nvmm_x86_svm.c revision 1.46.4.3 1 /* $NetBSD: nvmm_x86_svm.c,v 1.46.4.3 2019/11/25 16:39:30 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46.4.3 2019/11/25 16:39:30 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 volatile uint64_t mach_htlb_gen;
508 };
509
510 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
511 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
512 sizeof(struct nvmm_vcpu_conf_cpuid),
513 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
514 sizeof(struct nvmm_vcpu_conf_tpr)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544 bool ts_set;
545 struct xsave_header hfpu __aligned(64);
546
547 /* Intr state */
548 bool int_window_exit;
549 bool nmi_window_exit;
550 bool evt_pending;
551
552 /* Guest state */
553 uint64_t gxcr0;
554 uint64_t gprs[NVMM_X64_NGPR];
555 uint64_t drs[NVMM_X64_NDR];
556 uint64_t gtsc;
557 struct xsave_header gfpu __aligned(64);
558
559 /* VCPU configuration. */
560 bool cpuidpresent[SVM_NCPUIDS];
561 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
562 };
563
564 static void
565 svm_vmcb_cache_default(struct vmcb *vmcb)
566 {
567 vmcb->ctrl.vmcb_clean =
568 VMCB_CTRL_VMCB_CLEAN_I |
569 VMCB_CTRL_VMCB_CLEAN_IOPM |
570 VMCB_CTRL_VMCB_CLEAN_ASID |
571 VMCB_CTRL_VMCB_CLEAN_TPR |
572 VMCB_CTRL_VMCB_CLEAN_NP |
573 VMCB_CTRL_VMCB_CLEAN_CR |
574 VMCB_CTRL_VMCB_CLEAN_DR |
575 VMCB_CTRL_VMCB_CLEAN_DT |
576 VMCB_CTRL_VMCB_CLEAN_SEG |
577 VMCB_CTRL_VMCB_CLEAN_CR2 |
578 VMCB_CTRL_VMCB_CLEAN_LBR |
579 VMCB_CTRL_VMCB_CLEAN_AVIC;
580 }
581
582 static void
583 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
584 {
585 if (flags & NVMM_X64_STATE_SEGS) {
586 vmcb->ctrl.vmcb_clean &=
587 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
588 }
589 if (flags & NVMM_X64_STATE_CRS) {
590 vmcb->ctrl.vmcb_clean &=
591 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
592 VMCB_CTRL_VMCB_CLEAN_TPR);
593 }
594 if (flags & NVMM_X64_STATE_DRS) {
595 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
596 }
597 if (flags & NVMM_X64_STATE_MSRS) {
598 /* CR for EFER, NP for PAT. */
599 vmcb->ctrl.vmcb_clean &=
600 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
601 }
602 }
603
604 static inline void
605 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
606 {
607 vmcb->ctrl.vmcb_clean &= ~flags;
608 }
609
610 static inline void
611 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
612 {
613 vmcb->ctrl.vmcb_clean = 0;
614 }
615
616 #define SVM_EVENT_TYPE_HW_INT 0
617 #define SVM_EVENT_TYPE_NMI 2
618 #define SVM_EVENT_TYPE_EXC 3
619 #define SVM_EVENT_TYPE_SW_INT 4
620
621 static void
622 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = true;
630 } else {
631 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = true;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static void
641 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
642 {
643 struct svm_cpudata *cpudata = vcpu->cpudata;
644 struct vmcb *vmcb = cpudata->vmcb;
645
646 if (nmi) {
647 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
648 cpudata->nmi_window_exit = false;
649 } else {
650 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
651 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
652 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
653 cpudata->int_window_exit = false;
654 }
655
656 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
657 }
658
659 static inline int
660 svm_event_has_error(uint8_t vector)
661 {
662 switch (vector) {
663 case 8: /* #DF */
664 case 10: /* #TS */
665 case 11: /* #NP */
666 case 12: /* #SS */
667 case 13: /* #GP */
668 case 14: /* #PF */
669 case 17: /* #AC */
670 case 30: /* #SX */
671 return 1;
672 default:
673 return 0;
674 }
675 }
676
677 static int
678 svm_vcpu_inject(struct nvmm_cpu *vcpu)
679 {
680 struct nvmm_comm_page *comm = vcpu->comm;
681 struct svm_cpudata *cpudata = vcpu->cpudata;
682 struct vmcb *vmcb = cpudata->vmcb;
683 u_int evtype;
684 uint8_t vector;
685 uint64_t error;
686 int type = 0, err = 0;
687
688 evtype = comm->event.type;
689 vector = comm->event.vector;
690 error = comm->event.u.excp.error;
691 __insn_barrier();
692
693 switch (evtype) {
694 case NVMM_VCPU_EVENT_EXCP:
695 type = SVM_EVENT_TYPE_EXC;
696 if (vector == 2 || vector >= 32)
697 return EINVAL;
698 if (vector == 3 || vector == 0)
699 return EINVAL;
700 err = svm_event_has_error(vector);
701 break;
702 case NVMM_VCPU_EVENT_INTR:
703 type = SVM_EVENT_TYPE_HW_INT;
704 if (vector == 2) {
705 type = SVM_EVENT_TYPE_NMI;
706 svm_event_waitexit_enable(vcpu, true);
707 }
708 err = 0;
709 break;
710 default:
711 return EINVAL;
712 }
713
714 vmcb->ctrl.eventinj =
715 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
716 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
717 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
718 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
719 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
720
721 cpudata->evt_pending = true;
722
723 return 0;
724 }
725
726 static void
727 svm_inject_ud(struct nvmm_cpu *vcpu)
728 {
729 struct nvmm_comm_page *comm = vcpu->comm;
730 int ret __diagused;
731
732 comm->event.type = NVMM_VCPU_EVENT_EXCP;
733 comm->event.vector = 6;
734 comm->event.u.excp.error = 0;
735
736 ret = svm_vcpu_inject(vcpu);
737 KASSERT(ret == 0);
738 }
739
740 static void
741 svm_inject_gp(struct nvmm_cpu *vcpu)
742 {
743 struct nvmm_comm_page *comm = vcpu->comm;
744 int ret __diagused;
745
746 comm->event.type = NVMM_VCPU_EVENT_EXCP;
747 comm->event.vector = 13;
748 comm->event.u.excp.error = 0;
749
750 ret = svm_vcpu_inject(vcpu);
751 KASSERT(ret == 0);
752 }
753
754 static inline int
755 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
756 {
757 if (__predict_true(!vcpu->comm->event_commit)) {
758 return 0;
759 }
760 vcpu->comm->event_commit = false;
761 return svm_vcpu_inject(vcpu);
762 }
763
764 static inline void
765 svm_inkernel_advance(struct vmcb *vmcb)
766 {
767 /*
768 * Maybe we should also apply single-stepping and debug exceptions.
769 * Matters for guest-ring3, because it can execute 'cpuid' under a
770 * debugger.
771 */
772 vmcb->state.rip = vmcb->ctrl.nrip;
773 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
774 }
775
776 static void
777 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
778 {
779 struct svm_cpudata *cpudata = vcpu->cpudata;
780 uint64_t cr4;
781
782 switch (eax) {
783 case 0x00000001:
784 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
785
786 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
787 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
788 CPUID_LOCAL_APIC_ID);
789
790 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
791 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
792
793 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
794
795 /* CPUID2_OSXSAVE depends on CR4. */
796 cr4 = cpudata->vmcb->state.cr4;
797 if (!(cr4 & CR4_OSXSAVE)) {
798 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
799 }
800 break;
801 case 0x00000005:
802 case 0x00000006:
803 cpudata->vmcb->state.rax = 0;
804 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
805 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
806 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
807 break;
808 case 0x00000007:
809 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
810 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
811 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
812 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
813 break;
814 case 0x0000000D:
815 if (svm_xcr0_mask == 0) {
816 break;
817 }
818 switch (ecx) {
819 case 0:
820 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
821 if (cpudata->gxcr0 & XCR0_SSE) {
822 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
823 } else {
824 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
825 }
826 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
827 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
828 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
829 break;
830 case 1:
831 cpudata->vmcb->state.rax &=
832 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
833 CPUID_PES1_XGETBV);
834 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
835 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
836 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
837 break;
838 default:
839 cpudata->vmcb->state.rax = 0;
840 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
841 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
842 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
843 break;
844 }
845 break;
846 case 0x40000000:
847 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
848 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
849 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
850 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
851 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
852 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
853 break;
854 case 0x80000001:
855 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
856 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
857 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
858 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
859 break;
860 default:
861 break;
862 }
863 }
864
865 static void
866 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
867 {
868 exit->u.insn.npc = vmcb->ctrl.nrip;
869 exit->reason = reason;
870 }
871
872 static void
873 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
874 struct nvmm_vcpu_exit *exit)
875 {
876 struct svm_cpudata *cpudata = vcpu->cpudata;
877 struct nvmm_vcpu_conf_cpuid *cpuid;
878 uint64_t eax, ecx;
879 u_int descs[4];
880 size_t i;
881
882 eax = cpudata->vmcb->state.rax;
883 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
884 x86_cpuid2(eax, ecx, descs);
885
886 cpudata->vmcb->state.rax = descs[0];
887 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
888 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
889 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
890
891 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
892
893 for (i = 0; i < SVM_NCPUIDS; i++) {
894 if (!cpudata->cpuidpresent[i]) {
895 continue;
896 }
897 cpuid = &cpudata->cpuid[i];
898 if (cpuid->leaf != eax) {
899 continue;
900 }
901
902 if (cpuid->exit) {
903 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
904 return;
905 }
906 KASSERT(cpuid->mask);
907
908 /* del */
909 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
910 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
911 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
912 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
913
914 /* set */
915 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
916 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
917 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
918 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
919
920 break;
921 }
922
923 svm_inkernel_advance(cpudata->vmcb);
924 exit->reason = NVMM_VCPU_EXIT_NONE;
925 }
926
927 static void
928 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
929 struct nvmm_vcpu_exit *exit)
930 {
931 struct svm_cpudata *cpudata = vcpu->cpudata;
932 struct vmcb *vmcb = cpudata->vmcb;
933
934 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
935 svm_event_waitexit_disable(vcpu, false);
936 }
937
938 svm_inkernel_advance(cpudata->vmcb);
939 exit->reason = NVMM_VCPU_EXIT_HALTED;
940 }
941
942 #define SVM_EXIT_IO_PORT __BITS(31,16)
943 #define SVM_EXIT_IO_SEG __BITS(12,10)
944 #define SVM_EXIT_IO_A64 __BIT(9)
945 #define SVM_EXIT_IO_A32 __BIT(8)
946 #define SVM_EXIT_IO_A16 __BIT(7)
947 #define SVM_EXIT_IO_SZ32 __BIT(6)
948 #define SVM_EXIT_IO_SZ16 __BIT(5)
949 #define SVM_EXIT_IO_SZ8 __BIT(4)
950 #define SVM_EXIT_IO_REP __BIT(3)
951 #define SVM_EXIT_IO_STR __BIT(2)
952 #define SVM_EXIT_IO_IN __BIT(0)
953
954 static void
955 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
956 struct nvmm_vcpu_exit *exit)
957 {
958 struct svm_cpudata *cpudata = vcpu->cpudata;
959 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
960 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
961
962 exit->reason = NVMM_VCPU_EXIT_IO;
963
964 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
965 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
966
967 if (svm_decode_assist) {
968 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
969 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
970 } else {
971 exit->u.io.seg = -1;
972 }
973
974 if (info & SVM_EXIT_IO_A64) {
975 exit->u.io.address_size = 8;
976 } else if (info & SVM_EXIT_IO_A32) {
977 exit->u.io.address_size = 4;
978 } else if (info & SVM_EXIT_IO_A16) {
979 exit->u.io.address_size = 2;
980 }
981
982 if (info & SVM_EXIT_IO_SZ32) {
983 exit->u.io.operand_size = 4;
984 } else if (info & SVM_EXIT_IO_SZ16) {
985 exit->u.io.operand_size = 2;
986 } else if (info & SVM_EXIT_IO_SZ8) {
987 exit->u.io.operand_size = 1;
988 }
989
990 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
991 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
992 exit->u.io.npc = nextpc;
993
994 svm_vcpu_state_provide(vcpu,
995 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
996 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
997 }
998
999 static const uint64_t msr_ignore_list[] = {
1000 0xc0010055, /* MSR_CMPHALT */
1001 MSR_DE_CFG,
1002 MSR_IC_CFG,
1003 MSR_UCODE_AMD_PATCHLEVEL
1004 };
1005
1006 static bool
1007 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1008 struct nvmm_vcpu_exit *exit)
1009 {
1010 struct svm_cpudata *cpudata = vcpu->cpudata;
1011 struct vmcb *vmcb = cpudata->vmcb;
1012 uint64_t val;
1013 size_t i;
1014
1015 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1016 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1017 val = NB_CFG_INITAPICCPUIDLO;
1018 vmcb->state.rax = (val & 0xFFFFFFFF);
1019 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1020 goto handled;
1021 }
1022 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1023 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1024 continue;
1025 val = 0;
1026 vmcb->state.rax = (val & 0xFFFFFFFF);
1027 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1028 goto handled;
1029 }
1030 } else {
1031 if (exit->u.wrmsr.msr == MSR_EFER) {
1032 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1033 goto error;
1034 }
1035 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1036 EFER_TLB_FLUSH) {
1037 cpudata->gtlb_want_flush = true;
1038 }
1039 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1040 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1041 goto handled;
1042 }
1043 if (exit->u.wrmsr.msr == MSR_TSC) {
1044 cpudata->gtsc = exit->u.wrmsr.val;
1045 cpudata->gtsc_want_update = true;
1046 goto handled;
1047 }
1048 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1049 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1050 continue;
1051 goto handled;
1052 }
1053 }
1054
1055 return false;
1056
1057 handled:
1058 svm_inkernel_advance(cpudata->vmcb);
1059 return true;
1060
1061 error:
1062 svm_inject_gp(vcpu);
1063 return true;
1064 }
1065
1066 static inline void
1067 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1068 struct nvmm_vcpu_exit *exit)
1069 {
1070 struct svm_cpudata *cpudata = vcpu->cpudata;
1071
1072 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1073 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1074 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1075
1076 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1077 exit->reason = NVMM_VCPU_EXIT_NONE;
1078 return;
1079 }
1080
1081 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1082 }
1083
1084 static inline void
1085 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1086 struct nvmm_vcpu_exit *exit)
1087 {
1088 struct svm_cpudata *cpudata = vcpu->cpudata;
1089 uint64_t rdx, rax;
1090
1091 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1092 rax = cpudata->vmcb->state.rax;
1093
1094 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1095 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1096 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1097 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1098
1099 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1100 exit->reason = NVMM_VCPU_EXIT_NONE;
1101 return;
1102 }
1103
1104 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1105 }
1106
1107 static void
1108 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1109 struct nvmm_vcpu_exit *exit)
1110 {
1111 struct svm_cpudata *cpudata = vcpu->cpudata;
1112 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1113
1114 if (info == 0) {
1115 svm_exit_rdmsr(mach, vcpu, exit);
1116 } else {
1117 svm_exit_wrmsr(mach, vcpu, exit);
1118 }
1119 }
1120
1121 static void
1122 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1123 struct nvmm_vcpu_exit *exit)
1124 {
1125 struct svm_cpudata *cpudata = vcpu->cpudata;
1126 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1127
1128 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1129 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1130 exit->u.mem.prot = PROT_WRITE;
1131 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1132 exit->u.mem.prot = PROT_EXEC;
1133 else
1134 exit->u.mem.prot = PROT_READ;
1135 exit->u.mem.gpa = gpa;
1136 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1137 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1138 sizeof(exit->u.mem.inst_bytes));
1139
1140 svm_vcpu_state_provide(vcpu,
1141 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1142 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1143 }
1144
1145 static void
1146 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1147 struct nvmm_vcpu_exit *exit)
1148 {
1149 struct svm_cpudata *cpudata = vcpu->cpudata;
1150 struct vmcb *vmcb = cpudata->vmcb;
1151 uint64_t val;
1152
1153 exit->reason = NVMM_VCPU_EXIT_NONE;
1154
1155 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1156 (vmcb->state.rax & 0xFFFFFFFF);
1157
1158 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1159 goto error;
1160 } else if (__predict_false(vmcb->state.cpl != 0)) {
1161 goto error;
1162 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1163 goto error;
1164 } else if (__predict_false((val & XCR0_X87) == 0)) {
1165 goto error;
1166 }
1167
1168 cpudata->gxcr0 = val;
1169
1170 svm_inkernel_advance(cpudata->vmcb);
1171 return;
1172
1173 error:
1174 svm_inject_gp(vcpu);
1175 }
1176
1177 static void
1178 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1179 {
1180 exit->u.inv.hwcode = code;
1181 exit->reason = NVMM_VCPU_EXIT_INVALID;
1182 }
1183
1184 /* -------------------------------------------------------------------------- */
1185
1186 static void
1187 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1188 {
1189 struct svm_cpudata *cpudata = vcpu->cpudata;
1190
1191 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1192
1193 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1194 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1195
1196 if (svm_xcr0_mask != 0) {
1197 cpudata->hxcr0 = rdxcr(0);
1198 wrxcr(0, cpudata->gxcr0);
1199 }
1200 }
1201
1202 static void
1203 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1204 {
1205 struct svm_cpudata *cpudata = vcpu->cpudata;
1206
1207 if (svm_xcr0_mask != 0) {
1208 cpudata->gxcr0 = rdxcr(0);
1209 wrxcr(0, cpudata->hxcr0);
1210 }
1211
1212 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1213 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1214
1215 if (cpudata->ts_set) {
1216 stts();
1217 }
1218 }
1219
1220 static void
1221 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1222 {
1223 struct svm_cpudata *cpudata = vcpu->cpudata;
1224
1225 x86_dbregs_save(curlwp);
1226
1227 ldr7(0);
1228
1229 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1230 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1231 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1232 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1233 }
1234
1235 static void
1236 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1237 {
1238 struct svm_cpudata *cpudata = vcpu->cpudata;
1239
1240 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1241 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1242 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1243 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1244
1245 x86_dbregs_restore(curlwp);
1246 }
1247
1248 static void
1249 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1250 {
1251 struct svm_cpudata *cpudata = vcpu->cpudata;
1252
1253 cpudata->fsbase = rdmsr(MSR_FSBASE);
1254 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1255 }
1256
1257 static void
1258 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1259 {
1260 struct svm_cpudata *cpudata = vcpu->cpudata;
1261
1262 wrmsr(MSR_STAR, cpudata->star);
1263 wrmsr(MSR_LSTAR, cpudata->lstar);
1264 wrmsr(MSR_CSTAR, cpudata->cstar);
1265 wrmsr(MSR_SFMASK, cpudata->sfmask);
1266 wrmsr(MSR_FSBASE, cpudata->fsbase);
1267 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1268 }
1269
1270 /* -------------------------------------------------------------------------- */
1271
1272 static inline void
1273 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1274 {
1275 struct svm_cpudata *cpudata = vcpu->cpudata;
1276
1277 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1278 cpudata->gtlb_want_flush = true;
1279 }
1280 }
1281
1282 static inline void
1283 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1284 {
1285 /*
1286 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1287 * executing on this hCPU and the hTLB already got flushed, or it
1288 * was executing on another hCPU in which case the catchup is done
1289 * in svm_gtlb_catchup().
1290 */
1291 }
1292
1293 static inline uint64_t
1294 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1295 {
1296 struct vmcb *vmcb = cpudata->vmcb;
1297 uint64_t machgen;
1298
1299 machgen = machdata->mach_htlb_gen;
1300 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1301 return machgen;
1302 }
1303
1304 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1305 return machgen;
1306 }
1307
1308 static inline void
1309 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1310 {
1311 struct vmcb *vmcb = cpudata->vmcb;
1312
1313 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1314 cpudata->vcpu_htlb_gen = machgen;
1315 }
1316 }
1317
1318 static inline void
1319 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1320 {
1321 cpudata->evt_pending = false;
1322
1323 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1324 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1325 cpudata->evt_pending = true;
1326 }
1327 }
1328
1329 static int
1330 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1331 struct nvmm_vcpu_exit *exit)
1332 {
1333 struct nvmm_comm_page *comm = vcpu->comm;
1334 struct svm_machdata *machdata = mach->machdata;
1335 struct svm_cpudata *cpudata = vcpu->cpudata;
1336 struct vmcb *vmcb = cpudata->vmcb;
1337 uint64_t machgen;
1338 int hcpu, s;
1339
1340 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1341 return EINVAL;
1342 }
1343 svm_vcpu_state_commit(vcpu);
1344 comm->state_cached = 0;
1345
1346 kpreempt_disable();
1347 hcpu = cpu_number();
1348
1349 svm_gtlb_catchup(vcpu, hcpu);
1350 svm_htlb_catchup(vcpu, hcpu);
1351
1352 if (vcpu->hcpu_last != hcpu) {
1353 svm_vmcb_cache_flush_all(vmcb);
1354 cpudata->gtsc_want_update = true;
1355 }
1356
1357 svm_vcpu_guest_dbregs_enter(vcpu);
1358 svm_vcpu_guest_misc_enter(vcpu);
1359
1360 while (1) {
1361 if (cpudata->gtlb_want_flush) {
1362 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1363 } else {
1364 vmcb->ctrl.tlb_ctrl = 0;
1365 }
1366
1367 if (__predict_false(cpudata->gtsc_want_update)) {
1368 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1369 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1370 }
1371
1372 s = splhigh();
1373 machgen = svm_htlb_flush(machdata, cpudata);
1374 svm_vcpu_guest_fpu_enter(vcpu);
1375 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1376 svm_vcpu_guest_fpu_leave(vcpu);
1377 svm_htlb_flush_ack(cpudata, machgen);
1378 splx(s);
1379
1380 svm_vmcb_cache_default(vmcb);
1381
1382 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1383 cpudata->gtlb_want_flush = false;
1384 cpudata->gtsc_want_update = false;
1385 vcpu->hcpu_last = hcpu;
1386 }
1387 svm_exit_evt(cpudata, vmcb);
1388
1389 switch (vmcb->ctrl.exitcode) {
1390 case VMCB_EXITCODE_INTR:
1391 case VMCB_EXITCODE_NMI:
1392 exit->reason = NVMM_VCPU_EXIT_NONE;
1393 break;
1394 case VMCB_EXITCODE_VINTR:
1395 svm_event_waitexit_disable(vcpu, false);
1396 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1397 break;
1398 case VMCB_EXITCODE_IRET:
1399 svm_event_waitexit_disable(vcpu, true);
1400 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1401 break;
1402 case VMCB_EXITCODE_CPUID:
1403 svm_exit_cpuid(mach, vcpu, exit);
1404 break;
1405 case VMCB_EXITCODE_HLT:
1406 svm_exit_hlt(mach, vcpu, exit);
1407 break;
1408 case VMCB_EXITCODE_IOIO:
1409 svm_exit_io(mach, vcpu, exit);
1410 break;
1411 case VMCB_EXITCODE_MSR:
1412 svm_exit_msr(mach, vcpu, exit);
1413 break;
1414 case VMCB_EXITCODE_SHUTDOWN:
1415 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1416 break;
1417 case VMCB_EXITCODE_RDPMC:
1418 case VMCB_EXITCODE_RSM:
1419 case VMCB_EXITCODE_INVLPGA:
1420 case VMCB_EXITCODE_VMRUN:
1421 case VMCB_EXITCODE_VMMCALL:
1422 case VMCB_EXITCODE_VMLOAD:
1423 case VMCB_EXITCODE_VMSAVE:
1424 case VMCB_EXITCODE_STGI:
1425 case VMCB_EXITCODE_CLGI:
1426 case VMCB_EXITCODE_SKINIT:
1427 case VMCB_EXITCODE_RDTSCP:
1428 svm_inject_ud(vcpu);
1429 exit->reason = NVMM_VCPU_EXIT_NONE;
1430 break;
1431 case VMCB_EXITCODE_MONITOR:
1432 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1433 break;
1434 case VMCB_EXITCODE_MWAIT:
1435 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1436 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1437 break;
1438 case VMCB_EXITCODE_XSETBV:
1439 svm_exit_xsetbv(mach, vcpu, exit);
1440 break;
1441 case VMCB_EXITCODE_NPF:
1442 svm_exit_npf(mach, vcpu, exit);
1443 break;
1444 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1445 default:
1446 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1447 break;
1448 }
1449
1450 /* If no reason to return to userland, keep rolling. */
1451 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1452 break;
1453 }
1454 if (curcpu()->ci_data.cpu_softints != 0) {
1455 break;
1456 }
1457 if (curlwp->l_flag & LW_USERRET) {
1458 break;
1459 }
1460 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1461 break;
1462 }
1463 }
1464
1465 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1466
1467 svm_vcpu_guest_misc_leave(vcpu);
1468 svm_vcpu_guest_dbregs_leave(vcpu);
1469
1470 kpreempt_enable();
1471
1472 exit->exitstate.rflags = vmcb->state.rflags;
1473 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1474 exit->exitstate.int_shadow =
1475 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1476 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1477 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1478 exit->exitstate.evt_pending = cpudata->evt_pending;
1479
1480 return 0;
1481 }
1482
1483 /* -------------------------------------------------------------------------- */
1484
1485 static int
1486 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1487 {
1488 struct pglist pglist;
1489 paddr_t _pa;
1490 vaddr_t _va;
1491 size_t i;
1492 int ret;
1493
1494 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1495 &pglist, 1, 0);
1496 if (ret != 0)
1497 return ENOMEM;
1498 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1499 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1500 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1501 if (_va == 0)
1502 goto error;
1503
1504 for (i = 0; i < npages; i++) {
1505 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1506 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1507 }
1508 pmap_update(pmap_kernel());
1509
1510 memset((void *)_va, 0, npages * PAGE_SIZE);
1511
1512 *pa = _pa;
1513 *va = _va;
1514 return 0;
1515
1516 error:
1517 for (i = 0; i < npages; i++) {
1518 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1519 }
1520 return ENOMEM;
1521 }
1522
1523 static void
1524 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1525 {
1526 size_t i;
1527
1528 pmap_kremove(va, npages * PAGE_SIZE);
1529 pmap_update(pmap_kernel());
1530 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1531 for (i = 0; i < npages; i++) {
1532 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1533 }
1534 }
1535
1536 /* -------------------------------------------------------------------------- */
1537
1538 #define SVM_MSRBM_READ __BIT(0)
1539 #define SVM_MSRBM_WRITE __BIT(1)
1540
1541 static void
1542 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1543 {
1544 uint64_t byte;
1545 uint8_t bitoff;
1546
1547 if (msr < 0x00002000) {
1548 /* Range 1 */
1549 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1550 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1551 /* Range 2 */
1552 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1553 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1554 /* Range 3 */
1555 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1556 } else {
1557 panic("%s: wrong range", __func__);
1558 }
1559
1560 bitoff = (msr & 0x3) << 1;
1561
1562 if (read) {
1563 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1564 }
1565 if (write) {
1566 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1567 }
1568 }
1569
1570 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1571 #define SVM_SEG_ATTRIB_S __BIT(4)
1572 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1573 #define SVM_SEG_ATTRIB_P __BIT(7)
1574 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1575 #define SVM_SEG_ATTRIB_L __BIT(9)
1576 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1577 #define SVM_SEG_ATTRIB_G __BIT(11)
1578
1579 static void
1580 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1581 struct vmcb_segment *vseg)
1582 {
1583 vseg->selector = seg->selector;
1584 vseg->attrib =
1585 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1586 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1587 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1588 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1589 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1590 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1591 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1592 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1593 vseg->limit = seg->limit;
1594 vseg->base = seg->base;
1595 }
1596
1597 static void
1598 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1599 {
1600 seg->selector = vseg->selector;
1601 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1602 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1603 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1604 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1605 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1606 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1607 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1608 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1609 seg->limit = vseg->limit;
1610 seg->base = vseg->base;
1611 }
1612
1613 static inline bool
1614 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1615 uint64_t flags)
1616 {
1617 if (flags & NVMM_X64_STATE_CRS) {
1618 if ((vmcb->state.cr0 ^
1619 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1620 return true;
1621 }
1622 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1623 return true;
1624 }
1625 if ((vmcb->state.cr4 ^
1626 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1627 return true;
1628 }
1629 }
1630
1631 if (flags & NVMM_X64_STATE_MSRS) {
1632 if ((vmcb->state.efer ^
1633 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1634 return true;
1635 }
1636 }
1637
1638 return false;
1639 }
1640
1641 static void
1642 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1643 {
1644 struct nvmm_comm_page *comm = vcpu->comm;
1645 const struct nvmm_x64_state *state = &comm->state;
1646 struct svm_cpudata *cpudata = vcpu->cpudata;
1647 struct vmcb *vmcb = cpudata->vmcb;
1648 struct fxsave *fpustate;
1649 uint64_t flags;
1650
1651 flags = comm->state_wanted;
1652
1653 if (svm_state_tlb_flush(vmcb, state, flags)) {
1654 cpudata->gtlb_want_flush = true;
1655 }
1656
1657 if (flags & NVMM_X64_STATE_SEGS) {
1658 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1659 &vmcb->state.cs);
1660 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1661 &vmcb->state.ds);
1662 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1663 &vmcb->state.es);
1664 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1665 &vmcb->state.fs);
1666 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1667 &vmcb->state.gs);
1668 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1669 &vmcb->state.ss);
1670 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1671 &vmcb->state.gdt);
1672 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1673 &vmcb->state.idt);
1674 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1675 &vmcb->state.ldt);
1676 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1677 &vmcb->state.tr);
1678
1679 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1680 }
1681
1682 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1683 if (flags & NVMM_X64_STATE_GPRS) {
1684 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1685
1686 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1687 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1688 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1689 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1690 }
1691
1692 if (flags & NVMM_X64_STATE_CRS) {
1693 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1694 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1695 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1696 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1697
1698 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1699 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1700 VMCB_CTRL_V_TPR);
1701
1702 if (svm_xcr0_mask != 0) {
1703 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1704 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1705 cpudata->gxcr0 &= svm_xcr0_mask;
1706 cpudata->gxcr0 |= XCR0_X87;
1707 }
1708 }
1709
1710 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1711 if (flags & NVMM_X64_STATE_DRS) {
1712 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1713
1714 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1715 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1716 }
1717
1718 if (flags & NVMM_X64_STATE_MSRS) {
1719 /*
1720 * EFER_SVME is mandatory.
1721 */
1722 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1723 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1724 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1725 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1726 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1727 vmcb->state.kernelgsbase =
1728 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1729 vmcb->state.sysenter_cs =
1730 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1731 vmcb->state.sysenter_esp =
1732 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1733 vmcb->state.sysenter_eip =
1734 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1735 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1736
1737 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1738 cpudata->gtsc_want_update = true;
1739 }
1740
1741 if (flags & NVMM_X64_STATE_INTR) {
1742 if (state->intr.int_shadow) {
1743 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1744 } else {
1745 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1746 }
1747
1748 if (state->intr.int_window_exiting) {
1749 svm_event_waitexit_enable(vcpu, false);
1750 } else {
1751 svm_event_waitexit_disable(vcpu, false);
1752 }
1753
1754 if (state->intr.nmi_window_exiting) {
1755 svm_event_waitexit_enable(vcpu, true);
1756 } else {
1757 svm_event_waitexit_disable(vcpu, true);
1758 }
1759 }
1760
1761 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1762 if (flags & NVMM_X64_STATE_FPU) {
1763 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1764 sizeof(state->fpu));
1765
1766 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1767 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1768 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1769
1770 if (svm_xcr0_mask != 0) {
1771 /* Reset XSTATE_BV, to force a reload. */
1772 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1773 }
1774 }
1775
1776 svm_vmcb_cache_update(vmcb, flags);
1777
1778 comm->state_wanted = 0;
1779 comm->state_cached |= flags;
1780 }
1781
1782 static void
1783 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1784 {
1785 struct nvmm_comm_page *comm = vcpu->comm;
1786 struct nvmm_x64_state *state = &comm->state;
1787 struct svm_cpudata *cpudata = vcpu->cpudata;
1788 struct vmcb *vmcb = cpudata->vmcb;
1789 uint64_t flags;
1790
1791 flags = comm->state_wanted;
1792
1793 if (flags & NVMM_X64_STATE_SEGS) {
1794 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1795 &vmcb->state.cs);
1796 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1797 &vmcb->state.ds);
1798 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1799 &vmcb->state.es);
1800 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1801 &vmcb->state.fs);
1802 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1803 &vmcb->state.gs);
1804 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1805 &vmcb->state.ss);
1806 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1807 &vmcb->state.gdt);
1808 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1809 &vmcb->state.idt);
1810 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1811 &vmcb->state.ldt);
1812 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1813 &vmcb->state.tr);
1814
1815 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1816 }
1817
1818 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1819 if (flags & NVMM_X64_STATE_GPRS) {
1820 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1821
1822 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1823 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1824 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1825 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1826 }
1827
1828 if (flags & NVMM_X64_STATE_CRS) {
1829 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1830 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1831 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1832 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1833 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1834 VMCB_CTRL_V_TPR);
1835 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1836 }
1837
1838 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1839 if (flags & NVMM_X64_STATE_DRS) {
1840 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1841
1842 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1843 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1844 }
1845
1846 if (flags & NVMM_X64_STATE_MSRS) {
1847 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1848 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1849 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1850 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1851 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1852 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1853 vmcb->state.kernelgsbase;
1854 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1855 vmcb->state.sysenter_cs;
1856 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1857 vmcb->state.sysenter_esp;
1858 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1859 vmcb->state.sysenter_eip;
1860 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1861 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1862
1863 /* Hide SVME. */
1864 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1865 }
1866
1867 if (flags & NVMM_X64_STATE_INTR) {
1868 state->intr.int_shadow =
1869 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1870 state->intr.int_window_exiting = cpudata->int_window_exit;
1871 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1872 state->intr.evt_pending = cpudata->evt_pending;
1873 }
1874
1875 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1876 if (flags & NVMM_X64_STATE_FPU) {
1877 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1878 sizeof(state->fpu));
1879 }
1880
1881 comm->state_wanted = 0;
1882 comm->state_cached |= flags;
1883 }
1884
1885 static void
1886 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1887 {
1888 vcpu->comm->state_wanted = flags;
1889 svm_vcpu_getstate(vcpu);
1890 }
1891
1892 static void
1893 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1894 {
1895 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1896 vcpu->comm->state_commit = 0;
1897 svm_vcpu_setstate(vcpu);
1898 }
1899
1900 /* -------------------------------------------------------------------------- */
1901
1902 static void
1903 svm_asid_alloc(struct nvmm_cpu *vcpu)
1904 {
1905 struct svm_cpudata *cpudata = vcpu->cpudata;
1906 struct vmcb *vmcb = cpudata->vmcb;
1907 size_t i, oct, bit;
1908
1909 mutex_enter(&svm_asidlock);
1910
1911 for (i = 0; i < svm_maxasid; i++) {
1912 oct = i / 8;
1913 bit = i % 8;
1914
1915 if (svm_asidmap[oct] & __BIT(bit)) {
1916 continue;
1917 }
1918
1919 svm_asidmap[oct] |= __BIT(bit);
1920 vmcb->ctrl.guest_asid = i;
1921 mutex_exit(&svm_asidlock);
1922 return;
1923 }
1924
1925 /*
1926 * No free ASID. Use the last one, which is shared and requires
1927 * special TLB handling.
1928 */
1929 cpudata->shared_asid = true;
1930 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1931 mutex_exit(&svm_asidlock);
1932 }
1933
1934 static void
1935 svm_asid_free(struct nvmm_cpu *vcpu)
1936 {
1937 struct svm_cpudata *cpudata = vcpu->cpudata;
1938 struct vmcb *vmcb = cpudata->vmcb;
1939 size_t oct, bit;
1940
1941 if (cpudata->shared_asid) {
1942 return;
1943 }
1944
1945 oct = vmcb->ctrl.guest_asid / 8;
1946 bit = vmcb->ctrl.guest_asid % 8;
1947
1948 mutex_enter(&svm_asidlock);
1949 svm_asidmap[oct] &= ~__BIT(bit);
1950 mutex_exit(&svm_asidlock);
1951 }
1952
1953 static void
1954 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1955 {
1956 struct svm_cpudata *cpudata = vcpu->cpudata;
1957 struct vmcb *vmcb = cpudata->vmcb;
1958
1959 /* Allow reads/writes of Control Registers. */
1960 vmcb->ctrl.intercept_cr = 0;
1961
1962 /* Allow reads/writes of Debug Registers. */
1963 vmcb->ctrl.intercept_dr = 0;
1964
1965 /* Allow exceptions 0 to 31. */
1966 vmcb->ctrl.intercept_vec = 0;
1967
1968 /*
1969 * Allow:
1970 * - SMI [smm interrupts]
1971 * - VINTR [virtual interrupts]
1972 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1973 * - RIDTR [reads of IDTR]
1974 * - RGDTR [reads of GDTR]
1975 * - RLDTR [reads of LDTR]
1976 * - RTR [reads of TR]
1977 * - WIDTR [writes of IDTR]
1978 * - WGDTR [writes of GDTR]
1979 * - WLDTR [writes of LDTR]
1980 * - WTR [writes of TR]
1981 * - RDTSC [rdtsc instruction]
1982 * - PUSHF [pushf instruction]
1983 * - POPF [popf instruction]
1984 * - IRET [iret instruction]
1985 * - INTN [int $n instructions]
1986 * - INVD [invd instruction]
1987 * - PAUSE [pause instruction]
1988 * - INVLPG [invplg instruction]
1989 * - TASKSW [task switches]
1990 *
1991 * Intercept the rest below.
1992 */
1993 vmcb->ctrl.intercept_misc1 =
1994 VMCB_CTRL_INTERCEPT_INTR |
1995 VMCB_CTRL_INTERCEPT_NMI |
1996 VMCB_CTRL_INTERCEPT_INIT |
1997 VMCB_CTRL_INTERCEPT_RDPMC |
1998 VMCB_CTRL_INTERCEPT_CPUID |
1999 VMCB_CTRL_INTERCEPT_RSM |
2000 VMCB_CTRL_INTERCEPT_HLT |
2001 VMCB_CTRL_INTERCEPT_INVLPGA |
2002 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2003 VMCB_CTRL_INTERCEPT_MSR_PROT |
2004 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2005 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2006
2007 /*
2008 * Allow:
2009 * - ICEBP [icebp instruction]
2010 * - WBINVD [wbinvd instruction]
2011 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2012 *
2013 * Intercept the rest below.
2014 */
2015 vmcb->ctrl.intercept_misc2 =
2016 VMCB_CTRL_INTERCEPT_VMRUN |
2017 VMCB_CTRL_INTERCEPT_VMMCALL |
2018 VMCB_CTRL_INTERCEPT_VMLOAD |
2019 VMCB_CTRL_INTERCEPT_VMSAVE |
2020 VMCB_CTRL_INTERCEPT_STGI |
2021 VMCB_CTRL_INTERCEPT_CLGI |
2022 VMCB_CTRL_INTERCEPT_SKINIT |
2023 VMCB_CTRL_INTERCEPT_RDTSCP |
2024 VMCB_CTRL_INTERCEPT_MONITOR |
2025 VMCB_CTRL_INTERCEPT_MWAIT |
2026 VMCB_CTRL_INTERCEPT_XSETBV;
2027
2028 /* Intercept all I/O accesses. */
2029 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2030 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2031
2032 /* Allow direct access to certain MSRs. */
2033 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2034 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2035 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2036 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2037 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2038 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2039 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2040 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2041 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2042 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2043 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2044 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2045 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2046 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2047 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2048
2049 /* Generate ASID. */
2050 svm_asid_alloc(vcpu);
2051
2052 /* Virtual TPR. */
2053 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2054
2055 /* Enable Nested Paging. */
2056 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2057 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2058
2059 /* Init XSAVE header. */
2060 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2061 cpudata->gfpu.xsh_xcomp_bv = 0;
2062
2063 /* These MSRs are static. */
2064 cpudata->star = rdmsr(MSR_STAR);
2065 cpudata->lstar = rdmsr(MSR_LSTAR);
2066 cpudata->cstar = rdmsr(MSR_CSTAR);
2067 cpudata->sfmask = rdmsr(MSR_SFMASK);
2068
2069 /* Install the RESET state. */
2070 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2071 sizeof(nvmm_x86_reset_state));
2072 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2073 vcpu->comm->state_cached = 0;
2074 svm_vcpu_setstate(vcpu);
2075 }
2076
2077 static int
2078 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2079 {
2080 struct svm_cpudata *cpudata;
2081 int error;
2082
2083 /* Allocate the SVM cpudata. */
2084 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2085 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2086 UVM_KMF_WIRED|UVM_KMF_ZERO);
2087 vcpu->cpudata = cpudata;
2088
2089 /* VMCB */
2090 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2091 VMCB_NPAGES);
2092 if (error)
2093 goto error;
2094
2095 /* I/O Bitmap */
2096 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2097 IOBM_NPAGES);
2098 if (error)
2099 goto error;
2100
2101 /* MSR Bitmap */
2102 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2103 MSRBM_NPAGES);
2104 if (error)
2105 goto error;
2106
2107 /* Init the VCPU info. */
2108 svm_vcpu_init(mach, vcpu);
2109
2110 return 0;
2111
2112 error:
2113 if (cpudata->vmcb_pa) {
2114 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2115 VMCB_NPAGES);
2116 }
2117 if (cpudata->iobm_pa) {
2118 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2119 IOBM_NPAGES);
2120 }
2121 if (cpudata->msrbm_pa) {
2122 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2123 MSRBM_NPAGES);
2124 }
2125 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2126 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2127 return error;
2128 }
2129
2130 static void
2131 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2132 {
2133 struct svm_cpudata *cpudata = vcpu->cpudata;
2134
2135 svm_asid_free(vcpu);
2136
2137 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2138 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2139 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2140
2141 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2142 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2143 }
2144
2145 /* -------------------------------------------------------------------------- */
2146
2147 static int
2148 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2149 {
2150 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2151 size_t i;
2152
2153 if (__predict_false(cpuid->mask && cpuid->exit)) {
2154 return EINVAL;
2155 }
2156 if (__predict_false(cpuid->mask &&
2157 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2158 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2159 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2160 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2161 return EINVAL;
2162 }
2163
2164 /* If unset, delete, to restore the default behavior. */
2165 if (!cpuid->mask && !cpuid->exit) {
2166 for (i = 0; i < SVM_NCPUIDS; i++) {
2167 if (!cpudata->cpuidpresent[i]) {
2168 continue;
2169 }
2170 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2171 cpudata->cpuidpresent[i] = false;
2172 }
2173 }
2174 return 0;
2175 }
2176
2177 /* If already here, replace. */
2178 for (i = 0; i < SVM_NCPUIDS; i++) {
2179 if (!cpudata->cpuidpresent[i]) {
2180 continue;
2181 }
2182 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2183 memcpy(&cpudata->cpuid[i], cpuid,
2184 sizeof(struct nvmm_vcpu_conf_cpuid));
2185 return 0;
2186 }
2187 }
2188
2189 /* Not here, insert. */
2190 for (i = 0; i < SVM_NCPUIDS; i++) {
2191 if (!cpudata->cpuidpresent[i]) {
2192 cpudata->cpuidpresent[i] = true;
2193 memcpy(&cpudata->cpuid[i], cpuid,
2194 sizeof(struct nvmm_vcpu_conf_cpuid));
2195 return 0;
2196 }
2197 }
2198
2199 return ENOBUFS;
2200 }
2201
2202 static int
2203 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2204 {
2205 struct svm_cpudata *cpudata = vcpu->cpudata;
2206
2207 switch (op) {
2208 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2209 return svm_vcpu_configure_cpuid(cpudata, data);
2210 default:
2211 return EINVAL;
2212 }
2213 }
2214
2215 /* -------------------------------------------------------------------------- */
2216
2217 static void
2218 svm_tlb_flush(struct pmap *pm)
2219 {
2220 struct nvmm_machine *mach = pm->pm_data;
2221 struct svm_machdata *machdata = mach->machdata;
2222
2223 atomic_inc_64(&machdata->mach_htlb_gen);
2224
2225 /* Generates IPIs, which cause #VMEXITs. */
2226 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2227 }
2228
2229 static void
2230 svm_machine_create(struct nvmm_machine *mach)
2231 {
2232 struct svm_machdata *machdata;
2233
2234 /* Fill in pmap info. */
2235 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2236 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2237
2238 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2239 mach->machdata = machdata;
2240
2241 /* Start with an hTLB flush everywhere. */
2242 machdata->mach_htlb_gen = 1;
2243 }
2244
2245 static void
2246 svm_machine_destroy(struct nvmm_machine *mach)
2247 {
2248 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2249 }
2250
2251 static int
2252 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2253 {
2254 panic("%s: impossible", __func__);
2255 }
2256
2257 /* -------------------------------------------------------------------------- */
2258
2259 static bool
2260 svm_ident(void)
2261 {
2262 u_int descs[4];
2263 uint64_t msr;
2264
2265 if (cpu_vendor != CPUVENDOR_AMD) {
2266 return false;
2267 }
2268 if (!(cpu_feature[3] & CPUID_SVM)) {
2269 return false;
2270 }
2271
2272 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2273 return false;
2274 }
2275 x86_cpuid(0x8000000a, descs);
2276
2277 /* Want Nested Paging. */
2278 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2279 return false;
2280 }
2281
2282 /* Want nRIP. */
2283 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2284 return false;
2285 }
2286
2287 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2288
2289 msr = rdmsr(MSR_VMCR);
2290 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2291 return false;
2292 }
2293
2294 return true;
2295 }
2296
2297 static void
2298 svm_init_asid(uint32_t maxasid)
2299 {
2300 size_t i, j, allocsz;
2301
2302 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2303
2304 /* Arbitrarily limit. */
2305 maxasid = uimin(maxasid, 8192);
2306
2307 svm_maxasid = maxasid;
2308 allocsz = roundup(maxasid, 8) / 8;
2309 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2310
2311 /* ASID 0 is reserved for the host. */
2312 svm_asidmap[0] |= __BIT(0);
2313
2314 /* ASID n-1 is special, we share it. */
2315 i = (maxasid - 1) / 8;
2316 j = (maxasid - 1) % 8;
2317 svm_asidmap[i] |= __BIT(j);
2318 }
2319
2320 static void
2321 svm_change_cpu(void *arg1, void *arg2)
2322 {
2323 bool enable = (bool)arg1;
2324 uint64_t msr;
2325
2326 msr = rdmsr(MSR_VMCR);
2327 if (msr & VMCR_SVMED) {
2328 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2329 }
2330
2331 if (!enable) {
2332 wrmsr(MSR_VM_HSAVE_PA, 0);
2333 }
2334
2335 msr = rdmsr(MSR_EFER);
2336 if (enable) {
2337 msr |= EFER_SVME;
2338 } else {
2339 msr &= ~EFER_SVME;
2340 }
2341 wrmsr(MSR_EFER, msr);
2342
2343 if (enable) {
2344 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2345 }
2346 }
2347
2348 static void
2349 svm_init(void)
2350 {
2351 CPU_INFO_ITERATOR cii;
2352 struct cpu_info *ci;
2353 struct vm_page *pg;
2354 u_int descs[4];
2355 uint64_t xc;
2356
2357 x86_cpuid(0x8000000a, descs);
2358
2359 /* The guest TLB flush command. */
2360 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2361 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2362 } else {
2363 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2364 }
2365
2366 /* Init the ASID. */
2367 svm_init_asid(descs[1]);
2368
2369 /* Init the XCR0 mask. */
2370 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2371
2372 memset(hsave, 0, sizeof(hsave));
2373 for (CPU_INFO_FOREACH(cii, ci)) {
2374 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2375 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2376 }
2377
2378 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2379 xc_wait(xc);
2380 }
2381
2382 static void
2383 svm_fini_asid(void)
2384 {
2385 size_t allocsz;
2386
2387 allocsz = roundup(svm_maxasid, 8) / 8;
2388 kmem_free(svm_asidmap, allocsz);
2389
2390 mutex_destroy(&svm_asidlock);
2391 }
2392
2393 static void
2394 svm_fini(void)
2395 {
2396 uint64_t xc;
2397 size_t i;
2398
2399 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2400 xc_wait(xc);
2401
2402 for (i = 0; i < MAXCPUS; i++) {
2403 if (hsave[i].pa != 0)
2404 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2405 }
2406
2407 svm_fini_asid();
2408 }
2409
2410 static void
2411 svm_capability(struct nvmm_capability *cap)
2412 {
2413 cap->arch.mach_conf_support = 0;
2414 cap->arch.vcpu_conf_support =
2415 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2416 cap->arch.xcr0_mask = svm_xcr0_mask;
2417 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2418 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2419 }
2420
2421 const struct nvmm_impl nvmm_x86_svm = {
2422 .ident = svm_ident,
2423 .init = svm_init,
2424 .fini = svm_fini,
2425 .capability = svm_capability,
2426 .mach_conf_max = NVMM_X86_MACH_NCONF,
2427 .mach_conf_sizes = NULL,
2428 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2429 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2430 .state_size = sizeof(struct nvmm_x64_state),
2431 .machine_create = svm_machine_create,
2432 .machine_destroy = svm_machine_destroy,
2433 .machine_configure = svm_machine_configure,
2434 .vcpu_create = svm_vcpu_create,
2435 .vcpu_destroy = svm_vcpu_destroy,
2436 .vcpu_configure = svm_vcpu_configure,
2437 .vcpu_setstate = svm_vcpu_setstate,
2438 .vcpu_getstate = svm_vcpu_getstate,
2439 .vcpu_inject = svm_vcpu_inject,
2440 .vcpu_run = svm_vcpu_run
2441 };
2442