nvmm_x86_svm.c revision 1.46.4.13 1 /* $NetBSD: nvmm_x86_svm.c,v 1.46.4.13 2020/09/13 11:56:44 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46.4.13 2020/09/13 11:56:44 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_INVLPGB 0x00A0
224 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
225 #define VMCB_EXITCODE_INVPCID 0x00A2
226 #define VMCB_EXITCODE_MCOMMIT 0x00A3
227 #define VMCB_EXITCODE_TLBSYNC 0x00A4
228 #define VMCB_EXITCODE_NPF 0x0400
229 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
230 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
231 #define VMCB_EXITCODE_VMGEXIT 0x0403
232 #define VMCB_EXITCODE_BUSY -2ULL
233 #define VMCB_EXITCODE_INVALID -1ULL
234
235 /* -------------------------------------------------------------------------- */
236
237 struct vmcb_ctrl {
238 uint32_t intercept_cr;
239 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
240 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
241
242 uint32_t intercept_dr;
243 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
244 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
245
246 uint32_t intercept_vec;
247 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
248
249 uint32_t intercept_misc1;
250 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
251 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
252 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
253 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
254 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
255 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
256 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
257 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
258 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
259 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
260 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
261 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
262 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
263 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
264 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
265 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
266 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
267 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
268 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
269 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
270 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
271 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
272 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
273 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
274 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
275 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
276 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
277 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
278 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
279 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
280 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
281 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
282
283 uint32_t intercept_misc2;
284 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
285 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
286 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
287 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
288 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
289 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
290 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
291 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
292 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
293 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
294 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
295 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
296 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
297 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
298 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
299 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
300 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
301
302 uint32_t intercept_misc3;
303 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
304 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
305 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
306 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
307 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
308
309 uint8_t rsvd1[36];
310 uint16_t pause_filt_thresh;
311 uint16_t pause_filt_cnt;
312 uint64_t iopm_base_pa;
313 uint64_t msrpm_base_pa;
314 uint64_t tsc_offset;
315 uint32_t guest_asid;
316
317 uint32_t tlb_ctrl;
318 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
319 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
320 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
321
322 uint64_t v;
323 #define VMCB_CTRL_V_TPR __BITS(3,0)
324 #define VMCB_CTRL_V_IRQ __BIT(8)
325 #define VMCB_CTRL_V_VGIF __BIT(9)
326 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
327 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
328 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
329 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
330 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
331 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
332
333 uint64_t intr;
334 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
335 #define VMCB_CTRL_INTR_MASK __BIT(1)
336
337 uint64_t exitcode;
338 uint64_t exitinfo1;
339 uint64_t exitinfo2;
340
341 uint64_t exitintinfo;
342 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
345 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
346 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
347
348 uint64_t enable1;
349 #define VMCB_CTRL_ENABLE_NP __BIT(0)
350 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
351 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
352 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
353 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
354
355 uint64_t avic;
356 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
357
358 uint64_t ghcb;
359
360 uint64_t eventinj;
361 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
362 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
363 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
364 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
365 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
366
367 uint64_t n_cr3;
368
369 uint64_t enable2;
370 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
371 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
372
373 uint32_t vmcb_clean;
374 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
375 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
376 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
377 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
378 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
379 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
380 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
381 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
382 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
383 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
384 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
385 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
386
387 uint32_t rsvd2;
388 uint64_t nrip;
389 uint8_t inst_len;
390 uint8_t inst_bytes[15];
391 uint64_t avic_abpp;
392 uint64_t rsvd3;
393 uint64_t avic_ltp;
394
395 uint64_t avic_phys;
396 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
397 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
398
399 uint64_t rsvd4;
400 uint64_t vmsa_ptr;
401
402 uint8_t pad[752];
403 } __packed;
404
405 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
406
407 struct vmcb_segment {
408 uint16_t selector;
409 uint16_t attrib; /* hidden */
410 uint32_t limit; /* hidden */
411 uint64_t base; /* hidden */
412 } __packed;
413
414 CTASSERT(sizeof(struct vmcb_segment) == 16);
415
416 struct vmcb_state {
417 struct vmcb_segment es;
418 struct vmcb_segment cs;
419 struct vmcb_segment ss;
420 struct vmcb_segment ds;
421 struct vmcb_segment fs;
422 struct vmcb_segment gs;
423 struct vmcb_segment gdt;
424 struct vmcb_segment ldt;
425 struct vmcb_segment idt;
426 struct vmcb_segment tr;
427 uint8_t rsvd1[43];
428 uint8_t cpl;
429 uint8_t rsvd2[4];
430 uint64_t efer;
431 uint8_t rsvd3[112];
432 uint64_t cr4;
433 uint64_t cr3;
434 uint64_t cr0;
435 uint64_t dr7;
436 uint64_t dr6;
437 uint64_t rflags;
438 uint64_t rip;
439 uint8_t rsvd4[88];
440 uint64_t rsp;
441 uint8_t rsvd5[24];
442 uint64_t rax;
443 uint64_t star;
444 uint64_t lstar;
445 uint64_t cstar;
446 uint64_t sfmask;
447 uint64_t kernelgsbase;
448 uint64_t sysenter_cs;
449 uint64_t sysenter_esp;
450 uint64_t sysenter_eip;
451 uint64_t cr2;
452 uint8_t rsvd6[32];
453 uint64_t g_pat;
454 uint64_t dbgctl;
455 uint64_t br_from;
456 uint64_t br_to;
457 uint64_t int_from;
458 uint64_t int_to;
459 uint8_t pad[2408];
460 } __packed;
461
462 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
463
464 struct vmcb {
465 struct vmcb_ctrl ctrl;
466 struct vmcb_state state;
467 } __packed;
468
469 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
470 CTASSERT(offsetof(struct vmcb, state) == 0x400);
471
472 /* -------------------------------------------------------------------------- */
473
474 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
475 static void svm_vcpu_state_commit(struct nvmm_cpu *);
476
477 struct svm_hsave {
478 paddr_t pa;
479 };
480
481 static struct svm_hsave hsave[MAXCPUS];
482
483 static uint8_t *svm_asidmap __read_mostly;
484 static uint32_t svm_maxasid __read_mostly;
485 static kmutex_t svm_asidlock __cacheline_aligned;
486
487 static bool svm_decode_assist __read_mostly;
488 static uint32_t svm_ctrl_tlb_flush __read_mostly;
489
490 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
491 static uint64_t svm_xcr0_mask __read_mostly;
492
493 #define SVM_NCPUIDS 32
494
495 #define VMCB_NPAGES 1
496
497 #define MSRBM_NPAGES 2
498 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
499
500 #define IOBM_NPAGES 3
501 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
502
503 /* Does not include EFER_LMSLE. */
504 #define EFER_VALID \
505 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
506
507 #define EFER_TLB_FLUSH \
508 (EFER_NXE|EFER_LMA|EFER_LME)
509 #define CR0_TLB_FLUSH \
510 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
511 #define CR4_TLB_FLUSH \
512 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
513
514 /* -------------------------------------------------------------------------- */
515
516 struct svm_machdata {
517 volatile uint64_t mach_htlb_gen;
518 };
519
520 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
521 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
522 sizeof(struct nvmm_vcpu_conf_cpuid),
523 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
524 sizeof(struct nvmm_vcpu_conf_tpr)
525 };
526
527 struct svm_cpudata {
528 /* General */
529 bool shared_asid;
530 bool gtlb_want_flush;
531 bool gtsc_want_update;
532 uint64_t vcpu_htlb_gen;
533
534 /* VMCB */
535 struct vmcb *vmcb;
536 paddr_t vmcb_pa;
537
538 /* I/O bitmap */
539 uint8_t *iobm;
540 paddr_t iobm_pa;
541
542 /* MSR bitmap */
543 uint8_t *msrbm;
544 paddr_t msrbm_pa;
545
546 /* Host state */
547 uint64_t hxcr0;
548 uint64_t star;
549 uint64_t lstar;
550 uint64_t cstar;
551 uint64_t sfmask;
552 uint64_t fsbase;
553 uint64_t kernelgsbase;
554 bool ts_set;
555 struct xsave_header hfpu __aligned(64);
556
557 /* Intr state */
558 bool int_window_exit;
559 bool nmi_window_exit;
560 bool evt_pending;
561
562 /* Guest state */
563 uint64_t gxcr0;
564 uint64_t gprs[NVMM_X64_NGPR];
565 uint64_t drs[NVMM_X64_NDR];
566 uint64_t gtsc;
567 struct xsave_header gfpu __aligned(64);
568
569 /* VCPU configuration. */
570 bool cpuidpresent[SVM_NCPUIDS];
571 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
572 };
573
574 static void
575 svm_vmcb_cache_default(struct vmcb *vmcb)
576 {
577 vmcb->ctrl.vmcb_clean =
578 VMCB_CTRL_VMCB_CLEAN_I |
579 VMCB_CTRL_VMCB_CLEAN_IOPM |
580 VMCB_CTRL_VMCB_CLEAN_ASID |
581 VMCB_CTRL_VMCB_CLEAN_TPR |
582 VMCB_CTRL_VMCB_CLEAN_NP |
583 VMCB_CTRL_VMCB_CLEAN_CR |
584 VMCB_CTRL_VMCB_CLEAN_DR |
585 VMCB_CTRL_VMCB_CLEAN_DT |
586 VMCB_CTRL_VMCB_CLEAN_SEG |
587 VMCB_CTRL_VMCB_CLEAN_CR2 |
588 VMCB_CTRL_VMCB_CLEAN_LBR |
589 VMCB_CTRL_VMCB_CLEAN_AVIC;
590 }
591
592 static void
593 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
594 {
595 if (flags & NVMM_X64_STATE_SEGS) {
596 vmcb->ctrl.vmcb_clean &=
597 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
598 }
599 if (flags & NVMM_X64_STATE_CRS) {
600 vmcb->ctrl.vmcb_clean &=
601 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
602 VMCB_CTRL_VMCB_CLEAN_TPR);
603 }
604 if (flags & NVMM_X64_STATE_DRS) {
605 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
606 }
607 if (flags & NVMM_X64_STATE_MSRS) {
608 /* CR for EFER, NP for PAT. */
609 vmcb->ctrl.vmcb_clean &=
610 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
611 }
612 }
613
614 static inline void
615 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
616 {
617 vmcb->ctrl.vmcb_clean &= ~flags;
618 }
619
620 static inline void
621 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
622 {
623 vmcb->ctrl.vmcb_clean = 0;
624 }
625
626 #define SVM_EVENT_TYPE_HW_INT 0
627 #define SVM_EVENT_TYPE_NMI 2
628 #define SVM_EVENT_TYPE_EXC 3
629 #define SVM_EVENT_TYPE_SW_INT 4
630
631 static void
632 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
633 {
634 struct svm_cpudata *cpudata = vcpu->cpudata;
635 struct vmcb *vmcb = cpudata->vmcb;
636
637 if (nmi) {
638 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
639 cpudata->nmi_window_exit = true;
640 } else {
641 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
642 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
643 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
644 cpudata->int_window_exit = true;
645 }
646
647 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
648 }
649
650 static void
651 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
652 {
653 struct svm_cpudata *cpudata = vcpu->cpudata;
654 struct vmcb *vmcb = cpudata->vmcb;
655
656 if (nmi) {
657 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
658 cpudata->nmi_window_exit = false;
659 } else {
660 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
661 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
662 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
663 cpudata->int_window_exit = false;
664 }
665
666 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
667 }
668
669 static inline bool
670 svm_excp_has_rf(uint8_t vector)
671 {
672 switch (vector) {
673 case 1: /* #DB */
674 case 4: /* #OF */
675 case 8: /* #DF */
676 case 18: /* #MC */
677 return false;
678 default:
679 return true;
680 }
681 }
682
683 static inline int
684 svm_excp_has_error(uint8_t vector)
685 {
686 switch (vector) {
687 case 8: /* #DF */
688 case 10: /* #TS */
689 case 11: /* #NP */
690 case 12: /* #SS */
691 case 13: /* #GP */
692 case 14: /* #PF */
693 case 17: /* #AC */
694 case 30: /* #SX */
695 return 1;
696 default:
697 return 0;
698 }
699 }
700
701 static int
702 svm_vcpu_inject(struct nvmm_cpu *vcpu)
703 {
704 struct nvmm_comm_page *comm = vcpu->comm;
705 struct svm_cpudata *cpudata = vcpu->cpudata;
706 struct vmcb *vmcb = cpudata->vmcb;
707 u_int evtype;
708 uint8_t vector;
709 uint64_t error;
710 int type = 0, err = 0;
711
712 evtype = comm->event.type;
713 vector = comm->event.vector;
714 error = comm->event.u.excp.error;
715 __insn_barrier();
716
717 switch (evtype) {
718 case NVMM_VCPU_EVENT_EXCP:
719 type = SVM_EVENT_TYPE_EXC;
720 if (vector == 2 || vector >= 32)
721 return EINVAL;
722 if (vector == 3 || vector == 0)
723 return EINVAL;
724 if (svm_excp_has_rf(vector)) {
725 vmcb->state.rflags |= PSL_RF;
726 }
727 err = svm_excp_has_error(vector);
728 break;
729 case NVMM_VCPU_EVENT_INTR:
730 type = SVM_EVENT_TYPE_HW_INT;
731 if (vector == 2) {
732 type = SVM_EVENT_TYPE_NMI;
733 svm_event_waitexit_enable(vcpu, true);
734 }
735 err = 0;
736 break;
737 default:
738 return EINVAL;
739 }
740
741 vmcb->ctrl.eventinj =
742 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
743 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
744 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
745 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
746 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
747
748 cpudata->evt_pending = true;
749
750 return 0;
751 }
752
753 static void
754 svm_inject_ud(struct nvmm_cpu *vcpu)
755 {
756 struct nvmm_comm_page *comm = vcpu->comm;
757 int ret __diagused;
758
759 comm->event.type = NVMM_VCPU_EVENT_EXCP;
760 comm->event.vector = 6;
761 comm->event.u.excp.error = 0;
762
763 ret = svm_vcpu_inject(vcpu);
764 KASSERT(ret == 0);
765 }
766
767 static void
768 svm_inject_gp(struct nvmm_cpu *vcpu)
769 {
770 struct nvmm_comm_page *comm = vcpu->comm;
771 int ret __diagused;
772
773 comm->event.type = NVMM_VCPU_EVENT_EXCP;
774 comm->event.vector = 13;
775 comm->event.u.excp.error = 0;
776
777 ret = svm_vcpu_inject(vcpu);
778 KASSERT(ret == 0);
779 }
780
781 static inline int
782 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
783 {
784 if (__predict_true(!vcpu->comm->event_commit)) {
785 return 0;
786 }
787 vcpu->comm->event_commit = false;
788 return svm_vcpu_inject(vcpu);
789 }
790
791 static inline void
792 svm_inkernel_advance(struct vmcb *vmcb)
793 {
794 /*
795 * Maybe we should also apply single-stepping and debug exceptions.
796 * Matters for guest-ring3, because it can execute 'cpuid' under a
797 * debugger.
798 */
799 vmcb->state.rip = vmcb->ctrl.nrip;
800 vmcb->state.rflags &= ~PSL_RF;
801 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
802 }
803
804 #define SVM_CPUID_MAX_BASIC 0xD
805 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
806 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
807 static uint32_t svm_cpuid_max_basic __read_mostly;
808 static uint32_t svm_cpuid_max_extended __read_mostly;
809
810 static void
811 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
812 {
813 u_int descs[4];
814
815 x86_cpuid2(eax, ecx, descs);
816 cpudata->vmcb->state.rax = descs[0];
817 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
818 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
819 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
820 }
821
822 static void
823 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
824 {
825 struct svm_cpudata *cpudata = vcpu->cpudata;
826 uint64_t cr4;
827
828 if (eax < 0x40000000) {
829 if (__predict_false(eax > svm_cpuid_max_basic)) {
830 eax = svm_cpuid_max_basic;
831 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
832 }
833 } else if (eax < 0x80000000) {
834 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
835 eax = svm_cpuid_max_basic;
836 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
837 }
838 } else {
839 if (__predict_false(eax > svm_cpuid_max_extended)) {
840 eax = svm_cpuid_max_basic;
841 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
842 }
843 }
844
845 switch (eax) {
846 case 0x00000000:
847 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
848 break;
849 case 0x00000001:
850 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
851
852 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
853 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
854 CPUID_LOCAL_APIC_ID);
855
856 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
857 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
858
859 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
860
861 /* CPUID2_OSXSAVE depends on CR4. */
862 cr4 = cpudata->vmcb->state.cr4;
863 if (!(cr4 & CR4_OSXSAVE)) {
864 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
865 }
866 break;
867 case 0x00000002: /* Empty */
868 case 0x00000003: /* Empty */
869 case 0x00000004: /* Empty */
870 case 0x00000005: /* Monitor/MWait */
871 case 0x00000006: /* Power Management Related Features */
872 cpudata->vmcb->state.rax = 0;
873 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
874 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
875 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
876 break;
877 case 0x00000007: /* Structured Extended Features */
878 switch (ecx) {
879 case 0:
880 cpudata->vmcb->state.rax = 0;
881 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
882 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
883 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
884 break;
885 default:
886 cpudata->vmcb->state.rax = 0;
887 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
888 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
889 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
890 break;
891 }
892 break;
893 case 0x00000008: /* Empty */
894 case 0x00000009: /* Empty */
895 case 0x0000000A: /* Empty */
896 case 0x0000000B: /* Empty */
897 case 0x0000000C: /* Empty */
898 cpudata->vmcb->state.rax = 0;
899 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
900 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
901 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
902 break;
903 case 0x0000000D: /* Processor Extended State Enumeration */
904 if (svm_xcr0_mask == 0) {
905 break;
906 }
907 switch (ecx) {
908 case 0:
909 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
910 if (cpudata->gxcr0 & XCR0_SSE) {
911 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
912 } else {
913 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
914 }
915 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
916 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
917 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
918 break;
919 case 1:
920 cpudata->vmcb->state.rax &=
921 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
922 CPUID_PES1_XGETBV);
923 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
924 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
925 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
926 break;
927 default:
928 cpudata->vmcb->state.rax = 0;
929 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
930 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
931 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
932 break;
933 }
934 break;
935
936 case 0x40000000: /* Hypervisor Information */
937 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
938 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
939 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
940 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
941 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
942 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
943 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
944 break;
945
946 case 0x80000000:
947 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
948 break;
949 case 0x80000001:
950 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
951 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
952 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
953 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
954 break;
955 case 0x80000002: /* Extended Processor Name String */
956 case 0x80000003: /* Extended Processor Name String */
957 case 0x80000004: /* Extended Processor Name String */
958 case 0x80000005: /* L1 Cache and TLB Information */
959 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
960 break;
961 case 0x80000007: /* Processor Power Management and RAS Capabilities */
962 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
963 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
964 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
965 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
966 break;
967 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
968 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
969 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
970 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
971 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
972 break;
973 case 0x80000009: /* Empty */
974 case 0x8000000A: /* SVM Features */
975 case 0x8000000B: /* Empty */
976 case 0x8000000C: /* Empty */
977 case 0x8000000D: /* Empty */
978 case 0x8000000E: /* Empty */
979 case 0x8000000F: /* Empty */
980 case 0x80000010: /* Empty */
981 case 0x80000011: /* Empty */
982 case 0x80000012: /* Empty */
983 case 0x80000013: /* Empty */
984 case 0x80000014: /* Empty */
985 case 0x80000015: /* Empty */
986 case 0x80000016: /* Empty */
987 case 0x80000017: /* Empty */
988 case 0x80000018: /* Empty */
989 cpudata->vmcb->state.rax = 0;
990 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
991 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
992 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
993 break;
994 case 0x80000019: /* TLB Characteristics for 1GB pages */
995 case 0x8000001A: /* Instruction Optimizations */
996 break;
997 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
998 case 0x8000001C: /* Lightweight Profiling Capabilities */
999 cpudata->vmcb->state.rax = 0;
1000 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1001 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1002 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1003 break;
1004 case 0x8000001D: /* Cache Topology Information */
1005 case 0x8000001E: /* Processor Topology Information */
1006 break; /* TODO? */
1007 case 0x8000001F: /* Encrypted Memory Capabilities */
1008 cpudata->vmcb->state.rax = 0;
1009 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1010 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1011 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1012 break;
1013
1014 default:
1015 break;
1016 }
1017 }
1018
1019 static void
1020 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1021 {
1022 exit->u.insn.npc = vmcb->ctrl.nrip;
1023 exit->reason = reason;
1024 }
1025
1026 static void
1027 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1028 struct nvmm_vcpu_exit *exit)
1029 {
1030 struct svm_cpudata *cpudata = vcpu->cpudata;
1031 struct nvmm_vcpu_conf_cpuid *cpuid;
1032 uint64_t eax, ecx;
1033 size_t i;
1034
1035 eax = cpudata->vmcb->state.rax;
1036 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1037 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1038 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1039
1040 for (i = 0; i < SVM_NCPUIDS; i++) {
1041 if (!cpudata->cpuidpresent[i]) {
1042 continue;
1043 }
1044 cpuid = &cpudata->cpuid[i];
1045 if (cpuid->leaf != eax) {
1046 continue;
1047 }
1048
1049 if (cpuid->exit) {
1050 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1051 return;
1052 }
1053 KASSERT(cpuid->mask);
1054
1055 /* del */
1056 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1057 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1058 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1059 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1060
1061 /* set */
1062 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1063 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1064 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1065 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1066
1067 break;
1068 }
1069
1070 svm_inkernel_advance(cpudata->vmcb);
1071 exit->reason = NVMM_VCPU_EXIT_NONE;
1072 }
1073
1074 static void
1075 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1076 struct nvmm_vcpu_exit *exit)
1077 {
1078 struct svm_cpudata *cpudata = vcpu->cpudata;
1079 struct vmcb *vmcb = cpudata->vmcb;
1080
1081 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1082 svm_event_waitexit_disable(vcpu, false);
1083 }
1084
1085 svm_inkernel_advance(cpudata->vmcb);
1086 exit->reason = NVMM_VCPU_EXIT_HALTED;
1087 }
1088
1089 #define SVM_EXIT_IO_PORT __BITS(31,16)
1090 #define SVM_EXIT_IO_SEG __BITS(12,10)
1091 #define SVM_EXIT_IO_A64 __BIT(9)
1092 #define SVM_EXIT_IO_A32 __BIT(8)
1093 #define SVM_EXIT_IO_A16 __BIT(7)
1094 #define SVM_EXIT_IO_SZ32 __BIT(6)
1095 #define SVM_EXIT_IO_SZ16 __BIT(5)
1096 #define SVM_EXIT_IO_SZ8 __BIT(4)
1097 #define SVM_EXIT_IO_REP __BIT(3)
1098 #define SVM_EXIT_IO_STR __BIT(2)
1099 #define SVM_EXIT_IO_IN __BIT(0)
1100
1101 static void
1102 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1103 struct nvmm_vcpu_exit *exit)
1104 {
1105 struct svm_cpudata *cpudata = vcpu->cpudata;
1106 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1107 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1108
1109 exit->reason = NVMM_VCPU_EXIT_IO;
1110
1111 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1112 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1113
1114 if (svm_decode_assist) {
1115 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1116 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1117 } else {
1118 exit->u.io.seg = -1;
1119 }
1120
1121 if (info & SVM_EXIT_IO_A64) {
1122 exit->u.io.address_size = 8;
1123 } else if (info & SVM_EXIT_IO_A32) {
1124 exit->u.io.address_size = 4;
1125 } else if (info & SVM_EXIT_IO_A16) {
1126 exit->u.io.address_size = 2;
1127 }
1128
1129 if (info & SVM_EXIT_IO_SZ32) {
1130 exit->u.io.operand_size = 4;
1131 } else if (info & SVM_EXIT_IO_SZ16) {
1132 exit->u.io.operand_size = 2;
1133 } else if (info & SVM_EXIT_IO_SZ8) {
1134 exit->u.io.operand_size = 1;
1135 }
1136
1137 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1138 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1139 exit->u.io.npc = nextpc;
1140
1141 svm_vcpu_state_provide(vcpu,
1142 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1143 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1144 }
1145
1146 static const uint64_t msr_ignore_list[] = {
1147 0xc0010055, /* MSR_CMPHALT */
1148 MSR_DE_CFG,
1149 MSR_IC_CFG,
1150 MSR_UCODE_AMD_PATCHLEVEL
1151 };
1152
1153 static bool
1154 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1155 struct nvmm_vcpu_exit *exit)
1156 {
1157 struct svm_cpudata *cpudata = vcpu->cpudata;
1158 struct vmcb *vmcb = cpudata->vmcb;
1159 uint64_t val;
1160 size_t i;
1161
1162 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1163 if (exit->u.rdmsr.msr == MSR_EFER) {
1164 val = vmcb->state.efer & ~EFER_SVME;
1165 vmcb->state.rax = (val & 0xFFFFFFFF);
1166 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1167 goto handled;
1168 }
1169 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1170 val = NB_CFG_INITAPICCPUIDLO;
1171 vmcb->state.rax = (val & 0xFFFFFFFF);
1172 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1173 goto handled;
1174 }
1175 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1176 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1177 continue;
1178 val = 0;
1179 vmcb->state.rax = (val & 0xFFFFFFFF);
1180 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1181 goto handled;
1182 }
1183 } else {
1184 if (exit->u.wrmsr.msr == MSR_EFER) {
1185 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1186 goto error;
1187 }
1188 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1189 EFER_TLB_FLUSH) {
1190 cpudata->gtlb_want_flush = true;
1191 }
1192 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1193 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1194 goto handled;
1195 }
1196 if (exit->u.wrmsr.msr == MSR_TSC) {
1197 cpudata->gtsc = exit->u.wrmsr.val;
1198 cpudata->gtsc_want_update = true;
1199 goto handled;
1200 }
1201 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1202 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1203 continue;
1204 goto handled;
1205 }
1206 }
1207
1208 return false;
1209
1210 handled:
1211 svm_inkernel_advance(cpudata->vmcb);
1212 return true;
1213
1214 error:
1215 svm_inject_gp(vcpu);
1216 return true;
1217 }
1218
1219 static inline void
1220 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1221 struct nvmm_vcpu_exit *exit)
1222 {
1223 struct svm_cpudata *cpudata = vcpu->cpudata;
1224
1225 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1226 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1227 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1228
1229 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1230 exit->reason = NVMM_VCPU_EXIT_NONE;
1231 return;
1232 }
1233
1234 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1235 }
1236
1237 static inline void
1238 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1239 struct nvmm_vcpu_exit *exit)
1240 {
1241 struct svm_cpudata *cpudata = vcpu->cpudata;
1242 uint64_t rdx, rax;
1243
1244 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1245 rax = cpudata->vmcb->state.rax;
1246
1247 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1248 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1249 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1250 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1251
1252 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1253 exit->reason = NVMM_VCPU_EXIT_NONE;
1254 return;
1255 }
1256
1257 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1258 }
1259
1260 static void
1261 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1262 struct nvmm_vcpu_exit *exit)
1263 {
1264 struct svm_cpudata *cpudata = vcpu->cpudata;
1265 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1266
1267 if (info == 0) {
1268 svm_exit_rdmsr(mach, vcpu, exit);
1269 } else {
1270 svm_exit_wrmsr(mach, vcpu, exit);
1271 }
1272 }
1273
1274 static void
1275 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1276 struct nvmm_vcpu_exit *exit)
1277 {
1278 struct svm_cpudata *cpudata = vcpu->cpudata;
1279 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1280
1281 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1282 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1283 exit->u.mem.prot = PROT_WRITE;
1284 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1285 exit->u.mem.prot = PROT_EXEC;
1286 else
1287 exit->u.mem.prot = PROT_READ;
1288 exit->u.mem.gpa = gpa;
1289 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1290 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1291 sizeof(exit->u.mem.inst_bytes));
1292
1293 svm_vcpu_state_provide(vcpu,
1294 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1295 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1296 }
1297
1298 static void
1299 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1300 struct nvmm_vcpu_exit *exit)
1301 {
1302 struct svm_cpudata *cpudata = vcpu->cpudata;
1303 struct vmcb *vmcb = cpudata->vmcb;
1304 uint64_t val;
1305
1306 exit->reason = NVMM_VCPU_EXIT_NONE;
1307
1308 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1309 (vmcb->state.rax & 0xFFFFFFFF);
1310
1311 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1312 goto error;
1313 } else if (__predict_false(vmcb->state.cpl != 0)) {
1314 goto error;
1315 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1316 goto error;
1317 } else if (__predict_false((val & XCR0_X87) == 0)) {
1318 goto error;
1319 }
1320
1321 cpudata->gxcr0 = val;
1322
1323 svm_inkernel_advance(cpudata->vmcb);
1324 return;
1325
1326 error:
1327 svm_inject_gp(vcpu);
1328 }
1329
1330 static void
1331 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1332 {
1333 exit->u.inv.hwcode = code;
1334 exit->reason = NVMM_VCPU_EXIT_INVALID;
1335 }
1336
1337 /* -------------------------------------------------------------------------- */
1338
1339 static void
1340 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1341 {
1342 struct svm_cpudata *cpudata = vcpu->cpudata;
1343
1344 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1345
1346 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1347 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1348
1349 if (svm_xcr0_mask != 0) {
1350 cpudata->hxcr0 = rdxcr(0);
1351 wrxcr(0, cpudata->gxcr0);
1352 }
1353 }
1354
1355 static void
1356 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1357 {
1358 struct svm_cpudata *cpudata = vcpu->cpudata;
1359
1360 if (svm_xcr0_mask != 0) {
1361 cpudata->gxcr0 = rdxcr(0);
1362 wrxcr(0, cpudata->hxcr0);
1363 }
1364
1365 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1366 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1367
1368 if (cpudata->ts_set) {
1369 stts();
1370 }
1371 }
1372
1373 static void
1374 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1375 {
1376 struct svm_cpudata *cpudata = vcpu->cpudata;
1377
1378 x86_dbregs_save(curlwp);
1379
1380 ldr7(0);
1381
1382 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1383 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1384 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1385 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1386 }
1387
1388 static void
1389 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1390 {
1391 struct svm_cpudata *cpudata = vcpu->cpudata;
1392
1393 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1394 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1395 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1396 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1397
1398 x86_dbregs_restore(curlwp);
1399 }
1400
1401 static void
1402 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1403 {
1404 struct svm_cpudata *cpudata = vcpu->cpudata;
1405
1406 cpudata->fsbase = rdmsr(MSR_FSBASE);
1407 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1408 }
1409
1410 static void
1411 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1412 {
1413 struct svm_cpudata *cpudata = vcpu->cpudata;
1414
1415 wrmsr(MSR_STAR, cpudata->star);
1416 wrmsr(MSR_LSTAR, cpudata->lstar);
1417 wrmsr(MSR_CSTAR, cpudata->cstar);
1418 wrmsr(MSR_SFMASK, cpudata->sfmask);
1419 wrmsr(MSR_FSBASE, cpudata->fsbase);
1420 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1421 }
1422
1423 /* -------------------------------------------------------------------------- */
1424
1425 static inline void
1426 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1427 {
1428 struct svm_cpudata *cpudata = vcpu->cpudata;
1429
1430 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1431 cpudata->gtlb_want_flush = true;
1432 }
1433 }
1434
1435 static inline void
1436 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1437 {
1438 /*
1439 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1440 * executing on this hCPU and the hTLB already got flushed, or it
1441 * was executing on another hCPU in which case the catchup is done
1442 * in svm_gtlb_catchup().
1443 */
1444 }
1445
1446 static inline uint64_t
1447 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1448 {
1449 struct vmcb *vmcb = cpudata->vmcb;
1450 uint64_t machgen;
1451
1452 machgen = machdata->mach_htlb_gen;
1453 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1454 return machgen;
1455 }
1456
1457 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1458 return machgen;
1459 }
1460
1461 static inline void
1462 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1463 {
1464 struct vmcb *vmcb = cpudata->vmcb;
1465
1466 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1467 cpudata->vcpu_htlb_gen = machgen;
1468 }
1469 }
1470
1471 static inline void
1472 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1473 {
1474 cpudata->evt_pending = false;
1475
1476 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1477 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1478 cpudata->evt_pending = true;
1479 }
1480 }
1481
1482 static int
1483 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1484 struct nvmm_vcpu_exit *exit)
1485 {
1486 struct nvmm_comm_page *comm = vcpu->comm;
1487 struct svm_machdata *machdata = mach->machdata;
1488 struct svm_cpudata *cpudata = vcpu->cpudata;
1489 struct vmcb *vmcb = cpudata->vmcb;
1490 uint64_t machgen;
1491 int hcpu, s;
1492
1493 svm_vcpu_state_commit(vcpu);
1494 comm->state_cached = 0;
1495
1496 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1497 return EINVAL;
1498 }
1499
1500 kpreempt_disable();
1501 hcpu = cpu_number();
1502
1503 svm_gtlb_catchup(vcpu, hcpu);
1504 svm_htlb_catchup(vcpu, hcpu);
1505
1506 if (vcpu->hcpu_last != hcpu) {
1507 svm_vmcb_cache_flush_all(vmcb);
1508 cpudata->gtsc_want_update = true;
1509 }
1510
1511 svm_vcpu_guest_dbregs_enter(vcpu);
1512 svm_vcpu_guest_misc_enter(vcpu);
1513
1514 while (1) {
1515 if (cpudata->gtlb_want_flush) {
1516 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1517 } else {
1518 vmcb->ctrl.tlb_ctrl = 0;
1519 }
1520
1521 if (__predict_false(cpudata->gtsc_want_update)) {
1522 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1523 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1524 }
1525
1526 s = splhigh();
1527 machgen = svm_htlb_flush(machdata, cpudata);
1528 svm_vcpu_guest_fpu_enter(vcpu);
1529 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1530 svm_vcpu_guest_fpu_leave(vcpu);
1531 svm_htlb_flush_ack(cpudata, machgen);
1532 splx(s);
1533
1534 svm_vmcb_cache_default(vmcb);
1535
1536 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1537 cpudata->gtlb_want_flush = false;
1538 cpudata->gtsc_want_update = false;
1539 vcpu->hcpu_last = hcpu;
1540 }
1541 svm_exit_evt(cpudata, vmcb);
1542
1543 switch (vmcb->ctrl.exitcode) {
1544 case VMCB_EXITCODE_INTR:
1545 case VMCB_EXITCODE_NMI:
1546 exit->reason = NVMM_VCPU_EXIT_NONE;
1547 break;
1548 case VMCB_EXITCODE_VINTR:
1549 svm_event_waitexit_disable(vcpu, false);
1550 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1551 break;
1552 case VMCB_EXITCODE_IRET:
1553 svm_event_waitexit_disable(vcpu, true);
1554 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1555 break;
1556 case VMCB_EXITCODE_CPUID:
1557 svm_exit_cpuid(mach, vcpu, exit);
1558 break;
1559 case VMCB_EXITCODE_HLT:
1560 svm_exit_hlt(mach, vcpu, exit);
1561 break;
1562 case VMCB_EXITCODE_IOIO:
1563 svm_exit_io(mach, vcpu, exit);
1564 break;
1565 case VMCB_EXITCODE_MSR:
1566 svm_exit_msr(mach, vcpu, exit);
1567 break;
1568 case VMCB_EXITCODE_SHUTDOWN:
1569 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1570 break;
1571 case VMCB_EXITCODE_RDPMC:
1572 case VMCB_EXITCODE_RSM:
1573 case VMCB_EXITCODE_INVLPGA:
1574 case VMCB_EXITCODE_VMRUN:
1575 case VMCB_EXITCODE_VMMCALL:
1576 case VMCB_EXITCODE_VMLOAD:
1577 case VMCB_EXITCODE_VMSAVE:
1578 case VMCB_EXITCODE_STGI:
1579 case VMCB_EXITCODE_CLGI:
1580 case VMCB_EXITCODE_SKINIT:
1581 case VMCB_EXITCODE_RDTSCP:
1582 case VMCB_EXITCODE_RDPRU:
1583 case VMCB_EXITCODE_INVLPGB:
1584 case VMCB_EXITCODE_INVPCID:
1585 case VMCB_EXITCODE_MCOMMIT:
1586 case VMCB_EXITCODE_TLBSYNC:
1587 svm_inject_ud(vcpu);
1588 exit->reason = NVMM_VCPU_EXIT_NONE;
1589 break;
1590 case VMCB_EXITCODE_MONITOR:
1591 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1592 break;
1593 case VMCB_EXITCODE_MWAIT:
1594 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1595 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1596 break;
1597 case VMCB_EXITCODE_XSETBV:
1598 svm_exit_xsetbv(mach, vcpu, exit);
1599 break;
1600 case VMCB_EXITCODE_NPF:
1601 svm_exit_npf(mach, vcpu, exit);
1602 break;
1603 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1604 default:
1605 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1606 break;
1607 }
1608
1609 /* If no reason to return to userland, keep rolling. */
1610 if (nvmm_return_needed()) {
1611 break;
1612 }
1613 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1614 break;
1615 }
1616 }
1617
1618 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1619
1620 svm_vcpu_guest_misc_leave(vcpu);
1621 svm_vcpu_guest_dbregs_leave(vcpu);
1622
1623 kpreempt_enable();
1624
1625 exit->exitstate.rflags = vmcb->state.rflags;
1626 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1627 exit->exitstate.int_shadow =
1628 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1629 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1630 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1631 exit->exitstate.evt_pending = cpudata->evt_pending;
1632
1633 return 0;
1634 }
1635
1636 /* -------------------------------------------------------------------------- */
1637
1638 static int
1639 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1640 {
1641 struct pglist pglist;
1642 paddr_t _pa;
1643 vaddr_t _va;
1644 size_t i;
1645 int ret;
1646
1647 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1648 &pglist, 1, 0);
1649 if (ret != 0)
1650 return ENOMEM;
1651 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1652 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1653 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1654 if (_va == 0)
1655 goto error;
1656
1657 for (i = 0; i < npages; i++) {
1658 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1659 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1660 }
1661 pmap_update(pmap_kernel());
1662
1663 memset((void *)_va, 0, npages * PAGE_SIZE);
1664
1665 *pa = _pa;
1666 *va = _va;
1667 return 0;
1668
1669 error:
1670 for (i = 0; i < npages; i++) {
1671 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1672 }
1673 return ENOMEM;
1674 }
1675
1676 static void
1677 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1678 {
1679 size_t i;
1680
1681 pmap_kremove(va, npages * PAGE_SIZE);
1682 pmap_update(pmap_kernel());
1683 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1684 for (i = 0; i < npages; i++) {
1685 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1686 }
1687 }
1688
1689 /* -------------------------------------------------------------------------- */
1690
1691 #define SVM_MSRBM_READ __BIT(0)
1692 #define SVM_MSRBM_WRITE __BIT(1)
1693
1694 static void
1695 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1696 {
1697 uint64_t byte;
1698 uint8_t bitoff;
1699
1700 if (msr < 0x00002000) {
1701 /* Range 1 */
1702 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1703 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1704 /* Range 2 */
1705 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1706 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1707 /* Range 3 */
1708 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1709 } else {
1710 panic("%s: wrong range", __func__);
1711 }
1712
1713 bitoff = (msr & 0x3) << 1;
1714
1715 if (read) {
1716 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1717 }
1718 if (write) {
1719 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1720 }
1721 }
1722
1723 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1724 #define SVM_SEG_ATTRIB_S __BIT(4)
1725 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1726 #define SVM_SEG_ATTRIB_P __BIT(7)
1727 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1728 #define SVM_SEG_ATTRIB_L __BIT(9)
1729 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1730 #define SVM_SEG_ATTRIB_G __BIT(11)
1731
1732 static void
1733 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1734 struct vmcb_segment *vseg)
1735 {
1736 vseg->selector = seg->selector;
1737 vseg->attrib =
1738 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1739 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1740 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1741 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1742 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1743 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1744 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1745 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1746 vseg->limit = seg->limit;
1747 vseg->base = seg->base;
1748 }
1749
1750 static void
1751 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1752 {
1753 seg->selector = vseg->selector;
1754 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1755 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1756 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1757 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1758 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1759 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1760 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1761 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1762 seg->limit = vseg->limit;
1763 seg->base = vseg->base;
1764 }
1765
1766 static inline bool
1767 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1768 uint64_t flags)
1769 {
1770 if (flags & NVMM_X64_STATE_CRS) {
1771 if ((vmcb->state.cr0 ^
1772 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1773 return true;
1774 }
1775 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1776 return true;
1777 }
1778 if ((vmcb->state.cr4 ^
1779 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1780 return true;
1781 }
1782 }
1783
1784 if (flags & NVMM_X64_STATE_MSRS) {
1785 if ((vmcb->state.efer ^
1786 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1787 return true;
1788 }
1789 }
1790
1791 return false;
1792 }
1793
1794 static void
1795 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1796 {
1797 struct nvmm_comm_page *comm = vcpu->comm;
1798 const struct nvmm_x64_state *state = &comm->state;
1799 struct svm_cpudata *cpudata = vcpu->cpudata;
1800 struct vmcb *vmcb = cpudata->vmcb;
1801 struct fxsave *fpustate;
1802 uint64_t flags;
1803
1804 flags = comm->state_wanted;
1805
1806 if (svm_state_tlb_flush(vmcb, state, flags)) {
1807 cpudata->gtlb_want_flush = true;
1808 }
1809
1810 if (flags & NVMM_X64_STATE_SEGS) {
1811 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1812 &vmcb->state.cs);
1813 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1814 &vmcb->state.ds);
1815 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1816 &vmcb->state.es);
1817 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1818 &vmcb->state.fs);
1819 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1820 &vmcb->state.gs);
1821 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1822 &vmcb->state.ss);
1823 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1824 &vmcb->state.gdt);
1825 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1826 &vmcb->state.idt);
1827 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1828 &vmcb->state.ldt);
1829 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1830 &vmcb->state.tr);
1831
1832 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1833 }
1834
1835 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1836 if (flags & NVMM_X64_STATE_GPRS) {
1837 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1838
1839 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1840 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1841 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1842 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1843 }
1844
1845 if (flags & NVMM_X64_STATE_CRS) {
1846 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1847 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1848 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1849 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1850
1851 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1852 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1853 VMCB_CTRL_V_TPR);
1854
1855 if (svm_xcr0_mask != 0) {
1856 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1857 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1858 cpudata->gxcr0 &= svm_xcr0_mask;
1859 cpudata->gxcr0 |= XCR0_X87;
1860 }
1861 }
1862
1863 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1864 if (flags & NVMM_X64_STATE_DRS) {
1865 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1866
1867 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1868 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1869 }
1870
1871 if (flags & NVMM_X64_STATE_MSRS) {
1872 /*
1873 * EFER_SVME is mandatory.
1874 */
1875 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1876 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1877 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1878 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1879 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1880 vmcb->state.kernelgsbase =
1881 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1882 vmcb->state.sysenter_cs =
1883 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1884 vmcb->state.sysenter_esp =
1885 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1886 vmcb->state.sysenter_eip =
1887 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1888 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1889
1890 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1891 cpudata->gtsc_want_update = true;
1892 }
1893
1894 if (flags & NVMM_X64_STATE_INTR) {
1895 if (state->intr.int_shadow) {
1896 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1897 } else {
1898 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1899 }
1900
1901 if (state->intr.int_window_exiting) {
1902 svm_event_waitexit_enable(vcpu, false);
1903 } else {
1904 svm_event_waitexit_disable(vcpu, false);
1905 }
1906
1907 if (state->intr.nmi_window_exiting) {
1908 svm_event_waitexit_enable(vcpu, true);
1909 } else {
1910 svm_event_waitexit_disable(vcpu, true);
1911 }
1912 }
1913
1914 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1915 if (flags & NVMM_X64_STATE_FPU) {
1916 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1917 sizeof(state->fpu));
1918
1919 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1920 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1921 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1922
1923 if (svm_xcr0_mask != 0) {
1924 /* Reset XSTATE_BV, to force a reload. */
1925 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1926 }
1927 }
1928
1929 svm_vmcb_cache_update(vmcb, flags);
1930
1931 comm->state_wanted = 0;
1932 comm->state_cached |= flags;
1933 }
1934
1935 static void
1936 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1937 {
1938 struct nvmm_comm_page *comm = vcpu->comm;
1939 struct nvmm_x64_state *state = &comm->state;
1940 struct svm_cpudata *cpudata = vcpu->cpudata;
1941 struct vmcb *vmcb = cpudata->vmcb;
1942 uint64_t flags;
1943
1944 flags = comm->state_wanted;
1945
1946 if (flags & NVMM_X64_STATE_SEGS) {
1947 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1948 &vmcb->state.cs);
1949 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1950 &vmcb->state.ds);
1951 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1952 &vmcb->state.es);
1953 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1954 &vmcb->state.fs);
1955 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1956 &vmcb->state.gs);
1957 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1958 &vmcb->state.ss);
1959 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1960 &vmcb->state.gdt);
1961 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1962 &vmcb->state.idt);
1963 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1964 &vmcb->state.ldt);
1965 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1966 &vmcb->state.tr);
1967
1968 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1969 }
1970
1971 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1972 if (flags & NVMM_X64_STATE_GPRS) {
1973 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1974
1975 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1976 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1977 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1978 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1979 }
1980
1981 if (flags & NVMM_X64_STATE_CRS) {
1982 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1983 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1984 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1985 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1986 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1987 VMCB_CTRL_V_TPR);
1988 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1989 }
1990
1991 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1992 if (flags & NVMM_X64_STATE_DRS) {
1993 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1994
1995 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1996 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1997 }
1998
1999 if (flags & NVMM_X64_STATE_MSRS) {
2000 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2001 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2002 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2003 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2004 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2005 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2006 vmcb->state.kernelgsbase;
2007 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2008 vmcb->state.sysenter_cs;
2009 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2010 vmcb->state.sysenter_esp;
2011 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2012 vmcb->state.sysenter_eip;
2013 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2014 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2015
2016 /* Hide SVME. */
2017 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2018 }
2019
2020 if (flags & NVMM_X64_STATE_INTR) {
2021 state->intr.int_shadow =
2022 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2023 state->intr.int_window_exiting = cpudata->int_window_exit;
2024 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2025 state->intr.evt_pending = cpudata->evt_pending;
2026 }
2027
2028 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2029 if (flags & NVMM_X64_STATE_FPU) {
2030 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2031 sizeof(state->fpu));
2032 }
2033
2034 comm->state_wanted = 0;
2035 comm->state_cached |= flags;
2036 }
2037
2038 static void
2039 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2040 {
2041 vcpu->comm->state_wanted = flags;
2042 svm_vcpu_getstate(vcpu);
2043 }
2044
2045 static void
2046 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2047 {
2048 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2049 vcpu->comm->state_commit = 0;
2050 svm_vcpu_setstate(vcpu);
2051 }
2052
2053 /* -------------------------------------------------------------------------- */
2054
2055 static void
2056 svm_asid_alloc(struct nvmm_cpu *vcpu)
2057 {
2058 struct svm_cpudata *cpudata = vcpu->cpudata;
2059 struct vmcb *vmcb = cpudata->vmcb;
2060 size_t i, oct, bit;
2061
2062 mutex_enter(&svm_asidlock);
2063
2064 for (i = 0; i < svm_maxasid; i++) {
2065 oct = i / 8;
2066 bit = i % 8;
2067
2068 if (svm_asidmap[oct] & __BIT(bit)) {
2069 continue;
2070 }
2071
2072 svm_asidmap[oct] |= __BIT(bit);
2073 vmcb->ctrl.guest_asid = i;
2074 mutex_exit(&svm_asidlock);
2075 return;
2076 }
2077
2078 /*
2079 * No free ASID. Use the last one, which is shared and requires
2080 * special TLB handling.
2081 */
2082 cpudata->shared_asid = true;
2083 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2084 mutex_exit(&svm_asidlock);
2085 }
2086
2087 static void
2088 svm_asid_free(struct nvmm_cpu *vcpu)
2089 {
2090 struct svm_cpudata *cpudata = vcpu->cpudata;
2091 struct vmcb *vmcb = cpudata->vmcb;
2092 size_t oct, bit;
2093
2094 if (cpudata->shared_asid) {
2095 return;
2096 }
2097
2098 oct = vmcb->ctrl.guest_asid / 8;
2099 bit = vmcb->ctrl.guest_asid % 8;
2100
2101 mutex_enter(&svm_asidlock);
2102 svm_asidmap[oct] &= ~__BIT(bit);
2103 mutex_exit(&svm_asidlock);
2104 }
2105
2106 static void
2107 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2108 {
2109 struct svm_cpudata *cpudata = vcpu->cpudata;
2110 struct vmcb *vmcb = cpudata->vmcb;
2111
2112 /* Allow reads/writes of Control Registers. */
2113 vmcb->ctrl.intercept_cr = 0;
2114
2115 /* Allow reads/writes of Debug Registers. */
2116 vmcb->ctrl.intercept_dr = 0;
2117
2118 /* Allow exceptions 0 to 31. */
2119 vmcb->ctrl.intercept_vec = 0;
2120
2121 /*
2122 * Allow:
2123 * - SMI [smm interrupts]
2124 * - VINTR [virtual interrupts]
2125 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2126 * - RIDTR [reads of IDTR]
2127 * - RGDTR [reads of GDTR]
2128 * - RLDTR [reads of LDTR]
2129 * - RTR [reads of TR]
2130 * - WIDTR [writes of IDTR]
2131 * - WGDTR [writes of GDTR]
2132 * - WLDTR [writes of LDTR]
2133 * - WTR [writes of TR]
2134 * - RDTSC [rdtsc instruction]
2135 * - PUSHF [pushf instruction]
2136 * - POPF [popf instruction]
2137 * - IRET [iret instruction]
2138 * - INTN [int $n instructions]
2139 * - PAUSE [pause instruction]
2140 * - INVLPG [invplg instruction]
2141 * - TASKSW [task switches]
2142 *
2143 * Intercept the rest below.
2144 */
2145 vmcb->ctrl.intercept_misc1 =
2146 VMCB_CTRL_INTERCEPT_INTR |
2147 VMCB_CTRL_INTERCEPT_NMI |
2148 VMCB_CTRL_INTERCEPT_INIT |
2149 VMCB_CTRL_INTERCEPT_RDPMC |
2150 VMCB_CTRL_INTERCEPT_CPUID |
2151 VMCB_CTRL_INTERCEPT_RSM |
2152 VMCB_CTRL_INTERCEPT_INVD |
2153 VMCB_CTRL_INTERCEPT_HLT |
2154 VMCB_CTRL_INTERCEPT_INVLPGA |
2155 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2156 VMCB_CTRL_INTERCEPT_MSR_PROT |
2157 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2158 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2159
2160 /*
2161 * Allow:
2162 * - ICEBP [icebp instruction]
2163 * - WBINVD [wbinvd instruction]
2164 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2165 *
2166 * Intercept the rest below.
2167 */
2168 vmcb->ctrl.intercept_misc2 =
2169 VMCB_CTRL_INTERCEPT_VMRUN |
2170 VMCB_CTRL_INTERCEPT_VMMCALL |
2171 VMCB_CTRL_INTERCEPT_VMLOAD |
2172 VMCB_CTRL_INTERCEPT_VMSAVE |
2173 VMCB_CTRL_INTERCEPT_STGI |
2174 VMCB_CTRL_INTERCEPT_CLGI |
2175 VMCB_CTRL_INTERCEPT_SKINIT |
2176 VMCB_CTRL_INTERCEPT_RDTSCP |
2177 VMCB_CTRL_INTERCEPT_MONITOR |
2178 VMCB_CTRL_INTERCEPT_MWAIT |
2179 VMCB_CTRL_INTERCEPT_XSETBV |
2180 VMCB_CTRL_INTERCEPT_RDPRU;
2181
2182 /*
2183 * Intercept everything.
2184 */
2185 vmcb->ctrl.intercept_misc3 =
2186 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2187 VMCB_CTRL_INTERCEPT_PCID |
2188 VMCB_CTRL_INTERCEPT_MCOMMIT |
2189 VMCB_CTRL_INTERCEPT_TLBSYNC;
2190
2191 /* Intercept all I/O accesses. */
2192 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2193 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2194
2195 /* Allow direct access to certain MSRs. */
2196 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2197 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2198 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2199 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2200 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2201 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2202 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2203 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2204 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2205 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2206 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2207 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2208 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2209 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2210
2211 /* Generate ASID. */
2212 svm_asid_alloc(vcpu);
2213
2214 /* Virtual TPR. */
2215 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2216
2217 /* Enable Nested Paging. */
2218 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2219 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2220
2221 /* Init XSAVE header. */
2222 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2223 cpudata->gfpu.xsh_xcomp_bv = 0;
2224
2225 /* These MSRs are static. */
2226 cpudata->star = rdmsr(MSR_STAR);
2227 cpudata->lstar = rdmsr(MSR_LSTAR);
2228 cpudata->cstar = rdmsr(MSR_CSTAR);
2229 cpudata->sfmask = rdmsr(MSR_SFMASK);
2230
2231 /* Install the RESET state. */
2232 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2233 sizeof(nvmm_x86_reset_state));
2234 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2235 vcpu->comm->state_cached = 0;
2236 svm_vcpu_setstate(vcpu);
2237 }
2238
2239 static int
2240 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2241 {
2242 struct svm_cpudata *cpudata;
2243 int error;
2244
2245 /* Allocate the SVM cpudata. */
2246 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2247 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2248 UVM_KMF_WIRED|UVM_KMF_ZERO);
2249 vcpu->cpudata = cpudata;
2250
2251 /* VMCB */
2252 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2253 VMCB_NPAGES);
2254 if (error)
2255 goto error;
2256
2257 /* I/O Bitmap */
2258 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2259 IOBM_NPAGES);
2260 if (error)
2261 goto error;
2262
2263 /* MSR Bitmap */
2264 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2265 MSRBM_NPAGES);
2266 if (error)
2267 goto error;
2268
2269 /* Init the VCPU info. */
2270 svm_vcpu_init(mach, vcpu);
2271
2272 return 0;
2273
2274 error:
2275 if (cpudata->vmcb_pa) {
2276 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2277 VMCB_NPAGES);
2278 }
2279 if (cpudata->iobm_pa) {
2280 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2281 IOBM_NPAGES);
2282 }
2283 if (cpudata->msrbm_pa) {
2284 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2285 MSRBM_NPAGES);
2286 }
2287 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2288 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2289 return error;
2290 }
2291
2292 static void
2293 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2294 {
2295 struct svm_cpudata *cpudata = vcpu->cpudata;
2296
2297 svm_asid_free(vcpu);
2298
2299 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2300 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2301 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2302
2303 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2304 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2305 }
2306
2307 /* -------------------------------------------------------------------------- */
2308
2309 static int
2310 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2311 {
2312 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2313 size_t i;
2314
2315 if (__predict_false(cpuid->mask && cpuid->exit)) {
2316 return EINVAL;
2317 }
2318 if (__predict_false(cpuid->mask &&
2319 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2320 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2321 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2322 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2323 return EINVAL;
2324 }
2325
2326 /* If unset, delete, to restore the default behavior. */
2327 if (!cpuid->mask && !cpuid->exit) {
2328 for (i = 0; i < SVM_NCPUIDS; i++) {
2329 if (!cpudata->cpuidpresent[i]) {
2330 continue;
2331 }
2332 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2333 cpudata->cpuidpresent[i] = false;
2334 }
2335 }
2336 return 0;
2337 }
2338
2339 /* If already here, replace. */
2340 for (i = 0; i < SVM_NCPUIDS; i++) {
2341 if (!cpudata->cpuidpresent[i]) {
2342 continue;
2343 }
2344 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2345 memcpy(&cpudata->cpuid[i], cpuid,
2346 sizeof(struct nvmm_vcpu_conf_cpuid));
2347 return 0;
2348 }
2349 }
2350
2351 /* Not here, insert. */
2352 for (i = 0; i < SVM_NCPUIDS; i++) {
2353 if (!cpudata->cpuidpresent[i]) {
2354 cpudata->cpuidpresent[i] = true;
2355 memcpy(&cpudata->cpuid[i], cpuid,
2356 sizeof(struct nvmm_vcpu_conf_cpuid));
2357 return 0;
2358 }
2359 }
2360
2361 return ENOBUFS;
2362 }
2363
2364 static int
2365 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2366 {
2367 struct svm_cpudata *cpudata = vcpu->cpudata;
2368
2369 switch (op) {
2370 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2371 return svm_vcpu_configure_cpuid(cpudata, data);
2372 default:
2373 return EINVAL;
2374 }
2375 }
2376
2377 /* -------------------------------------------------------------------------- */
2378
2379 static void
2380 svm_tlb_flush(struct pmap *pm)
2381 {
2382 struct nvmm_machine *mach = pm->pm_data;
2383 struct svm_machdata *machdata = mach->machdata;
2384
2385 atomic_inc_64(&machdata->mach_htlb_gen);
2386
2387 /* Generates IPIs, which cause #VMEXITs. */
2388 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2389 }
2390
2391 static void
2392 svm_machine_create(struct nvmm_machine *mach)
2393 {
2394 struct svm_machdata *machdata;
2395
2396 /* Fill in pmap info. */
2397 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2398 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2399
2400 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2401 mach->machdata = machdata;
2402
2403 /* Start with an hTLB flush everywhere. */
2404 machdata->mach_htlb_gen = 1;
2405 }
2406
2407 static void
2408 svm_machine_destroy(struct nvmm_machine *mach)
2409 {
2410 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2411 }
2412
2413 static int
2414 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2415 {
2416 panic("%s: impossible", __func__);
2417 }
2418
2419 /* -------------------------------------------------------------------------- */
2420
2421 static bool
2422 svm_ident(void)
2423 {
2424 u_int descs[4];
2425 uint64_t msr;
2426
2427 if (cpu_vendor != CPUVENDOR_AMD) {
2428 return false;
2429 }
2430 if (!(cpu_feature[3] & CPUID_SVM)) {
2431 printf("NVMM: SVM not supported\n");
2432 return false;
2433 }
2434
2435 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2436 printf("NVMM: CPUID leaf not available\n");
2437 return false;
2438 }
2439 x86_cpuid(0x8000000a, descs);
2440
2441 /* Expect revision 1. */
2442 if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2443 printf("NVMM: SVM revision not supported\n");
2444 return false;
2445 }
2446
2447 /* Want Nested Paging. */
2448 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2449 printf("NVMM: SVM-NP not supported\n");
2450 return false;
2451 }
2452
2453 /* Want nRIP. */
2454 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2455 printf("NVMM: SVM-NRIPS not supported\n");
2456 return false;
2457 }
2458
2459 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2460
2461 msr = rdmsr(MSR_VMCR);
2462 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2463 printf("NVMM: SVM disabled in BIOS\n");
2464 return false;
2465 }
2466
2467 return true;
2468 }
2469
2470 static void
2471 svm_init_asid(uint32_t maxasid)
2472 {
2473 size_t i, j, allocsz;
2474
2475 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2476
2477 /* Arbitrarily limit. */
2478 maxasid = uimin(maxasid, 8192);
2479
2480 svm_maxasid = maxasid;
2481 allocsz = roundup(maxasid, 8) / 8;
2482 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2483
2484 /* ASID 0 is reserved for the host. */
2485 svm_asidmap[0] |= __BIT(0);
2486
2487 /* ASID n-1 is special, we share it. */
2488 i = (maxasid - 1) / 8;
2489 j = (maxasid - 1) % 8;
2490 svm_asidmap[i] |= __BIT(j);
2491 }
2492
2493 static void
2494 svm_change_cpu(void *arg1, void *arg2)
2495 {
2496 bool enable = arg1 != NULL;
2497 uint64_t msr;
2498
2499 msr = rdmsr(MSR_VMCR);
2500 if (msr & VMCR_SVMED) {
2501 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2502 }
2503
2504 if (!enable) {
2505 wrmsr(MSR_VM_HSAVE_PA, 0);
2506 }
2507
2508 msr = rdmsr(MSR_EFER);
2509 if (enable) {
2510 msr |= EFER_SVME;
2511 } else {
2512 msr &= ~EFER_SVME;
2513 }
2514 wrmsr(MSR_EFER, msr);
2515
2516 if (enable) {
2517 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2518 }
2519 }
2520
2521 static void
2522 svm_init(void)
2523 {
2524 CPU_INFO_ITERATOR cii;
2525 struct cpu_info *ci;
2526 struct vm_page *pg;
2527 u_int descs[4];
2528 uint64_t xc;
2529
2530 x86_cpuid(0x8000000a, descs);
2531
2532 /* The guest TLB flush command. */
2533 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2534 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2535 } else {
2536 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2537 }
2538
2539 /* Init the ASID. */
2540 svm_init_asid(descs[1]);
2541
2542 /* Init the XCR0 mask. */
2543 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2544
2545 /* Init the max basic CPUID leaf. */
2546 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2547
2548 /* Init the max extended CPUID leaf. */
2549 x86_cpuid(0x80000000, descs);
2550 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2551
2552 memset(hsave, 0, sizeof(hsave));
2553 for (CPU_INFO_FOREACH(cii, ci)) {
2554 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2555 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2556 }
2557
2558 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2559 xc_wait(xc);
2560 }
2561
2562 static void
2563 svm_fini_asid(void)
2564 {
2565 size_t allocsz;
2566
2567 allocsz = roundup(svm_maxasid, 8) / 8;
2568 kmem_free(svm_asidmap, allocsz);
2569
2570 mutex_destroy(&svm_asidlock);
2571 }
2572
2573 static void
2574 svm_fini(void)
2575 {
2576 uint64_t xc;
2577 size_t i;
2578
2579 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2580 xc_wait(xc);
2581
2582 for (i = 0; i < MAXCPUS; i++) {
2583 if (hsave[i].pa != 0)
2584 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2585 }
2586
2587 svm_fini_asid();
2588 }
2589
2590 static void
2591 svm_capability(struct nvmm_capability *cap)
2592 {
2593 cap->arch.mach_conf_support = 0;
2594 cap->arch.vcpu_conf_support =
2595 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2596 cap->arch.xcr0_mask = svm_xcr0_mask;
2597 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2598 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2599 }
2600
2601 const struct nvmm_impl nvmm_x86_svm = {
2602 .name = "x86-svm",
2603 .ident = svm_ident,
2604 .init = svm_init,
2605 .fini = svm_fini,
2606 .capability = svm_capability,
2607 .mach_conf_max = NVMM_X86_MACH_NCONF,
2608 .mach_conf_sizes = NULL,
2609 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2610 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2611 .state_size = sizeof(struct nvmm_x64_state),
2612 .machine_create = svm_machine_create,
2613 .machine_destroy = svm_machine_destroy,
2614 .machine_configure = svm_machine_configure,
2615 .vcpu_create = svm_vcpu_create,
2616 .vcpu_destroy = svm_vcpu_destroy,
2617 .vcpu_configure = svm_vcpu_configure,
2618 .vcpu_setstate = svm_vcpu_setstate,
2619 .vcpu_getstate = svm_vcpu_getstate,
2620 .vcpu_inject = svm_vcpu_inject,
2621 .vcpu_run = svm_vcpu_run
2622 };
2623