nvmm_x86_svm.c revision 1.46.4.8 1 /* $NetBSD: nvmm_x86_svm.c,v 1.46.4.8 2020/08/18 09:29:52 martin Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.46.4.8 2020/08/18 09:29:52 martin Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_INVLPGB 0x00A0
224 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
225 #define VMCB_EXITCODE_INVPCID 0x00A2
226 #define VMCB_EXITCODE_MCOMMIT 0x00A3
227 #define VMCB_EXITCODE_TLBSYNC 0x00A4
228 #define VMCB_EXITCODE_NPF 0x0400
229 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
230 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
231 #define VMCB_EXITCODE_VMGEXIT 0x0403
232 #define VMCB_EXITCODE_BUSY -2ULL
233 #define VMCB_EXITCODE_INVALID -1ULL
234
235 /* -------------------------------------------------------------------------- */
236
237 struct vmcb_ctrl {
238 uint32_t intercept_cr;
239 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
240 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
241
242 uint32_t intercept_dr;
243 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
244 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
245
246 uint32_t intercept_vec;
247 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
248
249 uint32_t intercept_misc1;
250 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
251 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
252 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
253 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
254 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
255 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
256 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
257 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
258 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
259 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
260 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
261 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
262 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
263 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
264 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
265 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
266 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
267 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
268 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
269 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
270 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
271 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
272 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
273 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
274 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
275 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
276 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
277 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
278 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
279 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
280 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
281 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
282
283 uint32_t intercept_misc2;
284 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
285 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
286 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
287 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
288 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
289 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
290 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
291 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
292 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
293 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
294 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
295 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
296 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
297 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
298 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
299 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
300 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
301
302 uint32_t intercept_misc3;
303 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
304 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
305 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
306 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
307 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
308
309 uint8_t rsvd1[36];
310 uint16_t pause_filt_thresh;
311 uint16_t pause_filt_cnt;
312 uint64_t iopm_base_pa;
313 uint64_t msrpm_base_pa;
314 uint64_t tsc_offset;
315 uint32_t guest_asid;
316
317 uint32_t tlb_ctrl;
318 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
319 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
320 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
321
322 uint64_t v;
323 #define VMCB_CTRL_V_TPR __BITS(3,0)
324 #define VMCB_CTRL_V_IRQ __BIT(8)
325 #define VMCB_CTRL_V_VGIF __BIT(9)
326 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
327 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
328 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
329 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
330 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
331 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
332
333 uint64_t intr;
334 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
335 #define VMCB_CTRL_INTR_MASK __BIT(1)
336
337 uint64_t exitcode;
338 uint64_t exitinfo1;
339 uint64_t exitinfo2;
340
341 uint64_t exitintinfo;
342 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
343 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
344 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
345 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
346 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
347
348 uint64_t enable1;
349 #define VMCB_CTRL_ENABLE_NP __BIT(0)
350 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
351 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
352 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
353 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
354
355 uint64_t avic;
356 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
357
358 uint64_t ghcb;
359
360 uint64_t eventinj;
361 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
362 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
363 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
364 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
365 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
366
367 uint64_t n_cr3;
368
369 uint64_t enable2;
370 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
371 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
372
373 uint32_t vmcb_clean;
374 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
375 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
376 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
377 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
378 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
379 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
380 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
381 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
382 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
383 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
384 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
385 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
386
387 uint32_t rsvd2;
388 uint64_t nrip;
389 uint8_t inst_len;
390 uint8_t inst_bytes[15];
391 uint64_t avic_abpp;
392 uint64_t rsvd3;
393 uint64_t avic_ltp;
394
395 uint64_t avic_phys;
396 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
397 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
398
399 uint64_t rsvd4;
400 uint64_t vmsa_ptr;
401
402 uint8_t pad[752];
403 } __packed;
404
405 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
406
407 struct vmcb_segment {
408 uint16_t selector;
409 uint16_t attrib; /* hidden */
410 uint32_t limit; /* hidden */
411 uint64_t base; /* hidden */
412 } __packed;
413
414 CTASSERT(sizeof(struct vmcb_segment) == 16);
415
416 struct vmcb_state {
417 struct vmcb_segment es;
418 struct vmcb_segment cs;
419 struct vmcb_segment ss;
420 struct vmcb_segment ds;
421 struct vmcb_segment fs;
422 struct vmcb_segment gs;
423 struct vmcb_segment gdt;
424 struct vmcb_segment ldt;
425 struct vmcb_segment idt;
426 struct vmcb_segment tr;
427 uint8_t rsvd1[43];
428 uint8_t cpl;
429 uint8_t rsvd2[4];
430 uint64_t efer;
431 uint8_t rsvd3[112];
432 uint64_t cr4;
433 uint64_t cr3;
434 uint64_t cr0;
435 uint64_t dr7;
436 uint64_t dr6;
437 uint64_t rflags;
438 uint64_t rip;
439 uint8_t rsvd4[88];
440 uint64_t rsp;
441 uint8_t rsvd5[24];
442 uint64_t rax;
443 uint64_t star;
444 uint64_t lstar;
445 uint64_t cstar;
446 uint64_t sfmask;
447 uint64_t kernelgsbase;
448 uint64_t sysenter_cs;
449 uint64_t sysenter_esp;
450 uint64_t sysenter_eip;
451 uint64_t cr2;
452 uint8_t rsvd6[32];
453 uint64_t g_pat;
454 uint64_t dbgctl;
455 uint64_t br_from;
456 uint64_t br_to;
457 uint64_t int_from;
458 uint64_t int_to;
459 uint8_t pad[2408];
460 } __packed;
461
462 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
463
464 struct vmcb {
465 struct vmcb_ctrl ctrl;
466 struct vmcb_state state;
467 } __packed;
468
469 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
470 CTASSERT(offsetof(struct vmcb, state) == 0x400);
471
472 /* -------------------------------------------------------------------------- */
473
474 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
475 static void svm_vcpu_state_commit(struct nvmm_cpu *);
476
477 struct svm_hsave {
478 paddr_t pa;
479 };
480
481 static struct svm_hsave hsave[MAXCPUS];
482
483 static uint8_t *svm_asidmap __read_mostly;
484 static uint32_t svm_maxasid __read_mostly;
485 static kmutex_t svm_asidlock __cacheline_aligned;
486
487 static bool svm_decode_assist __read_mostly;
488 static uint32_t svm_ctrl_tlb_flush __read_mostly;
489
490 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
491 static uint64_t svm_xcr0_mask __read_mostly;
492
493 #define SVM_NCPUIDS 32
494
495 #define VMCB_NPAGES 1
496
497 #define MSRBM_NPAGES 2
498 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
499
500 #define IOBM_NPAGES 3
501 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
502
503 /* Does not include EFER_LMSLE. */
504 #define EFER_VALID \
505 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
506
507 #define EFER_TLB_FLUSH \
508 (EFER_NXE|EFER_LMA|EFER_LME)
509 #define CR0_TLB_FLUSH \
510 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
511 #define CR4_TLB_FLUSH \
512 (CR4_PGE|CR4_PAE|CR4_PSE)
513
514 /* -------------------------------------------------------------------------- */
515
516 struct svm_machdata {
517 volatile uint64_t mach_htlb_gen;
518 };
519
520 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
521 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
522 sizeof(struct nvmm_vcpu_conf_cpuid),
523 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
524 sizeof(struct nvmm_vcpu_conf_tpr)
525 };
526
527 struct svm_cpudata {
528 /* General */
529 bool shared_asid;
530 bool gtlb_want_flush;
531 bool gtsc_want_update;
532 uint64_t vcpu_htlb_gen;
533
534 /* VMCB */
535 struct vmcb *vmcb;
536 paddr_t vmcb_pa;
537
538 /* I/O bitmap */
539 uint8_t *iobm;
540 paddr_t iobm_pa;
541
542 /* MSR bitmap */
543 uint8_t *msrbm;
544 paddr_t msrbm_pa;
545
546 /* Host state */
547 uint64_t hxcr0;
548 uint64_t star;
549 uint64_t lstar;
550 uint64_t cstar;
551 uint64_t sfmask;
552 uint64_t fsbase;
553 uint64_t kernelgsbase;
554 bool ts_set;
555 struct xsave_header hfpu __aligned(64);
556
557 /* Intr state */
558 bool int_window_exit;
559 bool nmi_window_exit;
560 bool evt_pending;
561
562 /* Guest state */
563 uint64_t gxcr0;
564 uint64_t gprs[NVMM_X64_NGPR];
565 uint64_t drs[NVMM_X64_NDR];
566 uint64_t gtsc;
567 struct xsave_header gfpu __aligned(64);
568
569 /* VCPU configuration. */
570 bool cpuidpresent[SVM_NCPUIDS];
571 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
572 };
573
574 static void
575 svm_vmcb_cache_default(struct vmcb *vmcb)
576 {
577 vmcb->ctrl.vmcb_clean =
578 VMCB_CTRL_VMCB_CLEAN_I |
579 VMCB_CTRL_VMCB_CLEAN_IOPM |
580 VMCB_CTRL_VMCB_CLEAN_ASID |
581 VMCB_CTRL_VMCB_CLEAN_TPR |
582 VMCB_CTRL_VMCB_CLEAN_NP |
583 VMCB_CTRL_VMCB_CLEAN_CR |
584 VMCB_CTRL_VMCB_CLEAN_DR |
585 VMCB_CTRL_VMCB_CLEAN_DT |
586 VMCB_CTRL_VMCB_CLEAN_SEG |
587 VMCB_CTRL_VMCB_CLEAN_CR2 |
588 VMCB_CTRL_VMCB_CLEAN_LBR |
589 VMCB_CTRL_VMCB_CLEAN_AVIC;
590 }
591
592 static void
593 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
594 {
595 if (flags & NVMM_X64_STATE_SEGS) {
596 vmcb->ctrl.vmcb_clean &=
597 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
598 }
599 if (flags & NVMM_X64_STATE_CRS) {
600 vmcb->ctrl.vmcb_clean &=
601 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
602 VMCB_CTRL_VMCB_CLEAN_TPR);
603 }
604 if (flags & NVMM_X64_STATE_DRS) {
605 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
606 }
607 if (flags & NVMM_X64_STATE_MSRS) {
608 /* CR for EFER, NP for PAT. */
609 vmcb->ctrl.vmcb_clean &=
610 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
611 }
612 }
613
614 static inline void
615 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
616 {
617 vmcb->ctrl.vmcb_clean &= ~flags;
618 }
619
620 static inline void
621 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
622 {
623 vmcb->ctrl.vmcb_clean = 0;
624 }
625
626 #define SVM_EVENT_TYPE_HW_INT 0
627 #define SVM_EVENT_TYPE_NMI 2
628 #define SVM_EVENT_TYPE_EXC 3
629 #define SVM_EVENT_TYPE_SW_INT 4
630
631 static void
632 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
633 {
634 struct svm_cpudata *cpudata = vcpu->cpudata;
635 struct vmcb *vmcb = cpudata->vmcb;
636
637 if (nmi) {
638 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
639 cpudata->nmi_window_exit = true;
640 } else {
641 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
642 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
643 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
644 cpudata->int_window_exit = true;
645 }
646
647 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
648 }
649
650 static void
651 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
652 {
653 struct svm_cpudata *cpudata = vcpu->cpudata;
654 struct vmcb *vmcb = cpudata->vmcb;
655
656 if (nmi) {
657 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
658 cpudata->nmi_window_exit = false;
659 } else {
660 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
661 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
662 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
663 cpudata->int_window_exit = false;
664 }
665
666 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
667 }
668
669 static inline int
670 svm_event_has_error(uint8_t vector)
671 {
672 switch (vector) {
673 case 8: /* #DF */
674 case 10: /* #TS */
675 case 11: /* #NP */
676 case 12: /* #SS */
677 case 13: /* #GP */
678 case 14: /* #PF */
679 case 17: /* #AC */
680 case 30: /* #SX */
681 return 1;
682 default:
683 return 0;
684 }
685 }
686
687 static int
688 svm_vcpu_inject(struct nvmm_cpu *vcpu)
689 {
690 struct nvmm_comm_page *comm = vcpu->comm;
691 struct svm_cpudata *cpudata = vcpu->cpudata;
692 struct vmcb *vmcb = cpudata->vmcb;
693 u_int evtype;
694 uint8_t vector;
695 uint64_t error;
696 int type = 0, err = 0;
697
698 evtype = comm->event.type;
699 vector = comm->event.vector;
700 error = comm->event.u.excp.error;
701 __insn_barrier();
702
703 switch (evtype) {
704 case NVMM_VCPU_EVENT_EXCP:
705 type = SVM_EVENT_TYPE_EXC;
706 if (vector == 2 || vector >= 32)
707 return EINVAL;
708 if (vector == 3 || vector == 0)
709 return EINVAL;
710 err = svm_event_has_error(vector);
711 break;
712 case NVMM_VCPU_EVENT_INTR:
713 type = SVM_EVENT_TYPE_HW_INT;
714 if (vector == 2) {
715 type = SVM_EVENT_TYPE_NMI;
716 svm_event_waitexit_enable(vcpu, true);
717 }
718 err = 0;
719 break;
720 default:
721 return EINVAL;
722 }
723
724 vmcb->ctrl.eventinj =
725 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
726 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
727 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
728 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
729 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
730
731 cpudata->evt_pending = true;
732
733 return 0;
734 }
735
736 static void
737 svm_inject_ud(struct nvmm_cpu *vcpu)
738 {
739 struct nvmm_comm_page *comm = vcpu->comm;
740 int ret __diagused;
741
742 comm->event.type = NVMM_VCPU_EVENT_EXCP;
743 comm->event.vector = 6;
744 comm->event.u.excp.error = 0;
745
746 ret = svm_vcpu_inject(vcpu);
747 KASSERT(ret == 0);
748 }
749
750 static void
751 svm_inject_gp(struct nvmm_cpu *vcpu)
752 {
753 struct nvmm_comm_page *comm = vcpu->comm;
754 int ret __diagused;
755
756 comm->event.type = NVMM_VCPU_EVENT_EXCP;
757 comm->event.vector = 13;
758 comm->event.u.excp.error = 0;
759
760 ret = svm_vcpu_inject(vcpu);
761 KASSERT(ret == 0);
762 }
763
764 static inline int
765 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
766 {
767 if (__predict_true(!vcpu->comm->event_commit)) {
768 return 0;
769 }
770 vcpu->comm->event_commit = false;
771 return svm_vcpu_inject(vcpu);
772 }
773
774 static inline void
775 svm_inkernel_advance(struct vmcb *vmcb)
776 {
777 /*
778 * Maybe we should also apply single-stepping and debug exceptions.
779 * Matters for guest-ring3, because it can execute 'cpuid' under a
780 * debugger.
781 */
782 vmcb->state.rip = vmcb->ctrl.nrip;
783 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
784 }
785
786 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
787
788 static void
789 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
790 {
791 struct svm_cpudata *cpudata = vcpu->cpudata;
792 uint64_t cr4;
793
794 switch (eax) {
795 case 0x00000001:
796 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
797
798 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
799 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
800 CPUID_LOCAL_APIC_ID);
801
802 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
803 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
804
805 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
806
807 /* CPUID2_OSXSAVE depends on CR4. */
808 cr4 = cpudata->vmcb->state.cr4;
809 if (!(cr4 & CR4_OSXSAVE)) {
810 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
811 }
812 break;
813 case 0x00000002: /* Empty */
814 case 0x00000003: /* Empty */
815 case 0x00000004: /* Empty */
816 case 0x00000005: /* Monitor/MWait */
817 case 0x00000006: /* Power Management Related Features */
818 cpudata->vmcb->state.rax = 0;
819 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
820 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
821 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
822 break;
823 case 0x00000007: /* Structured Extended Features */
824 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
825 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
826 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
827 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
828 break;
829 case 0x00000008: /* Empty */
830 case 0x00000009: /* Empty */
831 case 0x0000000A: /* Empty */
832 case 0x0000000B: /* Empty */
833 case 0x0000000C: /* Empty */
834 cpudata->vmcb->state.rax = 0;
835 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
836 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
837 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
838 break;
839 case 0x0000000D: /* Processor Extended State Enumeration */
840 if (svm_xcr0_mask == 0) {
841 break;
842 }
843 switch (ecx) {
844 case 0:
845 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
846 if (cpudata->gxcr0 & XCR0_SSE) {
847 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
848 } else {
849 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
850 }
851 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
852 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
853 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
854 break;
855 case 1:
856 cpudata->vmcb->state.rax &=
857 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
858 CPUID_PES1_XGETBV);
859 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
860 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
861 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
862 break;
863 default:
864 cpudata->vmcb->state.rax = 0;
865 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
866 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
867 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
868 break;
869 }
870 break;
871
872 case 0x40000000: /* Hypervisor Information */
873 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
874 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
875 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
876 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
877 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
878 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
879 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
880 break;
881
882 case 0x80000001:
883 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
884 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
885 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
886 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
887 break;
888 default:
889 break;
890 }
891 }
892
893 static void
894 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
895 {
896 exit->u.insn.npc = vmcb->ctrl.nrip;
897 exit->reason = reason;
898 }
899
900 static void
901 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
902 struct nvmm_vcpu_exit *exit)
903 {
904 struct svm_cpudata *cpudata = vcpu->cpudata;
905 struct nvmm_vcpu_conf_cpuid *cpuid;
906 uint64_t eax, ecx;
907 u_int descs[4];
908 size_t i;
909
910 eax = cpudata->vmcb->state.rax;
911 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
912 x86_cpuid2(eax, ecx, descs);
913
914 cpudata->vmcb->state.rax = descs[0];
915 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
916 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
917 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
918
919 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
920
921 for (i = 0; i < SVM_NCPUIDS; i++) {
922 if (!cpudata->cpuidpresent[i]) {
923 continue;
924 }
925 cpuid = &cpudata->cpuid[i];
926 if (cpuid->leaf != eax) {
927 continue;
928 }
929
930 if (cpuid->exit) {
931 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
932 return;
933 }
934 KASSERT(cpuid->mask);
935
936 /* del */
937 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
938 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
939 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
940 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
941
942 /* set */
943 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
944 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
945 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
946 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
947
948 break;
949 }
950
951 svm_inkernel_advance(cpudata->vmcb);
952 exit->reason = NVMM_VCPU_EXIT_NONE;
953 }
954
955 static void
956 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
957 struct nvmm_vcpu_exit *exit)
958 {
959 struct svm_cpudata *cpudata = vcpu->cpudata;
960 struct vmcb *vmcb = cpudata->vmcb;
961
962 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
963 svm_event_waitexit_disable(vcpu, false);
964 }
965
966 svm_inkernel_advance(cpudata->vmcb);
967 exit->reason = NVMM_VCPU_EXIT_HALTED;
968 }
969
970 #define SVM_EXIT_IO_PORT __BITS(31,16)
971 #define SVM_EXIT_IO_SEG __BITS(12,10)
972 #define SVM_EXIT_IO_A64 __BIT(9)
973 #define SVM_EXIT_IO_A32 __BIT(8)
974 #define SVM_EXIT_IO_A16 __BIT(7)
975 #define SVM_EXIT_IO_SZ32 __BIT(6)
976 #define SVM_EXIT_IO_SZ16 __BIT(5)
977 #define SVM_EXIT_IO_SZ8 __BIT(4)
978 #define SVM_EXIT_IO_REP __BIT(3)
979 #define SVM_EXIT_IO_STR __BIT(2)
980 #define SVM_EXIT_IO_IN __BIT(0)
981
982 static void
983 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
984 struct nvmm_vcpu_exit *exit)
985 {
986 struct svm_cpudata *cpudata = vcpu->cpudata;
987 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
988 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
989
990 exit->reason = NVMM_VCPU_EXIT_IO;
991
992 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
993 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
994
995 if (svm_decode_assist) {
996 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
997 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
998 } else {
999 exit->u.io.seg = -1;
1000 }
1001
1002 if (info & SVM_EXIT_IO_A64) {
1003 exit->u.io.address_size = 8;
1004 } else if (info & SVM_EXIT_IO_A32) {
1005 exit->u.io.address_size = 4;
1006 } else if (info & SVM_EXIT_IO_A16) {
1007 exit->u.io.address_size = 2;
1008 }
1009
1010 if (info & SVM_EXIT_IO_SZ32) {
1011 exit->u.io.operand_size = 4;
1012 } else if (info & SVM_EXIT_IO_SZ16) {
1013 exit->u.io.operand_size = 2;
1014 } else if (info & SVM_EXIT_IO_SZ8) {
1015 exit->u.io.operand_size = 1;
1016 }
1017
1018 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1019 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1020 exit->u.io.npc = nextpc;
1021
1022 svm_vcpu_state_provide(vcpu,
1023 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1024 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1025 }
1026
1027 static const uint64_t msr_ignore_list[] = {
1028 0xc0010055, /* MSR_CMPHALT */
1029 MSR_DE_CFG,
1030 MSR_IC_CFG,
1031 MSR_UCODE_AMD_PATCHLEVEL
1032 };
1033
1034 static bool
1035 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1036 struct nvmm_vcpu_exit *exit)
1037 {
1038 struct svm_cpudata *cpudata = vcpu->cpudata;
1039 struct vmcb *vmcb = cpudata->vmcb;
1040 uint64_t val;
1041 size_t i;
1042
1043 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1044 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1045 val = NB_CFG_INITAPICCPUIDLO;
1046 vmcb->state.rax = (val & 0xFFFFFFFF);
1047 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1048 goto handled;
1049 }
1050 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1051 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1052 continue;
1053 val = 0;
1054 vmcb->state.rax = (val & 0xFFFFFFFF);
1055 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1056 goto handled;
1057 }
1058 } else {
1059 if (exit->u.wrmsr.msr == MSR_EFER) {
1060 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1061 goto error;
1062 }
1063 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1064 EFER_TLB_FLUSH) {
1065 cpudata->gtlb_want_flush = true;
1066 }
1067 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1068 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1069 goto handled;
1070 }
1071 if (exit->u.wrmsr.msr == MSR_TSC) {
1072 cpudata->gtsc = exit->u.wrmsr.val;
1073 cpudata->gtsc_want_update = true;
1074 goto handled;
1075 }
1076 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1077 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1078 continue;
1079 goto handled;
1080 }
1081 }
1082
1083 return false;
1084
1085 handled:
1086 svm_inkernel_advance(cpudata->vmcb);
1087 return true;
1088
1089 error:
1090 svm_inject_gp(vcpu);
1091 return true;
1092 }
1093
1094 static inline void
1095 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1096 struct nvmm_vcpu_exit *exit)
1097 {
1098 struct svm_cpudata *cpudata = vcpu->cpudata;
1099
1100 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1101 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1102 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1103
1104 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1105 exit->reason = NVMM_VCPU_EXIT_NONE;
1106 return;
1107 }
1108
1109 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1110 }
1111
1112 static inline void
1113 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1114 struct nvmm_vcpu_exit *exit)
1115 {
1116 struct svm_cpudata *cpudata = vcpu->cpudata;
1117 uint64_t rdx, rax;
1118
1119 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1120 rax = cpudata->vmcb->state.rax;
1121
1122 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1123 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1124 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1125 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1126
1127 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1128 exit->reason = NVMM_VCPU_EXIT_NONE;
1129 return;
1130 }
1131
1132 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1133 }
1134
1135 static void
1136 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1137 struct nvmm_vcpu_exit *exit)
1138 {
1139 struct svm_cpudata *cpudata = vcpu->cpudata;
1140 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1141
1142 if (info == 0) {
1143 svm_exit_rdmsr(mach, vcpu, exit);
1144 } else {
1145 svm_exit_wrmsr(mach, vcpu, exit);
1146 }
1147 }
1148
1149 static void
1150 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1151 struct nvmm_vcpu_exit *exit)
1152 {
1153 struct svm_cpudata *cpudata = vcpu->cpudata;
1154 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1155
1156 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1157 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1158 exit->u.mem.prot = PROT_WRITE;
1159 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1160 exit->u.mem.prot = PROT_EXEC;
1161 else
1162 exit->u.mem.prot = PROT_READ;
1163 exit->u.mem.gpa = gpa;
1164 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1165 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1166 sizeof(exit->u.mem.inst_bytes));
1167
1168 svm_vcpu_state_provide(vcpu,
1169 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1170 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1171 }
1172
1173 static void
1174 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1175 struct nvmm_vcpu_exit *exit)
1176 {
1177 struct svm_cpudata *cpudata = vcpu->cpudata;
1178 struct vmcb *vmcb = cpudata->vmcb;
1179 uint64_t val;
1180
1181 exit->reason = NVMM_VCPU_EXIT_NONE;
1182
1183 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1184 (vmcb->state.rax & 0xFFFFFFFF);
1185
1186 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1187 goto error;
1188 } else if (__predict_false(vmcb->state.cpl != 0)) {
1189 goto error;
1190 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1191 goto error;
1192 } else if (__predict_false((val & XCR0_X87) == 0)) {
1193 goto error;
1194 }
1195
1196 cpudata->gxcr0 = val;
1197
1198 svm_inkernel_advance(cpudata->vmcb);
1199 return;
1200
1201 error:
1202 svm_inject_gp(vcpu);
1203 }
1204
1205 static void
1206 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1207 {
1208 exit->u.inv.hwcode = code;
1209 exit->reason = NVMM_VCPU_EXIT_INVALID;
1210 }
1211
1212 /* -------------------------------------------------------------------------- */
1213
1214 static void
1215 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1216 {
1217 struct svm_cpudata *cpudata = vcpu->cpudata;
1218
1219 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1220
1221 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1222 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1223
1224 if (svm_xcr0_mask != 0) {
1225 cpudata->hxcr0 = rdxcr(0);
1226 wrxcr(0, cpudata->gxcr0);
1227 }
1228 }
1229
1230 static void
1231 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1232 {
1233 struct svm_cpudata *cpudata = vcpu->cpudata;
1234
1235 if (svm_xcr0_mask != 0) {
1236 cpudata->gxcr0 = rdxcr(0);
1237 wrxcr(0, cpudata->hxcr0);
1238 }
1239
1240 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1241 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1242
1243 if (cpudata->ts_set) {
1244 stts();
1245 }
1246 }
1247
1248 static void
1249 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1250 {
1251 struct svm_cpudata *cpudata = vcpu->cpudata;
1252
1253 x86_dbregs_save(curlwp);
1254
1255 ldr7(0);
1256
1257 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1258 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1259 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1260 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1261 }
1262
1263 static void
1264 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1265 {
1266 struct svm_cpudata *cpudata = vcpu->cpudata;
1267
1268 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1269 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1270 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1271 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1272
1273 x86_dbregs_restore(curlwp);
1274 }
1275
1276 static void
1277 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1278 {
1279 struct svm_cpudata *cpudata = vcpu->cpudata;
1280
1281 cpudata->fsbase = rdmsr(MSR_FSBASE);
1282 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1283 }
1284
1285 static void
1286 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1287 {
1288 struct svm_cpudata *cpudata = vcpu->cpudata;
1289
1290 wrmsr(MSR_STAR, cpudata->star);
1291 wrmsr(MSR_LSTAR, cpudata->lstar);
1292 wrmsr(MSR_CSTAR, cpudata->cstar);
1293 wrmsr(MSR_SFMASK, cpudata->sfmask);
1294 wrmsr(MSR_FSBASE, cpudata->fsbase);
1295 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1296 }
1297
1298 /* -------------------------------------------------------------------------- */
1299
1300 static inline void
1301 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1302 {
1303 struct svm_cpudata *cpudata = vcpu->cpudata;
1304
1305 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1306 cpudata->gtlb_want_flush = true;
1307 }
1308 }
1309
1310 static inline void
1311 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1312 {
1313 /*
1314 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1315 * executing on this hCPU and the hTLB already got flushed, or it
1316 * was executing on another hCPU in which case the catchup is done
1317 * in svm_gtlb_catchup().
1318 */
1319 }
1320
1321 static inline uint64_t
1322 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1323 {
1324 struct vmcb *vmcb = cpudata->vmcb;
1325 uint64_t machgen;
1326
1327 machgen = machdata->mach_htlb_gen;
1328 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1329 return machgen;
1330 }
1331
1332 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1333 return machgen;
1334 }
1335
1336 static inline void
1337 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1338 {
1339 struct vmcb *vmcb = cpudata->vmcb;
1340
1341 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1342 cpudata->vcpu_htlb_gen = machgen;
1343 }
1344 }
1345
1346 static inline void
1347 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1348 {
1349 cpudata->evt_pending = false;
1350
1351 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1352 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1353 cpudata->evt_pending = true;
1354 }
1355 }
1356
1357 static int
1358 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1359 struct nvmm_vcpu_exit *exit)
1360 {
1361 struct nvmm_comm_page *comm = vcpu->comm;
1362 struct svm_machdata *machdata = mach->machdata;
1363 struct svm_cpudata *cpudata = vcpu->cpudata;
1364 struct vmcb *vmcb = cpudata->vmcb;
1365 uint64_t machgen;
1366 int hcpu, s;
1367
1368 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1369 return EINVAL;
1370 }
1371 svm_vcpu_state_commit(vcpu);
1372 comm->state_cached = 0;
1373
1374 kpreempt_disable();
1375 hcpu = cpu_number();
1376
1377 svm_gtlb_catchup(vcpu, hcpu);
1378 svm_htlb_catchup(vcpu, hcpu);
1379
1380 if (vcpu->hcpu_last != hcpu) {
1381 svm_vmcb_cache_flush_all(vmcb);
1382 cpudata->gtsc_want_update = true;
1383 }
1384
1385 svm_vcpu_guest_dbregs_enter(vcpu);
1386 svm_vcpu_guest_misc_enter(vcpu);
1387
1388 while (1) {
1389 if (cpudata->gtlb_want_flush) {
1390 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1391 } else {
1392 vmcb->ctrl.tlb_ctrl = 0;
1393 }
1394
1395 if (__predict_false(cpudata->gtsc_want_update)) {
1396 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1397 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1398 }
1399
1400 s = splhigh();
1401 machgen = svm_htlb_flush(machdata, cpudata);
1402 svm_vcpu_guest_fpu_enter(vcpu);
1403 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1404 svm_vcpu_guest_fpu_leave(vcpu);
1405 svm_htlb_flush_ack(cpudata, machgen);
1406 splx(s);
1407
1408 svm_vmcb_cache_default(vmcb);
1409
1410 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1411 cpudata->gtlb_want_flush = false;
1412 cpudata->gtsc_want_update = false;
1413 vcpu->hcpu_last = hcpu;
1414 }
1415 svm_exit_evt(cpudata, vmcb);
1416
1417 switch (vmcb->ctrl.exitcode) {
1418 case VMCB_EXITCODE_INTR:
1419 case VMCB_EXITCODE_NMI:
1420 exit->reason = NVMM_VCPU_EXIT_NONE;
1421 break;
1422 case VMCB_EXITCODE_VINTR:
1423 svm_event_waitexit_disable(vcpu, false);
1424 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1425 break;
1426 case VMCB_EXITCODE_IRET:
1427 svm_event_waitexit_disable(vcpu, true);
1428 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1429 break;
1430 case VMCB_EXITCODE_CPUID:
1431 svm_exit_cpuid(mach, vcpu, exit);
1432 break;
1433 case VMCB_EXITCODE_HLT:
1434 svm_exit_hlt(mach, vcpu, exit);
1435 break;
1436 case VMCB_EXITCODE_IOIO:
1437 svm_exit_io(mach, vcpu, exit);
1438 break;
1439 case VMCB_EXITCODE_MSR:
1440 svm_exit_msr(mach, vcpu, exit);
1441 break;
1442 case VMCB_EXITCODE_SHUTDOWN:
1443 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1444 break;
1445 case VMCB_EXITCODE_RDPMC:
1446 case VMCB_EXITCODE_RSM:
1447 case VMCB_EXITCODE_INVLPGA:
1448 case VMCB_EXITCODE_VMRUN:
1449 case VMCB_EXITCODE_VMMCALL:
1450 case VMCB_EXITCODE_VMLOAD:
1451 case VMCB_EXITCODE_VMSAVE:
1452 case VMCB_EXITCODE_STGI:
1453 case VMCB_EXITCODE_CLGI:
1454 case VMCB_EXITCODE_SKINIT:
1455 case VMCB_EXITCODE_RDTSCP:
1456 case VMCB_EXITCODE_RDPRU:
1457 case VMCB_EXITCODE_INVLPGB:
1458 case VMCB_EXITCODE_INVPCID:
1459 case VMCB_EXITCODE_MCOMMIT:
1460 case VMCB_EXITCODE_TLBSYNC:
1461 svm_inject_ud(vcpu);
1462 exit->reason = NVMM_VCPU_EXIT_NONE;
1463 break;
1464 case VMCB_EXITCODE_MONITOR:
1465 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1466 break;
1467 case VMCB_EXITCODE_MWAIT:
1468 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1469 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1470 break;
1471 case VMCB_EXITCODE_XSETBV:
1472 svm_exit_xsetbv(mach, vcpu, exit);
1473 break;
1474 case VMCB_EXITCODE_NPF:
1475 svm_exit_npf(mach, vcpu, exit);
1476 break;
1477 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1478 default:
1479 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1480 break;
1481 }
1482
1483 /* If no reason to return to userland, keep rolling. */
1484 if (nvmm_return_needed()) {
1485 break;
1486 }
1487 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1488 break;
1489 }
1490 }
1491
1492 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1493
1494 svm_vcpu_guest_misc_leave(vcpu);
1495 svm_vcpu_guest_dbregs_leave(vcpu);
1496
1497 kpreempt_enable();
1498
1499 exit->exitstate.rflags = vmcb->state.rflags;
1500 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1501 exit->exitstate.int_shadow =
1502 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1503 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1504 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1505 exit->exitstate.evt_pending = cpudata->evt_pending;
1506
1507 return 0;
1508 }
1509
1510 /* -------------------------------------------------------------------------- */
1511
1512 static int
1513 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1514 {
1515 struct pglist pglist;
1516 paddr_t _pa;
1517 vaddr_t _va;
1518 size_t i;
1519 int ret;
1520
1521 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1522 &pglist, 1, 0);
1523 if (ret != 0)
1524 return ENOMEM;
1525 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1526 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1527 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1528 if (_va == 0)
1529 goto error;
1530
1531 for (i = 0; i < npages; i++) {
1532 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1533 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1534 }
1535 pmap_update(pmap_kernel());
1536
1537 memset((void *)_va, 0, npages * PAGE_SIZE);
1538
1539 *pa = _pa;
1540 *va = _va;
1541 return 0;
1542
1543 error:
1544 for (i = 0; i < npages; i++) {
1545 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1546 }
1547 return ENOMEM;
1548 }
1549
1550 static void
1551 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1552 {
1553 size_t i;
1554
1555 pmap_kremove(va, npages * PAGE_SIZE);
1556 pmap_update(pmap_kernel());
1557 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1558 for (i = 0; i < npages; i++) {
1559 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1560 }
1561 }
1562
1563 /* -------------------------------------------------------------------------- */
1564
1565 #define SVM_MSRBM_READ __BIT(0)
1566 #define SVM_MSRBM_WRITE __BIT(1)
1567
1568 static void
1569 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1570 {
1571 uint64_t byte;
1572 uint8_t bitoff;
1573
1574 if (msr < 0x00002000) {
1575 /* Range 1 */
1576 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1577 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1578 /* Range 2 */
1579 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1580 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1581 /* Range 3 */
1582 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1583 } else {
1584 panic("%s: wrong range", __func__);
1585 }
1586
1587 bitoff = (msr & 0x3) << 1;
1588
1589 if (read) {
1590 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1591 }
1592 if (write) {
1593 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1594 }
1595 }
1596
1597 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1598 #define SVM_SEG_ATTRIB_S __BIT(4)
1599 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1600 #define SVM_SEG_ATTRIB_P __BIT(7)
1601 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1602 #define SVM_SEG_ATTRIB_L __BIT(9)
1603 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1604 #define SVM_SEG_ATTRIB_G __BIT(11)
1605
1606 static void
1607 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1608 struct vmcb_segment *vseg)
1609 {
1610 vseg->selector = seg->selector;
1611 vseg->attrib =
1612 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1613 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1614 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1615 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1616 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1617 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1618 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1619 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1620 vseg->limit = seg->limit;
1621 vseg->base = seg->base;
1622 }
1623
1624 static void
1625 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1626 {
1627 seg->selector = vseg->selector;
1628 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1629 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1630 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1631 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1632 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1633 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1634 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1635 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1636 seg->limit = vseg->limit;
1637 seg->base = vseg->base;
1638 }
1639
1640 static inline bool
1641 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1642 uint64_t flags)
1643 {
1644 if (flags & NVMM_X64_STATE_CRS) {
1645 if ((vmcb->state.cr0 ^
1646 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1647 return true;
1648 }
1649 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1650 return true;
1651 }
1652 if ((vmcb->state.cr4 ^
1653 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1654 return true;
1655 }
1656 }
1657
1658 if (flags & NVMM_X64_STATE_MSRS) {
1659 if ((vmcb->state.efer ^
1660 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1661 return true;
1662 }
1663 }
1664
1665 return false;
1666 }
1667
1668 static void
1669 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1670 {
1671 struct nvmm_comm_page *comm = vcpu->comm;
1672 const struct nvmm_x64_state *state = &comm->state;
1673 struct svm_cpudata *cpudata = vcpu->cpudata;
1674 struct vmcb *vmcb = cpudata->vmcb;
1675 struct fxsave *fpustate;
1676 uint64_t flags;
1677
1678 flags = comm->state_wanted;
1679
1680 if (svm_state_tlb_flush(vmcb, state, flags)) {
1681 cpudata->gtlb_want_flush = true;
1682 }
1683
1684 if (flags & NVMM_X64_STATE_SEGS) {
1685 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1686 &vmcb->state.cs);
1687 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1688 &vmcb->state.ds);
1689 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1690 &vmcb->state.es);
1691 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1692 &vmcb->state.fs);
1693 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1694 &vmcb->state.gs);
1695 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1696 &vmcb->state.ss);
1697 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1698 &vmcb->state.gdt);
1699 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1700 &vmcb->state.idt);
1701 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1702 &vmcb->state.ldt);
1703 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1704 &vmcb->state.tr);
1705
1706 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1707 }
1708
1709 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1710 if (flags & NVMM_X64_STATE_GPRS) {
1711 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1712
1713 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1714 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1715 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1716 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1717 }
1718
1719 if (flags & NVMM_X64_STATE_CRS) {
1720 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1721 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1722 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1723 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1724
1725 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1726 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1727 VMCB_CTRL_V_TPR);
1728
1729 if (svm_xcr0_mask != 0) {
1730 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1731 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1732 cpudata->gxcr0 &= svm_xcr0_mask;
1733 cpudata->gxcr0 |= XCR0_X87;
1734 }
1735 }
1736
1737 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1738 if (flags & NVMM_X64_STATE_DRS) {
1739 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1740
1741 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1742 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1743 }
1744
1745 if (flags & NVMM_X64_STATE_MSRS) {
1746 /*
1747 * EFER_SVME is mandatory.
1748 */
1749 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1750 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1751 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1752 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1753 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1754 vmcb->state.kernelgsbase =
1755 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1756 vmcb->state.sysenter_cs =
1757 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1758 vmcb->state.sysenter_esp =
1759 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1760 vmcb->state.sysenter_eip =
1761 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1762 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1763
1764 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1765 cpudata->gtsc_want_update = true;
1766 }
1767
1768 if (flags & NVMM_X64_STATE_INTR) {
1769 if (state->intr.int_shadow) {
1770 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1771 } else {
1772 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1773 }
1774
1775 if (state->intr.int_window_exiting) {
1776 svm_event_waitexit_enable(vcpu, false);
1777 } else {
1778 svm_event_waitexit_disable(vcpu, false);
1779 }
1780
1781 if (state->intr.nmi_window_exiting) {
1782 svm_event_waitexit_enable(vcpu, true);
1783 } else {
1784 svm_event_waitexit_disable(vcpu, true);
1785 }
1786 }
1787
1788 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1789 if (flags & NVMM_X64_STATE_FPU) {
1790 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1791 sizeof(state->fpu));
1792
1793 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1794 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1795 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1796
1797 if (svm_xcr0_mask != 0) {
1798 /* Reset XSTATE_BV, to force a reload. */
1799 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1800 }
1801 }
1802
1803 svm_vmcb_cache_update(vmcb, flags);
1804
1805 comm->state_wanted = 0;
1806 comm->state_cached |= flags;
1807 }
1808
1809 static void
1810 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1811 {
1812 struct nvmm_comm_page *comm = vcpu->comm;
1813 struct nvmm_x64_state *state = &comm->state;
1814 struct svm_cpudata *cpudata = vcpu->cpudata;
1815 struct vmcb *vmcb = cpudata->vmcb;
1816 uint64_t flags;
1817
1818 flags = comm->state_wanted;
1819
1820 if (flags & NVMM_X64_STATE_SEGS) {
1821 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1822 &vmcb->state.cs);
1823 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1824 &vmcb->state.ds);
1825 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1826 &vmcb->state.es);
1827 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1828 &vmcb->state.fs);
1829 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1830 &vmcb->state.gs);
1831 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1832 &vmcb->state.ss);
1833 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1834 &vmcb->state.gdt);
1835 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1836 &vmcb->state.idt);
1837 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1838 &vmcb->state.ldt);
1839 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1840 &vmcb->state.tr);
1841
1842 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1843 }
1844
1845 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1846 if (flags & NVMM_X64_STATE_GPRS) {
1847 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1848
1849 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1850 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1851 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1852 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1853 }
1854
1855 if (flags & NVMM_X64_STATE_CRS) {
1856 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1857 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1858 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1859 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1860 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1861 VMCB_CTRL_V_TPR);
1862 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1863 }
1864
1865 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1866 if (flags & NVMM_X64_STATE_DRS) {
1867 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1868
1869 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1870 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1871 }
1872
1873 if (flags & NVMM_X64_STATE_MSRS) {
1874 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1875 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1876 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1877 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1878 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1879 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1880 vmcb->state.kernelgsbase;
1881 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1882 vmcb->state.sysenter_cs;
1883 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1884 vmcb->state.sysenter_esp;
1885 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1886 vmcb->state.sysenter_eip;
1887 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1888 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1889
1890 /* Hide SVME. */
1891 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1892 }
1893
1894 if (flags & NVMM_X64_STATE_INTR) {
1895 state->intr.int_shadow =
1896 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1897 state->intr.int_window_exiting = cpudata->int_window_exit;
1898 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1899 state->intr.evt_pending = cpudata->evt_pending;
1900 }
1901
1902 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1903 if (flags & NVMM_X64_STATE_FPU) {
1904 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1905 sizeof(state->fpu));
1906 }
1907
1908 comm->state_wanted = 0;
1909 comm->state_cached |= flags;
1910 }
1911
1912 static void
1913 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1914 {
1915 vcpu->comm->state_wanted = flags;
1916 svm_vcpu_getstate(vcpu);
1917 }
1918
1919 static void
1920 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1921 {
1922 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1923 vcpu->comm->state_commit = 0;
1924 svm_vcpu_setstate(vcpu);
1925 }
1926
1927 /* -------------------------------------------------------------------------- */
1928
1929 static void
1930 svm_asid_alloc(struct nvmm_cpu *vcpu)
1931 {
1932 struct svm_cpudata *cpudata = vcpu->cpudata;
1933 struct vmcb *vmcb = cpudata->vmcb;
1934 size_t i, oct, bit;
1935
1936 mutex_enter(&svm_asidlock);
1937
1938 for (i = 0; i < svm_maxasid; i++) {
1939 oct = i / 8;
1940 bit = i % 8;
1941
1942 if (svm_asidmap[oct] & __BIT(bit)) {
1943 continue;
1944 }
1945
1946 svm_asidmap[oct] |= __BIT(bit);
1947 vmcb->ctrl.guest_asid = i;
1948 mutex_exit(&svm_asidlock);
1949 return;
1950 }
1951
1952 /*
1953 * No free ASID. Use the last one, which is shared and requires
1954 * special TLB handling.
1955 */
1956 cpudata->shared_asid = true;
1957 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1958 mutex_exit(&svm_asidlock);
1959 }
1960
1961 static void
1962 svm_asid_free(struct nvmm_cpu *vcpu)
1963 {
1964 struct svm_cpudata *cpudata = vcpu->cpudata;
1965 struct vmcb *vmcb = cpudata->vmcb;
1966 size_t oct, bit;
1967
1968 if (cpudata->shared_asid) {
1969 return;
1970 }
1971
1972 oct = vmcb->ctrl.guest_asid / 8;
1973 bit = vmcb->ctrl.guest_asid % 8;
1974
1975 mutex_enter(&svm_asidlock);
1976 svm_asidmap[oct] &= ~__BIT(bit);
1977 mutex_exit(&svm_asidlock);
1978 }
1979
1980 static void
1981 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1982 {
1983 struct svm_cpudata *cpudata = vcpu->cpudata;
1984 struct vmcb *vmcb = cpudata->vmcb;
1985
1986 /* Allow reads/writes of Control Registers. */
1987 vmcb->ctrl.intercept_cr = 0;
1988
1989 /* Allow reads/writes of Debug Registers. */
1990 vmcb->ctrl.intercept_dr = 0;
1991
1992 /* Allow exceptions 0 to 31. */
1993 vmcb->ctrl.intercept_vec = 0;
1994
1995 /*
1996 * Allow:
1997 * - SMI [smm interrupts]
1998 * - VINTR [virtual interrupts]
1999 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2000 * - RIDTR [reads of IDTR]
2001 * - RGDTR [reads of GDTR]
2002 * - RLDTR [reads of LDTR]
2003 * - RTR [reads of TR]
2004 * - WIDTR [writes of IDTR]
2005 * - WGDTR [writes of GDTR]
2006 * - WLDTR [writes of LDTR]
2007 * - WTR [writes of TR]
2008 * - RDTSC [rdtsc instruction]
2009 * - PUSHF [pushf instruction]
2010 * - POPF [popf instruction]
2011 * - IRET [iret instruction]
2012 * - INTN [int $n instructions]
2013 * - INVD [invd instruction]
2014 * - PAUSE [pause instruction]
2015 * - INVLPG [invplg instruction]
2016 * - TASKSW [task switches]
2017 *
2018 * Intercept the rest below.
2019 */
2020 vmcb->ctrl.intercept_misc1 =
2021 VMCB_CTRL_INTERCEPT_INTR |
2022 VMCB_CTRL_INTERCEPT_NMI |
2023 VMCB_CTRL_INTERCEPT_INIT |
2024 VMCB_CTRL_INTERCEPT_RDPMC |
2025 VMCB_CTRL_INTERCEPT_CPUID |
2026 VMCB_CTRL_INTERCEPT_RSM |
2027 VMCB_CTRL_INTERCEPT_HLT |
2028 VMCB_CTRL_INTERCEPT_INVLPGA |
2029 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2030 VMCB_CTRL_INTERCEPT_MSR_PROT |
2031 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2032 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2033
2034 /*
2035 * Allow:
2036 * - ICEBP [icebp instruction]
2037 * - WBINVD [wbinvd instruction]
2038 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2039 *
2040 * Intercept the rest below.
2041 */
2042 vmcb->ctrl.intercept_misc2 =
2043 VMCB_CTRL_INTERCEPT_VMRUN |
2044 VMCB_CTRL_INTERCEPT_VMMCALL |
2045 VMCB_CTRL_INTERCEPT_VMLOAD |
2046 VMCB_CTRL_INTERCEPT_VMSAVE |
2047 VMCB_CTRL_INTERCEPT_STGI |
2048 VMCB_CTRL_INTERCEPT_CLGI |
2049 VMCB_CTRL_INTERCEPT_SKINIT |
2050 VMCB_CTRL_INTERCEPT_RDTSCP |
2051 VMCB_CTRL_INTERCEPT_MONITOR |
2052 VMCB_CTRL_INTERCEPT_MWAIT |
2053 VMCB_CTRL_INTERCEPT_XSETBV |
2054 VMCB_CTRL_INTERCEPT_RDPRU;
2055
2056 /*
2057 * Intercept everything.
2058 */
2059 vmcb->ctrl.intercept_misc3 =
2060 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2061 VMCB_CTRL_INTERCEPT_PCID |
2062 VMCB_CTRL_INTERCEPT_MCOMMIT |
2063 VMCB_CTRL_INTERCEPT_TLBSYNC;
2064
2065 /* Intercept all I/O accesses. */
2066 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2067 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2068
2069 /* Allow direct access to certain MSRs. */
2070 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2071 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2072 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2073 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2074 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2075 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2076 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2077 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2078 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2079 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2080 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2081 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2082 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2083 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2084 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2085
2086 /* Generate ASID. */
2087 svm_asid_alloc(vcpu);
2088
2089 /* Virtual TPR. */
2090 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2091
2092 /* Enable Nested Paging. */
2093 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2094 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2095
2096 /* Init XSAVE header. */
2097 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2098 cpudata->gfpu.xsh_xcomp_bv = 0;
2099
2100 /* These MSRs are static. */
2101 cpudata->star = rdmsr(MSR_STAR);
2102 cpudata->lstar = rdmsr(MSR_LSTAR);
2103 cpudata->cstar = rdmsr(MSR_CSTAR);
2104 cpudata->sfmask = rdmsr(MSR_SFMASK);
2105
2106 /* Install the RESET state. */
2107 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2108 sizeof(nvmm_x86_reset_state));
2109 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2110 vcpu->comm->state_cached = 0;
2111 svm_vcpu_setstate(vcpu);
2112 }
2113
2114 static int
2115 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2116 {
2117 struct svm_cpudata *cpudata;
2118 int error;
2119
2120 /* Allocate the SVM cpudata. */
2121 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2122 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2123 UVM_KMF_WIRED|UVM_KMF_ZERO);
2124 vcpu->cpudata = cpudata;
2125
2126 /* VMCB */
2127 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2128 VMCB_NPAGES);
2129 if (error)
2130 goto error;
2131
2132 /* I/O Bitmap */
2133 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2134 IOBM_NPAGES);
2135 if (error)
2136 goto error;
2137
2138 /* MSR Bitmap */
2139 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2140 MSRBM_NPAGES);
2141 if (error)
2142 goto error;
2143
2144 /* Init the VCPU info. */
2145 svm_vcpu_init(mach, vcpu);
2146
2147 return 0;
2148
2149 error:
2150 if (cpudata->vmcb_pa) {
2151 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2152 VMCB_NPAGES);
2153 }
2154 if (cpudata->iobm_pa) {
2155 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2156 IOBM_NPAGES);
2157 }
2158 if (cpudata->msrbm_pa) {
2159 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2160 MSRBM_NPAGES);
2161 }
2162 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2163 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2164 return error;
2165 }
2166
2167 static void
2168 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2169 {
2170 struct svm_cpudata *cpudata = vcpu->cpudata;
2171
2172 svm_asid_free(vcpu);
2173
2174 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2175 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2176 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2177
2178 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2179 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2180 }
2181
2182 /* -------------------------------------------------------------------------- */
2183
2184 static int
2185 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2186 {
2187 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2188 size_t i;
2189
2190 if (__predict_false(cpuid->mask && cpuid->exit)) {
2191 return EINVAL;
2192 }
2193 if (__predict_false(cpuid->mask &&
2194 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2195 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2196 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2197 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2198 return EINVAL;
2199 }
2200
2201 /* If unset, delete, to restore the default behavior. */
2202 if (!cpuid->mask && !cpuid->exit) {
2203 for (i = 0; i < SVM_NCPUIDS; i++) {
2204 if (!cpudata->cpuidpresent[i]) {
2205 continue;
2206 }
2207 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2208 cpudata->cpuidpresent[i] = false;
2209 }
2210 }
2211 return 0;
2212 }
2213
2214 /* If already here, replace. */
2215 for (i = 0; i < SVM_NCPUIDS; i++) {
2216 if (!cpudata->cpuidpresent[i]) {
2217 continue;
2218 }
2219 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2220 memcpy(&cpudata->cpuid[i], cpuid,
2221 sizeof(struct nvmm_vcpu_conf_cpuid));
2222 return 0;
2223 }
2224 }
2225
2226 /* Not here, insert. */
2227 for (i = 0; i < SVM_NCPUIDS; i++) {
2228 if (!cpudata->cpuidpresent[i]) {
2229 cpudata->cpuidpresent[i] = true;
2230 memcpy(&cpudata->cpuid[i], cpuid,
2231 sizeof(struct nvmm_vcpu_conf_cpuid));
2232 return 0;
2233 }
2234 }
2235
2236 return ENOBUFS;
2237 }
2238
2239 static int
2240 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2241 {
2242 struct svm_cpudata *cpudata = vcpu->cpudata;
2243
2244 switch (op) {
2245 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2246 return svm_vcpu_configure_cpuid(cpudata, data);
2247 default:
2248 return EINVAL;
2249 }
2250 }
2251
2252 /* -------------------------------------------------------------------------- */
2253
2254 static void
2255 svm_tlb_flush(struct pmap *pm)
2256 {
2257 struct nvmm_machine *mach = pm->pm_data;
2258 struct svm_machdata *machdata = mach->machdata;
2259
2260 atomic_inc_64(&machdata->mach_htlb_gen);
2261
2262 /* Generates IPIs, which cause #VMEXITs. */
2263 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2264 }
2265
2266 static void
2267 svm_machine_create(struct nvmm_machine *mach)
2268 {
2269 struct svm_machdata *machdata;
2270
2271 /* Fill in pmap info. */
2272 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2273 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2274
2275 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2276 mach->machdata = machdata;
2277
2278 /* Start with an hTLB flush everywhere. */
2279 machdata->mach_htlb_gen = 1;
2280 }
2281
2282 static void
2283 svm_machine_destroy(struct nvmm_machine *mach)
2284 {
2285 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2286 }
2287
2288 static int
2289 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2290 {
2291 panic("%s: impossible", __func__);
2292 }
2293
2294 /* -------------------------------------------------------------------------- */
2295
2296 static bool
2297 svm_ident(void)
2298 {
2299 u_int descs[4];
2300 uint64_t msr;
2301
2302 if (cpu_vendor != CPUVENDOR_AMD) {
2303 return false;
2304 }
2305 if (!(cpu_feature[3] & CPUID_SVM)) {
2306 printf("NVMM: SVM not supported\n");
2307 return false;
2308 }
2309
2310 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2311 printf("NVMM: CPUID leaf not available\n");
2312 return false;
2313 }
2314 x86_cpuid(0x8000000a, descs);
2315
2316 /* Want Nested Paging. */
2317 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2318 printf("NVMM: SVM-NP not supported\n");
2319 return false;
2320 }
2321
2322 /* Want nRIP. */
2323 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2324 printf("NVMM: SVM-NRIPS not supported\n");
2325 return false;
2326 }
2327
2328 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2329
2330 msr = rdmsr(MSR_VMCR);
2331 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2332 printf("NVMM: SVM disabled in BIOS\n");
2333 return false;
2334 }
2335
2336 return true;
2337 }
2338
2339 static void
2340 svm_init_asid(uint32_t maxasid)
2341 {
2342 size_t i, j, allocsz;
2343
2344 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2345
2346 /* Arbitrarily limit. */
2347 maxasid = uimin(maxasid, 8192);
2348
2349 svm_maxasid = maxasid;
2350 allocsz = roundup(maxasid, 8) / 8;
2351 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2352
2353 /* ASID 0 is reserved for the host. */
2354 svm_asidmap[0] |= __BIT(0);
2355
2356 /* ASID n-1 is special, we share it. */
2357 i = (maxasid - 1) / 8;
2358 j = (maxasid - 1) % 8;
2359 svm_asidmap[i] |= __BIT(j);
2360 }
2361
2362 static void
2363 svm_change_cpu(void *arg1, void *arg2)
2364 {
2365 bool enable = arg1 != NULL;
2366 uint64_t msr;
2367
2368 msr = rdmsr(MSR_VMCR);
2369 if (msr & VMCR_SVMED) {
2370 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2371 }
2372
2373 if (!enable) {
2374 wrmsr(MSR_VM_HSAVE_PA, 0);
2375 }
2376
2377 msr = rdmsr(MSR_EFER);
2378 if (enable) {
2379 msr |= EFER_SVME;
2380 } else {
2381 msr &= ~EFER_SVME;
2382 }
2383 wrmsr(MSR_EFER, msr);
2384
2385 if (enable) {
2386 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2387 }
2388 }
2389
2390 static void
2391 svm_init(void)
2392 {
2393 CPU_INFO_ITERATOR cii;
2394 struct cpu_info *ci;
2395 struct vm_page *pg;
2396 u_int descs[4];
2397 uint64_t xc;
2398
2399 x86_cpuid(0x8000000a, descs);
2400
2401 /* The guest TLB flush command. */
2402 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2403 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2404 } else {
2405 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2406 }
2407
2408 /* Init the ASID. */
2409 svm_init_asid(descs[1]);
2410
2411 /* Init the XCR0 mask. */
2412 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2413
2414 memset(hsave, 0, sizeof(hsave));
2415 for (CPU_INFO_FOREACH(cii, ci)) {
2416 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2417 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2418 }
2419
2420 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2421 xc_wait(xc);
2422 }
2423
2424 static void
2425 svm_fini_asid(void)
2426 {
2427 size_t allocsz;
2428
2429 allocsz = roundup(svm_maxasid, 8) / 8;
2430 kmem_free(svm_asidmap, allocsz);
2431
2432 mutex_destroy(&svm_asidlock);
2433 }
2434
2435 static void
2436 svm_fini(void)
2437 {
2438 uint64_t xc;
2439 size_t i;
2440
2441 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2442 xc_wait(xc);
2443
2444 for (i = 0; i < MAXCPUS; i++) {
2445 if (hsave[i].pa != 0)
2446 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2447 }
2448
2449 svm_fini_asid();
2450 }
2451
2452 static void
2453 svm_capability(struct nvmm_capability *cap)
2454 {
2455 cap->arch.mach_conf_support = 0;
2456 cap->arch.vcpu_conf_support =
2457 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2458 cap->arch.xcr0_mask = svm_xcr0_mask;
2459 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2460 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2461 }
2462
2463 const struct nvmm_impl nvmm_x86_svm = {
2464 .name = "x86-svm",
2465 .ident = svm_ident,
2466 .init = svm_init,
2467 .fini = svm_fini,
2468 .capability = svm_capability,
2469 .mach_conf_max = NVMM_X86_MACH_NCONF,
2470 .mach_conf_sizes = NULL,
2471 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2472 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2473 .state_size = sizeof(struct nvmm_x64_state),
2474 .machine_create = svm_machine_create,
2475 .machine_destroy = svm_machine_destroy,
2476 .machine_configure = svm_machine_configure,
2477 .vcpu_create = svm_vcpu_create,
2478 .vcpu_destroy = svm_vcpu_destroy,
2479 .vcpu_configure = svm_vcpu_configure,
2480 .vcpu_setstate = svm_vcpu_setstate,
2481 .vcpu_getstate = svm_vcpu_getstate,
2482 .vcpu_inject = svm_vcpu_inject,
2483 .vcpu_run = svm_vcpu_run
2484 };
2485