nvmm_x86_svm.c revision 1.46.4.5 1 /* $NetBSD: nvmm_x86_svm.c,v 1.46.4.5 2020/05/21 10:52:58 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46.4.5 2020/05/21 10:52:58 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 volatile uint64_t mach_htlb_gen;
508 };
509
510 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
511 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
512 sizeof(struct nvmm_vcpu_conf_cpuid),
513 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
514 sizeof(struct nvmm_vcpu_conf_tpr)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544 bool ts_set;
545 struct xsave_header hfpu __aligned(64);
546
547 /* Intr state */
548 bool int_window_exit;
549 bool nmi_window_exit;
550 bool evt_pending;
551
552 /* Guest state */
553 uint64_t gxcr0;
554 uint64_t gprs[NVMM_X64_NGPR];
555 uint64_t drs[NVMM_X64_NDR];
556 uint64_t gtsc;
557 struct xsave_header gfpu __aligned(64);
558
559 /* VCPU configuration. */
560 bool cpuidpresent[SVM_NCPUIDS];
561 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
562 };
563
564 static void
565 svm_vmcb_cache_default(struct vmcb *vmcb)
566 {
567 vmcb->ctrl.vmcb_clean =
568 VMCB_CTRL_VMCB_CLEAN_I |
569 VMCB_CTRL_VMCB_CLEAN_IOPM |
570 VMCB_CTRL_VMCB_CLEAN_ASID |
571 VMCB_CTRL_VMCB_CLEAN_TPR |
572 VMCB_CTRL_VMCB_CLEAN_NP |
573 VMCB_CTRL_VMCB_CLEAN_CR |
574 VMCB_CTRL_VMCB_CLEAN_DR |
575 VMCB_CTRL_VMCB_CLEAN_DT |
576 VMCB_CTRL_VMCB_CLEAN_SEG |
577 VMCB_CTRL_VMCB_CLEAN_CR2 |
578 VMCB_CTRL_VMCB_CLEAN_LBR |
579 VMCB_CTRL_VMCB_CLEAN_AVIC;
580 }
581
582 static void
583 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
584 {
585 if (flags & NVMM_X64_STATE_SEGS) {
586 vmcb->ctrl.vmcb_clean &=
587 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
588 }
589 if (flags & NVMM_X64_STATE_CRS) {
590 vmcb->ctrl.vmcb_clean &=
591 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
592 VMCB_CTRL_VMCB_CLEAN_TPR);
593 }
594 if (flags & NVMM_X64_STATE_DRS) {
595 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
596 }
597 if (flags & NVMM_X64_STATE_MSRS) {
598 /* CR for EFER, NP for PAT. */
599 vmcb->ctrl.vmcb_clean &=
600 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
601 }
602 }
603
604 static inline void
605 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
606 {
607 vmcb->ctrl.vmcb_clean &= ~flags;
608 }
609
610 static inline void
611 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
612 {
613 vmcb->ctrl.vmcb_clean = 0;
614 }
615
616 #define SVM_EVENT_TYPE_HW_INT 0
617 #define SVM_EVENT_TYPE_NMI 2
618 #define SVM_EVENT_TYPE_EXC 3
619 #define SVM_EVENT_TYPE_SW_INT 4
620
621 static void
622 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
623 {
624 struct svm_cpudata *cpudata = vcpu->cpudata;
625 struct vmcb *vmcb = cpudata->vmcb;
626
627 if (nmi) {
628 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
629 cpudata->nmi_window_exit = true;
630 } else {
631 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
632 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
634 cpudata->int_window_exit = true;
635 }
636
637 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
638 }
639
640 static void
641 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
642 {
643 struct svm_cpudata *cpudata = vcpu->cpudata;
644 struct vmcb *vmcb = cpudata->vmcb;
645
646 if (nmi) {
647 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
648 cpudata->nmi_window_exit = false;
649 } else {
650 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
651 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
652 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
653 cpudata->int_window_exit = false;
654 }
655
656 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
657 }
658
659 static inline int
660 svm_event_has_error(uint8_t vector)
661 {
662 switch (vector) {
663 case 8: /* #DF */
664 case 10: /* #TS */
665 case 11: /* #NP */
666 case 12: /* #SS */
667 case 13: /* #GP */
668 case 14: /* #PF */
669 case 17: /* #AC */
670 case 30: /* #SX */
671 return 1;
672 default:
673 return 0;
674 }
675 }
676
677 static int
678 svm_vcpu_inject(struct nvmm_cpu *vcpu)
679 {
680 struct nvmm_comm_page *comm = vcpu->comm;
681 struct svm_cpudata *cpudata = vcpu->cpudata;
682 struct vmcb *vmcb = cpudata->vmcb;
683 u_int evtype;
684 uint8_t vector;
685 uint64_t error;
686 int type = 0, err = 0;
687
688 evtype = comm->event.type;
689 vector = comm->event.vector;
690 error = comm->event.u.excp.error;
691 __insn_barrier();
692
693 switch (evtype) {
694 case NVMM_VCPU_EVENT_EXCP:
695 type = SVM_EVENT_TYPE_EXC;
696 if (vector == 2 || vector >= 32)
697 return EINVAL;
698 if (vector == 3 || vector == 0)
699 return EINVAL;
700 err = svm_event_has_error(vector);
701 break;
702 case NVMM_VCPU_EVENT_INTR:
703 type = SVM_EVENT_TYPE_HW_INT;
704 if (vector == 2) {
705 type = SVM_EVENT_TYPE_NMI;
706 svm_event_waitexit_enable(vcpu, true);
707 }
708 err = 0;
709 break;
710 default:
711 return EINVAL;
712 }
713
714 vmcb->ctrl.eventinj =
715 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
716 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
717 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
718 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
719 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
720
721 cpudata->evt_pending = true;
722
723 return 0;
724 }
725
726 static void
727 svm_inject_ud(struct nvmm_cpu *vcpu)
728 {
729 struct nvmm_comm_page *comm = vcpu->comm;
730 int ret __diagused;
731
732 comm->event.type = NVMM_VCPU_EVENT_EXCP;
733 comm->event.vector = 6;
734 comm->event.u.excp.error = 0;
735
736 ret = svm_vcpu_inject(vcpu);
737 KASSERT(ret == 0);
738 }
739
740 static void
741 svm_inject_gp(struct nvmm_cpu *vcpu)
742 {
743 struct nvmm_comm_page *comm = vcpu->comm;
744 int ret __diagused;
745
746 comm->event.type = NVMM_VCPU_EVENT_EXCP;
747 comm->event.vector = 13;
748 comm->event.u.excp.error = 0;
749
750 ret = svm_vcpu_inject(vcpu);
751 KASSERT(ret == 0);
752 }
753
754 static inline int
755 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
756 {
757 if (__predict_true(!vcpu->comm->event_commit)) {
758 return 0;
759 }
760 vcpu->comm->event_commit = false;
761 return svm_vcpu_inject(vcpu);
762 }
763
764 static inline void
765 svm_inkernel_advance(struct vmcb *vmcb)
766 {
767 /*
768 * Maybe we should also apply single-stepping and debug exceptions.
769 * Matters for guest-ring3, because it can execute 'cpuid' under a
770 * debugger.
771 */
772 vmcb->state.rip = vmcb->ctrl.nrip;
773 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
774 }
775
776 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
777
778 static void
779 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
780 {
781 struct svm_cpudata *cpudata = vcpu->cpudata;
782 uint64_t cr4;
783
784 switch (eax) {
785 case 0x00000001:
786 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
787
788 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
789 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
790 CPUID_LOCAL_APIC_ID);
791
792 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
793 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
794
795 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
796
797 /* CPUID2_OSXSAVE depends on CR4. */
798 cr4 = cpudata->vmcb->state.cr4;
799 if (!(cr4 & CR4_OSXSAVE)) {
800 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
801 }
802 break;
803 case 0x00000002: /* Empty */
804 case 0x00000003: /* Empty */
805 case 0x00000004: /* Empty */
806 case 0x00000005: /* Monitor/MWait */
807 case 0x00000006: /* Power Management Related Features */
808 cpudata->vmcb->state.rax = 0;
809 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
810 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
811 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
812 break;
813 case 0x00000007: /* Structured Extended Features */
814 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
815 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
816 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
817 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
818 break;
819 case 0x00000008: /* Empty */
820 case 0x00000009: /* Empty */
821 case 0x0000000A: /* Empty */
822 case 0x0000000B: /* Empty */
823 case 0x0000000C: /* Empty */
824 cpudata->vmcb->state.rax = 0;
825 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
826 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
827 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
828 break;
829 case 0x0000000D: /* Processor Extended State Enumeration */
830 if (svm_xcr0_mask == 0) {
831 break;
832 }
833 switch (ecx) {
834 case 0:
835 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
836 if (cpudata->gxcr0 & XCR0_SSE) {
837 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
838 } else {
839 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
840 }
841 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
842 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
843 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
844 break;
845 case 1:
846 cpudata->vmcb->state.rax &=
847 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
848 CPUID_PES1_XGETBV);
849 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
850 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
851 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
852 break;
853 default:
854 cpudata->vmcb->state.rax = 0;
855 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
856 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
857 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
858 break;
859 }
860 break;
861
862 case 0x40000000: /* Hypervisor Information */
863 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
864 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
865 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
866 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
867 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
868 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
869 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
870 break;
871
872 case 0x80000001:
873 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
874 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
875 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
876 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
877 break;
878 default:
879 break;
880 }
881 }
882
883 static void
884 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
885 {
886 exit->u.insn.npc = vmcb->ctrl.nrip;
887 exit->reason = reason;
888 }
889
890 static void
891 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
892 struct nvmm_vcpu_exit *exit)
893 {
894 struct svm_cpudata *cpudata = vcpu->cpudata;
895 struct nvmm_vcpu_conf_cpuid *cpuid;
896 uint64_t eax, ecx;
897 u_int descs[4];
898 size_t i;
899
900 eax = cpudata->vmcb->state.rax;
901 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
902 x86_cpuid2(eax, ecx, descs);
903
904 cpudata->vmcb->state.rax = descs[0];
905 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
906 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
907 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
908
909 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
910
911 for (i = 0; i < SVM_NCPUIDS; i++) {
912 if (!cpudata->cpuidpresent[i]) {
913 continue;
914 }
915 cpuid = &cpudata->cpuid[i];
916 if (cpuid->leaf != eax) {
917 continue;
918 }
919
920 if (cpuid->exit) {
921 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
922 return;
923 }
924 KASSERT(cpuid->mask);
925
926 /* del */
927 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
928 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
929 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
930 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
931
932 /* set */
933 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
934 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
935 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
936 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
937
938 break;
939 }
940
941 svm_inkernel_advance(cpudata->vmcb);
942 exit->reason = NVMM_VCPU_EXIT_NONE;
943 }
944
945 static void
946 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
947 struct nvmm_vcpu_exit *exit)
948 {
949 struct svm_cpudata *cpudata = vcpu->cpudata;
950 struct vmcb *vmcb = cpudata->vmcb;
951
952 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
953 svm_event_waitexit_disable(vcpu, false);
954 }
955
956 svm_inkernel_advance(cpudata->vmcb);
957 exit->reason = NVMM_VCPU_EXIT_HALTED;
958 }
959
960 #define SVM_EXIT_IO_PORT __BITS(31,16)
961 #define SVM_EXIT_IO_SEG __BITS(12,10)
962 #define SVM_EXIT_IO_A64 __BIT(9)
963 #define SVM_EXIT_IO_A32 __BIT(8)
964 #define SVM_EXIT_IO_A16 __BIT(7)
965 #define SVM_EXIT_IO_SZ32 __BIT(6)
966 #define SVM_EXIT_IO_SZ16 __BIT(5)
967 #define SVM_EXIT_IO_SZ8 __BIT(4)
968 #define SVM_EXIT_IO_REP __BIT(3)
969 #define SVM_EXIT_IO_STR __BIT(2)
970 #define SVM_EXIT_IO_IN __BIT(0)
971
972 static void
973 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
974 struct nvmm_vcpu_exit *exit)
975 {
976 struct svm_cpudata *cpudata = vcpu->cpudata;
977 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
978 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
979
980 exit->reason = NVMM_VCPU_EXIT_IO;
981
982 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
983 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
984
985 if (svm_decode_assist) {
986 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
987 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
988 } else {
989 exit->u.io.seg = -1;
990 }
991
992 if (info & SVM_EXIT_IO_A64) {
993 exit->u.io.address_size = 8;
994 } else if (info & SVM_EXIT_IO_A32) {
995 exit->u.io.address_size = 4;
996 } else if (info & SVM_EXIT_IO_A16) {
997 exit->u.io.address_size = 2;
998 }
999
1000 if (info & SVM_EXIT_IO_SZ32) {
1001 exit->u.io.operand_size = 4;
1002 } else if (info & SVM_EXIT_IO_SZ16) {
1003 exit->u.io.operand_size = 2;
1004 } else if (info & SVM_EXIT_IO_SZ8) {
1005 exit->u.io.operand_size = 1;
1006 }
1007
1008 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1009 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1010 exit->u.io.npc = nextpc;
1011
1012 svm_vcpu_state_provide(vcpu,
1013 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1014 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1015 }
1016
1017 static const uint64_t msr_ignore_list[] = {
1018 0xc0010055, /* MSR_CMPHALT */
1019 MSR_DE_CFG,
1020 MSR_IC_CFG,
1021 MSR_UCODE_AMD_PATCHLEVEL
1022 };
1023
1024 static bool
1025 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1026 struct nvmm_vcpu_exit *exit)
1027 {
1028 struct svm_cpudata *cpudata = vcpu->cpudata;
1029 struct vmcb *vmcb = cpudata->vmcb;
1030 uint64_t val;
1031 size_t i;
1032
1033 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1034 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1035 val = NB_CFG_INITAPICCPUIDLO;
1036 vmcb->state.rax = (val & 0xFFFFFFFF);
1037 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1038 goto handled;
1039 }
1040 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1041 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1042 continue;
1043 val = 0;
1044 vmcb->state.rax = (val & 0xFFFFFFFF);
1045 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1046 goto handled;
1047 }
1048 } else {
1049 if (exit->u.wrmsr.msr == MSR_EFER) {
1050 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1051 goto error;
1052 }
1053 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1054 EFER_TLB_FLUSH) {
1055 cpudata->gtlb_want_flush = true;
1056 }
1057 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1058 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1059 goto handled;
1060 }
1061 if (exit->u.wrmsr.msr == MSR_TSC) {
1062 cpudata->gtsc = exit->u.wrmsr.val;
1063 cpudata->gtsc_want_update = true;
1064 goto handled;
1065 }
1066 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1067 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1068 continue;
1069 goto handled;
1070 }
1071 }
1072
1073 return false;
1074
1075 handled:
1076 svm_inkernel_advance(cpudata->vmcb);
1077 return true;
1078
1079 error:
1080 svm_inject_gp(vcpu);
1081 return true;
1082 }
1083
1084 static inline void
1085 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1086 struct nvmm_vcpu_exit *exit)
1087 {
1088 struct svm_cpudata *cpudata = vcpu->cpudata;
1089
1090 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1091 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1092 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1093
1094 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1095 exit->reason = NVMM_VCPU_EXIT_NONE;
1096 return;
1097 }
1098
1099 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1100 }
1101
1102 static inline void
1103 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1104 struct nvmm_vcpu_exit *exit)
1105 {
1106 struct svm_cpudata *cpudata = vcpu->cpudata;
1107 uint64_t rdx, rax;
1108
1109 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1110 rax = cpudata->vmcb->state.rax;
1111
1112 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1113 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1114 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1115 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1116
1117 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1118 exit->reason = NVMM_VCPU_EXIT_NONE;
1119 return;
1120 }
1121
1122 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1123 }
1124
1125 static void
1126 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1127 struct nvmm_vcpu_exit *exit)
1128 {
1129 struct svm_cpudata *cpudata = vcpu->cpudata;
1130 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1131
1132 if (info == 0) {
1133 svm_exit_rdmsr(mach, vcpu, exit);
1134 } else {
1135 svm_exit_wrmsr(mach, vcpu, exit);
1136 }
1137 }
1138
1139 static void
1140 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1141 struct nvmm_vcpu_exit *exit)
1142 {
1143 struct svm_cpudata *cpudata = vcpu->cpudata;
1144 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1145
1146 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1147 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1148 exit->u.mem.prot = PROT_WRITE;
1149 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1150 exit->u.mem.prot = PROT_EXEC;
1151 else
1152 exit->u.mem.prot = PROT_READ;
1153 exit->u.mem.gpa = gpa;
1154 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1155 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1156 sizeof(exit->u.mem.inst_bytes));
1157
1158 svm_vcpu_state_provide(vcpu,
1159 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1160 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1161 }
1162
1163 static void
1164 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1165 struct nvmm_vcpu_exit *exit)
1166 {
1167 struct svm_cpudata *cpudata = vcpu->cpudata;
1168 struct vmcb *vmcb = cpudata->vmcb;
1169 uint64_t val;
1170
1171 exit->reason = NVMM_VCPU_EXIT_NONE;
1172
1173 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1174 (vmcb->state.rax & 0xFFFFFFFF);
1175
1176 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1177 goto error;
1178 } else if (__predict_false(vmcb->state.cpl != 0)) {
1179 goto error;
1180 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1181 goto error;
1182 } else if (__predict_false((val & XCR0_X87) == 0)) {
1183 goto error;
1184 }
1185
1186 cpudata->gxcr0 = val;
1187
1188 svm_inkernel_advance(cpudata->vmcb);
1189 return;
1190
1191 error:
1192 svm_inject_gp(vcpu);
1193 }
1194
1195 static void
1196 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1197 {
1198 exit->u.inv.hwcode = code;
1199 exit->reason = NVMM_VCPU_EXIT_INVALID;
1200 }
1201
1202 /* -------------------------------------------------------------------------- */
1203
1204 static void
1205 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1206 {
1207 struct svm_cpudata *cpudata = vcpu->cpudata;
1208
1209 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1210
1211 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1212 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1213
1214 if (svm_xcr0_mask != 0) {
1215 cpudata->hxcr0 = rdxcr(0);
1216 wrxcr(0, cpudata->gxcr0);
1217 }
1218 }
1219
1220 static void
1221 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1222 {
1223 struct svm_cpudata *cpudata = vcpu->cpudata;
1224
1225 if (svm_xcr0_mask != 0) {
1226 cpudata->gxcr0 = rdxcr(0);
1227 wrxcr(0, cpudata->hxcr0);
1228 }
1229
1230 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1231 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1232
1233 if (cpudata->ts_set) {
1234 stts();
1235 }
1236 }
1237
1238 static void
1239 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1240 {
1241 struct svm_cpudata *cpudata = vcpu->cpudata;
1242
1243 x86_dbregs_save(curlwp);
1244
1245 ldr7(0);
1246
1247 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1248 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1249 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1250 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1251 }
1252
1253 static void
1254 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1255 {
1256 struct svm_cpudata *cpudata = vcpu->cpudata;
1257
1258 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1259 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1260 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1261 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1262
1263 x86_dbregs_restore(curlwp);
1264 }
1265
1266 static void
1267 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1268 {
1269 struct svm_cpudata *cpudata = vcpu->cpudata;
1270
1271 cpudata->fsbase = rdmsr(MSR_FSBASE);
1272 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1273 }
1274
1275 static void
1276 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1277 {
1278 struct svm_cpudata *cpudata = vcpu->cpudata;
1279
1280 wrmsr(MSR_STAR, cpudata->star);
1281 wrmsr(MSR_LSTAR, cpudata->lstar);
1282 wrmsr(MSR_CSTAR, cpudata->cstar);
1283 wrmsr(MSR_SFMASK, cpudata->sfmask);
1284 wrmsr(MSR_FSBASE, cpudata->fsbase);
1285 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1286 }
1287
1288 /* -------------------------------------------------------------------------- */
1289
1290 static inline void
1291 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1292 {
1293 struct svm_cpudata *cpudata = vcpu->cpudata;
1294
1295 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1296 cpudata->gtlb_want_flush = true;
1297 }
1298 }
1299
1300 static inline void
1301 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1302 {
1303 /*
1304 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1305 * executing on this hCPU and the hTLB already got flushed, or it
1306 * was executing on another hCPU in which case the catchup is done
1307 * in svm_gtlb_catchup().
1308 */
1309 }
1310
1311 static inline uint64_t
1312 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1313 {
1314 struct vmcb *vmcb = cpudata->vmcb;
1315 uint64_t machgen;
1316
1317 machgen = machdata->mach_htlb_gen;
1318 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1319 return machgen;
1320 }
1321
1322 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1323 return machgen;
1324 }
1325
1326 static inline void
1327 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1328 {
1329 struct vmcb *vmcb = cpudata->vmcb;
1330
1331 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1332 cpudata->vcpu_htlb_gen = machgen;
1333 }
1334 }
1335
1336 static inline void
1337 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1338 {
1339 cpudata->evt_pending = false;
1340
1341 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1342 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1343 cpudata->evt_pending = true;
1344 }
1345 }
1346
1347 static int
1348 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1349 struct nvmm_vcpu_exit *exit)
1350 {
1351 struct nvmm_comm_page *comm = vcpu->comm;
1352 struct svm_machdata *machdata = mach->machdata;
1353 struct svm_cpudata *cpudata = vcpu->cpudata;
1354 struct vmcb *vmcb = cpudata->vmcb;
1355 uint64_t machgen;
1356 int hcpu, s;
1357
1358 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1359 return EINVAL;
1360 }
1361 svm_vcpu_state_commit(vcpu);
1362 comm->state_cached = 0;
1363
1364 kpreempt_disable();
1365 hcpu = cpu_number();
1366
1367 svm_gtlb_catchup(vcpu, hcpu);
1368 svm_htlb_catchup(vcpu, hcpu);
1369
1370 if (vcpu->hcpu_last != hcpu) {
1371 svm_vmcb_cache_flush_all(vmcb);
1372 cpudata->gtsc_want_update = true;
1373 }
1374
1375 svm_vcpu_guest_dbregs_enter(vcpu);
1376 svm_vcpu_guest_misc_enter(vcpu);
1377
1378 while (1) {
1379 if (cpudata->gtlb_want_flush) {
1380 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1381 } else {
1382 vmcb->ctrl.tlb_ctrl = 0;
1383 }
1384
1385 if (__predict_false(cpudata->gtsc_want_update)) {
1386 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1387 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1388 }
1389
1390 s = splhigh();
1391 machgen = svm_htlb_flush(machdata, cpudata);
1392 svm_vcpu_guest_fpu_enter(vcpu);
1393 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1394 svm_vcpu_guest_fpu_leave(vcpu);
1395 svm_htlb_flush_ack(cpudata, machgen);
1396 splx(s);
1397
1398 svm_vmcb_cache_default(vmcb);
1399
1400 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1401 cpudata->gtlb_want_flush = false;
1402 cpudata->gtsc_want_update = false;
1403 vcpu->hcpu_last = hcpu;
1404 }
1405 svm_exit_evt(cpudata, vmcb);
1406
1407 switch (vmcb->ctrl.exitcode) {
1408 case VMCB_EXITCODE_INTR:
1409 case VMCB_EXITCODE_NMI:
1410 exit->reason = NVMM_VCPU_EXIT_NONE;
1411 break;
1412 case VMCB_EXITCODE_VINTR:
1413 svm_event_waitexit_disable(vcpu, false);
1414 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1415 break;
1416 case VMCB_EXITCODE_IRET:
1417 svm_event_waitexit_disable(vcpu, true);
1418 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1419 break;
1420 case VMCB_EXITCODE_CPUID:
1421 svm_exit_cpuid(mach, vcpu, exit);
1422 break;
1423 case VMCB_EXITCODE_HLT:
1424 svm_exit_hlt(mach, vcpu, exit);
1425 break;
1426 case VMCB_EXITCODE_IOIO:
1427 svm_exit_io(mach, vcpu, exit);
1428 break;
1429 case VMCB_EXITCODE_MSR:
1430 svm_exit_msr(mach, vcpu, exit);
1431 break;
1432 case VMCB_EXITCODE_SHUTDOWN:
1433 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1434 break;
1435 case VMCB_EXITCODE_RDPMC:
1436 case VMCB_EXITCODE_RSM:
1437 case VMCB_EXITCODE_INVLPGA:
1438 case VMCB_EXITCODE_VMRUN:
1439 case VMCB_EXITCODE_VMMCALL:
1440 case VMCB_EXITCODE_VMLOAD:
1441 case VMCB_EXITCODE_VMSAVE:
1442 case VMCB_EXITCODE_STGI:
1443 case VMCB_EXITCODE_CLGI:
1444 case VMCB_EXITCODE_SKINIT:
1445 case VMCB_EXITCODE_RDTSCP:
1446 svm_inject_ud(vcpu);
1447 exit->reason = NVMM_VCPU_EXIT_NONE;
1448 break;
1449 case VMCB_EXITCODE_MONITOR:
1450 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1451 break;
1452 case VMCB_EXITCODE_MWAIT:
1453 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1454 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1455 break;
1456 case VMCB_EXITCODE_XSETBV:
1457 svm_exit_xsetbv(mach, vcpu, exit);
1458 break;
1459 case VMCB_EXITCODE_NPF:
1460 svm_exit_npf(mach, vcpu, exit);
1461 break;
1462 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1463 default:
1464 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1465 break;
1466 }
1467
1468 /* If no reason to return to userland, keep rolling. */
1469 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1470 break;
1471 }
1472 if (curcpu()->ci_data.cpu_softints != 0) {
1473 break;
1474 }
1475 if (curlwp->l_flag & LW_USERRET) {
1476 break;
1477 }
1478 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1479 break;
1480 }
1481 }
1482
1483 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1484
1485 svm_vcpu_guest_misc_leave(vcpu);
1486 svm_vcpu_guest_dbregs_leave(vcpu);
1487
1488 kpreempt_enable();
1489
1490 exit->exitstate.rflags = vmcb->state.rflags;
1491 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1492 exit->exitstate.int_shadow =
1493 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1494 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1495 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1496 exit->exitstate.evt_pending = cpudata->evt_pending;
1497
1498 return 0;
1499 }
1500
1501 /* -------------------------------------------------------------------------- */
1502
1503 static int
1504 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1505 {
1506 struct pglist pglist;
1507 paddr_t _pa;
1508 vaddr_t _va;
1509 size_t i;
1510 int ret;
1511
1512 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1513 &pglist, 1, 0);
1514 if (ret != 0)
1515 return ENOMEM;
1516 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1517 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1518 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1519 if (_va == 0)
1520 goto error;
1521
1522 for (i = 0; i < npages; i++) {
1523 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1524 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1525 }
1526 pmap_update(pmap_kernel());
1527
1528 memset((void *)_va, 0, npages * PAGE_SIZE);
1529
1530 *pa = _pa;
1531 *va = _va;
1532 return 0;
1533
1534 error:
1535 for (i = 0; i < npages; i++) {
1536 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1537 }
1538 return ENOMEM;
1539 }
1540
1541 static void
1542 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1543 {
1544 size_t i;
1545
1546 pmap_kremove(va, npages * PAGE_SIZE);
1547 pmap_update(pmap_kernel());
1548 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1549 for (i = 0; i < npages; i++) {
1550 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1551 }
1552 }
1553
1554 /* -------------------------------------------------------------------------- */
1555
1556 #define SVM_MSRBM_READ __BIT(0)
1557 #define SVM_MSRBM_WRITE __BIT(1)
1558
1559 static void
1560 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1561 {
1562 uint64_t byte;
1563 uint8_t bitoff;
1564
1565 if (msr < 0x00002000) {
1566 /* Range 1 */
1567 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1568 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1569 /* Range 2 */
1570 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1571 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1572 /* Range 3 */
1573 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1574 } else {
1575 panic("%s: wrong range", __func__);
1576 }
1577
1578 bitoff = (msr & 0x3) << 1;
1579
1580 if (read) {
1581 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1582 }
1583 if (write) {
1584 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1585 }
1586 }
1587
1588 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1589 #define SVM_SEG_ATTRIB_S __BIT(4)
1590 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1591 #define SVM_SEG_ATTRIB_P __BIT(7)
1592 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1593 #define SVM_SEG_ATTRIB_L __BIT(9)
1594 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1595 #define SVM_SEG_ATTRIB_G __BIT(11)
1596
1597 static void
1598 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1599 struct vmcb_segment *vseg)
1600 {
1601 vseg->selector = seg->selector;
1602 vseg->attrib =
1603 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1604 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1605 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1606 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1607 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1608 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1609 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1610 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1611 vseg->limit = seg->limit;
1612 vseg->base = seg->base;
1613 }
1614
1615 static void
1616 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1617 {
1618 seg->selector = vseg->selector;
1619 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1620 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1621 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1622 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1623 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1624 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1625 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1626 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1627 seg->limit = vseg->limit;
1628 seg->base = vseg->base;
1629 }
1630
1631 static inline bool
1632 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1633 uint64_t flags)
1634 {
1635 if (flags & NVMM_X64_STATE_CRS) {
1636 if ((vmcb->state.cr0 ^
1637 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1638 return true;
1639 }
1640 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1641 return true;
1642 }
1643 if ((vmcb->state.cr4 ^
1644 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1645 return true;
1646 }
1647 }
1648
1649 if (flags & NVMM_X64_STATE_MSRS) {
1650 if ((vmcb->state.efer ^
1651 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1652 return true;
1653 }
1654 }
1655
1656 return false;
1657 }
1658
1659 static void
1660 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1661 {
1662 struct nvmm_comm_page *comm = vcpu->comm;
1663 const struct nvmm_x64_state *state = &comm->state;
1664 struct svm_cpudata *cpudata = vcpu->cpudata;
1665 struct vmcb *vmcb = cpudata->vmcb;
1666 struct fxsave *fpustate;
1667 uint64_t flags;
1668
1669 flags = comm->state_wanted;
1670
1671 if (svm_state_tlb_flush(vmcb, state, flags)) {
1672 cpudata->gtlb_want_flush = true;
1673 }
1674
1675 if (flags & NVMM_X64_STATE_SEGS) {
1676 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1677 &vmcb->state.cs);
1678 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1679 &vmcb->state.ds);
1680 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1681 &vmcb->state.es);
1682 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1683 &vmcb->state.fs);
1684 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1685 &vmcb->state.gs);
1686 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1687 &vmcb->state.ss);
1688 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1689 &vmcb->state.gdt);
1690 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1691 &vmcb->state.idt);
1692 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1693 &vmcb->state.ldt);
1694 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1695 &vmcb->state.tr);
1696
1697 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1698 }
1699
1700 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1701 if (flags & NVMM_X64_STATE_GPRS) {
1702 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1703
1704 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1705 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1706 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1707 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1708 }
1709
1710 if (flags & NVMM_X64_STATE_CRS) {
1711 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1712 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1713 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1714 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1715
1716 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1717 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1718 VMCB_CTRL_V_TPR);
1719
1720 if (svm_xcr0_mask != 0) {
1721 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1722 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1723 cpudata->gxcr0 &= svm_xcr0_mask;
1724 cpudata->gxcr0 |= XCR0_X87;
1725 }
1726 }
1727
1728 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1729 if (flags & NVMM_X64_STATE_DRS) {
1730 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1731
1732 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1733 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1734 }
1735
1736 if (flags & NVMM_X64_STATE_MSRS) {
1737 /*
1738 * EFER_SVME is mandatory.
1739 */
1740 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1741 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1742 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1743 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1744 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1745 vmcb->state.kernelgsbase =
1746 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1747 vmcb->state.sysenter_cs =
1748 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1749 vmcb->state.sysenter_esp =
1750 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1751 vmcb->state.sysenter_eip =
1752 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1753 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1754
1755 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1756 cpudata->gtsc_want_update = true;
1757 }
1758
1759 if (flags & NVMM_X64_STATE_INTR) {
1760 if (state->intr.int_shadow) {
1761 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1762 } else {
1763 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1764 }
1765
1766 if (state->intr.int_window_exiting) {
1767 svm_event_waitexit_enable(vcpu, false);
1768 } else {
1769 svm_event_waitexit_disable(vcpu, false);
1770 }
1771
1772 if (state->intr.nmi_window_exiting) {
1773 svm_event_waitexit_enable(vcpu, true);
1774 } else {
1775 svm_event_waitexit_disable(vcpu, true);
1776 }
1777 }
1778
1779 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1780 if (flags & NVMM_X64_STATE_FPU) {
1781 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1782 sizeof(state->fpu));
1783
1784 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1785 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1786 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1787
1788 if (svm_xcr0_mask != 0) {
1789 /* Reset XSTATE_BV, to force a reload. */
1790 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1791 }
1792 }
1793
1794 svm_vmcb_cache_update(vmcb, flags);
1795
1796 comm->state_wanted = 0;
1797 comm->state_cached |= flags;
1798 }
1799
1800 static void
1801 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1802 {
1803 struct nvmm_comm_page *comm = vcpu->comm;
1804 struct nvmm_x64_state *state = &comm->state;
1805 struct svm_cpudata *cpudata = vcpu->cpudata;
1806 struct vmcb *vmcb = cpudata->vmcb;
1807 uint64_t flags;
1808
1809 flags = comm->state_wanted;
1810
1811 if (flags & NVMM_X64_STATE_SEGS) {
1812 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1813 &vmcb->state.cs);
1814 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1815 &vmcb->state.ds);
1816 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1817 &vmcb->state.es);
1818 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1819 &vmcb->state.fs);
1820 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1821 &vmcb->state.gs);
1822 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1823 &vmcb->state.ss);
1824 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1825 &vmcb->state.gdt);
1826 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1827 &vmcb->state.idt);
1828 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1829 &vmcb->state.ldt);
1830 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1831 &vmcb->state.tr);
1832
1833 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1834 }
1835
1836 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1837 if (flags & NVMM_X64_STATE_GPRS) {
1838 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1839
1840 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1841 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1842 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1843 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1844 }
1845
1846 if (flags & NVMM_X64_STATE_CRS) {
1847 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1848 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1849 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1850 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1851 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1852 VMCB_CTRL_V_TPR);
1853 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1854 }
1855
1856 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1857 if (flags & NVMM_X64_STATE_DRS) {
1858 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1859
1860 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1861 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1862 }
1863
1864 if (flags & NVMM_X64_STATE_MSRS) {
1865 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1866 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1867 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1868 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1869 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1870 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1871 vmcb->state.kernelgsbase;
1872 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1873 vmcb->state.sysenter_cs;
1874 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1875 vmcb->state.sysenter_esp;
1876 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1877 vmcb->state.sysenter_eip;
1878 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1879 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1880
1881 /* Hide SVME. */
1882 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1883 }
1884
1885 if (flags & NVMM_X64_STATE_INTR) {
1886 state->intr.int_shadow =
1887 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1888 state->intr.int_window_exiting = cpudata->int_window_exit;
1889 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1890 state->intr.evt_pending = cpudata->evt_pending;
1891 }
1892
1893 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1894 if (flags & NVMM_X64_STATE_FPU) {
1895 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1896 sizeof(state->fpu));
1897 }
1898
1899 comm->state_wanted = 0;
1900 comm->state_cached |= flags;
1901 }
1902
1903 static void
1904 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1905 {
1906 vcpu->comm->state_wanted = flags;
1907 svm_vcpu_getstate(vcpu);
1908 }
1909
1910 static void
1911 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1912 {
1913 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1914 vcpu->comm->state_commit = 0;
1915 svm_vcpu_setstate(vcpu);
1916 }
1917
1918 /* -------------------------------------------------------------------------- */
1919
1920 static void
1921 svm_asid_alloc(struct nvmm_cpu *vcpu)
1922 {
1923 struct svm_cpudata *cpudata = vcpu->cpudata;
1924 struct vmcb *vmcb = cpudata->vmcb;
1925 size_t i, oct, bit;
1926
1927 mutex_enter(&svm_asidlock);
1928
1929 for (i = 0; i < svm_maxasid; i++) {
1930 oct = i / 8;
1931 bit = i % 8;
1932
1933 if (svm_asidmap[oct] & __BIT(bit)) {
1934 continue;
1935 }
1936
1937 svm_asidmap[oct] |= __BIT(bit);
1938 vmcb->ctrl.guest_asid = i;
1939 mutex_exit(&svm_asidlock);
1940 return;
1941 }
1942
1943 /*
1944 * No free ASID. Use the last one, which is shared and requires
1945 * special TLB handling.
1946 */
1947 cpudata->shared_asid = true;
1948 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1949 mutex_exit(&svm_asidlock);
1950 }
1951
1952 static void
1953 svm_asid_free(struct nvmm_cpu *vcpu)
1954 {
1955 struct svm_cpudata *cpudata = vcpu->cpudata;
1956 struct vmcb *vmcb = cpudata->vmcb;
1957 size_t oct, bit;
1958
1959 if (cpudata->shared_asid) {
1960 return;
1961 }
1962
1963 oct = vmcb->ctrl.guest_asid / 8;
1964 bit = vmcb->ctrl.guest_asid % 8;
1965
1966 mutex_enter(&svm_asidlock);
1967 svm_asidmap[oct] &= ~__BIT(bit);
1968 mutex_exit(&svm_asidlock);
1969 }
1970
1971 static void
1972 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1973 {
1974 struct svm_cpudata *cpudata = vcpu->cpudata;
1975 struct vmcb *vmcb = cpudata->vmcb;
1976
1977 /* Allow reads/writes of Control Registers. */
1978 vmcb->ctrl.intercept_cr = 0;
1979
1980 /* Allow reads/writes of Debug Registers. */
1981 vmcb->ctrl.intercept_dr = 0;
1982
1983 /* Allow exceptions 0 to 31. */
1984 vmcb->ctrl.intercept_vec = 0;
1985
1986 /*
1987 * Allow:
1988 * - SMI [smm interrupts]
1989 * - VINTR [virtual interrupts]
1990 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1991 * - RIDTR [reads of IDTR]
1992 * - RGDTR [reads of GDTR]
1993 * - RLDTR [reads of LDTR]
1994 * - RTR [reads of TR]
1995 * - WIDTR [writes of IDTR]
1996 * - WGDTR [writes of GDTR]
1997 * - WLDTR [writes of LDTR]
1998 * - WTR [writes of TR]
1999 * - RDTSC [rdtsc instruction]
2000 * - PUSHF [pushf instruction]
2001 * - POPF [popf instruction]
2002 * - IRET [iret instruction]
2003 * - INTN [int $n instructions]
2004 * - INVD [invd instruction]
2005 * - PAUSE [pause instruction]
2006 * - INVLPG [invplg instruction]
2007 * - TASKSW [task switches]
2008 *
2009 * Intercept the rest below.
2010 */
2011 vmcb->ctrl.intercept_misc1 =
2012 VMCB_CTRL_INTERCEPT_INTR |
2013 VMCB_CTRL_INTERCEPT_NMI |
2014 VMCB_CTRL_INTERCEPT_INIT |
2015 VMCB_CTRL_INTERCEPT_RDPMC |
2016 VMCB_CTRL_INTERCEPT_CPUID |
2017 VMCB_CTRL_INTERCEPT_RSM |
2018 VMCB_CTRL_INTERCEPT_HLT |
2019 VMCB_CTRL_INTERCEPT_INVLPGA |
2020 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2021 VMCB_CTRL_INTERCEPT_MSR_PROT |
2022 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2023 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2024
2025 /*
2026 * Allow:
2027 * - ICEBP [icebp instruction]
2028 * - WBINVD [wbinvd instruction]
2029 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2030 *
2031 * Intercept the rest below.
2032 */
2033 vmcb->ctrl.intercept_misc2 =
2034 VMCB_CTRL_INTERCEPT_VMRUN |
2035 VMCB_CTRL_INTERCEPT_VMMCALL |
2036 VMCB_CTRL_INTERCEPT_VMLOAD |
2037 VMCB_CTRL_INTERCEPT_VMSAVE |
2038 VMCB_CTRL_INTERCEPT_STGI |
2039 VMCB_CTRL_INTERCEPT_CLGI |
2040 VMCB_CTRL_INTERCEPT_SKINIT |
2041 VMCB_CTRL_INTERCEPT_RDTSCP |
2042 VMCB_CTRL_INTERCEPT_MONITOR |
2043 VMCB_CTRL_INTERCEPT_MWAIT |
2044 VMCB_CTRL_INTERCEPT_XSETBV;
2045
2046 /* Intercept all I/O accesses. */
2047 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2048 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2049
2050 /* Allow direct access to certain MSRs. */
2051 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2052 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2053 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2054 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2055 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2056 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2057 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2058 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2059 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2060 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2061 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2062 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2063 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2064 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2065 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2066
2067 /* Generate ASID. */
2068 svm_asid_alloc(vcpu);
2069
2070 /* Virtual TPR. */
2071 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2072
2073 /* Enable Nested Paging. */
2074 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2075 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2076
2077 /* Init XSAVE header. */
2078 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2079 cpudata->gfpu.xsh_xcomp_bv = 0;
2080
2081 /* These MSRs are static. */
2082 cpudata->star = rdmsr(MSR_STAR);
2083 cpudata->lstar = rdmsr(MSR_LSTAR);
2084 cpudata->cstar = rdmsr(MSR_CSTAR);
2085 cpudata->sfmask = rdmsr(MSR_SFMASK);
2086
2087 /* Install the RESET state. */
2088 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2089 sizeof(nvmm_x86_reset_state));
2090 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2091 vcpu->comm->state_cached = 0;
2092 svm_vcpu_setstate(vcpu);
2093 }
2094
2095 static int
2096 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2097 {
2098 struct svm_cpudata *cpudata;
2099 int error;
2100
2101 /* Allocate the SVM cpudata. */
2102 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2103 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2104 UVM_KMF_WIRED|UVM_KMF_ZERO);
2105 vcpu->cpudata = cpudata;
2106
2107 /* VMCB */
2108 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2109 VMCB_NPAGES);
2110 if (error)
2111 goto error;
2112
2113 /* I/O Bitmap */
2114 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2115 IOBM_NPAGES);
2116 if (error)
2117 goto error;
2118
2119 /* MSR Bitmap */
2120 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2121 MSRBM_NPAGES);
2122 if (error)
2123 goto error;
2124
2125 /* Init the VCPU info. */
2126 svm_vcpu_init(mach, vcpu);
2127
2128 return 0;
2129
2130 error:
2131 if (cpudata->vmcb_pa) {
2132 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2133 VMCB_NPAGES);
2134 }
2135 if (cpudata->iobm_pa) {
2136 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2137 IOBM_NPAGES);
2138 }
2139 if (cpudata->msrbm_pa) {
2140 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2141 MSRBM_NPAGES);
2142 }
2143 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2144 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2145 return error;
2146 }
2147
2148 static void
2149 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2150 {
2151 struct svm_cpudata *cpudata = vcpu->cpudata;
2152
2153 svm_asid_free(vcpu);
2154
2155 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2156 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2157 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2158
2159 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2160 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2161 }
2162
2163 /* -------------------------------------------------------------------------- */
2164
2165 static int
2166 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2167 {
2168 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2169 size_t i;
2170
2171 if (__predict_false(cpuid->mask && cpuid->exit)) {
2172 return EINVAL;
2173 }
2174 if (__predict_false(cpuid->mask &&
2175 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2176 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2177 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2178 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2179 return EINVAL;
2180 }
2181
2182 /* If unset, delete, to restore the default behavior. */
2183 if (!cpuid->mask && !cpuid->exit) {
2184 for (i = 0; i < SVM_NCPUIDS; i++) {
2185 if (!cpudata->cpuidpresent[i]) {
2186 continue;
2187 }
2188 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2189 cpudata->cpuidpresent[i] = false;
2190 }
2191 }
2192 return 0;
2193 }
2194
2195 /* If already here, replace. */
2196 for (i = 0; i < SVM_NCPUIDS; i++) {
2197 if (!cpudata->cpuidpresent[i]) {
2198 continue;
2199 }
2200 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2201 memcpy(&cpudata->cpuid[i], cpuid,
2202 sizeof(struct nvmm_vcpu_conf_cpuid));
2203 return 0;
2204 }
2205 }
2206
2207 /* Not here, insert. */
2208 for (i = 0; i < SVM_NCPUIDS; i++) {
2209 if (!cpudata->cpuidpresent[i]) {
2210 cpudata->cpuidpresent[i] = true;
2211 memcpy(&cpudata->cpuid[i], cpuid,
2212 sizeof(struct nvmm_vcpu_conf_cpuid));
2213 return 0;
2214 }
2215 }
2216
2217 return ENOBUFS;
2218 }
2219
2220 static int
2221 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2222 {
2223 struct svm_cpudata *cpudata = vcpu->cpudata;
2224
2225 switch (op) {
2226 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2227 return svm_vcpu_configure_cpuid(cpudata, data);
2228 default:
2229 return EINVAL;
2230 }
2231 }
2232
2233 /* -------------------------------------------------------------------------- */
2234
2235 static void
2236 svm_tlb_flush(struct pmap *pm)
2237 {
2238 struct nvmm_machine *mach = pm->pm_data;
2239 struct svm_machdata *machdata = mach->machdata;
2240
2241 atomic_inc_64(&machdata->mach_htlb_gen);
2242
2243 /* Generates IPIs, which cause #VMEXITs. */
2244 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2245 }
2246
2247 static void
2248 svm_machine_create(struct nvmm_machine *mach)
2249 {
2250 struct svm_machdata *machdata;
2251
2252 /* Fill in pmap info. */
2253 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2254 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2255
2256 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2257 mach->machdata = machdata;
2258
2259 /* Start with an hTLB flush everywhere. */
2260 machdata->mach_htlb_gen = 1;
2261 }
2262
2263 static void
2264 svm_machine_destroy(struct nvmm_machine *mach)
2265 {
2266 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2267 }
2268
2269 static int
2270 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2271 {
2272 panic("%s: impossible", __func__);
2273 }
2274
2275 /* -------------------------------------------------------------------------- */
2276
2277 static bool
2278 svm_ident(void)
2279 {
2280 u_int descs[4];
2281 uint64_t msr;
2282
2283 if (cpu_vendor != CPUVENDOR_AMD) {
2284 return false;
2285 }
2286 if (!(cpu_feature[3] & CPUID_SVM)) {
2287 printf("NVMM: SVM not supported\n");
2288 return false;
2289 }
2290
2291 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2292 printf("NVMM: CPUID leaf not available\n");
2293 return false;
2294 }
2295 x86_cpuid(0x8000000a, descs);
2296
2297 /* Want Nested Paging. */
2298 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2299 printf("NVMM: SVM-NP not supported\n");
2300 return false;
2301 }
2302
2303 /* Want nRIP. */
2304 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2305 printf("NVMM: SVM-NRIPS not supported\n");
2306 return false;
2307 }
2308
2309 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2310
2311 msr = rdmsr(MSR_VMCR);
2312 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2313 printf("NVMM: SVM disabled in BIOS\n");
2314 return false;
2315 }
2316
2317 return true;
2318 }
2319
2320 static void
2321 svm_init_asid(uint32_t maxasid)
2322 {
2323 size_t i, j, allocsz;
2324
2325 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2326
2327 /* Arbitrarily limit. */
2328 maxasid = uimin(maxasid, 8192);
2329
2330 svm_maxasid = maxasid;
2331 allocsz = roundup(maxasid, 8) / 8;
2332 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2333
2334 /* ASID 0 is reserved for the host. */
2335 svm_asidmap[0] |= __BIT(0);
2336
2337 /* ASID n-1 is special, we share it. */
2338 i = (maxasid - 1) / 8;
2339 j = (maxasid - 1) % 8;
2340 svm_asidmap[i] |= __BIT(j);
2341 }
2342
2343 static void
2344 svm_change_cpu(void *arg1, void *arg2)
2345 {
2346 bool enable = (bool)arg1;
2347 uint64_t msr;
2348
2349 msr = rdmsr(MSR_VMCR);
2350 if (msr & VMCR_SVMED) {
2351 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2352 }
2353
2354 if (!enable) {
2355 wrmsr(MSR_VM_HSAVE_PA, 0);
2356 }
2357
2358 msr = rdmsr(MSR_EFER);
2359 if (enable) {
2360 msr |= EFER_SVME;
2361 } else {
2362 msr &= ~EFER_SVME;
2363 }
2364 wrmsr(MSR_EFER, msr);
2365
2366 if (enable) {
2367 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2368 }
2369 }
2370
2371 static void
2372 svm_init(void)
2373 {
2374 CPU_INFO_ITERATOR cii;
2375 struct cpu_info *ci;
2376 struct vm_page *pg;
2377 u_int descs[4];
2378 uint64_t xc;
2379
2380 x86_cpuid(0x8000000a, descs);
2381
2382 /* The guest TLB flush command. */
2383 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2384 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2385 } else {
2386 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2387 }
2388
2389 /* Init the ASID. */
2390 svm_init_asid(descs[1]);
2391
2392 /* Init the XCR0 mask. */
2393 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2394
2395 memset(hsave, 0, sizeof(hsave));
2396 for (CPU_INFO_FOREACH(cii, ci)) {
2397 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2398 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2399 }
2400
2401 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2402 xc_wait(xc);
2403 }
2404
2405 static void
2406 svm_fini_asid(void)
2407 {
2408 size_t allocsz;
2409
2410 allocsz = roundup(svm_maxasid, 8) / 8;
2411 kmem_free(svm_asidmap, allocsz);
2412
2413 mutex_destroy(&svm_asidlock);
2414 }
2415
2416 static void
2417 svm_fini(void)
2418 {
2419 uint64_t xc;
2420 size_t i;
2421
2422 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2423 xc_wait(xc);
2424
2425 for (i = 0; i < MAXCPUS; i++) {
2426 if (hsave[i].pa != 0)
2427 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2428 }
2429
2430 svm_fini_asid();
2431 }
2432
2433 static void
2434 svm_capability(struct nvmm_capability *cap)
2435 {
2436 cap->arch.mach_conf_support = 0;
2437 cap->arch.vcpu_conf_support =
2438 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2439 cap->arch.xcr0_mask = svm_xcr0_mask;
2440 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2441 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2442 }
2443
2444 const struct nvmm_impl nvmm_x86_svm = {
2445 .ident = svm_ident,
2446 .init = svm_init,
2447 .fini = svm_fini,
2448 .capability = svm_capability,
2449 .mach_conf_max = NVMM_X86_MACH_NCONF,
2450 .mach_conf_sizes = NULL,
2451 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2452 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2453 .state_size = sizeof(struct nvmm_x64_state),
2454 .machine_create = svm_machine_create,
2455 .machine_destroy = svm_machine_destroy,
2456 .machine_configure = svm_machine_configure,
2457 .vcpu_create = svm_vcpu_create,
2458 .vcpu_destroy = svm_vcpu_destroy,
2459 .vcpu_configure = svm_vcpu_configure,
2460 .vcpu_setstate = svm_vcpu_setstate,
2461 .vcpu_getstate = svm_vcpu_getstate,
2462 .vcpu_inject = svm_vcpu_inject,
2463 .vcpu_run = svm_vcpu_run
2464 };
2465