nvmm_x86_svm.c revision 1.46.4.12 1 /* $NetBSD: nvmm_x86_svm.c,v 1.46.4.12 2020/09/13 11:54:10 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46.4.12 2020/09/13 11:54:10 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_INVLPGB 0x00A0
224 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
225 #define VMCB_EXITCODE_INVPCID 0x00A2
226 #define VMCB_EXITCODE_MCOMMIT 0x00A3
227 #define VMCB_EXITCODE_TLBSYNC 0x00A4
228 #define VMCB_EXITCODE_NPF 0x0400
229 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
230 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
231 #define VMCB_EXITCODE_VMGEXIT 0x0403
232 #define VMCB_EXITCODE_BUSY -2ULL
233 #define VMCB_EXITCODE_INVALID -1ULL
234
235 /* -------------------------------------------------------------------------- */
236
237 struct vmcb_ctrl {
238 uint32_t intercept_cr;
239 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
240 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
241
242 uint32_t intercept_dr;
243 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
244 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
245
246 uint32_t intercept_vec;
247 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
248
249 uint32_t intercept_misc1;
250 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
251 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
252 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
253 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
254 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
255 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
256 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
257 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
258 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
259 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
260 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
261 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
262 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
263 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
264 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
265 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
266 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
267 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
268 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
269 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
270 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
271 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
272 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
273 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
274 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
275 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
276 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
277 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
278 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
279 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
280 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
281 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
282
283 uint32_t intercept_misc2;
284 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
285 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
286 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
287 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
288 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
289 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
290 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
291 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
292 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
293 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
294 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
295 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
296 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
297 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
298 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
299 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
300 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
301
302 uint32_t intercept_misc3;
303 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
304 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
305 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
306 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
307 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
308
309 uint8_t rsvd1[36];
310 uint16_t pause_filt_thresh;
311 uint16_t pause_filt_cnt;
312 uint64_t iopm_base_pa;
313 uint64_t msrpm_base_pa;
314 uint64_t tsc_offset;
315 uint32_t guest_asid;
316
317 uint32_t tlb_ctrl;
318 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
319 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
320 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
321
322 uint64_t v;
323 #define VMCB_CTRL_V_TPR __BITS(3,0)
324 #define VMCB_CTRL_V_IRQ __BIT(8)
325 #define VMCB_CTRL_V_VGIF __BIT(9)
326 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
327 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
328 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
329 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
330 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
331 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
332
333 uint64_t intr;
334 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
335 #define VMCB_CTRL_INTR_MASK __BIT(1)
336
337 uint64_t exitcode;
338 uint64_t exitinfo1;
339 uint64_t exitinfo2;
340
341 uint64_t exitintinfo;
342 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
345 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
346 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
347
348 uint64_t enable1;
349 #define VMCB_CTRL_ENABLE_NP __BIT(0)
350 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
351 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
352 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
353 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
354
355 uint64_t avic;
356 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
357
358 uint64_t ghcb;
359
360 uint64_t eventinj;
361 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
362 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
363 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
364 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
365 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
366
367 uint64_t n_cr3;
368
369 uint64_t enable2;
370 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
371 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
372
373 uint32_t vmcb_clean;
374 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
375 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
376 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
377 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
378 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
379 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
380 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
381 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
382 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
383 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
384 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
385 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
386
387 uint32_t rsvd2;
388 uint64_t nrip;
389 uint8_t inst_len;
390 uint8_t inst_bytes[15];
391 uint64_t avic_abpp;
392 uint64_t rsvd3;
393 uint64_t avic_ltp;
394
395 uint64_t avic_phys;
396 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
397 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
398
399 uint64_t rsvd4;
400 uint64_t vmsa_ptr;
401
402 uint8_t pad[752];
403 } __packed;
404
405 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
406
407 struct vmcb_segment {
408 uint16_t selector;
409 uint16_t attrib; /* hidden */
410 uint32_t limit; /* hidden */
411 uint64_t base; /* hidden */
412 } __packed;
413
414 CTASSERT(sizeof(struct vmcb_segment) == 16);
415
416 struct vmcb_state {
417 struct vmcb_segment es;
418 struct vmcb_segment cs;
419 struct vmcb_segment ss;
420 struct vmcb_segment ds;
421 struct vmcb_segment fs;
422 struct vmcb_segment gs;
423 struct vmcb_segment gdt;
424 struct vmcb_segment ldt;
425 struct vmcb_segment idt;
426 struct vmcb_segment tr;
427 uint8_t rsvd1[43];
428 uint8_t cpl;
429 uint8_t rsvd2[4];
430 uint64_t efer;
431 uint8_t rsvd3[112];
432 uint64_t cr4;
433 uint64_t cr3;
434 uint64_t cr0;
435 uint64_t dr7;
436 uint64_t dr6;
437 uint64_t rflags;
438 uint64_t rip;
439 uint8_t rsvd4[88];
440 uint64_t rsp;
441 uint8_t rsvd5[24];
442 uint64_t rax;
443 uint64_t star;
444 uint64_t lstar;
445 uint64_t cstar;
446 uint64_t sfmask;
447 uint64_t kernelgsbase;
448 uint64_t sysenter_cs;
449 uint64_t sysenter_esp;
450 uint64_t sysenter_eip;
451 uint64_t cr2;
452 uint8_t rsvd6[32];
453 uint64_t g_pat;
454 uint64_t dbgctl;
455 uint64_t br_from;
456 uint64_t br_to;
457 uint64_t int_from;
458 uint64_t int_to;
459 uint8_t pad[2408];
460 } __packed;
461
462 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
463
464 struct vmcb {
465 struct vmcb_ctrl ctrl;
466 struct vmcb_state state;
467 } __packed;
468
469 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
470 CTASSERT(offsetof(struct vmcb, state) == 0x400);
471
472 /* -------------------------------------------------------------------------- */
473
474 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
475 static void svm_vcpu_state_commit(struct nvmm_cpu *);
476
477 struct svm_hsave {
478 paddr_t pa;
479 };
480
481 static struct svm_hsave hsave[MAXCPUS];
482
483 static uint8_t *svm_asidmap __read_mostly;
484 static uint32_t svm_maxasid __read_mostly;
485 static kmutex_t svm_asidlock __cacheline_aligned;
486
487 static bool svm_decode_assist __read_mostly;
488 static uint32_t svm_ctrl_tlb_flush __read_mostly;
489
490 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
491 static uint64_t svm_xcr0_mask __read_mostly;
492
493 #define SVM_NCPUIDS 32
494
495 #define VMCB_NPAGES 1
496
497 #define MSRBM_NPAGES 2
498 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
499
500 #define IOBM_NPAGES 3
501 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
502
503 /* Does not include EFER_LMSLE. */
504 #define EFER_VALID \
505 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
506
507 #define EFER_TLB_FLUSH \
508 (EFER_NXE|EFER_LMA|EFER_LME)
509 #define CR0_TLB_FLUSH \
510 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
511 #define CR4_TLB_FLUSH \
512 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
513
514 /* -------------------------------------------------------------------------- */
515
516 struct svm_machdata {
517 volatile uint64_t mach_htlb_gen;
518 };
519
520 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
521 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
522 sizeof(struct nvmm_vcpu_conf_cpuid),
523 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
524 sizeof(struct nvmm_vcpu_conf_tpr)
525 };
526
527 struct svm_cpudata {
528 /* General */
529 bool shared_asid;
530 bool gtlb_want_flush;
531 bool gtsc_want_update;
532 uint64_t vcpu_htlb_gen;
533
534 /* VMCB */
535 struct vmcb *vmcb;
536 paddr_t vmcb_pa;
537
538 /* I/O bitmap */
539 uint8_t *iobm;
540 paddr_t iobm_pa;
541
542 /* MSR bitmap */
543 uint8_t *msrbm;
544 paddr_t msrbm_pa;
545
546 /* Host state */
547 uint64_t hxcr0;
548 uint64_t star;
549 uint64_t lstar;
550 uint64_t cstar;
551 uint64_t sfmask;
552 uint64_t fsbase;
553 uint64_t kernelgsbase;
554 bool ts_set;
555 struct xsave_header hfpu __aligned(64);
556
557 /* Intr state */
558 bool int_window_exit;
559 bool nmi_window_exit;
560 bool evt_pending;
561
562 /* Guest state */
563 uint64_t gxcr0;
564 uint64_t gprs[NVMM_X64_NGPR];
565 uint64_t drs[NVMM_X64_NDR];
566 uint64_t gtsc;
567 struct xsave_header gfpu __aligned(64);
568
569 /* VCPU configuration. */
570 bool cpuidpresent[SVM_NCPUIDS];
571 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
572 };
573
574 static void
575 svm_vmcb_cache_default(struct vmcb *vmcb)
576 {
577 vmcb->ctrl.vmcb_clean =
578 VMCB_CTRL_VMCB_CLEAN_I |
579 VMCB_CTRL_VMCB_CLEAN_IOPM |
580 VMCB_CTRL_VMCB_CLEAN_ASID |
581 VMCB_CTRL_VMCB_CLEAN_TPR |
582 VMCB_CTRL_VMCB_CLEAN_NP |
583 VMCB_CTRL_VMCB_CLEAN_CR |
584 VMCB_CTRL_VMCB_CLEAN_DR |
585 VMCB_CTRL_VMCB_CLEAN_DT |
586 VMCB_CTRL_VMCB_CLEAN_SEG |
587 VMCB_CTRL_VMCB_CLEAN_CR2 |
588 VMCB_CTRL_VMCB_CLEAN_LBR |
589 VMCB_CTRL_VMCB_CLEAN_AVIC;
590 }
591
592 static void
593 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
594 {
595 if (flags & NVMM_X64_STATE_SEGS) {
596 vmcb->ctrl.vmcb_clean &=
597 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
598 }
599 if (flags & NVMM_X64_STATE_CRS) {
600 vmcb->ctrl.vmcb_clean &=
601 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
602 VMCB_CTRL_VMCB_CLEAN_TPR);
603 }
604 if (flags & NVMM_X64_STATE_DRS) {
605 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
606 }
607 if (flags & NVMM_X64_STATE_MSRS) {
608 /* CR for EFER, NP for PAT. */
609 vmcb->ctrl.vmcb_clean &=
610 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
611 }
612 }
613
614 static inline void
615 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
616 {
617 vmcb->ctrl.vmcb_clean &= ~flags;
618 }
619
620 static inline void
621 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
622 {
623 vmcb->ctrl.vmcb_clean = 0;
624 }
625
626 #define SVM_EVENT_TYPE_HW_INT 0
627 #define SVM_EVENT_TYPE_NMI 2
628 #define SVM_EVENT_TYPE_EXC 3
629 #define SVM_EVENT_TYPE_SW_INT 4
630
631 static void
632 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
633 {
634 struct svm_cpudata *cpudata = vcpu->cpudata;
635 struct vmcb *vmcb = cpudata->vmcb;
636
637 if (nmi) {
638 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
639 cpudata->nmi_window_exit = true;
640 } else {
641 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
642 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
643 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
644 cpudata->int_window_exit = true;
645 }
646
647 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
648 }
649
650 static void
651 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
652 {
653 struct svm_cpudata *cpudata = vcpu->cpudata;
654 struct vmcb *vmcb = cpudata->vmcb;
655
656 if (nmi) {
657 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
658 cpudata->nmi_window_exit = false;
659 } else {
660 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
661 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
662 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
663 cpudata->int_window_exit = false;
664 }
665
666 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
667 }
668
669 static inline int
670 svm_event_has_error(uint8_t vector)
671 {
672 switch (vector) {
673 case 8: /* #DF */
674 case 10: /* #TS */
675 case 11: /* #NP */
676 case 12: /* #SS */
677 case 13: /* #GP */
678 case 14: /* #PF */
679 case 17: /* #AC */
680 case 30: /* #SX */
681 return 1;
682 default:
683 return 0;
684 }
685 }
686
687 static int
688 svm_vcpu_inject(struct nvmm_cpu *vcpu)
689 {
690 struct nvmm_comm_page *comm = vcpu->comm;
691 struct svm_cpudata *cpudata = vcpu->cpudata;
692 struct vmcb *vmcb = cpudata->vmcb;
693 u_int evtype;
694 uint8_t vector;
695 uint64_t error;
696 int type = 0, err = 0;
697
698 evtype = comm->event.type;
699 vector = comm->event.vector;
700 error = comm->event.u.excp.error;
701 __insn_barrier();
702
703 switch (evtype) {
704 case NVMM_VCPU_EVENT_EXCP:
705 type = SVM_EVENT_TYPE_EXC;
706 if (vector == 2 || vector >= 32)
707 return EINVAL;
708 if (vector == 3 || vector == 0)
709 return EINVAL;
710 err = svm_event_has_error(vector);
711 break;
712 case NVMM_VCPU_EVENT_INTR:
713 type = SVM_EVENT_TYPE_HW_INT;
714 if (vector == 2) {
715 type = SVM_EVENT_TYPE_NMI;
716 svm_event_waitexit_enable(vcpu, true);
717 }
718 err = 0;
719 break;
720 default:
721 return EINVAL;
722 }
723
724 vmcb->ctrl.eventinj =
725 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
726 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
727 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
728 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
729 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
730
731 cpudata->evt_pending = true;
732
733 return 0;
734 }
735
736 static void
737 svm_inject_ud(struct nvmm_cpu *vcpu)
738 {
739 struct nvmm_comm_page *comm = vcpu->comm;
740 int ret __diagused;
741
742 comm->event.type = NVMM_VCPU_EVENT_EXCP;
743 comm->event.vector = 6;
744 comm->event.u.excp.error = 0;
745
746 ret = svm_vcpu_inject(vcpu);
747 KASSERT(ret == 0);
748 }
749
750 static void
751 svm_inject_gp(struct nvmm_cpu *vcpu)
752 {
753 struct nvmm_comm_page *comm = vcpu->comm;
754 int ret __diagused;
755
756 comm->event.type = NVMM_VCPU_EVENT_EXCP;
757 comm->event.vector = 13;
758 comm->event.u.excp.error = 0;
759
760 ret = svm_vcpu_inject(vcpu);
761 KASSERT(ret == 0);
762 }
763
764 static inline int
765 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
766 {
767 if (__predict_true(!vcpu->comm->event_commit)) {
768 return 0;
769 }
770 vcpu->comm->event_commit = false;
771 return svm_vcpu_inject(vcpu);
772 }
773
774 static inline void
775 svm_inkernel_advance(struct vmcb *vmcb)
776 {
777 /*
778 * Maybe we should also apply single-stepping and debug exceptions.
779 * Matters for guest-ring3, because it can execute 'cpuid' under a
780 * debugger.
781 */
782 vmcb->state.rip = vmcb->ctrl.nrip;
783 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
784 }
785
786 #define SVM_CPUID_MAX_BASIC 0xD
787 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
788 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
789 static uint32_t svm_cpuid_max_basic __read_mostly;
790 static uint32_t svm_cpuid_max_extended __read_mostly;
791
792 static void
793 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
794 {
795 u_int descs[4];
796
797 x86_cpuid2(eax, ecx, descs);
798 cpudata->vmcb->state.rax = descs[0];
799 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
800 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
801 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
802 }
803
804 static void
805 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
806 {
807 struct svm_cpudata *cpudata = vcpu->cpudata;
808 uint64_t cr4;
809
810 if (eax < 0x40000000) {
811 if (__predict_false(eax > svm_cpuid_max_basic)) {
812 eax = svm_cpuid_max_basic;
813 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
814 }
815 } else if (eax < 0x80000000) {
816 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
817 eax = svm_cpuid_max_basic;
818 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
819 }
820 } else {
821 if (__predict_false(eax > svm_cpuid_max_extended)) {
822 eax = svm_cpuid_max_basic;
823 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
824 }
825 }
826
827 switch (eax) {
828 case 0x00000000:
829 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
830 break;
831 case 0x00000001:
832 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
833
834 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
835 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
836 CPUID_LOCAL_APIC_ID);
837
838 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
839 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
840
841 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
842
843 /* CPUID2_OSXSAVE depends on CR4. */
844 cr4 = cpudata->vmcb->state.cr4;
845 if (!(cr4 & CR4_OSXSAVE)) {
846 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
847 }
848 break;
849 case 0x00000002: /* Empty */
850 case 0x00000003: /* Empty */
851 case 0x00000004: /* Empty */
852 case 0x00000005: /* Monitor/MWait */
853 case 0x00000006: /* Power Management Related Features */
854 cpudata->vmcb->state.rax = 0;
855 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
856 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
857 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
858 break;
859 case 0x00000007: /* Structured Extended Features */
860 switch (ecx) {
861 case 0:
862 cpudata->vmcb->state.rax = 0;
863 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
864 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
865 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
866 break;
867 default:
868 cpudata->vmcb->state.rax = 0;
869 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
870 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
871 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
872 break;
873 }
874 break;
875 case 0x00000008: /* Empty */
876 case 0x00000009: /* Empty */
877 case 0x0000000A: /* Empty */
878 case 0x0000000B: /* Empty */
879 case 0x0000000C: /* Empty */
880 cpudata->vmcb->state.rax = 0;
881 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
882 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
883 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
884 break;
885 case 0x0000000D: /* Processor Extended State Enumeration */
886 if (svm_xcr0_mask == 0) {
887 break;
888 }
889 switch (ecx) {
890 case 0:
891 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
892 if (cpudata->gxcr0 & XCR0_SSE) {
893 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
894 } else {
895 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
896 }
897 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
898 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
899 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
900 break;
901 case 1:
902 cpudata->vmcb->state.rax &=
903 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
904 CPUID_PES1_XGETBV);
905 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
906 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
907 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
908 break;
909 default:
910 cpudata->vmcb->state.rax = 0;
911 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
912 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
913 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
914 break;
915 }
916 break;
917
918 case 0x40000000: /* Hypervisor Information */
919 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
920 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
921 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
922 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
923 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
924 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
925 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
926 break;
927
928 case 0x80000000:
929 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
930 break;
931 case 0x80000001:
932 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
933 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
934 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
935 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
936 break;
937 case 0x80000002: /* Extended Processor Name String */
938 case 0x80000003: /* Extended Processor Name String */
939 case 0x80000004: /* Extended Processor Name String */
940 case 0x80000005: /* L1 Cache and TLB Information */
941 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
942 break;
943 case 0x80000007: /* Processor Power Management and RAS Capabilities */
944 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
945 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
946 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
947 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
948 break;
949 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
950 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
951 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
952 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
953 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
954 break;
955 case 0x80000009: /* Empty */
956 case 0x8000000A: /* SVM Features */
957 case 0x8000000B: /* Empty */
958 case 0x8000000C: /* Empty */
959 case 0x8000000D: /* Empty */
960 case 0x8000000E: /* Empty */
961 case 0x8000000F: /* Empty */
962 case 0x80000010: /* Empty */
963 case 0x80000011: /* Empty */
964 case 0x80000012: /* Empty */
965 case 0x80000013: /* Empty */
966 case 0x80000014: /* Empty */
967 case 0x80000015: /* Empty */
968 case 0x80000016: /* Empty */
969 case 0x80000017: /* Empty */
970 case 0x80000018: /* Empty */
971 cpudata->vmcb->state.rax = 0;
972 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
973 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
974 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
975 break;
976 case 0x80000019: /* TLB Characteristics for 1GB pages */
977 case 0x8000001A: /* Instruction Optimizations */
978 break;
979 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
980 case 0x8000001C: /* Lightweight Profiling Capabilities */
981 cpudata->vmcb->state.rax = 0;
982 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
983 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
984 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
985 break;
986 case 0x8000001D: /* Cache Topology Information */
987 case 0x8000001E: /* Processor Topology Information */
988 break; /* TODO? */
989 case 0x8000001F: /* Encrypted Memory Capabilities */
990 cpudata->vmcb->state.rax = 0;
991 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
992 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
993 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
994 break;
995
996 default:
997 break;
998 }
999 }
1000
1001 static void
1002 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1003 {
1004 exit->u.insn.npc = vmcb->ctrl.nrip;
1005 exit->reason = reason;
1006 }
1007
1008 static void
1009 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1010 struct nvmm_vcpu_exit *exit)
1011 {
1012 struct svm_cpudata *cpudata = vcpu->cpudata;
1013 struct nvmm_vcpu_conf_cpuid *cpuid;
1014 uint64_t eax, ecx;
1015 size_t i;
1016
1017 eax = cpudata->vmcb->state.rax;
1018 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1019 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1020 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1021
1022 for (i = 0; i < SVM_NCPUIDS; i++) {
1023 if (!cpudata->cpuidpresent[i]) {
1024 continue;
1025 }
1026 cpuid = &cpudata->cpuid[i];
1027 if (cpuid->leaf != eax) {
1028 continue;
1029 }
1030
1031 if (cpuid->exit) {
1032 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1033 return;
1034 }
1035 KASSERT(cpuid->mask);
1036
1037 /* del */
1038 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1039 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1040 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1041 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1042
1043 /* set */
1044 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1045 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1046 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1047 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1048
1049 break;
1050 }
1051
1052 svm_inkernel_advance(cpudata->vmcb);
1053 exit->reason = NVMM_VCPU_EXIT_NONE;
1054 }
1055
1056 static void
1057 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1058 struct nvmm_vcpu_exit *exit)
1059 {
1060 struct svm_cpudata *cpudata = vcpu->cpudata;
1061 struct vmcb *vmcb = cpudata->vmcb;
1062
1063 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1064 svm_event_waitexit_disable(vcpu, false);
1065 }
1066
1067 svm_inkernel_advance(cpudata->vmcb);
1068 exit->reason = NVMM_VCPU_EXIT_HALTED;
1069 }
1070
1071 #define SVM_EXIT_IO_PORT __BITS(31,16)
1072 #define SVM_EXIT_IO_SEG __BITS(12,10)
1073 #define SVM_EXIT_IO_A64 __BIT(9)
1074 #define SVM_EXIT_IO_A32 __BIT(8)
1075 #define SVM_EXIT_IO_A16 __BIT(7)
1076 #define SVM_EXIT_IO_SZ32 __BIT(6)
1077 #define SVM_EXIT_IO_SZ16 __BIT(5)
1078 #define SVM_EXIT_IO_SZ8 __BIT(4)
1079 #define SVM_EXIT_IO_REP __BIT(3)
1080 #define SVM_EXIT_IO_STR __BIT(2)
1081 #define SVM_EXIT_IO_IN __BIT(0)
1082
1083 static void
1084 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1085 struct nvmm_vcpu_exit *exit)
1086 {
1087 struct svm_cpudata *cpudata = vcpu->cpudata;
1088 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1089 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1090
1091 exit->reason = NVMM_VCPU_EXIT_IO;
1092
1093 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1094 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1095
1096 if (svm_decode_assist) {
1097 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1098 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1099 } else {
1100 exit->u.io.seg = -1;
1101 }
1102
1103 if (info & SVM_EXIT_IO_A64) {
1104 exit->u.io.address_size = 8;
1105 } else if (info & SVM_EXIT_IO_A32) {
1106 exit->u.io.address_size = 4;
1107 } else if (info & SVM_EXIT_IO_A16) {
1108 exit->u.io.address_size = 2;
1109 }
1110
1111 if (info & SVM_EXIT_IO_SZ32) {
1112 exit->u.io.operand_size = 4;
1113 } else if (info & SVM_EXIT_IO_SZ16) {
1114 exit->u.io.operand_size = 2;
1115 } else if (info & SVM_EXIT_IO_SZ8) {
1116 exit->u.io.operand_size = 1;
1117 }
1118
1119 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1120 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1121 exit->u.io.npc = nextpc;
1122
1123 svm_vcpu_state_provide(vcpu,
1124 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1125 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1126 }
1127
1128 static const uint64_t msr_ignore_list[] = {
1129 0xc0010055, /* MSR_CMPHALT */
1130 MSR_DE_CFG,
1131 MSR_IC_CFG,
1132 MSR_UCODE_AMD_PATCHLEVEL
1133 };
1134
1135 static bool
1136 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1137 struct nvmm_vcpu_exit *exit)
1138 {
1139 struct svm_cpudata *cpudata = vcpu->cpudata;
1140 struct vmcb *vmcb = cpudata->vmcb;
1141 uint64_t val;
1142 size_t i;
1143
1144 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1145 if (exit->u.rdmsr.msr == MSR_EFER) {
1146 val = vmcb->state.efer & ~EFER_SVME;
1147 vmcb->state.rax = (val & 0xFFFFFFFF);
1148 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1149 goto handled;
1150 }
1151 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1152 val = NB_CFG_INITAPICCPUIDLO;
1153 vmcb->state.rax = (val & 0xFFFFFFFF);
1154 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1155 goto handled;
1156 }
1157 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1158 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1159 continue;
1160 val = 0;
1161 vmcb->state.rax = (val & 0xFFFFFFFF);
1162 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1163 goto handled;
1164 }
1165 } else {
1166 if (exit->u.wrmsr.msr == MSR_EFER) {
1167 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1168 goto error;
1169 }
1170 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1171 EFER_TLB_FLUSH) {
1172 cpudata->gtlb_want_flush = true;
1173 }
1174 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1175 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1176 goto handled;
1177 }
1178 if (exit->u.wrmsr.msr == MSR_TSC) {
1179 cpudata->gtsc = exit->u.wrmsr.val;
1180 cpudata->gtsc_want_update = true;
1181 goto handled;
1182 }
1183 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1184 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1185 continue;
1186 goto handled;
1187 }
1188 }
1189
1190 return false;
1191
1192 handled:
1193 svm_inkernel_advance(cpudata->vmcb);
1194 return true;
1195
1196 error:
1197 svm_inject_gp(vcpu);
1198 return true;
1199 }
1200
1201 static inline void
1202 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1203 struct nvmm_vcpu_exit *exit)
1204 {
1205 struct svm_cpudata *cpudata = vcpu->cpudata;
1206
1207 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1208 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1209 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1210
1211 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1212 exit->reason = NVMM_VCPU_EXIT_NONE;
1213 return;
1214 }
1215
1216 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1217 }
1218
1219 static inline void
1220 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1221 struct nvmm_vcpu_exit *exit)
1222 {
1223 struct svm_cpudata *cpudata = vcpu->cpudata;
1224 uint64_t rdx, rax;
1225
1226 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1227 rax = cpudata->vmcb->state.rax;
1228
1229 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1230 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1231 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1232 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1233
1234 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1235 exit->reason = NVMM_VCPU_EXIT_NONE;
1236 return;
1237 }
1238
1239 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1240 }
1241
1242 static void
1243 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1244 struct nvmm_vcpu_exit *exit)
1245 {
1246 struct svm_cpudata *cpudata = vcpu->cpudata;
1247 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1248
1249 if (info == 0) {
1250 svm_exit_rdmsr(mach, vcpu, exit);
1251 } else {
1252 svm_exit_wrmsr(mach, vcpu, exit);
1253 }
1254 }
1255
1256 static void
1257 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1258 struct nvmm_vcpu_exit *exit)
1259 {
1260 struct svm_cpudata *cpudata = vcpu->cpudata;
1261 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1262
1263 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1264 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1265 exit->u.mem.prot = PROT_WRITE;
1266 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1267 exit->u.mem.prot = PROT_EXEC;
1268 else
1269 exit->u.mem.prot = PROT_READ;
1270 exit->u.mem.gpa = gpa;
1271 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1272 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1273 sizeof(exit->u.mem.inst_bytes));
1274
1275 svm_vcpu_state_provide(vcpu,
1276 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1277 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1278 }
1279
1280 static void
1281 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1282 struct nvmm_vcpu_exit *exit)
1283 {
1284 struct svm_cpudata *cpudata = vcpu->cpudata;
1285 struct vmcb *vmcb = cpudata->vmcb;
1286 uint64_t val;
1287
1288 exit->reason = NVMM_VCPU_EXIT_NONE;
1289
1290 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1291 (vmcb->state.rax & 0xFFFFFFFF);
1292
1293 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1294 goto error;
1295 } else if (__predict_false(vmcb->state.cpl != 0)) {
1296 goto error;
1297 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1298 goto error;
1299 } else if (__predict_false((val & XCR0_X87) == 0)) {
1300 goto error;
1301 }
1302
1303 cpudata->gxcr0 = val;
1304
1305 svm_inkernel_advance(cpudata->vmcb);
1306 return;
1307
1308 error:
1309 svm_inject_gp(vcpu);
1310 }
1311
1312 static void
1313 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1314 {
1315 exit->u.inv.hwcode = code;
1316 exit->reason = NVMM_VCPU_EXIT_INVALID;
1317 }
1318
1319 /* -------------------------------------------------------------------------- */
1320
1321 static void
1322 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1323 {
1324 struct svm_cpudata *cpudata = vcpu->cpudata;
1325
1326 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1327
1328 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1329 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1330
1331 if (svm_xcr0_mask != 0) {
1332 cpudata->hxcr0 = rdxcr(0);
1333 wrxcr(0, cpudata->gxcr0);
1334 }
1335 }
1336
1337 static void
1338 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1339 {
1340 struct svm_cpudata *cpudata = vcpu->cpudata;
1341
1342 if (svm_xcr0_mask != 0) {
1343 cpudata->gxcr0 = rdxcr(0);
1344 wrxcr(0, cpudata->hxcr0);
1345 }
1346
1347 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1348 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1349
1350 if (cpudata->ts_set) {
1351 stts();
1352 }
1353 }
1354
1355 static void
1356 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1357 {
1358 struct svm_cpudata *cpudata = vcpu->cpudata;
1359
1360 x86_dbregs_save(curlwp);
1361
1362 ldr7(0);
1363
1364 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1365 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1366 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1367 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1368 }
1369
1370 static void
1371 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1372 {
1373 struct svm_cpudata *cpudata = vcpu->cpudata;
1374
1375 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1376 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1377 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1378 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1379
1380 x86_dbregs_restore(curlwp);
1381 }
1382
1383 static void
1384 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1385 {
1386 struct svm_cpudata *cpudata = vcpu->cpudata;
1387
1388 cpudata->fsbase = rdmsr(MSR_FSBASE);
1389 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1390 }
1391
1392 static void
1393 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1394 {
1395 struct svm_cpudata *cpudata = vcpu->cpudata;
1396
1397 wrmsr(MSR_STAR, cpudata->star);
1398 wrmsr(MSR_LSTAR, cpudata->lstar);
1399 wrmsr(MSR_CSTAR, cpudata->cstar);
1400 wrmsr(MSR_SFMASK, cpudata->sfmask);
1401 wrmsr(MSR_FSBASE, cpudata->fsbase);
1402 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1403 }
1404
1405 /* -------------------------------------------------------------------------- */
1406
1407 static inline void
1408 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1409 {
1410 struct svm_cpudata *cpudata = vcpu->cpudata;
1411
1412 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1413 cpudata->gtlb_want_flush = true;
1414 }
1415 }
1416
1417 static inline void
1418 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1419 {
1420 /*
1421 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1422 * executing on this hCPU and the hTLB already got flushed, or it
1423 * was executing on another hCPU in which case the catchup is done
1424 * in svm_gtlb_catchup().
1425 */
1426 }
1427
1428 static inline uint64_t
1429 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1430 {
1431 struct vmcb *vmcb = cpudata->vmcb;
1432 uint64_t machgen;
1433
1434 machgen = machdata->mach_htlb_gen;
1435 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1436 return machgen;
1437 }
1438
1439 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1440 return machgen;
1441 }
1442
1443 static inline void
1444 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1445 {
1446 struct vmcb *vmcb = cpudata->vmcb;
1447
1448 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1449 cpudata->vcpu_htlb_gen = machgen;
1450 }
1451 }
1452
1453 static inline void
1454 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1455 {
1456 cpudata->evt_pending = false;
1457
1458 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1459 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1460 cpudata->evt_pending = true;
1461 }
1462 }
1463
1464 static int
1465 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1466 struct nvmm_vcpu_exit *exit)
1467 {
1468 struct nvmm_comm_page *comm = vcpu->comm;
1469 struct svm_machdata *machdata = mach->machdata;
1470 struct svm_cpudata *cpudata = vcpu->cpudata;
1471 struct vmcb *vmcb = cpudata->vmcb;
1472 uint64_t machgen;
1473 int hcpu, s;
1474
1475 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1476 return EINVAL;
1477 }
1478 svm_vcpu_state_commit(vcpu);
1479 comm->state_cached = 0;
1480
1481 kpreempt_disable();
1482 hcpu = cpu_number();
1483
1484 svm_gtlb_catchup(vcpu, hcpu);
1485 svm_htlb_catchup(vcpu, hcpu);
1486
1487 if (vcpu->hcpu_last != hcpu) {
1488 svm_vmcb_cache_flush_all(vmcb);
1489 cpudata->gtsc_want_update = true;
1490 }
1491
1492 svm_vcpu_guest_dbregs_enter(vcpu);
1493 svm_vcpu_guest_misc_enter(vcpu);
1494
1495 while (1) {
1496 if (cpudata->gtlb_want_flush) {
1497 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1498 } else {
1499 vmcb->ctrl.tlb_ctrl = 0;
1500 }
1501
1502 if (__predict_false(cpudata->gtsc_want_update)) {
1503 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1504 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1505 }
1506
1507 s = splhigh();
1508 machgen = svm_htlb_flush(machdata, cpudata);
1509 svm_vcpu_guest_fpu_enter(vcpu);
1510 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1511 svm_vcpu_guest_fpu_leave(vcpu);
1512 svm_htlb_flush_ack(cpudata, machgen);
1513 splx(s);
1514
1515 svm_vmcb_cache_default(vmcb);
1516
1517 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1518 cpudata->gtlb_want_flush = false;
1519 cpudata->gtsc_want_update = false;
1520 vcpu->hcpu_last = hcpu;
1521 }
1522 svm_exit_evt(cpudata, vmcb);
1523
1524 switch (vmcb->ctrl.exitcode) {
1525 case VMCB_EXITCODE_INTR:
1526 case VMCB_EXITCODE_NMI:
1527 exit->reason = NVMM_VCPU_EXIT_NONE;
1528 break;
1529 case VMCB_EXITCODE_VINTR:
1530 svm_event_waitexit_disable(vcpu, false);
1531 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1532 break;
1533 case VMCB_EXITCODE_IRET:
1534 svm_event_waitexit_disable(vcpu, true);
1535 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1536 break;
1537 case VMCB_EXITCODE_CPUID:
1538 svm_exit_cpuid(mach, vcpu, exit);
1539 break;
1540 case VMCB_EXITCODE_HLT:
1541 svm_exit_hlt(mach, vcpu, exit);
1542 break;
1543 case VMCB_EXITCODE_IOIO:
1544 svm_exit_io(mach, vcpu, exit);
1545 break;
1546 case VMCB_EXITCODE_MSR:
1547 svm_exit_msr(mach, vcpu, exit);
1548 break;
1549 case VMCB_EXITCODE_SHUTDOWN:
1550 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1551 break;
1552 case VMCB_EXITCODE_RDPMC:
1553 case VMCB_EXITCODE_RSM:
1554 case VMCB_EXITCODE_INVLPGA:
1555 case VMCB_EXITCODE_VMRUN:
1556 case VMCB_EXITCODE_VMMCALL:
1557 case VMCB_EXITCODE_VMLOAD:
1558 case VMCB_EXITCODE_VMSAVE:
1559 case VMCB_EXITCODE_STGI:
1560 case VMCB_EXITCODE_CLGI:
1561 case VMCB_EXITCODE_SKINIT:
1562 case VMCB_EXITCODE_RDTSCP:
1563 case VMCB_EXITCODE_RDPRU:
1564 case VMCB_EXITCODE_INVLPGB:
1565 case VMCB_EXITCODE_INVPCID:
1566 case VMCB_EXITCODE_MCOMMIT:
1567 case VMCB_EXITCODE_TLBSYNC:
1568 svm_inject_ud(vcpu);
1569 exit->reason = NVMM_VCPU_EXIT_NONE;
1570 break;
1571 case VMCB_EXITCODE_MONITOR:
1572 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1573 break;
1574 case VMCB_EXITCODE_MWAIT:
1575 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1576 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1577 break;
1578 case VMCB_EXITCODE_XSETBV:
1579 svm_exit_xsetbv(mach, vcpu, exit);
1580 break;
1581 case VMCB_EXITCODE_NPF:
1582 svm_exit_npf(mach, vcpu, exit);
1583 break;
1584 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1585 default:
1586 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1587 break;
1588 }
1589
1590 /* If no reason to return to userland, keep rolling. */
1591 if (nvmm_return_needed()) {
1592 break;
1593 }
1594 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1595 break;
1596 }
1597 }
1598
1599 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1600
1601 svm_vcpu_guest_misc_leave(vcpu);
1602 svm_vcpu_guest_dbregs_leave(vcpu);
1603
1604 kpreempt_enable();
1605
1606 exit->exitstate.rflags = vmcb->state.rflags;
1607 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1608 exit->exitstate.int_shadow =
1609 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1610 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1611 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1612 exit->exitstate.evt_pending = cpudata->evt_pending;
1613
1614 return 0;
1615 }
1616
1617 /* -------------------------------------------------------------------------- */
1618
1619 static int
1620 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1621 {
1622 struct pglist pglist;
1623 paddr_t _pa;
1624 vaddr_t _va;
1625 size_t i;
1626 int ret;
1627
1628 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1629 &pglist, 1, 0);
1630 if (ret != 0)
1631 return ENOMEM;
1632 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1633 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1634 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1635 if (_va == 0)
1636 goto error;
1637
1638 for (i = 0; i < npages; i++) {
1639 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1640 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1641 }
1642 pmap_update(pmap_kernel());
1643
1644 memset((void *)_va, 0, npages * PAGE_SIZE);
1645
1646 *pa = _pa;
1647 *va = _va;
1648 return 0;
1649
1650 error:
1651 for (i = 0; i < npages; i++) {
1652 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1653 }
1654 return ENOMEM;
1655 }
1656
1657 static void
1658 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1659 {
1660 size_t i;
1661
1662 pmap_kremove(va, npages * PAGE_SIZE);
1663 pmap_update(pmap_kernel());
1664 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1665 for (i = 0; i < npages; i++) {
1666 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1667 }
1668 }
1669
1670 /* -------------------------------------------------------------------------- */
1671
1672 #define SVM_MSRBM_READ __BIT(0)
1673 #define SVM_MSRBM_WRITE __BIT(1)
1674
1675 static void
1676 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1677 {
1678 uint64_t byte;
1679 uint8_t bitoff;
1680
1681 if (msr < 0x00002000) {
1682 /* Range 1 */
1683 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1684 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1685 /* Range 2 */
1686 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1687 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1688 /* Range 3 */
1689 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1690 } else {
1691 panic("%s: wrong range", __func__);
1692 }
1693
1694 bitoff = (msr & 0x3) << 1;
1695
1696 if (read) {
1697 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1698 }
1699 if (write) {
1700 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1701 }
1702 }
1703
1704 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1705 #define SVM_SEG_ATTRIB_S __BIT(4)
1706 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1707 #define SVM_SEG_ATTRIB_P __BIT(7)
1708 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1709 #define SVM_SEG_ATTRIB_L __BIT(9)
1710 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1711 #define SVM_SEG_ATTRIB_G __BIT(11)
1712
1713 static void
1714 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1715 struct vmcb_segment *vseg)
1716 {
1717 vseg->selector = seg->selector;
1718 vseg->attrib =
1719 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1720 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1721 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1722 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1723 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1724 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1725 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1726 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1727 vseg->limit = seg->limit;
1728 vseg->base = seg->base;
1729 }
1730
1731 static void
1732 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1733 {
1734 seg->selector = vseg->selector;
1735 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1736 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1737 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1738 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1739 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1740 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1741 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1742 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1743 seg->limit = vseg->limit;
1744 seg->base = vseg->base;
1745 }
1746
1747 static inline bool
1748 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1749 uint64_t flags)
1750 {
1751 if (flags & NVMM_X64_STATE_CRS) {
1752 if ((vmcb->state.cr0 ^
1753 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1754 return true;
1755 }
1756 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1757 return true;
1758 }
1759 if ((vmcb->state.cr4 ^
1760 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1761 return true;
1762 }
1763 }
1764
1765 if (flags & NVMM_X64_STATE_MSRS) {
1766 if ((vmcb->state.efer ^
1767 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1768 return true;
1769 }
1770 }
1771
1772 return false;
1773 }
1774
1775 static void
1776 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1777 {
1778 struct nvmm_comm_page *comm = vcpu->comm;
1779 const struct nvmm_x64_state *state = &comm->state;
1780 struct svm_cpudata *cpudata = vcpu->cpudata;
1781 struct vmcb *vmcb = cpudata->vmcb;
1782 struct fxsave *fpustate;
1783 uint64_t flags;
1784
1785 flags = comm->state_wanted;
1786
1787 if (svm_state_tlb_flush(vmcb, state, flags)) {
1788 cpudata->gtlb_want_flush = true;
1789 }
1790
1791 if (flags & NVMM_X64_STATE_SEGS) {
1792 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1793 &vmcb->state.cs);
1794 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1795 &vmcb->state.ds);
1796 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1797 &vmcb->state.es);
1798 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1799 &vmcb->state.fs);
1800 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1801 &vmcb->state.gs);
1802 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1803 &vmcb->state.ss);
1804 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1805 &vmcb->state.gdt);
1806 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1807 &vmcb->state.idt);
1808 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1809 &vmcb->state.ldt);
1810 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1811 &vmcb->state.tr);
1812
1813 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1814 }
1815
1816 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1817 if (flags & NVMM_X64_STATE_GPRS) {
1818 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1819
1820 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1821 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1822 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1823 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1824 }
1825
1826 if (flags & NVMM_X64_STATE_CRS) {
1827 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1828 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1829 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1830 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1831
1832 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1833 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1834 VMCB_CTRL_V_TPR);
1835
1836 if (svm_xcr0_mask != 0) {
1837 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1838 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1839 cpudata->gxcr0 &= svm_xcr0_mask;
1840 cpudata->gxcr0 |= XCR0_X87;
1841 }
1842 }
1843
1844 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1845 if (flags & NVMM_X64_STATE_DRS) {
1846 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1847
1848 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1849 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1850 }
1851
1852 if (flags & NVMM_X64_STATE_MSRS) {
1853 /*
1854 * EFER_SVME is mandatory.
1855 */
1856 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1857 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1858 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1859 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1860 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1861 vmcb->state.kernelgsbase =
1862 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1863 vmcb->state.sysenter_cs =
1864 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1865 vmcb->state.sysenter_esp =
1866 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1867 vmcb->state.sysenter_eip =
1868 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1869 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1870
1871 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1872 cpudata->gtsc_want_update = true;
1873 }
1874
1875 if (flags & NVMM_X64_STATE_INTR) {
1876 if (state->intr.int_shadow) {
1877 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1878 } else {
1879 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1880 }
1881
1882 if (state->intr.int_window_exiting) {
1883 svm_event_waitexit_enable(vcpu, false);
1884 } else {
1885 svm_event_waitexit_disable(vcpu, false);
1886 }
1887
1888 if (state->intr.nmi_window_exiting) {
1889 svm_event_waitexit_enable(vcpu, true);
1890 } else {
1891 svm_event_waitexit_disable(vcpu, true);
1892 }
1893 }
1894
1895 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1896 if (flags & NVMM_X64_STATE_FPU) {
1897 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1898 sizeof(state->fpu));
1899
1900 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1901 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1902 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1903
1904 if (svm_xcr0_mask != 0) {
1905 /* Reset XSTATE_BV, to force a reload. */
1906 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1907 }
1908 }
1909
1910 svm_vmcb_cache_update(vmcb, flags);
1911
1912 comm->state_wanted = 0;
1913 comm->state_cached |= flags;
1914 }
1915
1916 static void
1917 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1918 {
1919 struct nvmm_comm_page *comm = vcpu->comm;
1920 struct nvmm_x64_state *state = &comm->state;
1921 struct svm_cpudata *cpudata = vcpu->cpudata;
1922 struct vmcb *vmcb = cpudata->vmcb;
1923 uint64_t flags;
1924
1925 flags = comm->state_wanted;
1926
1927 if (flags & NVMM_X64_STATE_SEGS) {
1928 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1929 &vmcb->state.cs);
1930 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1931 &vmcb->state.ds);
1932 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1933 &vmcb->state.es);
1934 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1935 &vmcb->state.fs);
1936 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1937 &vmcb->state.gs);
1938 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1939 &vmcb->state.ss);
1940 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1941 &vmcb->state.gdt);
1942 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1943 &vmcb->state.idt);
1944 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1945 &vmcb->state.ldt);
1946 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1947 &vmcb->state.tr);
1948
1949 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1950 }
1951
1952 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1953 if (flags & NVMM_X64_STATE_GPRS) {
1954 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1955
1956 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1957 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1958 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1959 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1960 }
1961
1962 if (flags & NVMM_X64_STATE_CRS) {
1963 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1964 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1965 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1966 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1967 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1968 VMCB_CTRL_V_TPR);
1969 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1970 }
1971
1972 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1973 if (flags & NVMM_X64_STATE_DRS) {
1974 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1975
1976 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1977 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1978 }
1979
1980 if (flags & NVMM_X64_STATE_MSRS) {
1981 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1982 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1983 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1984 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1985 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1986 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1987 vmcb->state.kernelgsbase;
1988 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1989 vmcb->state.sysenter_cs;
1990 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1991 vmcb->state.sysenter_esp;
1992 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1993 vmcb->state.sysenter_eip;
1994 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1995 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1996
1997 /* Hide SVME. */
1998 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1999 }
2000
2001 if (flags & NVMM_X64_STATE_INTR) {
2002 state->intr.int_shadow =
2003 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2004 state->intr.int_window_exiting = cpudata->int_window_exit;
2005 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2006 state->intr.evt_pending = cpudata->evt_pending;
2007 }
2008
2009 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2010 if (flags & NVMM_X64_STATE_FPU) {
2011 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2012 sizeof(state->fpu));
2013 }
2014
2015 comm->state_wanted = 0;
2016 comm->state_cached |= flags;
2017 }
2018
2019 static void
2020 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2021 {
2022 vcpu->comm->state_wanted = flags;
2023 svm_vcpu_getstate(vcpu);
2024 }
2025
2026 static void
2027 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2028 {
2029 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2030 vcpu->comm->state_commit = 0;
2031 svm_vcpu_setstate(vcpu);
2032 }
2033
2034 /* -------------------------------------------------------------------------- */
2035
2036 static void
2037 svm_asid_alloc(struct nvmm_cpu *vcpu)
2038 {
2039 struct svm_cpudata *cpudata = vcpu->cpudata;
2040 struct vmcb *vmcb = cpudata->vmcb;
2041 size_t i, oct, bit;
2042
2043 mutex_enter(&svm_asidlock);
2044
2045 for (i = 0; i < svm_maxasid; i++) {
2046 oct = i / 8;
2047 bit = i % 8;
2048
2049 if (svm_asidmap[oct] & __BIT(bit)) {
2050 continue;
2051 }
2052
2053 svm_asidmap[oct] |= __BIT(bit);
2054 vmcb->ctrl.guest_asid = i;
2055 mutex_exit(&svm_asidlock);
2056 return;
2057 }
2058
2059 /*
2060 * No free ASID. Use the last one, which is shared and requires
2061 * special TLB handling.
2062 */
2063 cpudata->shared_asid = true;
2064 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2065 mutex_exit(&svm_asidlock);
2066 }
2067
2068 static void
2069 svm_asid_free(struct nvmm_cpu *vcpu)
2070 {
2071 struct svm_cpudata *cpudata = vcpu->cpudata;
2072 struct vmcb *vmcb = cpudata->vmcb;
2073 size_t oct, bit;
2074
2075 if (cpudata->shared_asid) {
2076 return;
2077 }
2078
2079 oct = vmcb->ctrl.guest_asid / 8;
2080 bit = vmcb->ctrl.guest_asid % 8;
2081
2082 mutex_enter(&svm_asidlock);
2083 svm_asidmap[oct] &= ~__BIT(bit);
2084 mutex_exit(&svm_asidlock);
2085 }
2086
2087 static void
2088 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2089 {
2090 struct svm_cpudata *cpudata = vcpu->cpudata;
2091 struct vmcb *vmcb = cpudata->vmcb;
2092
2093 /* Allow reads/writes of Control Registers. */
2094 vmcb->ctrl.intercept_cr = 0;
2095
2096 /* Allow reads/writes of Debug Registers. */
2097 vmcb->ctrl.intercept_dr = 0;
2098
2099 /* Allow exceptions 0 to 31. */
2100 vmcb->ctrl.intercept_vec = 0;
2101
2102 /*
2103 * Allow:
2104 * - SMI [smm interrupts]
2105 * - VINTR [virtual interrupts]
2106 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2107 * - RIDTR [reads of IDTR]
2108 * - RGDTR [reads of GDTR]
2109 * - RLDTR [reads of LDTR]
2110 * - RTR [reads of TR]
2111 * - WIDTR [writes of IDTR]
2112 * - WGDTR [writes of GDTR]
2113 * - WLDTR [writes of LDTR]
2114 * - WTR [writes of TR]
2115 * - RDTSC [rdtsc instruction]
2116 * - PUSHF [pushf instruction]
2117 * - POPF [popf instruction]
2118 * - IRET [iret instruction]
2119 * - INTN [int $n instructions]
2120 * - PAUSE [pause instruction]
2121 * - INVLPG [invplg instruction]
2122 * - TASKSW [task switches]
2123 *
2124 * Intercept the rest below.
2125 */
2126 vmcb->ctrl.intercept_misc1 =
2127 VMCB_CTRL_INTERCEPT_INTR |
2128 VMCB_CTRL_INTERCEPT_NMI |
2129 VMCB_CTRL_INTERCEPT_INIT |
2130 VMCB_CTRL_INTERCEPT_RDPMC |
2131 VMCB_CTRL_INTERCEPT_CPUID |
2132 VMCB_CTRL_INTERCEPT_RSM |
2133 VMCB_CTRL_INTERCEPT_INVD |
2134 VMCB_CTRL_INTERCEPT_HLT |
2135 VMCB_CTRL_INTERCEPT_INVLPGA |
2136 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2137 VMCB_CTRL_INTERCEPT_MSR_PROT |
2138 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2139 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2140
2141 /*
2142 * Allow:
2143 * - ICEBP [icebp instruction]
2144 * - WBINVD [wbinvd instruction]
2145 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2146 *
2147 * Intercept the rest below.
2148 */
2149 vmcb->ctrl.intercept_misc2 =
2150 VMCB_CTRL_INTERCEPT_VMRUN |
2151 VMCB_CTRL_INTERCEPT_VMMCALL |
2152 VMCB_CTRL_INTERCEPT_VMLOAD |
2153 VMCB_CTRL_INTERCEPT_VMSAVE |
2154 VMCB_CTRL_INTERCEPT_STGI |
2155 VMCB_CTRL_INTERCEPT_CLGI |
2156 VMCB_CTRL_INTERCEPT_SKINIT |
2157 VMCB_CTRL_INTERCEPT_RDTSCP |
2158 VMCB_CTRL_INTERCEPT_MONITOR |
2159 VMCB_CTRL_INTERCEPT_MWAIT |
2160 VMCB_CTRL_INTERCEPT_XSETBV |
2161 VMCB_CTRL_INTERCEPT_RDPRU;
2162
2163 /*
2164 * Intercept everything.
2165 */
2166 vmcb->ctrl.intercept_misc3 =
2167 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2168 VMCB_CTRL_INTERCEPT_PCID |
2169 VMCB_CTRL_INTERCEPT_MCOMMIT |
2170 VMCB_CTRL_INTERCEPT_TLBSYNC;
2171
2172 /* Intercept all I/O accesses. */
2173 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2174 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2175
2176 /* Allow direct access to certain MSRs. */
2177 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2178 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2179 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2180 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2181 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2182 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2183 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2184 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2185 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2186 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2187 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2188 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2189 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2190 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2191
2192 /* Generate ASID. */
2193 svm_asid_alloc(vcpu);
2194
2195 /* Virtual TPR. */
2196 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2197
2198 /* Enable Nested Paging. */
2199 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2200 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2201
2202 /* Init XSAVE header. */
2203 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2204 cpudata->gfpu.xsh_xcomp_bv = 0;
2205
2206 /* These MSRs are static. */
2207 cpudata->star = rdmsr(MSR_STAR);
2208 cpudata->lstar = rdmsr(MSR_LSTAR);
2209 cpudata->cstar = rdmsr(MSR_CSTAR);
2210 cpudata->sfmask = rdmsr(MSR_SFMASK);
2211
2212 /* Install the RESET state. */
2213 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2214 sizeof(nvmm_x86_reset_state));
2215 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2216 vcpu->comm->state_cached = 0;
2217 svm_vcpu_setstate(vcpu);
2218 }
2219
2220 static int
2221 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2222 {
2223 struct svm_cpudata *cpudata;
2224 int error;
2225
2226 /* Allocate the SVM cpudata. */
2227 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2228 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2229 UVM_KMF_WIRED|UVM_KMF_ZERO);
2230 vcpu->cpudata = cpudata;
2231
2232 /* VMCB */
2233 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2234 VMCB_NPAGES);
2235 if (error)
2236 goto error;
2237
2238 /* I/O Bitmap */
2239 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2240 IOBM_NPAGES);
2241 if (error)
2242 goto error;
2243
2244 /* MSR Bitmap */
2245 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2246 MSRBM_NPAGES);
2247 if (error)
2248 goto error;
2249
2250 /* Init the VCPU info. */
2251 svm_vcpu_init(mach, vcpu);
2252
2253 return 0;
2254
2255 error:
2256 if (cpudata->vmcb_pa) {
2257 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2258 VMCB_NPAGES);
2259 }
2260 if (cpudata->iobm_pa) {
2261 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2262 IOBM_NPAGES);
2263 }
2264 if (cpudata->msrbm_pa) {
2265 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2266 MSRBM_NPAGES);
2267 }
2268 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2269 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2270 return error;
2271 }
2272
2273 static void
2274 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2275 {
2276 struct svm_cpudata *cpudata = vcpu->cpudata;
2277
2278 svm_asid_free(vcpu);
2279
2280 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2281 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2282 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2283
2284 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2285 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2286 }
2287
2288 /* -------------------------------------------------------------------------- */
2289
2290 static int
2291 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2292 {
2293 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2294 size_t i;
2295
2296 if (__predict_false(cpuid->mask && cpuid->exit)) {
2297 return EINVAL;
2298 }
2299 if (__predict_false(cpuid->mask &&
2300 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2301 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2302 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2303 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2304 return EINVAL;
2305 }
2306
2307 /* If unset, delete, to restore the default behavior. */
2308 if (!cpuid->mask && !cpuid->exit) {
2309 for (i = 0; i < SVM_NCPUIDS; i++) {
2310 if (!cpudata->cpuidpresent[i]) {
2311 continue;
2312 }
2313 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2314 cpudata->cpuidpresent[i] = false;
2315 }
2316 }
2317 return 0;
2318 }
2319
2320 /* If already here, replace. */
2321 for (i = 0; i < SVM_NCPUIDS; i++) {
2322 if (!cpudata->cpuidpresent[i]) {
2323 continue;
2324 }
2325 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2326 memcpy(&cpudata->cpuid[i], cpuid,
2327 sizeof(struct nvmm_vcpu_conf_cpuid));
2328 return 0;
2329 }
2330 }
2331
2332 /* Not here, insert. */
2333 for (i = 0; i < SVM_NCPUIDS; i++) {
2334 if (!cpudata->cpuidpresent[i]) {
2335 cpudata->cpuidpresent[i] = true;
2336 memcpy(&cpudata->cpuid[i], cpuid,
2337 sizeof(struct nvmm_vcpu_conf_cpuid));
2338 return 0;
2339 }
2340 }
2341
2342 return ENOBUFS;
2343 }
2344
2345 static int
2346 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2347 {
2348 struct svm_cpudata *cpudata = vcpu->cpudata;
2349
2350 switch (op) {
2351 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2352 return svm_vcpu_configure_cpuid(cpudata, data);
2353 default:
2354 return EINVAL;
2355 }
2356 }
2357
2358 /* -------------------------------------------------------------------------- */
2359
2360 static void
2361 svm_tlb_flush(struct pmap *pm)
2362 {
2363 struct nvmm_machine *mach = pm->pm_data;
2364 struct svm_machdata *machdata = mach->machdata;
2365
2366 atomic_inc_64(&machdata->mach_htlb_gen);
2367
2368 /* Generates IPIs, which cause #VMEXITs. */
2369 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2370 }
2371
2372 static void
2373 svm_machine_create(struct nvmm_machine *mach)
2374 {
2375 struct svm_machdata *machdata;
2376
2377 /* Fill in pmap info. */
2378 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2379 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2380
2381 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2382 mach->machdata = machdata;
2383
2384 /* Start with an hTLB flush everywhere. */
2385 machdata->mach_htlb_gen = 1;
2386 }
2387
2388 static void
2389 svm_machine_destroy(struct nvmm_machine *mach)
2390 {
2391 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2392 }
2393
2394 static int
2395 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2396 {
2397 panic("%s: impossible", __func__);
2398 }
2399
2400 /* -------------------------------------------------------------------------- */
2401
2402 static bool
2403 svm_ident(void)
2404 {
2405 u_int descs[4];
2406 uint64_t msr;
2407
2408 if (cpu_vendor != CPUVENDOR_AMD) {
2409 return false;
2410 }
2411 if (!(cpu_feature[3] & CPUID_SVM)) {
2412 printf("NVMM: SVM not supported\n");
2413 return false;
2414 }
2415
2416 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2417 printf("NVMM: CPUID leaf not available\n");
2418 return false;
2419 }
2420 x86_cpuid(0x8000000a, descs);
2421
2422 /* Expect revision 1. */
2423 if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2424 printf("NVMM: SVM revision not supported\n");
2425 return false;
2426 }
2427
2428 /* Want Nested Paging. */
2429 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2430 printf("NVMM: SVM-NP not supported\n");
2431 return false;
2432 }
2433
2434 /* Want nRIP. */
2435 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2436 printf("NVMM: SVM-NRIPS not supported\n");
2437 return false;
2438 }
2439
2440 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2441
2442 msr = rdmsr(MSR_VMCR);
2443 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2444 printf("NVMM: SVM disabled in BIOS\n");
2445 return false;
2446 }
2447
2448 return true;
2449 }
2450
2451 static void
2452 svm_init_asid(uint32_t maxasid)
2453 {
2454 size_t i, j, allocsz;
2455
2456 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2457
2458 /* Arbitrarily limit. */
2459 maxasid = uimin(maxasid, 8192);
2460
2461 svm_maxasid = maxasid;
2462 allocsz = roundup(maxasid, 8) / 8;
2463 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2464
2465 /* ASID 0 is reserved for the host. */
2466 svm_asidmap[0] |= __BIT(0);
2467
2468 /* ASID n-1 is special, we share it. */
2469 i = (maxasid - 1) / 8;
2470 j = (maxasid - 1) % 8;
2471 svm_asidmap[i] |= __BIT(j);
2472 }
2473
2474 static void
2475 svm_change_cpu(void *arg1, void *arg2)
2476 {
2477 bool enable = arg1 != NULL;
2478 uint64_t msr;
2479
2480 msr = rdmsr(MSR_VMCR);
2481 if (msr & VMCR_SVMED) {
2482 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2483 }
2484
2485 if (!enable) {
2486 wrmsr(MSR_VM_HSAVE_PA, 0);
2487 }
2488
2489 msr = rdmsr(MSR_EFER);
2490 if (enable) {
2491 msr |= EFER_SVME;
2492 } else {
2493 msr &= ~EFER_SVME;
2494 }
2495 wrmsr(MSR_EFER, msr);
2496
2497 if (enable) {
2498 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2499 }
2500 }
2501
2502 static void
2503 svm_init(void)
2504 {
2505 CPU_INFO_ITERATOR cii;
2506 struct cpu_info *ci;
2507 struct vm_page *pg;
2508 u_int descs[4];
2509 uint64_t xc;
2510
2511 x86_cpuid(0x8000000a, descs);
2512
2513 /* The guest TLB flush command. */
2514 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2515 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2516 } else {
2517 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2518 }
2519
2520 /* Init the ASID. */
2521 svm_init_asid(descs[1]);
2522
2523 /* Init the XCR0 mask. */
2524 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2525
2526 /* Init the max basic CPUID leaf. */
2527 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2528
2529 /* Init the max extended CPUID leaf. */
2530 x86_cpuid(0x80000000, descs);
2531 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2532
2533 memset(hsave, 0, sizeof(hsave));
2534 for (CPU_INFO_FOREACH(cii, ci)) {
2535 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2536 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2537 }
2538
2539 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2540 xc_wait(xc);
2541 }
2542
2543 static void
2544 svm_fini_asid(void)
2545 {
2546 size_t allocsz;
2547
2548 allocsz = roundup(svm_maxasid, 8) / 8;
2549 kmem_free(svm_asidmap, allocsz);
2550
2551 mutex_destroy(&svm_asidlock);
2552 }
2553
2554 static void
2555 svm_fini(void)
2556 {
2557 uint64_t xc;
2558 size_t i;
2559
2560 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2561 xc_wait(xc);
2562
2563 for (i = 0; i < MAXCPUS; i++) {
2564 if (hsave[i].pa != 0)
2565 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2566 }
2567
2568 svm_fini_asid();
2569 }
2570
2571 static void
2572 svm_capability(struct nvmm_capability *cap)
2573 {
2574 cap->arch.mach_conf_support = 0;
2575 cap->arch.vcpu_conf_support =
2576 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2577 cap->arch.xcr0_mask = svm_xcr0_mask;
2578 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2579 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2580 }
2581
2582 const struct nvmm_impl nvmm_x86_svm = {
2583 .name = "x86-svm",
2584 .ident = svm_ident,
2585 .init = svm_init,
2586 .fini = svm_fini,
2587 .capability = svm_capability,
2588 .mach_conf_max = NVMM_X86_MACH_NCONF,
2589 .mach_conf_sizes = NULL,
2590 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2591 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2592 .state_size = sizeof(struct nvmm_x64_state),
2593 .machine_create = svm_machine_create,
2594 .machine_destroy = svm_machine_destroy,
2595 .machine_configure = svm_machine_configure,
2596 .vcpu_create = svm_vcpu_create,
2597 .vcpu_destroy = svm_vcpu_destroy,
2598 .vcpu_configure = svm_vcpu_configure,
2599 .vcpu_setstate = svm_vcpu_setstate,
2600 .vcpu_getstate = svm_vcpu_getstate,
2601 .vcpu_inject = svm_vcpu_inject,
2602 .vcpu_run = svm_vcpu_run
2603 };
2604