nvmm_x86_svm.c revision 1.46.4.2 1 /* $NetBSD: nvmm_x86_svm.c,v 1.46.4.2 2019/11/10 12:58:30 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46.4.2 2019/11/10 12:58:30 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 volatile uint64_t mach_htlb_gen;
508 };
509
510 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
511 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
512 sizeof(struct nvmm_vcpu_conf_cpuid),
513 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
514 sizeof(struct nvmm_vcpu_conf_tpr)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544 bool ts_set;
545 struct xsave_header hfpu __aligned(64);
546
547 /* Intr state */
548 bool int_window_exit;
549 bool nmi_window_exit;
550 bool evt_pending;
551
552 /* Guest state */
553 uint64_t gxcr0;
554 uint64_t gprs[NVMM_X64_NGPR];
555 uint64_t drs[NVMM_X64_NDR];
556 uint64_t gtsc;
557 struct xsave_header gfpu __aligned(64);
558
559 /* VCPU configuration. */
560 bool cpuidpresent[SVM_NCPUIDS];
561 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
562 };
563
564 static void
565 svm_vmcb_cache_default(struct vmcb *vmcb)
566 {
567 vmcb->ctrl.vmcb_clean =
568 VMCB_CTRL_VMCB_CLEAN_I |
569 VMCB_CTRL_VMCB_CLEAN_IOPM |
570 VMCB_CTRL_VMCB_CLEAN_ASID |
571 VMCB_CTRL_VMCB_CLEAN_TPR |
572 VMCB_CTRL_VMCB_CLEAN_NP |
573 VMCB_CTRL_VMCB_CLEAN_CR |
574 VMCB_CTRL_VMCB_CLEAN_DR |
575 VMCB_CTRL_VMCB_CLEAN_DT |
576 VMCB_CTRL_VMCB_CLEAN_SEG |
577 VMCB_CTRL_VMCB_CLEAN_CR2 |
578 VMCB_CTRL_VMCB_CLEAN_LBR |
579 VMCB_CTRL_VMCB_CLEAN_AVIC;
580 }
581
582 static void
583 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
584 {
585 if (flags & NVMM_X64_STATE_SEGS) {
586 vmcb->ctrl.vmcb_clean &=
587 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
588 }
589 if (flags & NVMM_X64_STATE_CRS) {
590 vmcb->ctrl.vmcb_clean &=
591 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
592 VMCB_CTRL_VMCB_CLEAN_TPR);
593 }
594 if (flags & NVMM_X64_STATE_DRS) {
595 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
596 }
597 if (flags & NVMM_X64_STATE_MSRS) {
598 /* CR for EFER, NP for PAT. */
599 vmcb->ctrl.vmcb_clean &=
600 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
601 }
602 }
603
604 static inline void
605 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
606 {
607 vmcb->ctrl.vmcb_clean &= ~flags;
608 }
609
610 static inline void
611 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
612 {
613 vmcb->ctrl.vmcb_clean = 0;
614 }
615
616 #define SVM_EVENT_TYPE_HW_INT 0
617 #define SVM_EVENT_TYPE_NMI 2
618 #define SVM_EVENT_TYPE_EXC 3
619 #define SVM_EVENT_TYPE_SW_INT 4
620
621 static void
622 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = true;
630 } else {
631 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = true;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static void
641 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
642 {
643 struct svm_cpudata *cpudata = vcpu->cpudata;
644 struct vmcb *vmcb = cpudata->vmcb;
645
646 if (nmi) {
647 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
648 cpudata->nmi_window_exit = false;
649 } else {
650 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
651 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
652 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
653 cpudata->int_window_exit = false;
654 }
655
656 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
657 }
658
659 static inline int
660 svm_event_has_error(uint8_t vector)
661 {
662 switch (vector) {
663 case 8: /* #DF */
664 case 10: /* #TS */
665 case 11: /* #NP */
666 case 12: /* #SS */
667 case 13: /* #GP */
668 case 14: /* #PF */
669 case 17: /* #AC */
670 case 30: /* #SX */
671 return 1;
672 default:
673 return 0;
674 }
675 }
676
677 static int
678 svm_vcpu_inject(struct nvmm_cpu *vcpu)
679 {
680 struct nvmm_comm_page *comm = vcpu->comm;
681 struct svm_cpudata *cpudata = vcpu->cpudata;
682 struct vmcb *vmcb = cpudata->vmcb;
683 u_int evtype;
684 uint8_t vector;
685 uint64_t error;
686 int type = 0, err = 0;
687
688 evtype = comm->event.type;
689 vector = comm->event.vector;
690 error = comm->event.u.excp.error;
691 __insn_barrier();
692
693 switch (evtype) {
694 case NVMM_VCPU_EVENT_EXCP:
695 type = SVM_EVENT_TYPE_EXC;
696 if (vector == 2 || vector >= 32)
697 return EINVAL;
698 if (vector == 3 || vector == 0)
699 return EINVAL;
700 err = svm_event_has_error(vector);
701 break;
702 case NVMM_VCPU_EVENT_INTR:
703 type = SVM_EVENT_TYPE_HW_INT;
704 if (vector == 2) {
705 type = SVM_EVENT_TYPE_NMI;
706 svm_event_waitexit_enable(vcpu, true);
707 }
708 err = 0;
709 break;
710 default:
711 return EINVAL;
712 }
713
714 vmcb->ctrl.eventinj =
715 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
716 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
717 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
718 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
719 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
720
721 cpudata->evt_pending = true;
722
723 return 0;
724 }
725
726 static void
727 svm_inject_ud(struct nvmm_cpu *vcpu)
728 {
729 struct nvmm_comm_page *comm = vcpu->comm;
730 int ret __diagused;
731
732 comm->event.type = NVMM_VCPU_EVENT_EXCP;
733 comm->event.vector = 6;
734 comm->event.u.excp.error = 0;
735
736 ret = svm_vcpu_inject(vcpu);
737 KASSERT(ret == 0);
738 }
739
740 static void
741 svm_inject_gp(struct nvmm_cpu *vcpu)
742 {
743 struct nvmm_comm_page *comm = vcpu->comm;
744 int ret __diagused;
745
746 comm->event.type = NVMM_VCPU_EVENT_EXCP;
747 comm->event.vector = 13;
748 comm->event.u.excp.error = 0;
749
750 ret = svm_vcpu_inject(vcpu);
751 KASSERT(ret == 0);
752 }
753
754 static inline int
755 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
756 {
757 if (__predict_true(!vcpu->comm->event_commit)) {
758 return 0;
759 }
760 vcpu->comm->event_commit = false;
761 return svm_vcpu_inject(vcpu);
762 }
763
764 static inline void
765 svm_inkernel_advance(struct vmcb *vmcb)
766 {
767 /*
768 * Maybe we should also apply single-stepping and debug exceptions.
769 * Matters for guest-ring3, because it can execute 'cpuid' under a
770 * debugger.
771 */
772 vmcb->state.rip = vmcb->ctrl.nrip;
773 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
774 }
775
776 static void
777 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
778 {
779 struct svm_cpudata *cpudata = vcpu->cpudata;
780 uint64_t cr4;
781
782 switch (eax) {
783 case 0x00000001:
784 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
785
786 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
787 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
788 CPUID_LOCAL_APIC_ID);
789
790 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
791 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
792
793 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
794
795 /* CPUID2_OSXSAVE depends on CR4. */
796 cr4 = cpudata->vmcb->state.cr4;
797 if (!(cr4 & CR4_OSXSAVE)) {
798 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
799 }
800 break;
801 case 0x00000005:
802 case 0x00000006:
803 cpudata->vmcb->state.rax = 0;
804 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
805 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
806 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
807 break;
808 case 0x00000007:
809 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
810 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
811 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
812 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
813 break;
814 case 0x0000000D:
815 if (svm_xcr0_mask == 0) {
816 break;
817 }
818 switch (ecx) {
819 case 0:
820 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
821 if (cpudata->gxcr0 & XCR0_SSE) {
822 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
823 } else {
824 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
825 }
826 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
827 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
828 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
829 break;
830 case 1:
831 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
832 break;
833 }
834 break;
835 case 0x40000000:
836 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
837 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
838 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
839 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
840 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
841 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
842 break;
843 case 0x80000001:
844 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
845 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
846 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
847 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
848 break;
849 default:
850 break;
851 }
852 }
853
854 static void
855 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
856 {
857 exit->u.insn.npc = vmcb->ctrl.nrip;
858 exit->reason = reason;
859 }
860
861 static void
862 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
863 struct nvmm_vcpu_exit *exit)
864 {
865 struct svm_cpudata *cpudata = vcpu->cpudata;
866 struct nvmm_vcpu_conf_cpuid *cpuid;
867 uint64_t eax, ecx;
868 u_int descs[4];
869 size_t i;
870
871 eax = cpudata->vmcb->state.rax;
872 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
873 x86_cpuid2(eax, ecx, descs);
874
875 cpudata->vmcb->state.rax = descs[0];
876 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
877 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
878 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
879
880 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
881
882 for (i = 0; i < SVM_NCPUIDS; i++) {
883 if (!cpudata->cpuidpresent[i]) {
884 continue;
885 }
886 cpuid = &cpudata->cpuid[i];
887 if (cpuid->leaf != eax) {
888 continue;
889 }
890
891 if (cpuid->exit) {
892 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
893 return;
894 }
895 KASSERT(cpuid->mask);
896
897 /* del */
898 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
899 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
900 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
901 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
902
903 /* set */
904 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
905 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
906 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
907 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
908
909 break;
910 }
911
912 svm_inkernel_advance(cpudata->vmcb);
913 exit->reason = NVMM_VCPU_EXIT_NONE;
914 }
915
916 static void
917 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
918 struct nvmm_vcpu_exit *exit)
919 {
920 struct svm_cpudata *cpudata = vcpu->cpudata;
921 struct vmcb *vmcb = cpudata->vmcb;
922
923 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
924 svm_event_waitexit_disable(vcpu, false);
925 }
926
927 svm_inkernel_advance(cpudata->vmcb);
928 exit->reason = NVMM_VCPU_EXIT_HALTED;
929 }
930
931 #define SVM_EXIT_IO_PORT __BITS(31,16)
932 #define SVM_EXIT_IO_SEG __BITS(12,10)
933 #define SVM_EXIT_IO_A64 __BIT(9)
934 #define SVM_EXIT_IO_A32 __BIT(8)
935 #define SVM_EXIT_IO_A16 __BIT(7)
936 #define SVM_EXIT_IO_SZ32 __BIT(6)
937 #define SVM_EXIT_IO_SZ16 __BIT(5)
938 #define SVM_EXIT_IO_SZ8 __BIT(4)
939 #define SVM_EXIT_IO_REP __BIT(3)
940 #define SVM_EXIT_IO_STR __BIT(2)
941 #define SVM_EXIT_IO_IN __BIT(0)
942
943 static void
944 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
945 struct nvmm_vcpu_exit *exit)
946 {
947 struct svm_cpudata *cpudata = vcpu->cpudata;
948 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
949 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
950
951 exit->reason = NVMM_VCPU_EXIT_IO;
952
953 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
954 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
955
956 if (svm_decode_assist) {
957 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
958 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
959 } else {
960 exit->u.io.seg = -1;
961 }
962
963 if (info & SVM_EXIT_IO_A64) {
964 exit->u.io.address_size = 8;
965 } else if (info & SVM_EXIT_IO_A32) {
966 exit->u.io.address_size = 4;
967 } else if (info & SVM_EXIT_IO_A16) {
968 exit->u.io.address_size = 2;
969 }
970
971 if (info & SVM_EXIT_IO_SZ32) {
972 exit->u.io.operand_size = 4;
973 } else if (info & SVM_EXIT_IO_SZ16) {
974 exit->u.io.operand_size = 2;
975 } else if (info & SVM_EXIT_IO_SZ8) {
976 exit->u.io.operand_size = 1;
977 }
978
979 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
980 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
981 exit->u.io.npc = nextpc;
982
983 svm_vcpu_state_provide(vcpu,
984 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
985 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
986 }
987
988 static const uint64_t msr_ignore_list[] = {
989 0xc0010055, /* MSR_CMPHALT */
990 MSR_DE_CFG,
991 MSR_IC_CFG,
992 MSR_UCODE_AMD_PATCHLEVEL
993 };
994
995 static bool
996 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
997 struct nvmm_vcpu_exit *exit)
998 {
999 struct svm_cpudata *cpudata = vcpu->cpudata;
1000 struct vmcb *vmcb = cpudata->vmcb;
1001 uint64_t val;
1002 size_t i;
1003
1004 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1005 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1006 val = NB_CFG_INITAPICCPUIDLO;
1007 vmcb->state.rax = (val & 0xFFFFFFFF);
1008 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1009 goto handled;
1010 }
1011 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1012 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1013 continue;
1014 val = 0;
1015 vmcb->state.rax = (val & 0xFFFFFFFF);
1016 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1017 goto handled;
1018 }
1019 } else {
1020 if (exit->u.wrmsr.msr == MSR_EFER) {
1021 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1022 goto error;
1023 }
1024 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1025 EFER_TLB_FLUSH) {
1026 cpudata->gtlb_want_flush = true;
1027 }
1028 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1029 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1030 goto handled;
1031 }
1032 if (exit->u.wrmsr.msr == MSR_TSC) {
1033 cpudata->gtsc = exit->u.wrmsr.val;
1034 cpudata->gtsc_want_update = true;
1035 goto handled;
1036 }
1037 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1038 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1039 continue;
1040 goto handled;
1041 }
1042 }
1043
1044 return false;
1045
1046 handled:
1047 svm_inkernel_advance(cpudata->vmcb);
1048 return true;
1049
1050 error:
1051 svm_inject_gp(vcpu);
1052 return true;
1053 }
1054
1055 static inline void
1056 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1057 struct nvmm_vcpu_exit *exit)
1058 {
1059 struct svm_cpudata *cpudata = vcpu->cpudata;
1060
1061 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1062 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1063 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1064
1065 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1066 exit->reason = NVMM_VCPU_EXIT_NONE;
1067 return;
1068 }
1069
1070 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1071 }
1072
1073 static inline void
1074 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1075 struct nvmm_vcpu_exit *exit)
1076 {
1077 struct svm_cpudata *cpudata = vcpu->cpudata;
1078 uint64_t rdx, rax;
1079
1080 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1081 rax = cpudata->vmcb->state.rax;
1082
1083 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1084 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1085 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1086 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1087
1088 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1089 exit->reason = NVMM_VCPU_EXIT_NONE;
1090 return;
1091 }
1092
1093 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1094 }
1095
1096 static void
1097 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1098 struct nvmm_vcpu_exit *exit)
1099 {
1100 struct svm_cpudata *cpudata = vcpu->cpudata;
1101 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1102
1103 if (info == 0) {
1104 svm_exit_rdmsr(mach, vcpu, exit);
1105 } else {
1106 svm_exit_wrmsr(mach, vcpu, exit);
1107 }
1108 }
1109
1110 static void
1111 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1112 struct nvmm_vcpu_exit *exit)
1113 {
1114 struct svm_cpudata *cpudata = vcpu->cpudata;
1115 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1116
1117 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1118 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1119 exit->u.mem.prot = PROT_WRITE;
1120 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1121 exit->u.mem.prot = PROT_EXEC;
1122 else
1123 exit->u.mem.prot = PROT_READ;
1124 exit->u.mem.gpa = gpa;
1125 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1126 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1127 sizeof(exit->u.mem.inst_bytes));
1128
1129 svm_vcpu_state_provide(vcpu,
1130 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1131 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1132 }
1133
1134 static void
1135 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1136 struct nvmm_vcpu_exit *exit)
1137 {
1138 struct svm_cpudata *cpudata = vcpu->cpudata;
1139 struct vmcb *vmcb = cpudata->vmcb;
1140 uint64_t val;
1141
1142 exit->reason = NVMM_VCPU_EXIT_NONE;
1143
1144 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1145 (vmcb->state.rax & 0xFFFFFFFF);
1146
1147 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1148 goto error;
1149 } else if (__predict_false(vmcb->state.cpl != 0)) {
1150 goto error;
1151 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1152 goto error;
1153 } else if (__predict_false((val & XCR0_X87) == 0)) {
1154 goto error;
1155 }
1156
1157 cpudata->gxcr0 = val;
1158
1159 svm_inkernel_advance(cpudata->vmcb);
1160 return;
1161
1162 error:
1163 svm_inject_gp(vcpu);
1164 }
1165
1166 static void
1167 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1168 {
1169 exit->u.inv.hwcode = code;
1170 exit->reason = NVMM_VCPU_EXIT_INVALID;
1171 }
1172
1173 /* -------------------------------------------------------------------------- */
1174
1175 static void
1176 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1177 {
1178 struct svm_cpudata *cpudata = vcpu->cpudata;
1179
1180 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1181
1182 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1183 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1184
1185 if (svm_xcr0_mask != 0) {
1186 cpudata->hxcr0 = rdxcr(0);
1187 wrxcr(0, cpudata->gxcr0);
1188 }
1189 }
1190
1191 static void
1192 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1193 {
1194 struct svm_cpudata *cpudata = vcpu->cpudata;
1195
1196 if (svm_xcr0_mask != 0) {
1197 cpudata->gxcr0 = rdxcr(0);
1198 wrxcr(0, cpudata->hxcr0);
1199 }
1200
1201 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1202 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1203
1204 if (cpudata->ts_set) {
1205 stts();
1206 }
1207 }
1208
1209 static void
1210 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1211 {
1212 struct svm_cpudata *cpudata = vcpu->cpudata;
1213
1214 x86_dbregs_save(curlwp);
1215
1216 ldr7(0);
1217
1218 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1219 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1220 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1221 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1222 }
1223
1224 static void
1225 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1226 {
1227 struct svm_cpudata *cpudata = vcpu->cpudata;
1228
1229 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1230 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1231 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1232 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1233
1234 x86_dbregs_restore(curlwp);
1235 }
1236
1237 static void
1238 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1239 {
1240 struct svm_cpudata *cpudata = vcpu->cpudata;
1241
1242 cpudata->fsbase = rdmsr(MSR_FSBASE);
1243 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1244 }
1245
1246 static void
1247 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1248 {
1249 struct svm_cpudata *cpudata = vcpu->cpudata;
1250
1251 wrmsr(MSR_STAR, cpudata->star);
1252 wrmsr(MSR_LSTAR, cpudata->lstar);
1253 wrmsr(MSR_CSTAR, cpudata->cstar);
1254 wrmsr(MSR_SFMASK, cpudata->sfmask);
1255 wrmsr(MSR_FSBASE, cpudata->fsbase);
1256 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1257 }
1258
1259 /* -------------------------------------------------------------------------- */
1260
1261 static inline void
1262 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1263 {
1264 struct svm_cpudata *cpudata = vcpu->cpudata;
1265
1266 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1267 cpudata->gtlb_want_flush = true;
1268 }
1269 }
1270
1271 static inline void
1272 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1273 {
1274 /*
1275 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1276 * executing on this hCPU and the hTLB already got flushed, or it
1277 * was executing on another hCPU in which case the catchup is done
1278 * in svm_gtlb_catchup().
1279 */
1280 }
1281
1282 static inline uint64_t
1283 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1284 {
1285 struct vmcb *vmcb = cpudata->vmcb;
1286 uint64_t machgen;
1287
1288 machgen = machdata->mach_htlb_gen;
1289 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1290 return machgen;
1291 }
1292
1293 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1294 return machgen;
1295 }
1296
1297 static inline void
1298 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1299 {
1300 struct vmcb *vmcb = cpudata->vmcb;
1301
1302 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1303 cpudata->vcpu_htlb_gen = machgen;
1304 }
1305 }
1306
1307 static inline void
1308 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1309 {
1310 cpudata->evt_pending = false;
1311
1312 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1313 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1314 cpudata->evt_pending = true;
1315 }
1316 }
1317
1318 static int
1319 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1320 struct nvmm_vcpu_exit *exit)
1321 {
1322 struct nvmm_comm_page *comm = vcpu->comm;
1323 struct svm_machdata *machdata = mach->machdata;
1324 struct svm_cpudata *cpudata = vcpu->cpudata;
1325 struct vmcb *vmcb = cpudata->vmcb;
1326 uint64_t machgen;
1327 int hcpu, s;
1328
1329 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1330 return EINVAL;
1331 }
1332 svm_vcpu_state_commit(vcpu);
1333 comm->state_cached = 0;
1334
1335 kpreempt_disable();
1336 hcpu = cpu_number();
1337
1338 svm_gtlb_catchup(vcpu, hcpu);
1339 svm_htlb_catchup(vcpu, hcpu);
1340
1341 if (vcpu->hcpu_last != hcpu) {
1342 svm_vmcb_cache_flush_all(vmcb);
1343 cpudata->gtsc_want_update = true;
1344 }
1345
1346 svm_vcpu_guest_dbregs_enter(vcpu);
1347 svm_vcpu_guest_misc_enter(vcpu);
1348
1349 while (1) {
1350 if (cpudata->gtlb_want_flush) {
1351 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1352 } else {
1353 vmcb->ctrl.tlb_ctrl = 0;
1354 }
1355
1356 if (__predict_false(cpudata->gtsc_want_update)) {
1357 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1358 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1359 }
1360
1361 s = splhigh();
1362 machgen = svm_htlb_flush(machdata, cpudata);
1363 svm_vcpu_guest_fpu_enter(vcpu);
1364 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1365 svm_vcpu_guest_fpu_leave(vcpu);
1366 svm_htlb_flush_ack(cpudata, machgen);
1367 splx(s);
1368
1369 svm_vmcb_cache_default(vmcb);
1370
1371 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1372 cpudata->gtlb_want_flush = false;
1373 cpudata->gtsc_want_update = false;
1374 vcpu->hcpu_last = hcpu;
1375 }
1376 svm_exit_evt(cpudata, vmcb);
1377
1378 switch (vmcb->ctrl.exitcode) {
1379 case VMCB_EXITCODE_INTR:
1380 case VMCB_EXITCODE_NMI:
1381 exit->reason = NVMM_VCPU_EXIT_NONE;
1382 break;
1383 case VMCB_EXITCODE_VINTR:
1384 svm_event_waitexit_disable(vcpu, false);
1385 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1386 break;
1387 case VMCB_EXITCODE_IRET:
1388 svm_event_waitexit_disable(vcpu, true);
1389 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1390 break;
1391 case VMCB_EXITCODE_CPUID:
1392 svm_exit_cpuid(mach, vcpu, exit);
1393 break;
1394 case VMCB_EXITCODE_HLT:
1395 svm_exit_hlt(mach, vcpu, exit);
1396 break;
1397 case VMCB_EXITCODE_IOIO:
1398 svm_exit_io(mach, vcpu, exit);
1399 break;
1400 case VMCB_EXITCODE_MSR:
1401 svm_exit_msr(mach, vcpu, exit);
1402 break;
1403 case VMCB_EXITCODE_SHUTDOWN:
1404 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1405 break;
1406 case VMCB_EXITCODE_RDPMC:
1407 case VMCB_EXITCODE_RSM:
1408 case VMCB_EXITCODE_INVLPGA:
1409 case VMCB_EXITCODE_VMRUN:
1410 case VMCB_EXITCODE_VMMCALL:
1411 case VMCB_EXITCODE_VMLOAD:
1412 case VMCB_EXITCODE_VMSAVE:
1413 case VMCB_EXITCODE_STGI:
1414 case VMCB_EXITCODE_CLGI:
1415 case VMCB_EXITCODE_SKINIT:
1416 case VMCB_EXITCODE_RDTSCP:
1417 svm_inject_ud(vcpu);
1418 exit->reason = NVMM_VCPU_EXIT_NONE;
1419 break;
1420 case VMCB_EXITCODE_MONITOR:
1421 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1422 break;
1423 case VMCB_EXITCODE_MWAIT:
1424 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1425 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1426 break;
1427 case VMCB_EXITCODE_XSETBV:
1428 svm_exit_xsetbv(mach, vcpu, exit);
1429 break;
1430 case VMCB_EXITCODE_NPF:
1431 svm_exit_npf(mach, vcpu, exit);
1432 break;
1433 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1434 default:
1435 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1436 break;
1437 }
1438
1439 /* If no reason to return to userland, keep rolling. */
1440 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1441 break;
1442 }
1443 if (curcpu()->ci_data.cpu_softints != 0) {
1444 break;
1445 }
1446 if (curlwp->l_flag & LW_USERRET) {
1447 break;
1448 }
1449 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1450 break;
1451 }
1452 }
1453
1454 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1455
1456 svm_vcpu_guest_misc_leave(vcpu);
1457 svm_vcpu_guest_dbregs_leave(vcpu);
1458
1459 kpreempt_enable();
1460
1461 exit->exitstate.rflags = vmcb->state.rflags;
1462 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1463 exit->exitstate.int_shadow =
1464 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1465 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1466 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1467 exit->exitstate.evt_pending = cpudata->evt_pending;
1468
1469 return 0;
1470 }
1471
1472 /* -------------------------------------------------------------------------- */
1473
1474 static int
1475 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1476 {
1477 struct pglist pglist;
1478 paddr_t _pa;
1479 vaddr_t _va;
1480 size_t i;
1481 int ret;
1482
1483 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1484 &pglist, 1, 0);
1485 if (ret != 0)
1486 return ENOMEM;
1487 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1488 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1489 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1490 if (_va == 0)
1491 goto error;
1492
1493 for (i = 0; i < npages; i++) {
1494 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1495 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1496 }
1497 pmap_update(pmap_kernel());
1498
1499 memset((void *)_va, 0, npages * PAGE_SIZE);
1500
1501 *pa = _pa;
1502 *va = _va;
1503 return 0;
1504
1505 error:
1506 for (i = 0; i < npages; i++) {
1507 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1508 }
1509 return ENOMEM;
1510 }
1511
1512 static void
1513 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1514 {
1515 size_t i;
1516
1517 pmap_kremove(va, npages * PAGE_SIZE);
1518 pmap_update(pmap_kernel());
1519 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1520 for (i = 0; i < npages; i++) {
1521 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1522 }
1523 }
1524
1525 /* -------------------------------------------------------------------------- */
1526
1527 #define SVM_MSRBM_READ __BIT(0)
1528 #define SVM_MSRBM_WRITE __BIT(1)
1529
1530 static void
1531 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1532 {
1533 uint64_t byte;
1534 uint8_t bitoff;
1535
1536 if (msr < 0x00002000) {
1537 /* Range 1 */
1538 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1539 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1540 /* Range 2 */
1541 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1542 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1543 /* Range 3 */
1544 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1545 } else {
1546 panic("%s: wrong range", __func__);
1547 }
1548
1549 bitoff = (msr & 0x3) << 1;
1550
1551 if (read) {
1552 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1553 }
1554 if (write) {
1555 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1556 }
1557 }
1558
1559 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1560 #define SVM_SEG_ATTRIB_S __BIT(4)
1561 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1562 #define SVM_SEG_ATTRIB_P __BIT(7)
1563 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1564 #define SVM_SEG_ATTRIB_L __BIT(9)
1565 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1566 #define SVM_SEG_ATTRIB_G __BIT(11)
1567
1568 static void
1569 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1570 struct vmcb_segment *vseg)
1571 {
1572 vseg->selector = seg->selector;
1573 vseg->attrib =
1574 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1575 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1576 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1577 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1578 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1579 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1580 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1581 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1582 vseg->limit = seg->limit;
1583 vseg->base = seg->base;
1584 }
1585
1586 static void
1587 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1588 {
1589 seg->selector = vseg->selector;
1590 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1591 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1592 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1593 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1594 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1595 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1596 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1597 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1598 seg->limit = vseg->limit;
1599 seg->base = vseg->base;
1600 }
1601
1602 static inline bool
1603 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1604 uint64_t flags)
1605 {
1606 if (flags & NVMM_X64_STATE_CRS) {
1607 if ((vmcb->state.cr0 ^
1608 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1609 return true;
1610 }
1611 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1612 return true;
1613 }
1614 if ((vmcb->state.cr4 ^
1615 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1616 return true;
1617 }
1618 }
1619
1620 if (flags & NVMM_X64_STATE_MSRS) {
1621 if ((vmcb->state.efer ^
1622 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1623 return true;
1624 }
1625 }
1626
1627 return false;
1628 }
1629
1630 static void
1631 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1632 {
1633 struct nvmm_comm_page *comm = vcpu->comm;
1634 const struct nvmm_x64_state *state = &comm->state;
1635 struct svm_cpudata *cpudata = vcpu->cpudata;
1636 struct vmcb *vmcb = cpudata->vmcb;
1637 struct fxsave *fpustate;
1638 uint64_t flags;
1639
1640 flags = comm->state_wanted;
1641
1642 if (svm_state_tlb_flush(vmcb, state, flags)) {
1643 cpudata->gtlb_want_flush = true;
1644 }
1645
1646 if (flags & NVMM_X64_STATE_SEGS) {
1647 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1648 &vmcb->state.cs);
1649 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1650 &vmcb->state.ds);
1651 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1652 &vmcb->state.es);
1653 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1654 &vmcb->state.fs);
1655 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1656 &vmcb->state.gs);
1657 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1658 &vmcb->state.ss);
1659 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1660 &vmcb->state.gdt);
1661 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1662 &vmcb->state.idt);
1663 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1664 &vmcb->state.ldt);
1665 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1666 &vmcb->state.tr);
1667
1668 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1669 }
1670
1671 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1672 if (flags & NVMM_X64_STATE_GPRS) {
1673 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1674
1675 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1676 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1677 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1678 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1679 }
1680
1681 if (flags & NVMM_X64_STATE_CRS) {
1682 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1683 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1684 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1685 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1686
1687 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1688 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1689 VMCB_CTRL_V_TPR);
1690
1691 if (svm_xcr0_mask != 0) {
1692 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1693 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1694 cpudata->gxcr0 &= svm_xcr0_mask;
1695 cpudata->gxcr0 |= XCR0_X87;
1696 }
1697 }
1698
1699 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1700 if (flags & NVMM_X64_STATE_DRS) {
1701 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1702
1703 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1704 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1705 }
1706
1707 if (flags & NVMM_X64_STATE_MSRS) {
1708 /*
1709 * EFER_SVME is mandatory.
1710 */
1711 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1712 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1713 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1714 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1715 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1716 vmcb->state.kernelgsbase =
1717 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1718 vmcb->state.sysenter_cs =
1719 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1720 vmcb->state.sysenter_esp =
1721 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1722 vmcb->state.sysenter_eip =
1723 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1724 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1725
1726 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1727 cpudata->gtsc_want_update = true;
1728 }
1729
1730 if (flags & NVMM_X64_STATE_INTR) {
1731 if (state->intr.int_shadow) {
1732 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1733 } else {
1734 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1735 }
1736
1737 if (state->intr.int_window_exiting) {
1738 svm_event_waitexit_enable(vcpu, false);
1739 } else {
1740 svm_event_waitexit_disable(vcpu, false);
1741 }
1742
1743 if (state->intr.nmi_window_exiting) {
1744 svm_event_waitexit_enable(vcpu, true);
1745 } else {
1746 svm_event_waitexit_disable(vcpu, true);
1747 }
1748 }
1749
1750 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1751 if (flags & NVMM_X64_STATE_FPU) {
1752 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1753 sizeof(state->fpu));
1754
1755 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1756 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1757 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1758
1759 if (svm_xcr0_mask != 0) {
1760 /* Reset XSTATE_BV, to force a reload. */
1761 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1762 }
1763 }
1764
1765 svm_vmcb_cache_update(vmcb, flags);
1766
1767 comm->state_wanted = 0;
1768 comm->state_cached |= flags;
1769 }
1770
1771 static void
1772 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1773 {
1774 struct nvmm_comm_page *comm = vcpu->comm;
1775 struct nvmm_x64_state *state = &comm->state;
1776 struct svm_cpudata *cpudata = vcpu->cpudata;
1777 struct vmcb *vmcb = cpudata->vmcb;
1778 uint64_t flags;
1779
1780 flags = comm->state_wanted;
1781
1782 if (flags & NVMM_X64_STATE_SEGS) {
1783 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1784 &vmcb->state.cs);
1785 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1786 &vmcb->state.ds);
1787 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1788 &vmcb->state.es);
1789 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1790 &vmcb->state.fs);
1791 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1792 &vmcb->state.gs);
1793 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1794 &vmcb->state.ss);
1795 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1796 &vmcb->state.gdt);
1797 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1798 &vmcb->state.idt);
1799 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1800 &vmcb->state.ldt);
1801 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1802 &vmcb->state.tr);
1803
1804 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1805 }
1806
1807 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1808 if (flags & NVMM_X64_STATE_GPRS) {
1809 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1810
1811 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1812 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1813 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1814 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1815 }
1816
1817 if (flags & NVMM_X64_STATE_CRS) {
1818 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1819 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1820 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1821 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1822 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1823 VMCB_CTRL_V_TPR);
1824 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1825 }
1826
1827 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1828 if (flags & NVMM_X64_STATE_DRS) {
1829 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1830
1831 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1832 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1833 }
1834
1835 if (flags & NVMM_X64_STATE_MSRS) {
1836 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1837 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1838 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1839 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1840 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1841 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1842 vmcb->state.kernelgsbase;
1843 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1844 vmcb->state.sysenter_cs;
1845 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1846 vmcb->state.sysenter_esp;
1847 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1848 vmcb->state.sysenter_eip;
1849 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1850 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1851
1852 /* Hide SVME. */
1853 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1854 }
1855
1856 if (flags & NVMM_X64_STATE_INTR) {
1857 state->intr.int_shadow =
1858 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1859 state->intr.int_window_exiting = cpudata->int_window_exit;
1860 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1861 state->intr.evt_pending = cpudata->evt_pending;
1862 }
1863
1864 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1865 if (flags & NVMM_X64_STATE_FPU) {
1866 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1867 sizeof(state->fpu));
1868 }
1869
1870 comm->state_wanted = 0;
1871 comm->state_cached |= flags;
1872 }
1873
1874 static void
1875 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1876 {
1877 vcpu->comm->state_wanted = flags;
1878 svm_vcpu_getstate(vcpu);
1879 }
1880
1881 static void
1882 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1883 {
1884 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1885 vcpu->comm->state_commit = 0;
1886 svm_vcpu_setstate(vcpu);
1887 }
1888
1889 /* -------------------------------------------------------------------------- */
1890
1891 static void
1892 svm_asid_alloc(struct nvmm_cpu *vcpu)
1893 {
1894 struct svm_cpudata *cpudata = vcpu->cpudata;
1895 struct vmcb *vmcb = cpudata->vmcb;
1896 size_t i, oct, bit;
1897
1898 mutex_enter(&svm_asidlock);
1899
1900 for (i = 0; i < svm_maxasid; i++) {
1901 oct = i / 8;
1902 bit = i % 8;
1903
1904 if (svm_asidmap[oct] & __BIT(bit)) {
1905 continue;
1906 }
1907
1908 svm_asidmap[oct] |= __BIT(bit);
1909 vmcb->ctrl.guest_asid = i;
1910 mutex_exit(&svm_asidlock);
1911 return;
1912 }
1913
1914 /*
1915 * No free ASID. Use the last one, which is shared and requires
1916 * special TLB handling.
1917 */
1918 cpudata->shared_asid = true;
1919 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1920 mutex_exit(&svm_asidlock);
1921 }
1922
1923 static void
1924 svm_asid_free(struct nvmm_cpu *vcpu)
1925 {
1926 struct svm_cpudata *cpudata = vcpu->cpudata;
1927 struct vmcb *vmcb = cpudata->vmcb;
1928 size_t oct, bit;
1929
1930 if (cpudata->shared_asid) {
1931 return;
1932 }
1933
1934 oct = vmcb->ctrl.guest_asid / 8;
1935 bit = vmcb->ctrl.guest_asid % 8;
1936
1937 mutex_enter(&svm_asidlock);
1938 svm_asidmap[oct] &= ~__BIT(bit);
1939 mutex_exit(&svm_asidlock);
1940 }
1941
1942 static void
1943 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1944 {
1945 struct svm_cpudata *cpudata = vcpu->cpudata;
1946 struct vmcb *vmcb = cpudata->vmcb;
1947
1948 /* Allow reads/writes of Control Registers. */
1949 vmcb->ctrl.intercept_cr = 0;
1950
1951 /* Allow reads/writes of Debug Registers. */
1952 vmcb->ctrl.intercept_dr = 0;
1953
1954 /* Allow exceptions 0 to 31. */
1955 vmcb->ctrl.intercept_vec = 0;
1956
1957 /*
1958 * Allow:
1959 * - SMI [smm interrupts]
1960 * - VINTR [virtual interrupts]
1961 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1962 * - RIDTR [reads of IDTR]
1963 * - RGDTR [reads of GDTR]
1964 * - RLDTR [reads of LDTR]
1965 * - RTR [reads of TR]
1966 * - WIDTR [writes of IDTR]
1967 * - WGDTR [writes of GDTR]
1968 * - WLDTR [writes of LDTR]
1969 * - WTR [writes of TR]
1970 * - RDTSC [rdtsc instruction]
1971 * - PUSHF [pushf instruction]
1972 * - POPF [popf instruction]
1973 * - IRET [iret instruction]
1974 * - INTN [int $n instructions]
1975 * - INVD [invd instruction]
1976 * - PAUSE [pause instruction]
1977 * - INVLPG [invplg instruction]
1978 * - TASKSW [task switches]
1979 *
1980 * Intercept the rest below.
1981 */
1982 vmcb->ctrl.intercept_misc1 =
1983 VMCB_CTRL_INTERCEPT_INTR |
1984 VMCB_CTRL_INTERCEPT_NMI |
1985 VMCB_CTRL_INTERCEPT_INIT |
1986 VMCB_CTRL_INTERCEPT_RDPMC |
1987 VMCB_CTRL_INTERCEPT_CPUID |
1988 VMCB_CTRL_INTERCEPT_RSM |
1989 VMCB_CTRL_INTERCEPT_HLT |
1990 VMCB_CTRL_INTERCEPT_INVLPGA |
1991 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1992 VMCB_CTRL_INTERCEPT_MSR_PROT |
1993 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1994 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1995
1996 /*
1997 * Allow:
1998 * - ICEBP [icebp instruction]
1999 * - WBINVD [wbinvd instruction]
2000 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2001 *
2002 * Intercept the rest below.
2003 */
2004 vmcb->ctrl.intercept_misc2 =
2005 VMCB_CTRL_INTERCEPT_VMRUN |
2006 VMCB_CTRL_INTERCEPT_VMMCALL |
2007 VMCB_CTRL_INTERCEPT_VMLOAD |
2008 VMCB_CTRL_INTERCEPT_VMSAVE |
2009 VMCB_CTRL_INTERCEPT_STGI |
2010 VMCB_CTRL_INTERCEPT_CLGI |
2011 VMCB_CTRL_INTERCEPT_SKINIT |
2012 VMCB_CTRL_INTERCEPT_RDTSCP |
2013 VMCB_CTRL_INTERCEPT_MONITOR |
2014 VMCB_CTRL_INTERCEPT_MWAIT |
2015 VMCB_CTRL_INTERCEPT_XSETBV;
2016
2017 /* Intercept all I/O accesses. */
2018 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2019 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2020
2021 /* Allow direct access to certain MSRs. */
2022 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2023 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2024 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2025 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2026 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2027 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2028 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2029 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2030 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2031 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2032 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2033 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2034 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2035 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2036 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2037
2038 /* Generate ASID. */
2039 svm_asid_alloc(vcpu);
2040
2041 /* Virtual TPR. */
2042 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2043
2044 /* Enable Nested Paging. */
2045 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2046 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2047
2048 /* Init XSAVE header. */
2049 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2050 cpudata->gfpu.xsh_xcomp_bv = 0;
2051
2052 /* These MSRs are static. */
2053 cpudata->star = rdmsr(MSR_STAR);
2054 cpudata->lstar = rdmsr(MSR_LSTAR);
2055 cpudata->cstar = rdmsr(MSR_CSTAR);
2056 cpudata->sfmask = rdmsr(MSR_SFMASK);
2057
2058 /* Install the RESET state. */
2059 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2060 sizeof(nvmm_x86_reset_state));
2061 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2062 vcpu->comm->state_cached = 0;
2063 svm_vcpu_setstate(vcpu);
2064 }
2065
2066 static int
2067 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2068 {
2069 struct svm_cpudata *cpudata;
2070 int error;
2071
2072 /* Allocate the SVM cpudata. */
2073 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2074 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2075 UVM_KMF_WIRED|UVM_KMF_ZERO);
2076 vcpu->cpudata = cpudata;
2077
2078 /* VMCB */
2079 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2080 VMCB_NPAGES);
2081 if (error)
2082 goto error;
2083
2084 /* I/O Bitmap */
2085 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2086 IOBM_NPAGES);
2087 if (error)
2088 goto error;
2089
2090 /* MSR Bitmap */
2091 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2092 MSRBM_NPAGES);
2093 if (error)
2094 goto error;
2095
2096 /* Init the VCPU info. */
2097 svm_vcpu_init(mach, vcpu);
2098
2099 return 0;
2100
2101 error:
2102 if (cpudata->vmcb_pa) {
2103 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2104 VMCB_NPAGES);
2105 }
2106 if (cpudata->iobm_pa) {
2107 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2108 IOBM_NPAGES);
2109 }
2110 if (cpudata->msrbm_pa) {
2111 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2112 MSRBM_NPAGES);
2113 }
2114 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2115 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2116 return error;
2117 }
2118
2119 static void
2120 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2121 {
2122 struct svm_cpudata *cpudata = vcpu->cpudata;
2123
2124 svm_asid_free(vcpu);
2125
2126 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2127 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2128 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2129
2130 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2131 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2132 }
2133
2134 /* -------------------------------------------------------------------------- */
2135
2136 static int
2137 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2138 {
2139 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2140 size_t i;
2141
2142 if (__predict_false(cpuid->mask && cpuid->exit)) {
2143 return EINVAL;
2144 }
2145 if (__predict_false(cpuid->mask &&
2146 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2147 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2148 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2149 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2150 return EINVAL;
2151 }
2152
2153 /* If unset, delete, to restore the default behavior. */
2154 if (!cpuid->mask && !cpuid->exit) {
2155 for (i = 0; i < SVM_NCPUIDS; i++) {
2156 if (!cpudata->cpuidpresent[i]) {
2157 continue;
2158 }
2159 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2160 cpudata->cpuidpresent[i] = false;
2161 }
2162 }
2163 return 0;
2164 }
2165
2166 /* If already here, replace. */
2167 for (i = 0; i < SVM_NCPUIDS; i++) {
2168 if (!cpudata->cpuidpresent[i]) {
2169 continue;
2170 }
2171 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2172 memcpy(&cpudata->cpuid[i], cpuid,
2173 sizeof(struct nvmm_vcpu_conf_cpuid));
2174 return 0;
2175 }
2176 }
2177
2178 /* Not here, insert. */
2179 for (i = 0; i < SVM_NCPUIDS; i++) {
2180 if (!cpudata->cpuidpresent[i]) {
2181 cpudata->cpuidpresent[i] = true;
2182 memcpy(&cpudata->cpuid[i], cpuid,
2183 sizeof(struct nvmm_vcpu_conf_cpuid));
2184 return 0;
2185 }
2186 }
2187
2188 return ENOBUFS;
2189 }
2190
2191 static int
2192 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2193 {
2194 struct svm_cpudata *cpudata = vcpu->cpudata;
2195
2196 switch (op) {
2197 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2198 return svm_vcpu_configure_cpuid(cpudata, data);
2199 default:
2200 return EINVAL;
2201 }
2202 }
2203
2204 /* -------------------------------------------------------------------------- */
2205
2206 static void
2207 svm_tlb_flush(struct pmap *pm)
2208 {
2209 struct nvmm_machine *mach = pm->pm_data;
2210 struct svm_machdata *machdata = mach->machdata;
2211
2212 atomic_inc_64(&machdata->mach_htlb_gen);
2213
2214 /* Generates IPIs, which cause #VMEXITs. */
2215 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2216 }
2217
2218 static void
2219 svm_machine_create(struct nvmm_machine *mach)
2220 {
2221 struct svm_machdata *machdata;
2222
2223 /* Fill in pmap info. */
2224 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2225 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2226
2227 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2228 mach->machdata = machdata;
2229
2230 /* Start with an hTLB flush everywhere. */
2231 machdata->mach_htlb_gen = 1;
2232 }
2233
2234 static void
2235 svm_machine_destroy(struct nvmm_machine *mach)
2236 {
2237 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2238 }
2239
2240 static int
2241 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2242 {
2243 panic("%s: impossible", __func__);
2244 }
2245
2246 /* -------------------------------------------------------------------------- */
2247
2248 static bool
2249 svm_ident(void)
2250 {
2251 u_int descs[4];
2252 uint64_t msr;
2253
2254 if (cpu_vendor != CPUVENDOR_AMD) {
2255 return false;
2256 }
2257 if (!(cpu_feature[3] & CPUID_SVM)) {
2258 return false;
2259 }
2260
2261 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2262 return false;
2263 }
2264 x86_cpuid(0x8000000a, descs);
2265
2266 /* Want Nested Paging. */
2267 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2268 return false;
2269 }
2270
2271 /* Want nRIP. */
2272 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2273 return false;
2274 }
2275
2276 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2277
2278 msr = rdmsr(MSR_VMCR);
2279 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2280 return false;
2281 }
2282
2283 return true;
2284 }
2285
2286 static void
2287 svm_init_asid(uint32_t maxasid)
2288 {
2289 size_t i, j, allocsz;
2290
2291 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2292
2293 /* Arbitrarily limit. */
2294 maxasid = uimin(maxasid, 8192);
2295
2296 svm_maxasid = maxasid;
2297 allocsz = roundup(maxasid, 8) / 8;
2298 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2299
2300 /* ASID 0 is reserved for the host. */
2301 svm_asidmap[0] |= __BIT(0);
2302
2303 /* ASID n-1 is special, we share it. */
2304 i = (maxasid - 1) / 8;
2305 j = (maxasid - 1) % 8;
2306 svm_asidmap[i] |= __BIT(j);
2307 }
2308
2309 static void
2310 svm_change_cpu(void *arg1, void *arg2)
2311 {
2312 bool enable = (bool)arg1;
2313 uint64_t msr;
2314
2315 msr = rdmsr(MSR_VMCR);
2316 if (msr & VMCR_SVMED) {
2317 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2318 }
2319
2320 if (!enable) {
2321 wrmsr(MSR_VM_HSAVE_PA, 0);
2322 }
2323
2324 msr = rdmsr(MSR_EFER);
2325 if (enable) {
2326 msr |= EFER_SVME;
2327 } else {
2328 msr &= ~EFER_SVME;
2329 }
2330 wrmsr(MSR_EFER, msr);
2331
2332 if (enable) {
2333 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2334 }
2335 }
2336
2337 static void
2338 svm_init(void)
2339 {
2340 CPU_INFO_ITERATOR cii;
2341 struct cpu_info *ci;
2342 struct vm_page *pg;
2343 u_int descs[4];
2344 uint64_t xc;
2345
2346 x86_cpuid(0x8000000a, descs);
2347
2348 /* The guest TLB flush command. */
2349 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2350 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2351 } else {
2352 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2353 }
2354
2355 /* Init the ASID. */
2356 svm_init_asid(descs[1]);
2357
2358 /* Init the XCR0 mask. */
2359 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2360
2361 memset(hsave, 0, sizeof(hsave));
2362 for (CPU_INFO_FOREACH(cii, ci)) {
2363 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2364 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2365 }
2366
2367 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2368 xc_wait(xc);
2369 }
2370
2371 static void
2372 svm_fini_asid(void)
2373 {
2374 size_t allocsz;
2375
2376 allocsz = roundup(svm_maxasid, 8) / 8;
2377 kmem_free(svm_asidmap, allocsz);
2378
2379 mutex_destroy(&svm_asidlock);
2380 }
2381
2382 static void
2383 svm_fini(void)
2384 {
2385 uint64_t xc;
2386 size_t i;
2387
2388 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2389 xc_wait(xc);
2390
2391 for (i = 0; i < MAXCPUS; i++) {
2392 if (hsave[i].pa != 0)
2393 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2394 }
2395
2396 svm_fini_asid();
2397 }
2398
2399 static void
2400 svm_capability(struct nvmm_capability *cap)
2401 {
2402 cap->arch.mach_conf_support = 0;
2403 cap->arch.vcpu_conf_support =
2404 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2405 cap->arch.xcr0_mask = svm_xcr0_mask;
2406 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2407 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2408 }
2409
2410 const struct nvmm_impl nvmm_x86_svm = {
2411 .ident = svm_ident,
2412 .init = svm_init,
2413 .fini = svm_fini,
2414 .capability = svm_capability,
2415 .mach_conf_max = NVMM_X86_MACH_NCONF,
2416 .mach_conf_sizes = NULL,
2417 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2418 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2419 .state_size = sizeof(struct nvmm_x64_state),
2420 .machine_create = svm_machine_create,
2421 .machine_destroy = svm_machine_destroy,
2422 .machine_configure = svm_machine_configure,
2423 .vcpu_create = svm_vcpu_create,
2424 .vcpu_destroy = svm_vcpu_destroy,
2425 .vcpu_configure = svm_vcpu_configure,
2426 .vcpu_setstate = svm_vcpu_setstate,
2427 .vcpu_getstate = svm_vcpu_getstate,
2428 .vcpu_inject = svm_vcpu_inject,
2429 .vcpu_run = svm_vcpu_run
2430 };
2431