */
746 vmcb->state.rip = vmcb->ctrl.nrip;
747 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
748 }
749
750 static void
751 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
752 {
753 struct svm_cpudata *cpudata = vcpu->cpudata;
754 uint64_t cr4;
755
756 switch (eax) {
757 case 0x00000001:
758 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
759
760 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
761 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
762 CPUID_LOCAL_APIC_ID);
763
764 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
765 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
766
767 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
768
769 /* CPUID2_OSXSAVE depends on CR4. */
770 cr4 = cpudata->vmcb->state.cr4;
771 if (!(cr4 & CR4_OSXSAVE)) {
772 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
773 }
774 break;
775 case 0x00000005:
776 case 0x00000006:
777 cpudata->vmcb->state.rax = 0;
778 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
779 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
780 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
781 break;
782 case 0x00000007:
783 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
784 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
785 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
786 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
787 break;
788 case 0x0000000D:
789 if (svm_xcr0_mask == 0) {
790 break;
791 }
792 switch (ecx) {
793 case 0:
794 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
795 if (cpudata->gxcr0 & XCR0_SSE) {
796 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
797 } else {
798 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
799 }
800 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
801 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
802 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
803 break;
804 case 1:
805 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
806 break;
807 }
808 break;
809 case 0x40000000:
810 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
811 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
812 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
813 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
814 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
815 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
816 break;
817 case 0x80000001:
818 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
819 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
820 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
821 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
822 break;
823 default:
824 break;
825 }
826 }
827
828 static void
829 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
830 struct nvmm_exit *exit)
831 {
832 struct svm_machdata *machdata = mach->machdata;
833 struct svm_cpudata *cpudata = vcpu->cpudata;
834 struct nvmm_x86_conf_cpuid *cpuid;
835 uint64_t eax, ecx;
836 u_int descs[4];
837 size_t i;
838
839 eax = cpudata->vmcb->state.rax;
840 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
841 x86_cpuid2(eax, ecx, descs);
842
843 cpudata->vmcb->state.rax = descs[0];
844 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
845 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
846 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
847
848 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
849
850 for (i = 0; i < SVM_NCPUIDS; i++) {
851 cpuid = &machdata->cpuid[i];
852 if (!machdata->cpuidpresent[i]) {
853 continue;
854 }
855 if (cpuid->leaf != eax) {
856 continue;
857 }
858
859 /* del */
860 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
861 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
862 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
863 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
864
865 /* set */
866 cpudata->vmcb->state.rax |= cpuid->set.eax;
867 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
868 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
869 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
870
871 break;
872 }
873
874 svm_inkernel_advance(cpudata->vmcb);
875 exit->reason = NVMM_EXIT_NONE;
876 }
877
878 static void
879 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
880 struct nvmm_exit *exit)
881 {
882 struct svm_cpudata *cpudata = vcpu->cpudata;
883 struct vmcb *vmcb = cpudata->vmcb;
884
885 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
886 svm_event_waitexit_disable(vcpu, false);
887 }
888
889 svm_inkernel_advance(cpudata->vmcb);
890 exit->reason = NVMM_EXIT_HALTED;
891 }
892
893 #define SVM_EXIT_IO_PORT __BITS(31,16)
894 #define SVM_EXIT_IO_SEG __BITS(12,10)
895 #define SVM_EXIT_IO_A64 __BIT(9)
896 #define SVM_EXIT_IO_A32 __BIT(8)
897 #define SVM_EXIT_IO_A16 __BIT(7)
898 #define SVM_EXIT_IO_SZ32 __BIT(6)
899 #define SVM_EXIT_IO_SZ16 __BIT(5)
900 #define SVM_EXIT_IO_SZ8 __BIT(4)
901 #define SVM_EXIT_IO_REP __BIT(3)
902 #define SVM_EXIT_IO_STR __BIT(2)
903 #define SVM_EXIT_IO_IN __BIT(0)
904
905 static void
906 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
907 struct nvmm_exit *exit)
908 {
909 struct svm_cpudata *cpudata = vcpu->cpudata;
910 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
911 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
912
913 exit->reason = NVMM_EXIT_IO;
914
915 if (info & SVM_EXIT_IO_IN) {
916 exit->u.io.type = NVMM_EXIT_IO_IN;
917 } else {
918 exit->u.io.type = NVMM_EXIT_IO_OUT;
919 }
920
921 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
922
923 if (svm_decode_assist) {
924 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
925 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
926 } else {
927 exit->u.io.seg = -1;
928 }
929
930 if (info & SVM_EXIT_IO_A64) {
931 exit->u.io.address_size = 8;
932 } else if (info & SVM_EXIT_IO_A32) {
933 exit->u.io.address_size = 4;
934 } else if (info & SVM_EXIT_IO_A16) {
935 exit->u.io.address_size = 2;
936 }
937
938 if (info & SVM_EXIT_IO_SZ32) {
939 exit->u.io.operand_size = 4;
940 } else if (info & SVM_EXIT_IO_SZ16) {
941 exit->u.io.operand_size = 2;
942 } else if (info & SVM_EXIT_IO_SZ8) {
943 exit->u.io.operand_size = 1;
944 }
945
946 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
947 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
948 exit->u.io.npc = nextpc;
949
950 svm_vcpu_state_provide(vcpu,
951 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
952 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
953 }
954
955 static const uint64_t msr_ignore_list[] = {
956 0xc0010055, /* MSR_CMPHALT */
957 MSR_DE_CFG,
958 MSR_IC_CFG,
959 MSR_UCODE_AMD_PATCHLEVEL
960 };
961
962 static bool
963 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
964 struct nvmm_exit *exit)
965 {
966 struct svm_cpudata *cpudata = vcpu->cpudata;
967 struct vmcb *vmcb = cpudata->vmcb;
968 uint64_t val;
969 size_t i;
970
971 switch (exit->u.msr.type) {
972 case NVMM_EXIT_MSR_RDMSR:
973 if (exit->u.msr.msr == MSR_NB_CFG) {
974 val = NB_CFG_INITAPICCPUIDLO;
975 vmcb->state.rax = (val & 0xFFFFFFFF);
976 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
977 goto handled;
978 }
979 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
980 if (msr_ignore_list[i] != exit->u.msr.msr)
981 continue;
982 val = 0;
983 vmcb->state.rax = (val & 0xFFFFFFFF);
984 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
985 goto handled;
986 }
987 break;
988 case NVMM_EXIT_MSR_WRMSR:
989 if (exit->u.msr.msr == MSR_EFER) {
990 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
991 goto error;
992 }
993 if ((vmcb->state.efer ^ exit->u.msr.val) &
994 EFER_TLB_FLUSH) {
995 cpudata->gtlb_want_flush = true;
996 }
997 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
998 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
999 goto handled;
1000 }
1001 if (exit->u.msr.msr == MSR_TSC) {
1002 cpudata->gtsc = exit->u.msr.val;
1003 cpudata->gtsc_want_update = true;
1004 goto handled;
1005 }
1006 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1007 if (msr_ignore_list[i] != exit->u.msr.msr)
1008 continue;
1009 goto handled;
1010 }
1011 break;
1012 }
1013
1014 return false;
1015
1016 handled:
1017 svm_inkernel_advance(cpudata->vmcb);
1018 return true;
1019
1020 error:
1021 svm_inject_gp(mach, vcpu);
1022 return true;
1023 }
1024
1025 static void
1026 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1027 struct nvmm_exit *exit)
1028 {
1029 struct svm_cpudata *cpudata = vcpu->cpudata;
1030 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1031
1032 if (info == 0) {
1033 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1034 } else {
1035 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1036 }
1037
1038 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1039
1040 if (info == 1) {
1041 uint64_t rdx, rax;
1042 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1043 rax = cpudata->vmcb->state.rax;
1044 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1045 } else {
1046 exit->u.msr.val = 0;
1047 }
1048
1049 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1050 exit->reason = NVMM_EXIT_NONE;
1051 return;
1052 }
1053
1054 exit->reason = NVMM_EXIT_MSR;
1055 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1056
1057 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1058 }
1059
1060 static void
1061 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1062 struct nvmm_exit *exit)
1063 {
1064 struct svm_cpudata *cpudata = vcpu->cpudata;
1065 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1066
1067 exit->reason = NVMM_EXIT_MEMORY;
1068 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1069 exit->u.mem.prot = PROT_WRITE;
1070 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1071 exit->u.mem.prot = PROT_EXEC;
1072 else
1073 exit->u.mem.prot = PROT_READ;
1074 exit->u.mem.gpa = gpa;
1075 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1076 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1077 sizeof(exit->u.mem.inst_bytes));
1078
1079 svm_vcpu_state_provide(vcpu,
1080 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1081 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1082 }
1083
1084 static void
1085 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1086 {
1087 exit->u.insn.npc = vmcb->ctrl.nrip;
1088 exit->reason = reason;
1089 }
1090
1091 static void
1092 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1093 struct nvmm_exit *exit)
1094 {
1095 struct svm_cpudata *cpudata = vcpu->cpudata;
1096 struct vmcb *vmcb = cpudata->vmcb;
1097 uint64_t val;
1098
1099 exit->reason = NVMM_EXIT_NONE;
1100
1101 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1102 (vmcb->state.rax & 0xFFFFFFFF);
1103
1104 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1105 goto error;
1106 } else if (__predict_false(vmcb->state.cpl != 0)) {
1107 goto error;
1108 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1109 goto error;
1110 } else if (__predict_false((val & XCR0_X87) == 0)) {
1111 goto error;
1112 }
1113
1114 cpudata->gxcr0 = val;
1115
1116 svm_inkernel_advance(cpudata->vmcb);
1117 return;
1118
1119 error:
1120 svm_inject_gp(mach, vcpu);
1121 }
1122
1123 static void
1124 svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1125 {
1126 exit->u.inv.hwcode = code;
1127 exit->reason = NVMM_EXIT_INVALID;
1128 }
1129
1130 /* -------------------------------------------------------------------------- */
1131
1132 static void
1133 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1134 {
1135 struct svm_cpudata *cpudata = vcpu->cpudata;
1136
1137 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1138
1139 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1140 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1141
1142 if (svm_xcr0_mask != 0) {
1143 cpudata->hxcr0 = rdxcr(0);
1144 wrxcr(0, cpudata->gxcr0);
1145 }
1146 }
1147
1148 static void
1149 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1150 {
1151 struct svm_cpudata *cpudata = vcpu->cpudata;
1152
1153 if (svm_xcr0_mask != 0) {
1154 cpudata->gxcr0 = rdxcr(0);
1155 wrxcr(0, cpudata->hxcr0);
1156 }
1157
1158 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1159 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1160
1161 if (cpudata->ts_set) {
1162 stts();
1163 }
1164 }
1165
1166 static void
1167 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1168 {
1169 struct svm_cpudata *cpudata = vcpu->cpudata;
1170
1171 x86_dbregs_save(curlwp);
1172
1173 ldr7(0);
1174
1175 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1176 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1177 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1178 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1179 }
1180
1181 static void
1182 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1183 {
1184 struct svm_cpudata *cpudata = vcpu->cpudata;
1185
1186 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1187 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1188 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1189 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1190
1191 x86_dbregs_restore(curlwp);
1192 }
1193
1194 static void
1195 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1196 {
1197 struct svm_cpudata *cpudata = vcpu->cpudata;
1198
1199 cpudata->fsbase = rdmsr(MSR_FSBASE);
1200 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1201 }
1202
1203 static void
1204 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1205 {
1206 struct svm_cpudata *cpudata = vcpu->cpudata;
1207
1208 wrmsr(MSR_STAR, cpudata->star);
1209 wrmsr(MSR_LSTAR, cpudata->lstar);
1210 wrmsr(MSR_CSTAR, cpudata->cstar);
1211 wrmsr(MSR_SFMASK, cpudata->sfmask);
1212 wrmsr(MSR_FSBASE, cpudata->fsbase);
1213 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1214 }
1215
1216 /* -------------------------------------------------------------------------- */
1217
1218 static inline void
1219 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1220 {
1221 struct svm_cpudata *cpudata = vcpu->cpudata;
1222
1223 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1224 cpudata->gtlb_want_flush = true;
1225 }
1226 }
1227
1228 static inline void
1229 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1230 {
1231 /*
1232 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1233 * executing on this hCPU and the hTLB already got flushed, or it
1234 * was executing on another hCPU in which case the catchup is done
1235 * in svm_gtlb_catchup().
1236 */
1237 }
1238
1239 static inline uint64_t
1240 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1241 {
1242 struct vmcb *vmcb = cpudata->vmcb;
1243 uint64_t machgen;
1244
1245 machgen = machdata->mach_htlb_gen;
1246 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1247 return machgen;
1248 }
1249
1250 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1251 return machgen;
1252 }
1253
1254 static inline void
1255 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1256 {
1257 struct vmcb *vmcb = cpudata->vmcb;
1258
1259 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1260 cpudata->vcpu_htlb_gen = machgen;
1261 }
1262 }
1263
1264 static inline void
1265 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1266 {
1267 cpudata->evt_pending = false;
1268
1269 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1270 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1271 cpudata->evt_pending = true;
1272 }
1273 }
1274
1275 static int
1276 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1277 struct nvmm_exit *exit)
1278 {
1279 struct nvmm_comm_page *comm = vcpu->comm;
1280 struct svm_machdata *machdata = mach->machdata;
1281 struct svm_cpudata *cpudata = vcpu->cpudata;
1282 struct vmcb *vmcb = cpudata->vmcb;
1283 uint64_t machgen;
1284 int hcpu, s;
1285
1286 svm_vcpu_state_commit(vcpu);
1287 comm->state_cached = 0;
1288
1289 kpreempt_disable();
1290 hcpu = cpu_number();
1291
1292 svm_gtlb_catchup(vcpu, hcpu);
1293 svm_htlb_catchup(vcpu, hcpu);
1294
1295 if (vcpu->hcpu_last != hcpu) {
1296 svm_vmcb_cache_flush_all(vmcb);
1297 cpudata->gtsc_want_update = true;
1298 }
1299
1300 svm_vcpu_guest_dbregs_enter(vcpu);
1301 svm_vcpu_guest_misc_enter(vcpu);
1302
1303 while (1) {
1304 if (cpudata->gtlb_want_flush) {
1305 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1306 } else {
1307 vmcb->ctrl.tlb_ctrl = 0;
1308 }
1309
1310 if (__predict_false(cpudata->gtsc_want_update)) {
1311 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1312 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1313 }
1314
1315 s = splhigh();
1316 machgen = svm_htlb_flush(machdata, cpudata);
1317 svm_vcpu_guest_fpu_enter(vcpu);
1318 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1319 svm_vcpu_guest_fpu_leave(vcpu);
1320 svm_htlb_flush_ack(cpudata, machgen);
1321 splx(s);
1322
1323 svm_vmcb_cache_default(vmcb);
1324
1325 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1326 cpudata->gtlb_want_flush = false;
1327 cpudata->gtsc_want_update = false;
1328 vcpu->hcpu_last = hcpu;
1329 }
1330 svm_exit_evt(cpudata, vmcb);
1331
1332 switch (vmcb->ctrl.exitcode) {
1333 case VMCB_EXITCODE_INTR:
1334 case VMCB_EXITCODE_NMI:
1335 exit->reason = NVMM_EXIT_NONE;
1336 break;
1337 case VMCB_EXITCODE_VINTR:
1338 svm_event_waitexit_disable(vcpu, false);
1339 exit->reason = NVMM_EXIT_INT_READY;
1340 break;
1341 case VMCB_EXITCODE_IRET:
1342 svm_event_waitexit_disable(vcpu, true);
1343 exit->reason = NVMM_EXIT_NMI_READY;
1344 break;
1345 case VMCB_EXITCODE_CPUID:
1346 svm_exit_cpuid(mach, vcpu, exit);
1347 break;
1348 case VMCB_EXITCODE_HLT:
1349 svm_exit_hlt(mach, vcpu, exit);
1350 break;
1351 case VMCB_EXITCODE_IOIO:
1352 svm_exit_io(mach, vcpu, exit);
1353 break;
1354 case VMCB_EXITCODE_MSR:
1355 svm_exit_msr(mach, vcpu, exit);
1356 break;
1357 case VMCB_EXITCODE_SHUTDOWN:
1358 exit->reason = NVMM_EXIT_SHUTDOWN;
1359 break;
1360 case VMCB_EXITCODE_RDPMC:
1361 case VMCB_EXITCODE_RSM:
1362 case VMCB_EXITCODE_INVLPGA:
1363 case VMCB_EXITCODE_VMRUN:
1364 case VMCB_EXITCODE_VMMCALL:
1365 case VMCB_EXITCODE_VMLOAD:
1366 case VMCB_EXITCODE_VMSAVE:
1367 case VMCB_EXITCODE_STGI:
1368 case VMCB_EXITCODE_CLGI:
1369 case VMCB_EXITCODE_SKINIT:
1370 case VMCB_EXITCODE_RDTSCP:
1371 svm_inject_ud(mach, vcpu);
1372 exit->reason = NVMM_EXIT_NONE;
1373 break;
1374 case VMCB_EXITCODE_MONITOR:
1375 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1376 break;
1377 case VMCB_EXITCODE_MWAIT:
1378 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1379 break;
1380 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1381 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1382 break;
1383 case VMCB_EXITCODE_XSETBV:
1384 svm_exit_xsetbv(mach, vcpu, exit);
1385 break;
1386 case VMCB_EXITCODE_NPF:
1387 svm_exit_npf(mach, vcpu, exit);
1388 break;
1389 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1390 default:
1391 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1392 break;
1393 }
1394
1395 /* If no reason to return to userland, keep rolling. */
1396 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1397 break;
1398 }
1399 if (curcpu()->ci_data.cpu_softints != 0) {
1400 break;
1401 }
1402 if (curlwp->l_flag & LW_USERRET) {
1403 break;
1404 }
1405 if (exit->reason != NVMM_EXIT_NONE) {
1406 break;
1407 }
1408 }
1409
1410 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1411
1412 svm_vcpu_guest_misc_leave(vcpu);
1413 svm_vcpu_guest_dbregs_leave(vcpu);
1414
1415 kpreempt_enable();
1416
1417 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1418 VMCB_CTRL_V_TPR);
1419 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1420
1421 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1422 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1423 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1424 cpudata->int_window_exit;
1425 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1426 cpudata->nmi_window_exit;
1427 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1428 cpudata->evt_pending;
1429
1430 return 0;
1431 }
1432
1433 /* -------------------------------------------------------------------------- */
1434
1435 static int
1436 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1437 {
1438 struct pglist pglist;
1439 paddr_t _pa;
1440 vaddr_t _va;
1441 size_t i;
1442 int ret;
1443
1444 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1445 &pglist, 1, 0);
1446 if (ret != 0)
1447 return ENOMEM;
1448 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1449 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1450 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1451 if (_va == 0)
1452 goto error;
1453
1454 for (i = 0; i < npages; i++) {
1455 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1456 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1457 }
1458 pmap_update(pmap_kernel());
1459
1460 memset((void *)_va, 0, npages * PAGE_SIZE);
1461
1462 *pa = _pa;
1463 *va = _va;
1464 return 0;
1465
1466 error:
1467 for (i = 0; i < npages; i++) {
1468 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1469 }
1470 return ENOMEM;
1471 }
1472
1473 static void
1474 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1475 {
1476 size_t i;
1477
1478 pmap_kremove(va, npages * PAGE_SIZE);
1479 pmap_update(pmap_kernel());
1480 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1481 for (i = 0; i < npages; i++) {
1482 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1483 }
1484 }
1485
1486 /* -------------------------------------------------------------------------- */
1487
1488 #define SVM_MSRBM_READ __BIT(0)
1489 #define SVM_MSRBM_WRITE __BIT(1)
1490
1491 static void
1492 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1493 {
1494 uint64_t byte;
1495 uint8_t bitoff;
1496
1497 if (msr < 0x00002000) {
1498 /* Range 1 */
1499 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1500 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1501 /* Range 2 */
1502 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1503 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1504 /* Range 3 */
1505 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1506 } else {
1507 panic("%s: wrong range", __func__);
1508 }
1509
1510 bitoff = (msr & 0x3) << 1;
1511
1512 if (read) {
1513 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1514 }
1515 if (write) {
1516 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1517 }
1518 }
1519
1520 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1521 #define SVM_SEG_ATTRIB_S __BIT(4)
1522 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1523 #define SVM_SEG_ATTRIB_P __BIT(7)
1524 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1525 #define SVM_SEG_ATTRIB_L __BIT(9)
1526 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1527 #define SVM_SEG_ATTRIB_G __BIT(11)
1528
1529 static void
1530 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1531 struct vmcb_segment *vseg)
1532 {
1533 vseg->selector = seg->selector;
1534 vseg->attrib =
1535 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1536 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1537 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1538 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1539 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1540 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1541 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1542 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1543 vseg->limit = seg->limit;
1544 vseg->base = seg->base;
1545 }
1546
1547 static void
1548 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1549 {
1550 seg->selector = vseg->selector;
1551 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1552 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1553 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1554 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1555 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1556 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1557 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1558 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1559 seg->limit = vseg->limit;
1560 seg->base = vseg->base;
1561 }
1562
1563 static inline bool
1564 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1565 uint64_t flags)
1566 {
1567 if (flags & NVMM_X64_STATE_CRS) {
1568 if ((vmcb->state.cr0 ^
1569 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1570 return true;
1571 }
1572 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1573 return true;
1574 }
1575 if ((vmcb->state.cr4 ^
1576 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1577 return true;
1578 }
1579 }
1580
1581 if (flags & NVMM_X64_STATE_MSRS) {
1582 if ((vmcb->state.efer ^
1583 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1584 return true;
1585 }
1586 }
1587
1588 return false;
1589 }
1590
1591 static void
1592 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1593 {
1594 struct nvmm_comm_page *comm = vcpu->comm;
1595 const struct nvmm_x64_state *state = &comm->state;
1596 struct svm_cpudata *cpudata = vcpu->cpudata;
1597 struct vmcb *vmcb = cpudata->vmcb;
1598 struct fxsave *fpustate;
1599 uint64_t flags;
1600
1601 flags = comm->state_wanted;
1602
1603 if (svm_state_tlb_flush(vmcb, state, flags)) {
1604 cpudata->gtlb_want_flush = true;
1605 }
1606
1607 if (flags & NVMM_X64_STATE_SEGS) {
1608 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1609 &vmcb->state.cs);
1610 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1611 &vmcb->state.ds);
1612 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1613 &vmcb->state.es);
1614 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1615 &vmcb->state.fs);
1616 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1617 &vmcb->state.gs);
1618 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1619 &vmcb->state.ss);
1620 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1621 &vmcb->state.gdt);
1622 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1623 &vmcb->state.idt);
1624 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1625 &vmcb->state.ldt);
1626 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1627 &vmcb->state.tr);
1628
1629 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1630 }
1631
1632 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1633 if (flags & NVMM_X64_STATE_GPRS) {
1634 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1635
1636 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1637 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1638 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1639 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1640 }
1641
1642 if (flags & NVMM_X64_STATE_CRS) {
1643 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1644 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1645 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1646 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1647
1648 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1649 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1650 VMCB_CTRL_V_TPR);
1651
1652 if (svm_xcr0_mask != 0) {
1653 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1654 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1655 cpudata->gxcr0 &= svm_xcr0_mask;
1656 cpudata->gxcr0 |= XCR0_X87;
1657 }
1658 }
1659
1660 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1661 if (flags & NVMM_X64_STATE_DRS) {
1662 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1663
1664 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1665 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1666 }
1667
1668 if (flags & NVMM_X64_STATE_MSRS) {
1669 /*
1670 * EFER_SVME is mandatory.
1671 */
1672 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1673 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1674 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1675 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1676 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1677 vmcb->state.kernelgsbase =
1678 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1679 vmcb->state.sysenter_cs =
1680 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1681 vmcb->state.sysenter_esp =
1682 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1683 vmcb->state.sysenter_eip =
1684 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1685 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1686
1687 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1688 cpudata->gtsc_want_update = true;
1689 }
1690
1691 if (flags & NVMM_X64_STATE_INTR) {
1692 if (state->intr.int_shadow) {
1693 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1694 } else {
1695 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1696 }
1697
1698 if (state->intr.int_window_exiting) {
1699 svm_event_waitexit_enable(vcpu, false);
1700 } else {
1701 svm_event_waitexit_disable(vcpu, false);
1702 }
1703
1704 if (state->intr.nmi_window_exiting) {
1705 svm_event_waitexit_enable(vcpu, true);
1706 } else {
1707 svm_event_waitexit_disable(vcpu, true);
1708 }
1709 }
1710
1711 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1712 if (flags & NVMM_X64_STATE_FPU) {
1713 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1714 sizeof(state->fpu));
1715
1716 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1717 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1718 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1719
1720 if (svm_xcr0_mask != 0) {
1721 /* Reset XSTATE_BV, to force a reload. */
1722 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1723 }
1724 }
1725
1726 svm_vmcb_cache_update(vmcb, flags);
1727
1728 comm->state_wanted = 0;
1729 comm->state_cached |= flags;
1730 }
1731
1732 static void
1733 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1734 {
1735 struct nvmm_comm_page *comm = vcpu->comm;
1736 struct nvmm_x64_state *state = &comm->state;
1737 struct svm_cpudata *cpudata = vcpu->cpudata;
1738 struct vmcb *vmcb = cpudata->vmcb;
1739 uint64_t flags;
1740
1741 flags = comm->state_wanted;
1742
1743 if (flags & NVMM_X64_STATE_SEGS) {
1744 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1745 &vmcb->state.cs);
1746 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1747 &vmcb->state.ds);
1748 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1749 &vmcb->state.es);
1750 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1751 &vmcb->state.fs);
1752 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1753 &vmcb->state.gs);
1754 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1755 &vmcb->state.ss);
1756 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1757 &vmcb->state.gdt);
1758 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1759 &vmcb->state.idt);
1760 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1761 &vmcb->state.ldt);
1762 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1763 &vmcb->state.tr);
1764
1765 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1766 }
1767
1768 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1769 if (flags & NVMM_X64_STATE_GPRS) {
1770 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1771
1772 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1773 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1774 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1775 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1776 }
1777
1778 if (flags & NVMM_X64_STATE_CRS) {
1779 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1780 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1781 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1782 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1783 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1784 VMCB_CTRL_V_TPR);
1785 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1786 }
1787
1788 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1789 if (flags & NVMM_X64_STATE_DRS) {
1790 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1791
1792 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1793 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1794 }
1795
1796 if (flags & NVMM_X64_STATE_MSRS) {
1797 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1798 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1799 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1800 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1801 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1802 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1803 vmcb->state.kernelgsbase;
1804 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1805 vmcb->state.sysenter_cs;
1806 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1807 vmcb->state.sysenter_esp;
1808 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1809 vmcb->state.sysenter_eip;
1810 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1811 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1812
1813 /* Hide SVME. */
1814 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1815 }
1816
1817 if (flags & NVMM_X64_STATE_INTR) {
1818 state->intr.int_shadow =
1819 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1820 state->intr.int_window_exiting = cpudata->int_window_exit;
1821 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1822 state->intr.evt_pending = cpudata->evt_pending;
1823 }
1824
1825 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1826 if (flags & NVMM_X64_STATE_FPU) {
1827 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1828 sizeof(state->fpu));
1829 }
1830
1831 comm->state_wanted = 0;
1832 comm->state_cached |= flags;
1833 }
1834
1835 static void
1836 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1837 {
1838 vcpu->comm->state_wanted = flags;
1839 svm_vcpu_getstate(vcpu);
1840 }
1841
1842 static void
1843 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1844 {
1845 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1846 vcpu->comm->state_commit = 0;
1847 svm_vcpu_setstate(vcpu);
1848 }
1849
1850 /* -------------------------------------------------------------------------- */
1851
1852 static void
1853 svm_asid_alloc(struct nvmm_cpu *vcpu)
1854 {
1855 struct svm_cpudata *cpudata = vcpu->cpudata;
1856 struct vmcb *vmcb = cpudata->vmcb;
1857 size_t i, oct, bit;
1858
1859 mutex_enter(&svm_asidlock);
1860
1861 for (i = 0; i < svm_maxasid; i++) {
1862 oct = i / 8;
1863 bit = i % 8;
1864
1865 if (svm_asidmap[oct] & __BIT(bit)) {
1866 continue;
1867 }
1868
1869 svm_asidmap[oct] |= __BIT(bit);
1870 vmcb->ctrl.guest_asid = i;
1871 mutex_exit(&svm_asidlock);
1872 return;
1873 }
1874
1875 /*
1876 * No free ASID. Use the last one, which is shared and requires
1877 * special TLB handling.
1878 */
1879 cpudata->shared_asid = true;
1880 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1881 mutex_exit(&svm_asidlock);
1882 }
1883
1884 static void
1885 svm_asid_free(struct nvmm_cpu *vcpu)
1886 {
1887 struct svm_cpudata *cpudata = vcpu->cpudata;
1888 struct vmcb *vmcb = cpudata->vmcb;
1889 size_t oct, bit;
1890
1891 if (cpudata->shared_asid) {
1892 return;
1893 }
1894
1895 oct = vmcb->ctrl.guest_asid / 8;
1896 bit = vmcb->ctrl.guest_asid % 8;
1897
1898 mutex_enter(&svm_asidlock);
1899 svm_asidmap[oct] &= ~__BIT(bit);
1900 mutex_exit(&svm_asidlock);
1901 }
1902
1903 static void
1904 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1905 {
1906 struct svm_cpudata *cpudata = vcpu->cpudata;
1907 struct vmcb *vmcb = cpudata->vmcb;
1908
1909 /* Allow reads/writes of Control Registers. */
1910 vmcb->ctrl.intercept_cr = 0;
1911
1912 /* Allow reads/writes of Debug Registers. */
1913 vmcb->ctrl.intercept_dr = 0;
1914
1915 /* Allow exceptions 0 to 31. */
1916 vmcb->ctrl.intercept_vec = 0;
1917
1918 /*
1919 * Allow:
1920 * - SMI [smm interrupts]
1921 * - VINTR [virtual interrupts]
1922 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1923 * - RIDTR [reads of IDTR]
1924 * - RGDTR [reads of GDTR]
1925 * - RLDTR [reads of LDTR]
1926 * - RTR [reads of TR]
1927 * - WIDTR [writes of IDTR]
1928 * - WGDTR [writes of GDTR]
1929 * - WLDTR [writes of LDTR]
1930 * - WTR [writes of TR]
1931 * - RDTSC [rdtsc instruction]
1932 * - PUSHF [pushf instruction]
1933 * - POPF [popf instruction]
1934 * - IRET [iret instruction]
1935 * - INTN [int $n instructions]
1936 * - INVD [invd instruction]
1937 * - PAUSE [pause instruction]
1938 * - INVLPG [invplg instruction]
1939 * - TASKSW [task switches]
1940 *
1941 * Intercept the rest below.
1942 */
1943 vmcb->ctrl.intercept_misc1 =
1944 VMCB_CTRL_INTERCEPT_INTR |
1945 VMCB_CTRL_INTERCEPT_NMI |
1946 VMCB_CTRL_INTERCEPT_INIT |
1947 VMCB_CTRL_INTERCEPT_RDPMC |
1948 VMCB_CTRL_INTERCEPT_CPUID |
1949 VMCB_CTRL_INTERCEPT_RSM |
1950 VMCB_CTRL_INTERCEPT_HLT |
1951 VMCB_CTRL_INTERCEPT_INVLPGA |
1952 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1953 VMCB_CTRL_INTERCEPT_MSR_PROT |
1954 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1955 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1956
1957 /*
1958 * Allow:
1959 * - ICEBP [icebp instruction]
1960 * - WBINVD [wbinvd instruction]
1961 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1962 *
1963 * Intercept the rest below.
1964 */
1965 vmcb->ctrl.intercept_misc2 =
1966 VMCB_CTRL_INTERCEPT_VMRUN |
1967 VMCB_CTRL_INTERCEPT_VMMCALL |
1968 VMCB_CTRL_INTERCEPT_VMLOAD |
1969 VMCB_CTRL_INTERCEPT_VMSAVE |
1970 VMCB_CTRL_INTERCEPT_STGI |
1971 VMCB_CTRL_INTERCEPT_CLGI |
1972 VMCB_CTRL_INTERCEPT_SKINIT |
1973 VMCB_CTRL_INTERCEPT_RDTSCP |
1974 VMCB_CTRL_INTERCEPT_MONITOR |
1975 VMCB_CTRL_INTERCEPT_MWAIT |
1976 VMCB_CTRL_INTERCEPT_XSETBV;
1977
1978 /* Intercept all I/O accesses. */
1979 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
1980 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
1981
1982 /* Allow direct access to certain MSRs. */
1983 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
1984 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
1985 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
1986 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
1987 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
1988 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
1989 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
1990 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
1991 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
1992 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
1993 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
1994 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
1995 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
1996 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
1997 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
1998
1999 /* Generate ASID. */
2000 svm_asid_alloc(vcpu);
2001
2002 /* Virtual TPR. */
2003 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2004
2005 /* Enable Nested Paging. */
2006 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2007 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2008
2009 /* Init XSAVE header. */
2010 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2011 cpudata->gfpu.xsh_xcomp_bv = 0;
2012
2013 /* These MSRs are static. */
2014 cpudata->star = rdmsr(MSR_STAR);
2015 cpudata->lstar = rdmsr(MSR_LSTAR);
2016 cpudata->cstar = rdmsr(MSR_CSTAR);
2017 cpudata->sfmask = rdmsr(MSR_SFMASK);
2018
2019 /* Install the RESET state. */
2020 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2021 sizeof(nvmm_x86_reset_state));
2022 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2023 vcpu->comm->state_cached = 0;
2024 svm_vcpu_setstate(vcpu);
2025 }
2026
2027 static int
2028 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2029 {
2030 struct svm_cpudata *cpudata;
2031 int error;
2032
2033 /* Allocate the SVM cpudata. */
2034 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2035 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2036 UVM_KMF_WIRED|UVM_KMF_ZERO);
2037 vcpu->cpudata = cpudata;
2038
2039 /* VMCB */
2040 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2041 VMCB_NPAGES);
2042 if (error)
2043 goto error;
2044
2045 /* I/O Bitmap */
2046 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2047 IOBM_NPAGES);
2048 if (error)
2049 goto error;
2050
2051 /* MSR Bitmap */
2052 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2053 MSRBM_NPAGES);
2054 if (error)
2055 goto error;
2056
2057 /* Init the VCPU info. */
2058 svm_vcpu_init(mach, vcpu);
2059
2060 return 0;
2061
2062 error:
2063 if (cpudata->vmcb_pa) {
2064 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2065 VMCB_NPAGES);
2066 }
2067 if (cpudata->iobm_pa) {
2068 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2069 IOBM_NPAGES);
2070 }
2071 if (cpudata->msrbm_pa) {
2072 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2073 MSRBM_NPAGES);
2074 }
2075 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2076 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2077 return error;
2078 }
2079
2080 static void
2081 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2082 {
2083 struct svm_cpudata *cpudata = vcpu->cpudata;
2084
2085 svm_asid_free(vcpu);
2086
2087 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2088 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2089 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2090
2091 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2092 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2093 }
2094
2095 /* -------------------------------------------------------------------------- */
2096
2097 static void
2098 svm_tlb_flush(struct pmap *pm)
2099 {
2100 struct nvmm_machine *mach = pm->pm_data;
2101 struct svm_machdata *machdata = mach->machdata;
2102
2103 atomic_inc_64(&machdata->mach_htlb_gen);
2104
2105 /* Generates IPIs, which cause #VMEXITs. */
2106 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2107 }
2108
2109 static void
2110 svm_machine_create(struct nvmm_machine *mach)
2111 {
2112 struct svm_machdata *machdata;
2113
2114 /* Fill in pmap info. */
2115 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2116 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2117
2118 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2119 mach->machdata = machdata;
2120
2121 /* Start with an hTLB flush everywhere. */
2122 machdata->mach_htlb_gen = 1;
2123 }
2124
2125 static void
2126 svm_machine_destroy(struct nvmm_machine *mach)
2127 {
2128 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2129 }
2130
2131 static int
2132 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2133 {
2134 struct nvmm_x86_conf_cpuid *cpuid = data;
2135 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2136 size_t i;
2137
2138 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2139 return EINVAL;
2140 }
2141
2142 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2143 (cpuid->set.ebx & cpuid->del.ebx) ||
2144 (cpuid->set.ecx & cpuid->del.ecx) ||
2145 (cpuid->set.edx & cpuid->del.edx))) {
2146 return EINVAL;
2147 }
2148
2149 /* If already here, replace. */
2150 for (i = 0; i < SVM_NCPUIDS; i++) {
2151 if (!machdata->cpuidpresent[i]) {
2152 continue;
2153 }
2154 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2155 memcpy(&machdata->cpuid[i], cpuid,
2156 sizeof(struct nvmm_x86_conf_cpuid));
2157 return 0;
2158 }
2159 }
2160
2161 /* Not here, insert. */
2162 for (i = 0; i < SVM_NCPUIDS; i++) {
2163 if (!machdata->cpuidpresent[i]) {
2164 machdata->cpuidpresent[i] = true;
2165 memcpy(&machdata->cpuid[i], cpuid,
2166 sizeof(struct nvmm_x86_conf_cpuid));
2167 return 0;
2168 }
2169 }
2170
2171 return ENOBUFS;
2172 }
2173
2174 /* -------------------------------------------------------------------------- */
2175
2176 static bool
2177 svm_ident(void)
2178 {
2179 u_int descs[4];
2180 uint64_t msr;
2181
2182 if (cpu_vendor != CPUVENDOR_AMD) {
2183 return false;
2184 }
2185 if (!(cpu_feature[3] & CPUID_SVM)) {
2186 return false;
2187 }
2188
2189 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2190 return false;
2191 }
2192 x86_cpuid(0x8000000a, descs);
2193
2194 /* Want Nested Paging. */
2195 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2196 return false;
2197 }
2198
2199 /* Want nRIP. */
2200 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2201 return false;
2202 }
2203
2204 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2205
2206 msr = rdmsr(MSR_VMCR);
2207 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2208 return false;
2209 }
2210
2211 return true;
2212 }
2213
2214 static void
2215 svm_init_asid(uint32_t maxasid)
2216 {
2217 size_t i, j, allocsz;
2218
2219 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2220
2221 /* Arbitrarily limit. */
2222 maxasid = uimin(maxasid, 8192);
2223
2224 svm_maxasid = maxasid;
2225 allocsz = roundup(maxasid, 8) / 8;
2226 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2227
2228 /* ASID 0 is reserved for the host. */
2229 svm_asidmap[0] |= __BIT(0);
2230
2231 /* ASID n-1 is special, we share it. */
2232 i = (maxasid - 1) / 8;
2233 j = (maxasid - 1) % 8;
2234 svm_asidmap[i] |= __BIT(j);
2235 }
2236
2237 static void
2238 svm_change_cpu(void *arg1, void *arg2)
2239 {
2240 bool enable = (bool)arg1;
2241 uint64_t msr;
2242
2243 msr = rdmsr(MSR_VMCR);
2244 if (msr & VMCR_SVMED) {
2245 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2246 }
2247
2248 if (!enable) {
2249 wrmsr(MSR_VM_HSAVE_PA, 0);
2250 }
2251
2252 msr = rdmsr(MSR_EFER);
2253 if (enable) {
2254 msr |= EFER_SVME;
2255 } else {
2256 msr &= ~EFER_SVME;
2257 }
2258 wrmsr(MSR_EFER, msr);
2259
2260 if (enable) {
2261 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2262 }
2263 }
2264
2265 static void
2266 svm_init(void)
2267 {
2268 CPU_INFO_ITERATOR cii;
2269 struct cpu_info *ci;
2270 struct vm_page *pg;
2271 u_int descs[4];
2272 uint64_t xc;
2273
2274 x86_cpuid(0x8000000a, descs);
2275
2276 /* The guest TLB flush command. */
2277 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2278 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2279 } else {
2280 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2281 }
2282
2283 /* Init the ASID. */
2284 svm_init_asid(descs[1]);
2285
2286 /* Init the XCR0 mask. */
2287 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2288
2289 memset(hsave, 0, sizeof(hsave));
2290 for (CPU_INFO_FOREACH(cii, ci)) {
2291 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2292 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2293 }
2294
2295 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2296 xc_wait(xc);
2297 }
2298
2299 static void
2300 svm_fini_asid(void)
2301 {
2302 size_t allocsz;
2303
2304 allocsz = roundup(svm_maxasid, 8) / 8;
2305 kmem_free(svm_asidmap, allocsz);
2306
2307 mutex_destroy(&svm_asidlock);
2308 }
2309
2310 static void
2311 svm_fini(void)
2312 {
2313 uint64_t xc;
2314 size_t i;
2315
2316 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2317 xc_wait(xc);
2318
2319 for (i = 0; i < MAXCPUS; i++) {
2320 if (hsave[i].pa != 0)
2321 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2322 }
2323
2324 svm_fini_asid();
2325 }
2326
2327 static void
2328 svm_capability(struct nvmm_capability *cap)
2329 {
2330 cap->arch.xcr0_mask = svm_xcr0_mask;
2331 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2332 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2333 }
2334
2335 const struct nvmm_impl nvmm_x86_svm = {
2336 .ident = svm_ident,
2337 .init = svm_init,
2338 .fini = svm_fini,
2339 .capability = svm_capability,
2340 .conf_max = NVMM_X86_NCONF,
2341 .conf_sizes = svm_conf_sizes,
2342 .state_size = sizeof(struct nvmm_x64_state),
2343 .machine_create = svm_machine_create,
2344 .machine_destroy = svm_machine_destroy,
2345 .machine_configure = svm_machine_configure,
2346 .vcpu_create = svm_vcpu_create,
2347 .vcpu_destroy = svm_vcpu_destroy,
2348 .vcpu_setstate = svm_vcpu_setstate,
2349 .vcpu_getstate = svm_vcpu_getstate,
2350 .vcpu_inject = svm_vcpu_inject,
2351 .vcpu_run = svm_vcpu_run
2352 };
2353