Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.46
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.46 2019/05/11 07:31:56 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46 2019/05/11 07:31:56 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int svm_vmrun(paddr_t, uint64_t *);
     58 
     59 #define	MSR_VM_HSAVE_PA	0xC0010117
     60 
     61 /* -------------------------------------------------------------------------- */
     62 
     63 #define VMCB_EXITCODE_CR0_READ		0x0000
     64 #define VMCB_EXITCODE_CR1_READ		0x0001
     65 #define VMCB_EXITCODE_CR2_READ		0x0002
     66 #define VMCB_EXITCODE_CR3_READ		0x0003
     67 #define VMCB_EXITCODE_CR4_READ		0x0004
     68 #define VMCB_EXITCODE_CR5_READ		0x0005
     69 #define VMCB_EXITCODE_CR6_READ		0x0006
     70 #define VMCB_EXITCODE_CR7_READ		0x0007
     71 #define VMCB_EXITCODE_CR8_READ		0x0008
     72 #define VMCB_EXITCODE_CR9_READ		0x0009
     73 #define VMCB_EXITCODE_CR10_READ		0x000A
     74 #define VMCB_EXITCODE_CR11_READ		0x000B
     75 #define VMCB_EXITCODE_CR12_READ		0x000C
     76 #define VMCB_EXITCODE_CR13_READ		0x000D
     77 #define VMCB_EXITCODE_CR14_READ		0x000E
     78 #define VMCB_EXITCODE_CR15_READ		0x000F
     79 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     80 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     81 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     82 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     83 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     84 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     85 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     86 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     87 #define VMCB_EXITCODE_CR8_WRITE		0x0018
     88 #define VMCB_EXITCODE_CR9_WRITE		0x0019
     89 #define VMCB_EXITCODE_CR10_WRITE	0x001A
     90 #define VMCB_EXITCODE_CR11_WRITE	0x001B
     91 #define VMCB_EXITCODE_CR12_WRITE	0x001C
     92 #define VMCB_EXITCODE_CR13_WRITE	0x001D
     93 #define VMCB_EXITCODE_CR14_WRITE	0x001E
     94 #define VMCB_EXITCODE_CR15_WRITE	0x001F
     95 #define VMCB_EXITCODE_DR0_READ		0x0020
     96 #define VMCB_EXITCODE_DR1_READ		0x0021
     97 #define VMCB_EXITCODE_DR2_READ		0x0022
     98 #define VMCB_EXITCODE_DR3_READ		0x0023
     99 #define VMCB_EXITCODE_DR4_READ		0x0024
    100 #define VMCB_EXITCODE_DR5_READ		0x0025
    101 #define VMCB_EXITCODE_DR6_READ		0x0026
    102 #define VMCB_EXITCODE_DR7_READ		0x0027
    103 #define VMCB_EXITCODE_DR8_READ		0x0028
    104 #define VMCB_EXITCODE_DR9_READ		0x0029
    105 #define VMCB_EXITCODE_DR10_READ		0x002A
    106 #define VMCB_EXITCODE_DR11_READ		0x002B
    107 #define VMCB_EXITCODE_DR12_READ		0x002C
    108 #define VMCB_EXITCODE_DR13_READ		0x002D
    109 #define VMCB_EXITCODE_DR14_READ		0x002E
    110 #define VMCB_EXITCODE_DR15_READ		0x002F
    111 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    112 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    113 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    114 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    115 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    116 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    117 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    118 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    119 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    120 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    121 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    122 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    123 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    124 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    125 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    126 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    127 #define VMCB_EXITCODE_EXCP0		0x0040
    128 #define VMCB_EXITCODE_EXCP1		0x0041
    129 #define VMCB_EXITCODE_EXCP2		0x0042
    130 #define VMCB_EXITCODE_EXCP3		0x0043
    131 #define VMCB_EXITCODE_EXCP4		0x0044
    132 #define VMCB_EXITCODE_EXCP5		0x0045
    133 #define VMCB_EXITCODE_EXCP6		0x0046
    134 #define VMCB_EXITCODE_EXCP7		0x0047
    135 #define VMCB_EXITCODE_EXCP8		0x0048
    136 #define VMCB_EXITCODE_EXCP9		0x0049
    137 #define VMCB_EXITCODE_EXCP10		0x004A
    138 #define VMCB_EXITCODE_EXCP11		0x004B
    139 #define VMCB_EXITCODE_EXCP12		0x004C
    140 #define VMCB_EXITCODE_EXCP13		0x004D
    141 #define VMCB_EXITCODE_EXCP14		0x004E
    142 #define VMCB_EXITCODE_EXCP15		0x004F
    143 #define VMCB_EXITCODE_EXCP16		0x0050
    144 #define VMCB_EXITCODE_EXCP17		0x0051
    145 #define VMCB_EXITCODE_EXCP18		0x0052
    146 #define VMCB_EXITCODE_EXCP19		0x0053
    147 #define VMCB_EXITCODE_EXCP20		0x0054
    148 #define VMCB_EXITCODE_EXCP21		0x0055
    149 #define VMCB_EXITCODE_EXCP22		0x0056
    150 #define VMCB_EXITCODE_EXCP23		0x0057
    151 #define VMCB_EXITCODE_EXCP24		0x0058
    152 #define VMCB_EXITCODE_EXCP25		0x0059
    153 #define VMCB_EXITCODE_EXCP26		0x005A
    154 #define VMCB_EXITCODE_EXCP27		0x005B
    155 #define VMCB_EXITCODE_EXCP28		0x005C
    156 #define VMCB_EXITCODE_EXCP29		0x005D
    157 #define VMCB_EXITCODE_EXCP30		0x005E
    158 #define VMCB_EXITCODE_EXCP31		0x005F
    159 #define VMCB_EXITCODE_INTR		0x0060
    160 #define VMCB_EXITCODE_NMI		0x0061
    161 #define VMCB_EXITCODE_SMI		0x0062
    162 #define VMCB_EXITCODE_INIT		0x0063
    163 #define VMCB_EXITCODE_VINTR		0x0064
    164 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    165 #define VMCB_EXITCODE_IDTR_READ		0x0066
    166 #define VMCB_EXITCODE_GDTR_READ		0x0067
    167 #define VMCB_EXITCODE_LDTR_READ		0x0068
    168 #define VMCB_EXITCODE_TR_READ		0x0069
    169 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    170 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    171 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    172 #define VMCB_EXITCODE_TR_WRITE		0x006D
    173 #define VMCB_EXITCODE_RDTSC		0x006E
    174 #define VMCB_EXITCODE_RDPMC		0x006F
    175 #define VMCB_EXITCODE_PUSHF		0x0070
    176 #define VMCB_EXITCODE_POPF		0x0071
    177 #define VMCB_EXITCODE_CPUID		0x0072
    178 #define VMCB_EXITCODE_RSM		0x0073
    179 #define VMCB_EXITCODE_IRET		0x0074
    180 #define VMCB_EXITCODE_SWINT		0x0075
    181 #define VMCB_EXITCODE_INVD		0x0076
    182 #define VMCB_EXITCODE_PAUSE		0x0077
    183 #define VMCB_EXITCODE_HLT		0x0078
    184 #define VMCB_EXITCODE_INVLPG		0x0079
    185 #define VMCB_EXITCODE_INVLPGA		0x007A
    186 #define VMCB_EXITCODE_IOIO		0x007B
    187 #define VMCB_EXITCODE_MSR		0x007C
    188 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    189 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    190 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    191 #define VMCB_EXITCODE_VMRUN		0x0080
    192 #define VMCB_EXITCODE_VMMCALL		0x0081
    193 #define VMCB_EXITCODE_VMLOAD		0x0082
    194 #define VMCB_EXITCODE_VMSAVE		0x0083
    195 #define VMCB_EXITCODE_STGI		0x0084
    196 #define VMCB_EXITCODE_CLGI		0x0085
    197 #define VMCB_EXITCODE_SKINIT		0x0086
    198 #define VMCB_EXITCODE_RDTSCP		0x0087
    199 #define VMCB_EXITCODE_ICEBP		0x0088
    200 #define VMCB_EXITCODE_WBINVD		0x0089
    201 #define VMCB_EXITCODE_MONITOR		0x008A
    202 #define VMCB_EXITCODE_MWAIT		0x008B
    203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    204 #define VMCB_EXITCODE_XSETBV		0x008D
    205 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    206 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    207 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    208 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    209 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    210 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    211 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    212 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    213 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    214 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    215 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    216 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    217 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    218 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    219 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    220 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    221 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    222 #define VMCB_EXITCODE_NPF		0x0400
    223 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    224 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    225 #define VMCB_EXITCODE_VMGEXIT		0x0403
    226 #define VMCB_EXITCODE_INVALID		-1
    227 
    228 /* -------------------------------------------------------------------------- */
    229 
    230 struct vmcb_ctrl {
    231 	uint32_t intercept_cr;
    232 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    233 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    234 
    235 	uint32_t intercept_dr;
    236 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    237 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    238 
    239 	uint32_t intercept_vec;
    240 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    241 
    242 	uint32_t intercept_misc1;
    243 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    244 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    245 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    246 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    247 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    248 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    249 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    250 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    251 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    252 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    253 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    254 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    255 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    256 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    257 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    258 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    259 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    260 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    261 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    262 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    263 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    264 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    265 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    266 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    267 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    268 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    269 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    270 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    271 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    272 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    273 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    274 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    275 
    276 	uint32_t intercept_misc2;
    277 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    278 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    279 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    280 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    281 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    282 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    283 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    284 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    285 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    286 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    287 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    288 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(12)
    289 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    290 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    291 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    292 
    293 	uint8_t  rsvd1[40];
    294 	uint16_t pause_filt_thresh;
    295 	uint16_t pause_filt_cnt;
    296 	uint64_t iopm_base_pa;
    297 	uint64_t msrpm_base_pa;
    298 	uint64_t tsc_offset;
    299 	uint32_t guest_asid;
    300 
    301 	uint32_t tlb_ctrl;
    302 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    303 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    304 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    305 
    306 	uint64_t v;
    307 #define VMCB_CTRL_V_TPR			__BITS(3,0)
    308 #define VMCB_CTRL_V_IRQ			__BIT(8)
    309 #define VMCB_CTRL_V_VGIF		__BIT(9)
    310 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    311 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    312 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    313 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    314 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    315 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    316 
    317 	uint64_t intr;
    318 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    319 
    320 	uint64_t exitcode;
    321 	uint64_t exitinfo1;
    322 	uint64_t exitinfo2;
    323 
    324 	uint64_t exitintinfo;
    325 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    326 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    327 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    328 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    329 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    330 
    331 	uint64_t enable1;
    332 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    333 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    334 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    335 
    336 	uint64_t avic;
    337 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    338 
    339 	uint64_t ghcb;
    340 
    341 	uint64_t eventinj;
    342 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    343 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    344 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    345 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    346 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    347 
    348 	uint64_t n_cr3;
    349 
    350 	uint64_t enable2;
    351 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    352 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    353 
    354 	uint32_t vmcb_clean;
    355 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    356 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    357 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    358 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    359 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    360 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    361 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    362 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    363 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    364 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    365 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    366 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    367 
    368 	uint32_t rsvd2;
    369 	uint64_t nrip;
    370 	uint8_t	inst_len;
    371 	uint8_t	inst_bytes[15];
    372 	uint64_t avic_abpp;
    373 	uint64_t rsvd3;
    374 	uint64_t avic_ltp;
    375 
    376 	uint64_t avic_phys;
    377 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    378 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    379 
    380 	uint64_t rsvd4;
    381 	uint64_t vmcb_ptr;
    382 
    383 	uint8_t	pad[752];
    384 } __packed;
    385 
    386 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    387 
    388 struct vmcb_segment {
    389 	uint16_t selector;
    390 	uint16_t attrib;	/* hidden */
    391 	uint32_t limit;		/* hidden */
    392 	uint64_t base;		/* hidden */
    393 } __packed;
    394 
    395 CTASSERT(sizeof(struct vmcb_segment) == 16);
    396 
    397 struct vmcb_state {
    398 	struct   vmcb_segment es;
    399 	struct   vmcb_segment cs;
    400 	struct   vmcb_segment ss;
    401 	struct   vmcb_segment ds;
    402 	struct   vmcb_segment fs;
    403 	struct   vmcb_segment gs;
    404 	struct   vmcb_segment gdt;
    405 	struct   vmcb_segment ldt;
    406 	struct   vmcb_segment idt;
    407 	struct   vmcb_segment tr;
    408 	uint8_t	 rsvd1[43];
    409 	uint8_t	 cpl;
    410 	uint8_t  rsvd2[4];
    411 	uint64_t efer;
    412 	uint8_t	 rsvd3[112];
    413 	uint64_t cr4;
    414 	uint64_t cr3;
    415 	uint64_t cr0;
    416 	uint64_t dr7;
    417 	uint64_t dr6;
    418 	uint64_t rflags;
    419 	uint64_t rip;
    420 	uint8_t	 rsvd4[88];
    421 	uint64_t rsp;
    422 	uint8_t	 rsvd5[24];
    423 	uint64_t rax;
    424 	uint64_t star;
    425 	uint64_t lstar;
    426 	uint64_t cstar;
    427 	uint64_t sfmask;
    428 	uint64_t kernelgsbase;
    429 	uint64_t sysenter_cs;
    430 	uint64_t sysenter_esp;
    431 	uint64_t sysenter_eip;
    432 	uint64_t cr2;
    433 	uint8_t	 rsvd6[32];
    434 	uint64_t g_pat;
    435 	uint64_t dbgctl;
    436 	uint64_t br_from;
    437 	uint64_t br_to;
    438 	uint64_t int_from;
    439 	uint64_t int_to;
    440 	uint8_t	 pad[2408];
    441 } __packed;
    442 
    443 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    444 
    445 struct vmcb {
    446 	struct vmcb_ctrl ctrl;
    447 	struct vmcb_state state;
    448 } __packed;
    449 
    450 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    451 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    452 
    453 /* -------------------------------------------------------------------------- */
    454 
    455 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
    456 static void svm_vcpu_state_commit(struct nvmm_cpu *);
    457 
    458 struct svm_hsave {
    459 	paddr_t pa;
    460 };
    461 
    462 static struct svm_hsave hsave[MAXCPUS];
    463 
    464 static uint8_t *svm_asidmap __read_mostly;
    465 static uint32_t svm_maxasid __read_mostly;
    466 static kmutex_t svm_asidlock __cacheline_aligned;
    467 
    468 static bool svm_decode_assist __read_mostly;
    469 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    470 
    471 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    472 static uint64_t svm_xcr0_mask __read_mostly;
    473 
    474 #define SVM_NCPUIDS	32
    475 
    476 #define VMCB_NPAGES	1
    477 
    478 #define MSRBM_NPAGES	2
    479 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    480 
    481 #define IOBM_NPAGES	3
    482 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    483 
    484 /* Does not include EFER_LMSLE. */
    485 #define EFER_VALID \
    486 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    487 
    488 #define EFER_TLB_FLUSH \
    489 	(EFER_NXE|EFER_LMA|EFER_LME)
    490 #define CR0_TLB_FLUSH \
    491 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    492 #define CR4_TLB_FLUSH \
    493 	(CR4_PGE|CR4_PAE|CR4_PSE)
    494 
    495 /* -------------------------------------------------------------------------- */
    496 
    497 struct svm_machdata {
    498 	bool cpuidpresent[SVM_NCPUIDS];
    499 	struct nvmm_mach_conf_x86_cpuid cpuid[SVM_NCPUIDS];
    500 	volatile uint64_t mach_htlb_gen;
    501 };
    502 
    503 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
    504 	[NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID)] =
    505 	    sizeof(struct nvmm_mach_conf_x86_cpuid)
    506 };
    507 
    508 struct svm_cpudata {
    509 	/* General */
    510 	bool shared_asid;
    511 	bool gtlb_want_flush;
    512 	bool gtsc_want_update;
    513 	uint64_t vcpu_htlb_gen;
    514 
    515 	/* VMCB */
    516 	struct vmcb *vmcb;
    517 	paddr_t vmcb_pa;
    518 
    519 	/* I/O bitmap */
    520 	uint8_t *iobm;
    521 	paddr_t iobm_pa;
    522 
    523 	/* MSR bitmap */
    524 	uint8_t *msrbm;
    525 	paddr_t msrbm_pa;
    526 
    527 	/* Host state */
    528 	uint64_t hxcr0;
    529 	uint64_t star;
    530 	uint64_t lstar;
    531 	uint64_t cstar;
    532 	uint64_t sfmask;
    533 	uint64_t fsbase;
    534 	uint64_t kernelgsbase;
    535 	bool ts_set;
    536 	struct xsave_header hfpu __aligned(64);
    537 
    538 	/* Intr state */
    539 	bool int_window_exit;
    540 	bool nmi_window_exit;
    541 	bool evt_pending;
    542 
    543 	/* Guest state */
    544 	uint64_t gxcr0;
    545 	uint64_t gprs[NVMM_X64_NGPR];
    546 	uint64_t drs[NVMM_X64_NDR];
    547 	uint64_t gtsc;
    548 	struct xsave_header gfpu __aligned(64);
    549 };
    550 
    551 static void
    552 svm_vmcb_cache_default(struct vmcb *vmcb)
    553 {
    554 	vmcb->ctrl.vmcb_clean =
    555 	    VMCB_CTRL_VMCB_CLEAN_I |
    556 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    557 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    558 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    559 	    VMCB_CTRL_VMCB_CLEAN_NP |
    560 	    VMCB_CTRL_VMCB_CLEAN_CR |
    561 	    VMCB_CTRL_VMCB_CLEAN_DR |
    562 	    VMCB_CTRL_VMCB_CLEAN_DT |
    563 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    564 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    565 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    566 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    567 }
    568 
    569 static void
    570 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    571 {
    572 	if (flags & NVMM_X64_STATE_SEGS) {
    573 		vmcb->ctrl.vmcb_clean &=
    574 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    575 	}
    576 	if (flags & NVMM_X64_STATE_CRS) {
    577 		vmcb->ctrl.vmcb_clean &=
    578 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    579 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    580 	}
    581 	if (flags & NVMM_X64_STATE_DRS) {
    582 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    583 	}
    584 	if (flags & NVMM_X64_STATE_MSRS) {
    585 		/* CR for EFER, NP for PAT. */
    586 		vmcb->ctrl.vmcb_clean &=
    587 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    588 	}
    589 }
    590 
    591 static inline void
    592 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    593 {
    594 	vmcb->ctrl.vmcb_clean &= ~flags;
    595 }
    596 
    597 static inline void
    598 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    599 {
    600 	vmcb->ctrl.vmcb_clean = 0;
    601 }
    602 
    603 #define SVM_EVENT_TYPE_HW_INT	0
    604 #define SVM_EVENT_TYPE_NMI	2
    605 #define SVM_EVENT_TYPE_EXC	3
    606 #define SVM_EVENT_TYPE_SW_INT	4
    607 
    608 static void
    609 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    610 {
    611 	struct svm_cpudata *cpudata = vcpu->cpudata;
    612 	struct vmcb *vmcb = cpudata->vmcb;
    613 
    614 	if (nmi) {
    615 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    616 		cpudata->nmi_window_exit = true;
    617 	} else {
    618 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    619 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    620 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    621 		cpudata->int_window_exit = true;
    622 	}
    623 
    624 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    625 }
    626 
    627 static void
    628 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    629 {
    630 	struct svm_cpudata *cpudata = vcpu->cpudata;
    631 	struct vmcb *vmcb = cpudata->vmcb;
    632 
    633 	if (nmi) {
    634 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    635 		cpudata->nmi_window_exit = false;
    636 	} else {
    637 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    638 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    639 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    640 		cpudata->int_window_exit = false;
    641 	}
    642 
    643 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    644 }
    645 
    646 static inline int
    647 svm_event_has_error(uint64_t vector)
    648 {
    649 	switch (vector) {
    650 	case 8:		/* #DF */
    651 	case 10:	/* #TS */
    652 	case 11:	/* #NP */
    653 	case 12:	/* #SS */
    654 	case 13:	/* #GP */
    655 	case 14:	/* #PF */
    656 	case 17:	/* #AC */
    657 	case 30:	/* #SX */
    658 		return 1;
    659 	default:
    660 		return 0;
    661 	}
    662 }
    663 
    664 static int
    665 svm_vcpu_inject(struct nvmm_cpu *vcpu)
    666 {
    667 	struct nvmm_comm_page *comm = vcpu->comm;
    668 	struct svm_cpudata *cpudata = vcpu->cpudata;
    669 	struct vmcb *vmcb = cpudata->vmcb;
    670 	enum nvmm_event_type evtype;
    671 	uint64_t vector, error;
    672 	int type = 0, err = 0;
    673 
    674 	evtype = comm->event.type;
    675 	vector = comm->event.vector;
    676 	error = comm->event.u.error;
    677 	__insn_barrier();
    678 
    679 	if (__predict_false(vector >= 256)) {
    680 		return EINVAL;
    681 	}
    682 
    683 	switch (evtype) {
    684 	case NVMM_EVENT_INTERRUPT_HW:
    685 		type = SVM_EVENT_TYPE_HW_INT;
    686 		if (vector == 2) {
    687 			type = SVM_EVENT_TYPE_NMI;
    688 			svm_event_waitexit_enable(vcpu, true);
    689 		}
    690 		err = 0;
    691 		break;
    692 	case NVMM_EVENT_EXCEPTION:
    693 		type = SVM_EVENT_TYPE_EXC;
    694 		if (vector == 2 || vector >= 32)
    695 			return EINVAL;
    696 		if (vector == 3 || vector == 0)
    697 			return EINVAL;
    698 		err = svm_event_has_error(vector);
    699 		break;
    700 	default:
    701 		return EINVAL;
    702 	}
    703 
    704 	vmcb->ctrl.eventinj =
    705 	    __SHIFTIN(vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    706 	    __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
    707 	    __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
    708 	    __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
    709 	    __SHIFTIN(error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    710 
    711 	cpudata->evt_pending = true;
    712 
    713 	return 0;
    714 }
    715 
    716 static void
    717 svm_inject_ud(struct nvmm_cpu *vcpu)
    718 {
    719 	struct nvmm_comm_page *comm = vcpu->comm;
    720 	int ret __diagused;
    721 
    722 	comm->event.type = NVMM_EVENT_EXCEPTION;
    723 	comm->event.vector = 6;
    724 	comm->event.u.error = 0;
    725 
    726 	ret = svm_vcpu_inject(vcpu);
    727 	KASSERT(ret == 0);
    728 }
    729 
    730 static void
    731 svm_inject_gp(struct nvmm_cpu *vcpu)
    732 {
    733 	struct nvmm_comm_page *comm = vcpu->comm;
    734 	int ret __diagused;
    735 
    736 	comm->event.type = NVMM_EVENT_EXCEPTION;
    737 	comm->event.vector = 13;
    738 	comm->event.u.error = 0;
    739 
    740 	ret = svm_vcpu_inject(vcpu);
    741 	KASSERT(ret == 0);
    742 }
    743 
    744 static inline int
    745 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
    746 {
    747 	if (__predict_true(!vcpu->comm->event_commit)) {
    748 		return 0;
    749 	}
    750 	vcpu->comm->event_commit = false;
    751 	return svm_vcpu_inject(vcpu);
    752 }
    753 
    754 static inline void
    755 svm_inkernel_advance(struct vmcb *vmcb)
    756 {
    757 	/*
    758 	 * Maybe we should also apply single-stepping and debug exceptions.
    759 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    760 	 * debugger.
    761 	 */
    762 	vmcb->state.rip = vmcb->ctrl.nrip;
    763 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    764 }
    765 
    766 static void
    767 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    768 {
    769 	struct svm_cpudata *cpudata = vcpu->cpudata;
    770 	uint64_t cr4;
    771 
    772 	switch (eax) {
    773 	case 0x00000001:
    774 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
    775 
    776 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    777 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    778 		    CPUID_LOCAL_APIC_ID);
    779 
    780 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
    781 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
    782 
    783 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
    784 
    785 		/* CPUID2_OSXSAVE depends on CR4. */
    786 		cr4 = cpudata->vmcb->state.cr4;
    787 		if (!(cr4 & CR4_OSXSAVE)) {
    788 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
    789 		}
    790 		break;
    791 	case 0x00000005:
    792 	case 0x00000006:
    793 		cpudata->vmcb->state.rax = 0;
    794 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    795 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    796 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    797 		break;
    798 	case 0x00000007:
    799 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
    800 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
    801 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
    802 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
    803 		break;
    804 	case 0x0000000D:
    805 		if (svm_xcr0_mask == 0) {
    806 			break;
    807 		}
    808 		switch (ecx) {
    809 		case 0:
    810 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    811 			if (cpudata->gxcr0 & XCR0_SSE) {
    812 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    813 			} else {
    814 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    815 			}
    816 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    817 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
    818 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    819 			break;
    820 		case 1:
    821 			cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
    822 			break;
    823 		}
    824 		break;
    825 	case 0x40000000:
    826 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    827 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    828 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    829 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    830 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    831 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    832 		break;
    833 	case 0x80000001:
    834 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
    835 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
    836 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
    837 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
    838 		break;
    839 	default:
    840 		break;
    841 	}
    842 }
    843 
    844 static void
    845 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    846     struct nvmm_exit *exit)
    847 {
    848 	struct svm_machdata *machdata = mach->machdata;
    849 	struct svm_cpudata *cpudata = vcpu->cpudata;
    850 	struct nvmm_mach_conf_x86_cpuid *cpuid;
    851 	uint64_t eax, ecx;
    852 	u_int descs[4];
    853 	size_t i;
    854 
    855 	eax = cpudata->vmcb->state.rax;
    856 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    857 	x86_cpuid2(eax, ecx, descs);
    858 
    859 	cpudata->vmcb->state.rax = descs[0];
    860 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    861 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    862 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    863 
    864 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    865 
    866 	for (i = 0; i < SVM_NCPUIDS; i++) {
    867 		cpuid = &machdata->cpuid[i];
    868 		if (!machdata->cpuidpresent[i]) {
    869 			continue;
    870 		}
    871 		if (cpuid->leaf != eax) {
    872 			continue;
    873 		}
    874 
    875 		/* del */
    876 		cpudata->vmcb->state.rax &= ~cpuid->del.eax;
    877 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
    878 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
    879 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
    880 
    881 		/* set */
    882 		cpudata->vmcb->state.rax |= cpuid->set.eax;
    883 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
    884 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
    885 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
    886 
    887 		break;
    888 	}
    889 
    890 	svm_inkernel_advance(cpudata->vmcb);
    891 	exit->reason = NVMM_EXIT_NONE;
    892 }
    893 
    894 static void
    895 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    896     struct nvmm_exit *exit)
    897 {
    898 	struct svm_cpudata *cpudata = vcpu->cpudata;
    899 	struct vmcb *vmcb = cpudata->vmcb;
    900 
    901 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
    902 		svm_event_waitexit_disable(vcpu, false);
    903 	}
    904 
    905 	svm_inkernel_advance(cpudata->vmcb);
    906 	exit->reason = NVMM_EXIT_HALTED;
    907 }
    908 
    909 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    910 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    911 #define SVM_EXIT_IO_A64		__BIT(9)
    912 #define SVM_EXIT_IO_A32		__BIT(8)
    913 #define SVM_EXIT_IO_A16		__BIT(7)
    914 #define SVM_EXIT_IO_SZ32	__BIT(6)
    915 #define SVM_EXIT_IO_SZ16	__BIT(5)
    916 #define SVM_EXIT_IO_SZ8		__BIT(4)
    917 #define SVM_EXIT_IO_REP		__BIT(3)
    918 #define SVM_EXIT_IO_STR		__BIT(2)
    919 #define SVM_EXIT_IO_IN		__BIT(0)
    920 
    921 static void
    922 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    923     struct nvmm_exit *exit)
    924 {
    925 	struct svm_cpudata *cpudata = vcpu->cpudata;
    926 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    927 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    928 
    929 	exit->reason = NVMM_EXIT_IO;
    930 
    931 	if (info & SVM_EXIT_IO_IN) {
    932 		exit->u.io.type = NVMM_EXIT_IO_IN;
    933 	} else {
    934 		exit->u.io.type = NVMM_EXIT_IO_OUT;
    935 	}
    936 
    937 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
    938 
    939 	if (svm_decode_assist) {
    940 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
    941 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
    942 	} else {
    943 		exit->u.io.seg = -1;
    944 	}
    945 
    946 	if (info & SVM_EXIT_IO_A64) {
    947 		exit->u.io.address_size = 8;
    948 	} else if (info & SVM_EXIT_IO_A32) {
    949 		exit->u.io.address_size = 4;
    950 	} else if (info & SVM_EXIT_IO_A16) {
    951 		exit->u.io.address_size = 2;
    952 	}
    953 
    954 	if (info & SVM_EXIT_IO_SZ32) {
    955 		exit->u.io.operand_size = 4;
    956 	} else if (info & SVM_EXIT_IO_SZ16) {
    957 		exit->u.io.operand_size = 2;
    958 	} else if (info & SVM_EXIT_IO_SZ8) {
    959 		exit->u.io.operand_size = 1;
    960 	}
    961 
    962 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
    963 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
    964 	exit->u.io.npc = nextpc;
    965 
    966 	svm_vcpu_state_provide(vcpu,
    967 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
    968 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
    969 }
    970 
    971 static const uint64_t msr_ignore_list[] = {
    972 	0xc0010055, /* MSR_CMPHALT */
    973 	MSR_DE_CFG,
    974 	MSR_IC_CFG,
    975 	MSR_UCODE_AMD_PATCHLEVEL
    976 };
    977 
    978 static bool
    979 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    980     struct nvmm_exit *exit)
    981 {
    982 	struct svm_cpudata *cpudata = vcpu->cpudata;
    983 	struct vmcb *vmcb = cpudata->vmcb;
    984 	uint64_t val;
    985 	size_t i;
    986 
    987 	switch (exit->u.msr.type) {
    988 	case NVMM_EXIT_MSR_RDMSR:
    989 		if (exit->u.msr.msr == MSR_NB_CFG) {
    990 			val = NB_CFG_INITAPICCPUIDLO;
    991 			vmcb->state.rax = (val & 0xFFFFFFFF);
    992 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
    993 			goto handled;
    994 		}
    995 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
    996 			if (msr_ignore_list[i] != exit->u.msr.msr)
    997 				continue;
    998 			val = 0;
    999 			vmcb->state.rax = (val & 0xFFFFFFFF);
   1000 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1001 			goto handled;
   1002 		}
   1003 		break;
   1004 	case NVMM_EXIT_MSR_WRMSR:
   1005 		if (exit->u.msr.msr == MSR_EFER) {
   1006 			if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
   1007 				goto error;
   1008 			}
   1009 			if ((vmcb->state.efer ^ exit->u.msr.val) &
   1010 			     EFER_TLB_FLUSH) {
   1011 				cpudata->gtlb_want_flush = true;
   1012 			}
   1013 			vmcb->state.efer = exit->u.msr.val | EFER_SVME;
   1014 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
   1015 			goto handled;
   1016 		}
   1017 		if (exit->u.msr.msr == MSR_TSC) {
   1018 			cpudata->gtsc = exit->u.msr.val;
   1019 			cpudata->gtsc_want_update = true;
   1020 			goto handled;
   1021 		}
   1022 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1023 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1024 				continue;
   1025 			goto handled;
   1026 		}
   1027 		break;
   1028 	}
   1029 
   1030 	return false;
   1031 
   1032 handled:
   1033 	svm_inkernel_advance(cpudata->vmcb);
   1034 	return true;
   1035 
   1036 error:
   1037 	svm_inject_gp(vcpu);
   1038 	return true;
   1039 }
   1040 
   1041 static void
   1042 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1043     struct nvmm_exit *exit)
   1044 {
   1045 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1046 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1047 
   1048 	if (info == 0) {
   1049 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1050 	} else {
   1051 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1052 	}
   1053 
   1054 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1055 
   1056 	if (info == 1) {
   1057 		uint64_t rdx, rax;
   1058 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1059 		rax = cpudata->vmcb->state.rax;
   1060 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1061 	} else {
   1062 		exit->u.msr.val = 0;
   1063 	}
   1064 
   1065 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1066 		exit->reason = NVMM_EXIT_NONE;
   1067 		return;
   1068 	}
   1069 
   1070 	exit->reason = NVMM_EXIT_MSR;
   1071 	exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
   1072 
   1073 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1074 }
   1075 
   1076 static void
   1077 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1078     struct nvmm_exit *exit)
   1079 {
   1080 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1081 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1082 
   1083 	exit->reason = NVMM_EXIT_MEMORY;
   1084 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1085 		exit->u.mem.prot = PROT_WRITE;
   1086 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1087 		exit->u.mem.prot = PROT_EXEC;
   1088 	else
   1089 		exit->u.mem.prot = PROT_READ;
   1090 	exit->u.mem.gpa = gpa;
   1091 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1092 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1093 	    sizeof(exit->u.mem.inst_bytes));
   1094 
   1095 	svm_vcpu_state_provide(vcpu,
   1096 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1097 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1098 }
   1099 
   1100 static void
   1101 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
   1102 {
   1103 	exit->u.insn.npc = vmcb->ctrl.nrip;
   1104 	exit->reason = reason;
   1105 }
   1106 
   1107 static void
   1108 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1109     struct nvmm_exit *exit)
   1110 {
   1111 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1112 	struct vmcb *vmcb = cpudata->vmcb;
   1113 	uint64_t val;
   1114 
   1115 	exit->reason = NVMM_EXIT_NONE;
   1116 
   1117 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1118 	    (vmcb->state.rax & 0xFFFFFFFF);
   1119 
   1120 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1121 		goto error;
   1122 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1123 		goto error;
   1124 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1125 		goto error;
   1126 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1127 		goto error;
   1128 	}
   1129 
   1130 	cpudata->gxcr0 = val;
   1131 
   1132 	svm_inkernel_advance(cpudata->vmcb);
   1133 	return;
   1134 
   1135 error:
   1136 	svm_inject_gp(vcpu);
   1137 }
   1138 
   1139 static void
   1140 svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
   1141 {
   1142 	exit->u.inv.hwcode = code;
   1143 	exit->reason = NVMM_EXIT_INVALID;
   1144 }
   1145 
   1146 /* -------------------------------------------------------------------------- */
   1147 
   1148 static void
   1149 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1150 {
   1151 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1152 
   1153 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1154 
   1155 	fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
   1156 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
   1157 
   1158 	if (svm_xcr0_mask != 0) {
   1159 		cpudata->hxcr0 = rdxcr(0);
   1160 		wrxcr(0, cpudata->gxcr0);
   1161 	}
   1162 }
   1163 
   1164 static void
   1165 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1166 {
   1167 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1168 
   1169 	if (svm_xcr0_mask != 0) {
   1170 		cpudata->gxcr0 = rdxcr(0);
   1171 		wrxcr(0, cpudata->hxcr0);
   1172 	}
   1173 
   1174 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
   1175 	fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
   1176 
   1177 	if (cpudata->ts_set) {
   1178 		stts();
   1179 	}
   1180 }
   1181 
   1182 static void
   1183 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1184 {
   1185 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1186 
   1187 	x86_dbregs_save(curlwp);
   1188 
   1189 	ldr7(0);
   1190 
   1191 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1192 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1193 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1194 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1195 }
   1196 
   1197 static void
   1198 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1199 {
   1200 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1201 
   1202 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1203 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1204 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1205 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1206 
   1207 	x86_dbregs_restore(curlwp);
   1208 }
   1209 
   1210 static void
   1211 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1212 {
   1213 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1214 
   1215 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1216 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1217 }
   1218 
   1219 static void
   1220 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1221 {
   1222 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1223 
   1224 	wrmsr(MSR_STAR, cpudata->star);
   1225 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1226 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1227 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1228 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1229 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1230 }
   1231 
   1232 /* -------------------------------------------------------------------------- */
   1233 
   1234 static inline void
   1235 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1236 {
   1237 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1238 
   1239 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1240 		cpudata->gtlb_want_flush = true;
   1241 	}
   1242 }
   1243 
   1244 static inline void
   1245 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1246 {
   1247 	/*
   1248 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
   1249 	 * executing on this hCPU and the hTLB already got flushed, or it
   1250 	 * was executing on another hCPU in which case the catchup is done
   1251 	 * in svm_gtlb_catchup().
   1252 	 */
   1253 }
   1254 
   1255 static inline uint64_t
   1256 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
   1257 {
   1258 	struct vmcb *vmcb = cpudata->vmcb;
   1259 	uint64_t machgen;
   1260 
   1261 	machgen = machdata->mach_htlb_gen;
   1262 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1263 		return machgen;
   1264 	}
   1265 
   1266 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1267 	return machgen;
   1268 }
   1269 
   1270 static inline void
   1271 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
   1272 {
   1273 	struct vmcb *vmcb = cpudata->vmcb;
   1274 
   1275 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
   1276 		cpudata->vcpu_htlb_gen = machgen;
   1277 	}
   1278 }
   1279 
   1280 static inline void
   1281 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
   1282 {
   1283 	cpudata->evt_pending = false;
   1284 
   1285 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
   1286 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
   1287 		cpudata->evt_pending = true;
   1288 	}
   1289 }
   1290 
   1291 static int
   1292 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1293     struct nvmm_exit *exit)
   1294 {
   1295 	struct nvmm_comm_page *comm = vcpu->comm;
   1296 	struct svm_machdata *machdata = mach->machdata;
   1297 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1298 	struct vmcb *vmcb = cpudata->vmcb;
   1299 	uint64_t machgen;
   1300 	int hcpu, s;
   1301 
   1302 	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
   1303 		return EINVAL;
   1304 	}
   1305 	svm_vcpu_state_commit(vcpu);
   1306 	comm->state_cached = 0;
   1307 
   1308 	kpreempt_disable();
   1309 	hcpu = cpu_number();
   1310 
   1311 	svm_gtlb_catchup(vcpu, hcpu);
   1312 	svm_htlb_catchup(vcpu, hcpu);
   1313 
   1314 	if (vcpu->hcpu_last != hcpu) {
   1315 		svm_vmcb_cache_flush_all(vmcb);
   1316 		cpudata->gtsc_want_update = true;
   1317 	}
   1318 
   1319 	svm_vcpu_guest_dbregs_enter(vcpu);
   1320 	svm_vcpu_guest_misc_enter(vcpu);
   1321 
   1322 	while (1) {
   1323 		if (cpudata->gtlb_want_flush) {
   1324 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1325 		} else {
   1326 			vmcb->ctrl.tlb_ctrl = 0;
   1327 		}
   1328 
   1329 		if (__predict_false(cpudata->gtsc_want_update)) {
   1330 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
   1331 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
   1332 		}
   1333 
   1334 		s = splhigh();
   1335 		machgen = svm_htlb_flush(machdata, cpudata);
   1336 		svm_vcpu_guest_fpu_enter(vcpu);
   1337 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1338 		svm_vcpu_guest_fpu_leave(vcpu);
   1339 		svm_htlb_flush_ack(cpudata, machgen);
   1340 		splx(s);
   1341 
   1342 		svm_vmcb_cache_default(vmcb);
   1343 
   1344 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1345 			cpudata->gtlb_want_flush = false;
   1346 			cpudata->gtsc_want_update = false;
   1347 			vcpu->hcpu_last = hcpu;
   1348 		}
   1349 		svm_exit_evt(cpudata, vmcb);
   1350 
   1351 		switch (vmcb->ctrl.exitcode) {
   1352 		case VMCB_EXITCODE_INTR:
   1353 		case VMCB_EXITCODE_NMI:
   1354 			exit->reason = NVMM_EXIT_NONE;
   1355 			break;
   1356 		case VMCB_EXITCODE_VINTR:
   1357 			svm_event_waitexit_disable(vcpu, false);
   1358 			exit->reason = NVMM_EXIT_INT_READY;
   1359 			break;
   1360 		case VMCB_EXITCODE_IRET:
   1361 			svm_event_waitexit_disable(vcpu, true);
   1362 			exit->reason = NVMM_EXIT_NMI_READY;
   1363 			break;
   1364 		case VMCB_EXITCODE_CPUID:
   1365 			svm_exit_cpuid(mach, vcpu, exit);
   1366 			break;
   1367 		case VMCB_EXITCODE_HLT:
   1368 			svm_exit_hlt(mach, vcpu, exit);
   1369 			break;
   1370 		case VMCB_EXITCODE_IOIO:
   1371 			svm_exit_io(mach, vcpu, exit);
   1372 			break;
   1373 		case VMCB_EXITCODE_MSR:
   1374 			svm_exit_msr(mach, vcpu, exit);
   1375 			break;
   1376 		case VMCB_EXITCODE_SHUTDOWN:
   1377 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1378 			break;
   1379 		case VMCB_EXITCODE_RDPMC:
   1380 		case VMCB_EXITCODE_RSM:
   1381 		case VMCB_EXITCODE_INVLPGA:
   1382 		case VMCB_EXITCODE_VMRUN:
   1383 		case VMCB_EXITCODE_VMMCALL:
   1384 		case VMCB_EXITCODE_VMLOAD:
   1385 		case VMCB_EXITCODE_VMSAVE:
   1386 		case VMCB_EXITCODE_STGI:
   1387 		case VMCB_EXITCODE_CLGI:
   1388 		case VMCB_EXITCODE_SKINIT:
   1389 		case VMCB_EXITCODE_RDTSCP:
   1390 			svm_inject_ud(vcpu);
   1391 			exit->reason = NVMM_EXIT_NONE;
   1392 			break;
   1393 		case VMCB_EXITCODE_MONITOR:
   1394 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
   1395 			break;
   1396 		case VMCB_EXITCODE_MWAIT:
   1397 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
   1398 			break;
   1399 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1400 			svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
   1401 			break;
   1402 		case VMCB_EXITCODE_XSETBV:
   1403 			svm_exit_xsetbv(mach, vcpu, exit);
   1404 			break;
   1405 		case VMCB_EXITCODE_NPF:
   1406 			svm_exit_npf(mach, vcpu, exit);
   1407 			break;
   1408 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1409 		default:
   1410 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
   1411 			break;
   1412 		}
   1413 
   1414 		/* If no reason to return to userland, keep rolling. */
   1415 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1416 			break;
   1417 		}
   1418 		if (curcpu()->ci_data.cpu_softints != 0) {
   1419 			break;
   1420 		}
   1421 		if (curlwp->l_flag & LW_USERRET) {
   1422 			break;
   1423 		}
   1424 		if (exit->reason != NVMM_EXIT_NONE) {
   1425 			break;
   1426 		}
   1427 	}
   1428 
   1429 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
   1430 
   1431 	svm_vcpu_guest_misc_leave(vcpu);
   1432 	svm_vcpu_guest_dbregs_leave(vcpu);
   1433 
   1434 	kpreempt_enable();
   1435 
   1436 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1437 	    VMCB_CTRL_V_TPR);
   1438 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
   1439 
   1440 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1441 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1442 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1443 	    cpudata->int_window_exit;
   1444 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1445 	    cpudata->nmi_window_exit;
   1446 	exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
   1447 	    cpudata->evt_pending;
   1448 
   1449 	return 0;
   1450 }
   1451 
   1452 /* -------------------------------------------------------------------------- */
   1453 
   1454 static int
   1455 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1456 {
   1457 	struct pglist pglist;
   1458 	paddr_t _pa;
   1459 	vaddr_t _va;
   1460 	size_t i;
   1461 	int ret;
   1462 
   1463 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1464 	    &pglist, 1, 0);
   1465 	if (ret != 0)
   1466 		return ENOMEM;
   1467 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1468 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1469 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1470 	if (_va == 0)
   1471 		goto error;
   1472 
   1473 	for (i = 0; i < npages; i++) {
   1474 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1475 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1476 	}
   1477 	pmap_update(pmap_kernel());
   1478 
   1479 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1480 
   1481 	*pa = _pa;
   1482 	*va = _va;
   1483 	return 0;
   1484 
   1485 error:
   1486 	for (i = 0; i < npages; i++) {
   1487 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1488 	}
   1489 	return ENOMEM;
   1490 }
   1491 
   1492 static void
   1493 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1494 {
   1495 	size_t i;
   1496 
   1497 	pmap_kremove(va, npages * PAGE_SIZE);
   1498 	pmap_update(pmap_kernel());
   1499 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1500 	for (i = 0; i < npages; i++) {
   1501 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1502 	}
   1503 }
   1504 
   1505 /* -------------------------------------------------------------------------- */
   1506 
   1507 #define SVM_MSRBM_READ	__BIT(0)
   1508 #define SVM_MSRBM_WRITE	__BIT(1)
   1509 
   1510 static void
   1511 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1512 {
   1513 	uint64_t byte;
   1514 	uint8_t bitoff;
   1515 
   1516 	if (msr < 0x00002000) {
   1517 		/* Range 1 */
   1518 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1519 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1520 		/* Range 2 */
   1521 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1522 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1523 		/* Range 3 */
   1524 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1525 	} else {
   1526 		panic("%s: wrong range", __func__);
   1527 	}
   1528 
   1529 	bitoff = (msr & 0x3) << 1;
   1530 
   1531 	if (read) {
   1532 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1533 	}
   1534 	if (write) {
   1535 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1536 	}
   1537 }
   1538 
   1539 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
   1540 #define SVM_SEG_ATTRIB_S		__BIT(4)
   1541 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1542 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1543 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1544 #define SVM_SEG_ATTRIB_L		__BIT(9)
   1545 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
   1546 #define SVM_SEG_ATTRIB_G		__BIT(11)
   1547 
   1548 static void
   1549 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
   1550     struct vmcb_segment *vseg)
   1551 {
   1552 	vseg->selector = seg->selector;
   1553 	vseg->attrib =
   1554 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1555 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
   1556 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1557 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1558 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1559 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
   1560 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
   1561 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
   1562 	vseg->limit = seg->limit;
   1563 	vseg->base = seg->base;
   1564 }
   1565 
   1566 static void
   1567 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1568 {
   1569 	seg->selector = vseg->selector;
   1570 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1571 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
   1572 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1573 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1574 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1575 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
   1576 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
   1577 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
   1578 	seg->limit = vseg->limit;
   1579 	seg->base = vseg->base;
   1580 }
   1581 
   1582 static inline bool
   1583 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
   1584     uint64_t flags)
   1585 {
   1586 	if (flags & NVMM_X64_STATE_CRS) {
   1587 		if ((vmcb->state.cr0 ^
   1588 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1589 			return true;
   1590 		}
   1591 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1592 			return true;
   1593 		}
   1594 		if ((vmcb->state.cr4 ^
   1595 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1596 			return true;
   1597 		}
   1598 	}
   1599 
   1600 	if (flags & NVMM_X64_STATE_MSRS) {
   1601 		if ((vmcb->state.efer ^
   1602 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1603 			return true;
   1604 		}
   1605 	}
   1606 
   1607 	return false;
   1608 }
   1609 
   1610 static void
   1611 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
   1612 {
   1613 	struct nvmm_comm_page *comm = vcpu->comm;
   1614 	const struct nvmm_x64_state *state = &comm->state;
   1615 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1616 	struct vmcb *vmcb = cpudata->vmcb;
   1617 	struct fxsave *fpustate;
   1618 	uint64_t flags;
   1619 
   1620 	flags = comm->state_wanted;
   1621 
   1622 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1623 		cpudata->gtlb_want_flush = true;
   1624 	}
   1625 
   1626 	if (flags & NVMM_X64_STATE_SEGS) {
   1627 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1628 		    &vmcb->state.cs);
   1629 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1630 		    &vmcb->state.ds);
   1631 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1632 		    &vmcb->state.es);
   1633 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1634 		    &vmcb->state.fs);
   1635 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1636 		    &vmcb->state.gs);
   1637 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1638 		    &vmcb->state.ss);
   1639 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1640 		    &vmcb->state.gdt);
   1641 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1642 		    &vmcb->state.idt);
   1643 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1644 		    &vmcb->state.ldt);
   1645 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1646 		    &vmcb->state.tr);
   1647 
   1648 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1649 	}
   1650 
   1651 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1652 	if (flags & NVMM_X64_STATE_GPRS) {
   1653 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1654 
   1655 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1656 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1657 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1658 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1659 	}
   1660 
   1661 	if (flags & NVMM_X64_STATE_CRS) {
   1662 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1663 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1664 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1665 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1666 
   1667 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1668 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1669 		    VMCB_CTRL_V_TPR);
   1670 
   1671 		if (svm_xcr0_mask != 0) {
   1672 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1673 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1674 			cpudata->gxcr0 &= svm_xcr0_mask;
   1675 			cpudata->gxcr0 |= XCR0_X87;
   1676 		}
   1677 	}
   1678 
   1679 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1680 	if (flags & NVMM_X64_STATE_DRS) {
   1681 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1682 
   1683 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1684 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1685 	}
   1686 
   1687 	if (flags & NVMM_X64_STATE_MSRS) {
   1688 		/*
   1689 		 * EFER_SVME is mandatory.
   1690 		 */
   1691 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1692 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1693 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1694 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1695 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1696 		vmcb->state.kernelgsbase =
   1697 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1698 		vmcb->state.sysenter_cs =
   1699 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1700 		vmcb->state.sysenter_esp =
   1701 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1702 		vmcb->state.sysenter_eip =
   1703 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1704 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1705 
   1706 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   1707 		cpudata->gtsc_want_update = true;
   1708 	}
   1709 
   1710 	if (flags & NVMM_X64_STATE_INTR) {
   1711 		if (state->intr.int_shadow) {
   1712 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1713 		} else {
   1714 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1715 		}
   1716 
   1717 		if (state->intr.int_window_exiting) {
   1718 			svm_event_waitexit_enable(vcpu, false);
   1719 		} else {
   1720 			svm_event_waitexit_disable(vcpu, false);
   1721 		}
   1722 
   1723 		if (state->intr.nmi_window_exiting) {
   1724 			svm_event_waitexit_enable(vcpu, true);
   1725 		} else {
   1726 			svm_event_waitexit_disable(vcpu, true);
   1727 		}
   1728 	}
   1729 
   1730 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1731 	if (flags & NVMM_X64_STATE_FPU) {
   1732 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1733 		    sizeof(state->fpu));
   1734 
   1735 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1736 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1737 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1738 
   1739 		if (svm_xcr0_mask != 0) {
   1740 			/* Reset XSTATE_BV, to force a reload. */
   1741 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1742 		}
   1743 	}
   1744 
   1745 	svm_vmcb_cache_update(vmcb, flags);
   1746 
   1747 	comm->state_wanted = 0;
   1748 	comm->state_cached |= flags;
   1749 }
   1750 
   1751 static void
   1752 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
   1753 {
   1754 	struct nvmm_comm_page *comm = vcpu->comm;
   1755 	struct nvmm_x64_state *state = &comm->state;
   1756 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1757 	struct vmcb *vmcb = cpudata->vmcb;
   1758 	uint64_t flags;
   1759 
   1760 	flags = comm->state_wanted;
   1761 
   1762 	if (flags & NVMM_X64_STATE_SEGS) {
   1763 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1764 		    &vmcb->state.cs);
   1765 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1766 		    &vmcb->state.ds);
   1767 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1768 		    &vmcb->state.es);
   1769 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1770 		    &vmcb->state.fs);
   1771 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1772 		    &vmcb->state.gs);
   1773 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1774 		    &vmcb->state.ss);
   1775 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1776 		    &vmcb->state.gdt);
   1777 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1778 		    &vmcb->state.idt);
   1779 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1780 		    &vmcb->state.ldt);
   1781 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1782 		    &vmcb->state.tr);
   1783 
   1784 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   1785 	}
   1786 
   1787 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1788 	if (flags & NVMM_X64_STATE_GPRS) {
   1789 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1790 
   1791 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1792 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1793 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1794 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1795 	}
   1796 
   1797 	if (flags & NVMM_X64_STATE_CRS) {
   1798 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1799 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1800 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1801 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1802 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1803 		    VMCB_CTRL_V_TPR);
   1804 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1805 	}
   1806 
   1807 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1808 	if (flags & NVMM_X64_STATE_DRS) {
   1809 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1810 
   1811 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1812 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1813 	}
   1814 
   1815 	if (flags & NVMM_X64_STATE_MSRS) {
   1816 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1817 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1818 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1819 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1820 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1821 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1822 		    vmcb->state.kernelgsbase;
   1823 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1824 		    vmcb->state.sysenter_cs;
   1825 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1826 		    vmcb->state.sysenter_esp;
   1827 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1828 		    vmcb->state.sysenter_eip;
   1829 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1830 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   1831 
   1832 		/* Hide SVME. */
   1833 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1834 	}
   1835 
   1836 	if (flags & NVMM_X64_STATE_INTR) {
   1837 		state->intr.int_shadow =
   1838 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1839 		state->intr.int_window_exiting = cpudata->int_window_exit;
   1840 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   1841 		state->intr.evt_pending = cpudata->evt_pending;
   1842 	}
   1843 
   1844 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1845 	if (flags & NVMM_X64_STATE_FPU) {
   1846 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1847 		    sizeof(state->fpu));
   1848 	}
   1849 
   1850 	comm->state_wanted = 0;
   1851 	comm->state_cached |= flags;
   1852 }
   1853 
   1854 static void
   1855 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
   1856 {
   1857 	vcpu->comm->state_wanted = flags;
   1858 	svm_vcpu_getstate(vcpu);
   1859 }
   1860 
   1861 static void
   1862 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
   1863 {
   1864 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
   1865 	vcpu->comm->state_commit = 0;
   1866 	svm_vcpu_setstate(vcpu);
   1867 }
   1868 
   1869 /* -------------------------------------------------------------------------- */
   1870 
   1871 static void
   1872 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1873 {
   1874 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1875 	struct vmcb *vmcb = cpudata->vmcb;
   1876 	size_t i, oct, bit;
   1877 
   1878 	mutex_enter(&svm_asidlock);
   1879 
   1880 	for (i = 0; i < svm_maxasid; i++) {
   1881 		oct = i / 8;
   1882 		bit = i % 8;
   1883 
   1884 		if (svm_asidmap[oct] & __BIT(bit)) {
   1885 			continue;
   1886 		}
   1887 
   1888 		svm_asidmap[oct] |= __BIT(bit);
   1889 		vmcb->ctrl.guest_asid = i;
   1890 		mutex_exit(&svm_asidlock);
   1891 		return;
   1892 	}
   1893 
   1894 	/*
   1895 	 * No free ASID. Use the last one, which is shared and requires
   1896 	 * special TLB handling.
   1897 	 */
   1898 	cpudata->shared_asid = true;
   1899 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1900 	mutex_exit(&svm_asidlock);
   1901 }
   1902 
   1903 static void
   1904 svm_asid_free(struct nvmm_cpu *vcpu)
   1905 {
   1906 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1907 	struct vmcb *vmcb = cpudata->vmcb;
   1908 	size_t oct, bit;
   1909 
   1910 	if (cpudata->shared_asid) {
   1911 		return;
   1912 	}
   1913 
   1914 	oct = vmcb->ctrl.guest_asid / 8;
   1915 	bit = vmcb->ctrl.guest_asid % 8;
   1916 
   1917 	mutex_enter(&svm_asidlock);
   1918 	svm_asidmap[oct] &= ~__BIT(bit);
   1919 	mutex_exit(&svm_asidlock);
   1920 }
   1921 
   1922 static void
   1923 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1924 {
   1925 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1926 	struct vmcb *vmcb = cpudata->vmcb;
   1927 
   1928 	/* Allow reads/writes of Control Registers. */
   1929 	vmcb->ctrl.intercept_cr = 0;
   1930 
   1931 	/* Allow reads/writes of Debug Registers. */
   1932 	vmcb->ctrl.intercept_dr = 0;
   1933 
   1934 	/* Allow exceptions 0 to 31. */
   1935 	vmcb->ctrl.intercept_vec = 0;
   1936 
   1937 	/*
   1938 	 * Allow:
   1939 	 *  - SMI [smm interrupts]
   1940 	 *  - VINTR [virtual interrupts]
   1941 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   1942 	 *  - RIDTR [reads of IDTR]
   1943 	 *  - RGDTR [reads of GDTR]
   1944 	 *  - RLDTR [reads of LDTR]
   1945 	 *  - RTR [reads of TR]
   1946 	 *  - WIDTR [writes of IDTR]
   1947 	 *  - WGDTR [writes of GDTR]
   1948 	 *  - WLDTR [writes of LDTR]
   1949 	 *  - WTR [writes of TR]
   1950 	 *  - RDTSC [rdtsc instruction]
   1951 	 *  - PUSHF [pushf instruction]
   1952 	 *  - POPF [popf instruction]
   1953 	 *  - IRET [iret instruction]
   1954 	 *  - INTN [int $n instructions]
   1955 	 *  - INVD [invd instruction]
   1956 	 *  - PAUSE [pause instruction]
   1957 	 *  - INVLPG [invplg instruction]
   1958 	 *  - TASKSW [task switches]
   1959 	 *
   1960 	 * Intercept the rest below.
   1961 	 */
   1962 	vmcb->ctrl.intercept_misc1 =
   1963 	    VMCB_CTRL_INTERCEPT_INTR |
   1964 	    VMCB_CTRL_INTERCEPT_NMI |
   1965 	    VMCB_CTRL_INTERCEPT_INIT |
   1966 	    VMCB_CTRL_INTERCEPT_RDPMC |
   1967 	    VMCB_CTRL_INTERCEPT_CPUID |
   1968 	    VMCB_CTRL_INTERCEPT_RSM |
   1969 	    VMCB_CTRL_INTERCEPT_HLT |
   1970 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   1971 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   1972 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   1973 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   1974 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   1975 
   1976 	/*
   1977 	 * Allow:
   1978 	 *  - ICEBP [icebp instruction]
   1979 	 *  - WBINVD [wbinvd instruction]
   1980 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   1981 	 *
   1982 	 * Intercept the rest below.
   1983 	 */
   1984 	vmcb->ctrl.intercept_misc2 =
   1985 	    VMCB_CTRL_INTERCEPT_VMRUN |
   1986 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   1987 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   1988 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   1989 	    VMCB_CTRL_INTERCEPT_STGI |
   1990 	    VMCB_CTRL_INTERCEPT_CLGI |
   1991 	    VMCB_CTRL_INTERCEPT_SKINIT |
   1992 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   1993 	    VMCB_CTRL_INTERCEPT_MONITOR |
   1994 	    VMCB_CTRL_INTERCEPT_MWAIT |
   1995 	    VMCB_CTRL_INTERCEPT_XSETBV;
   1996 
   1997 	/* Intercept all I/O accesses. */
   1998 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   1999 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   2000 
   2001 	/* Allow direct access to certain MSRs. */
   2002 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2003 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   2004 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2005 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2006 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2007 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2008 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2009 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2010 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2011 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2012 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2013 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2014 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   2015 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2016 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   2017 
   2018 	/* Generate ASID. */
   2019 	svm_asid_alloc(vcpu);
   2020 
   2021 	/* Virtual TPR. */
   2022 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   2023 
   2024 	/* Enable Nested Paging. */
   2025 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   2026 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   2027 
   2028 	/* Init XSAVE header. */
   2029 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   2030 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2031 
   2032 	/* These MSRs are static. */
   2033 	cpudata->star = rdmsr(MSR_STAR);
   2034 	cpudata->lstar = rdmsr(MSR_LSTAR);
   2035 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2036 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2037 
   2038 	/* Install the RESET state. */
   2039 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
   2040 	    sizeof(nvmm_x86_reset_state));
   2041 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
   2042 	vcpu->comm->state_cached = 0;
   2043 	svm_vcpu_setstate(vcpu);
   2044 }
   2045 
   2046 static int
   2047 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2048 {
   2049 	struct svm_cpudata *cpudata;
   2050 	int error;
   2051 
   2052 	/* Allocate the SVM cpudata. */
   2053 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   2054 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2055 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2056 	vcpu->cpudata = cpudata;
   2057 
   2058 	/* VMCB */
   2059 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   2060 	    VMCB_NPAGES);
   2061 	if (error)
   2062 		goto error;
   2063 
   2064 	/* I/O Bitmap */
   2065 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   2066 	    IOBM_NPAGES);
   2067 	if (error)
   2068 		goto error;
   2069 
   2070 	/* MSR Bitmap */
   2071 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2072 	    MSRBM_NPAGES);
   2073 	if (error)
   2074 		goto error;
   2075 
   2076 	/* Init the VCPU info. */
   2077 	svm_vcpu_init(mach, vcpu);
   2078 
   2079 	return 0;
   2080 
   2081 error:
   2082 	if (cpudata->vmcb_pa) {
   2083 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   2084 		    VMCB_NPAGES);
   2085 	}
   2086 	if (cpudata->iobm_pa) {
   2087 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   2088 		    IOBM_NPAGES);
   2089 	}
   2090 	if (cpudata->msrbm_pa) {
   2091 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2092 		    MSRBM_NPAGES);
   2093 	}
   2094 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2095 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2096 	return error;
   2097 }
   2098 
   2099 static void
   2100 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2101 {
   2102 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2103 
   2104 	svm_asid_free(vcpu);
   2105 
   2106 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   2107 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   2108 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2109 
   2110 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2111 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2112 }
   2113 
   2114 /* -------------------------------------------------------------------------- */
   2115 
   2116 static void
   2117 svm_tlb_flush(struct pmap *pm)
   2118 {
   2119 	struct nvmm_machine *mach = pm->pm_data;
   2120 	struct svm_machdata *machdata = mach->machdata;
   2121 
   2122 	atomic_inc_64(&machdata->mach_htlb_gen);
   2123 
   2124 	/* Generates IPIs, which cause #VMEXITs. */
   2125 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2126 }
   2127 
   2128 static void
   2129 svm_machine_create(struct nvmm_machine *mach)
   2130 {
   2131 	struct svm_machdata *machdata;
   2132 
   2133 	/* Fill in pmap info. */
   2134 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   2135 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   2136 
   2137 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   2138 	mach->machdata = machdata;
   2139 
   2140 	/* Start with an hTLB flush everywhere. */
   2141 	machdata->mach_htlb_gen = 1;
   2142 }
   2143 
   2144 static void
   2145 svm_machine_destroy(struct nvmm_machine *mach)
   2146 {
   2147 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   2148 }
   2149 
   2150 static int
   2151 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2152 {
   2153 	struct nvmm_mach_conf_x86_cpuid *cpuid = data;
   2154 	struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
   2155 	size_t i;
   2156 
   2157 	if (__predict_false(op != NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID))) {
   2158 		return EINVAL;
   2159 	}
   2160 
   2161 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2162 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2163 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2164 	    (cpuid->set.edx & cpuid->del.edx))) {
   2165 		return EINVAL;
   2166 	}
   2167 
   2168 	/* If already here, replace. */
   2169 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2170 		if (!machdata->cpuidpresent[i]) {
   2171 			continue;
   2172 		}
   2173 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2174 			memcpy(&machdata->cpuid[i], cpuid,
   2175 			    sizeof(struct nvmm_mach_conf_x86_cpuid));
   2176 			return 0;
   2177 		}
   2178 	}
   2179 
   2180 	/* Not here, insert. */
   2181 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2182 		if (!machdata->cpuidpresent[i]) {
   2183 			machdata->cpuidpresent[i] = true;
   2184 			memcpy(&machdata->cpuid[i], cpuid,
   2185 			    sizeof(struct nvmm_mach_conf_x86_cpuid));
   2186 			return 0;
   2187 		}
   2188 	}
   2189 
   2190 	return ENOBUFS;
   2191 }
   2192 
   2193 /* -------------------------------------------------------------------------- */
   2194 
   2195 static bool
   2196 svm_ident(void)
   2197 {
   2198 	u_int descs[4];
   2199 	uint64_t msr;
   2200 
   2201 	if (cpu_vendor != CPUVENDOR_AMD) {
   2202 		return false;
   2203 	}
   2204 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2205 		return false;
   2206 	}
   2207 
   2208 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2209 		return false;
   2210 	}
   2211 	x86_cpuid(0x8000000a, descs);
   2212 
   2213 	/* Want Nested Paging. */
   2214 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2215 		return false;
   2216 	}
   2217 
   2218 	/* Want nRIP. */
   2219 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2220 		return false;
   2221 	}
   2222 
   2223 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2224 
   2225 	msr = rdmsr(MSR_VMCR);
   2226 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2227 		return false;
   2228 	}
   2229 
   2230 	return true;
   2231 }
   2232 
   2233 static void
   2234 svm_init_asid(uint32_t maxasid)
   2235 {
   2236 	size_t i, j, allocsz;
   2237 
   2238 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2239 
   2240 	/* Arbitrarily limit. */
   2241 	maxasid = uimin(maxasid, 8192);
   2242 
   2243 	svm_maxasid = maxasid;
   2244 	allocsz = roundup(maxasid, 8) / 8;
   2245 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2246 
   2247 	/* ASID 0 is reserved for the host. */
   2248 	svm_asidmap[0] |= __BIT(0);
   2249 
   2250 	/* ASID n-1 is special, we share it. */
   2251 	i = (maxasid - 1) / 8;
   2252 	j = (maxasid - 1) % 8;
   2253 	svm_asidmap[i] |= __BIT(j);
   2254 }
   2255 
   2256 static void
   2257 svm_change_cpu(void *arg1, void *arg2)
   2258 {
   2259 	bool enable = (bool)arg1;
   2260 	uint64_t msr;
   2261 
   2262 	msr = rdmsr(MSR_VMCR);
   2263 	if (msr & VMCR_SVMED) {
   2264 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2265 	}
   2266 
   2267 	if (!enable) {
   2268 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2269 	}
   2270 
   2271 	msr = rdmsr(MSR_EFER);
   2272 	if (enable) {
   2273 		msr |= EFER_SVME;
   2274 	} else {
   2275 		msr &= ~EFER_SVME;
   2276 	}
   2277 	wrmsr(MSR_EFER, msr);
   2278 
   2279 	if (enable) {
   2280 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2281 	}
   2282 }
   2283 
   2284 static void
   2285 svm_init(void)
   2286 {
   2287 	CPU_INFO_ITERATOR cii;
   2288 	struct cpu_info *ci;
   2289 	struct vm_page *pg;
   2290 	u_int descs[4];
   2291 	uint64_t xc;
   2292 
   2293 	x86_cpuid(0x8000000a, descs);
   2294 
   2295 	/* The guest TLB flush command. */
   2296 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2297 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2298 	} else {
   2299 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2300 	}
   2301 
   2302 	/* Init the ASID. */
   2303 	svm_init_asid(descs[1]);
   2304 
   2305 	/* Init the XCR0 mask. */
   2306 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2307 
   2308 	memset(hsave, 0, sizeof(hsave));
   2309 	for (CPU_INFO_FOREACH(cii, ci)) {
   2310 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2311 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2312 	}
   2313 
   2314 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2315 	xc_wait(xc);
   2316 }
   2317 
   2318 static void
   2319 svm_fini_asid(void)
   2320 {
   2321 	size_t allocsz;
   2322 
   2323 	allocsz = roundup(svm_maxasid, 8) / 8;
   2324 	kmem_free(svm_asidmap, allocsz);
   2325 
   2326 	mutex_destroy(&svm_asidlock);
   2327 }
   2328 
   2329 static void
   2330 svm_fini(void)
   2331 {
   2332 	uint64_t xc;
   2333 	size_t i;
   2334 
   2335 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2336 	xc_wait(xc);
   2337 
   2338 	for (i = 0; i < MAXCPUS; i++) {
   2339 		if (hsave[i].pa != 0)
   2340 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2341 	}
   2342 
   2343 	svm_fini_asid();
   2344 }
   2345 
   2346 static void
   2347 svm_capability(struct nvmm_capability *cap)
   2348 {
   2349 	cap->arch.xcr0_mask = svm_xcr0_mask;
   2350 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
   2351 	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
   2352 }
   2353 
   2354 const struct nvmm_impl nvmm_x86_svm = {
   2355 	.ident = svm_ident,
   2356 	.init = svm_init,
   2357 	.fini = svm_fini,
   2358 	.capability = svm_capability,
   2359 	.conf_max = NVMM_X86_NCONF,
   2360 	.conf_sizes = svm_conf_sizes,
   2361 	.state_size = sizeof(struct nvmm_x64_state),
   2362 	.machine_create = svm_machine_create,
   2363 	.machine_destroy = svm_machine_destroy,
   2364 	.machine_configure = svm_machine_configure,
   2365 	.vcpu_create = svm_vcpu_create,
   2366 	.vcpu_destroy = svm_vcpu_destroy,
   2367 	.vcpu_setstate = svm_vcpu_setstate,
   2368 	.vcpu_getstate = svm_vcpu_getstate,
   2369 	.vcpu_inject = svm_vcpu_inject,
   2370 	.vcpu_run = svm_vcpu_run
   2371 };
   2372