nvmm_x86_svm.c revision 1.49 1 /* $NetBSD: nvmm_x86_svm.c,v 1.49 2019/10/04 12:17:05 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.49 2019/10/04 12:17:05 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 bool cpuidpresent[SVM_NCPUIDS];
508 struct nvmm_mach_conf_x86_cpuid cpuid[SVM_NCPUIDS];
509 volatile uint64_t mach_htlb_gen;
510 };
511
512 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
513 [NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID)] =
514 sizeof(struct nvmm_mach_conf_x86_cpuid)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544 bool ts_set;
545 struct xsave_header hfpu __aligned(64);
546
547 /* Intr state */
548 bool int_window_exit;
549 bool nmi_window_exit;
550 bool evt_pending;
551
552 /* Guest state */
553 uint64_t gxcr0;
554 uint64_t gprs[NVMM_X64_NGPR];
555 uint64_t drs[NVMM_X64_NDR];
556 uint64_t gtsc;
557 struct xsave_header gfpu __aligned(64);
558 };
559
560 static void
561 svm_vmcb_cache_default(struct vmcb *vmcb)
562 {
563 vmcb->ctrl.vmcb_clean =
564 VMCB_CTRL_VMCB_CLEAN_I |
565 VMCB_CTRL_VMCB_CLEAN_IOPM |
566 VMCB_CTRL_VMCB_CLEAN_ASID |
567 VMCB_CTRL_VMCB_CLEAN_TPR |
568 VMCB_CTRL_VMCB_CLEAN_NP |
569 VMCB_CTRL_VMCB_CLEAN_CR |
570 VMCB_CTRL_VMCB_CLEAN_DR |
571 VMCB_CTRL_VMCB_CLEAN_DT |
572 VMCB_CTRL_VMCB_CLEAN_SEG |
573 VMCB_CTRL_VMCB_CLEAN_CR2 |
574 VMCB_CTRL_VMCB_CLEAN_LBR |
575 VMCB_CTRL_VMCB_CLEAN_AVIC;
576 }
577
578 static void
579 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
580 {
581 if (flags & NVMM_X64_STATE_SEGS) {
582 vmcb->ctrl.vmcb_clean &=
583 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
584 }
585 if (flags & NVMM_X64_STATE_CRS) {
586 vmcb->ctrl.vmcb_clean &=
587 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
588 VMCB_CTRL_VMCB_CLEAN_TPR);
589 }
590 if (flags & NVMM_X64_STATE_DRS) {
591 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
592 }
593 if (flags & NVMM_X64_STATE_MSRS) {
594 /* CR for EFER, NP for PAT. */
595 vmcb->ctrl.vmcb_clean &=
596 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
597 }
598 }
599
600 static inline void
601 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
602 {
603 vmcb->ctrl.vmcb_clean &= ~flags;
604 }
605
606 static inline void
607 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
608 {
609 vmcb->ctrl.vmcb_clean = 0;
610 }
611
612 #define SVM_EVENT_TYPE_HW_INT 0
613 #define SVM_EVENT_TYPE_NMI 2
614 #define SVM_EVENT_TYPE_EXC 3
615 #define SVM_EVENT_TYPE_SW_INT 4
616
617 static void
618 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
619 {
620 struct svm_cpudata *cpudata = vcpu->cpudata;
621 struct vmcb *vmcb = cpudata->vmcb;
622
623 if (nmi) {
624 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
625 cpudata->nmi_window_exit = true;
626 } else {
627 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
628 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
629 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
630 cpudata->int_window_exit = true;
631 }
632
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
634 }
635
636 static void
637 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
638 {
639 struct svm_cpudata *cpudata = vcpu->cpudata;
640 struct vmcb *vmcb = cpudata->vmcb;
641
642 if (nmi) {
643 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
644 cpudata->nmi_window_exit = false;
645 } else {
646 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
647 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
648 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
649 cpudata->int_window_exit = false;
650 }
651
652 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
653 }
654
655 static inline int
656 svm_event_has_error(uint64_t vector)
657 {
658 switch (vector) {
659 case 8: /* #DF */
660 case 10: /* #TS */
661 case 11: /* #NP */
662 case 12: /* #SS */
663 case 13: /* #GP */
664 case 14: /* #PF */
665 case 17: /* #AC */
666 case 30: /* #SX */
667 return 1;
668 default:
669 return 0;
670 }
671 }
672
673 static int
674 svm_vcpu_inject(struct nvmm_cpu *vcpu)
675 {
676 struct nvmm_comm_page *comm = vcpu->comm;
677 struct svm_cpudata *cpudata = vcpu->cpudata;
678 struct vmcb *vmcb = cpudata->vmcb;
679 enum nvmm_event_type evtype;
680 uint64_t vector, error;
681 int type = 0, err = 0;
682
683 evtype = comm->event.type;
684 vector = comm->event.vector;
685 error = comm->event.u.error;
686 __insn_barrier();
687
688 if (__predict_false(vector >= 256)) {
689 return EINVAL;
690 }
691
692 switch (evtype) {
693 case NVMM_EVENT_INTERRUPT_HW:
694 type = SVM_EVENT_TYPE_HW_INT;
695 if (vector == 2) {
696 type = SVM_EVENT_TYPE_NMI;
697 svm_event_waitexit_enable(vcpu, true);
698 }
699 err = 0;
700 break;
701 case NVMM_EVENT_EXCEPTION:
702 type = SVM_EVENT_TYPE_EXC;
703 if (vector == 2 || vector >= 32)
704 return EINVAL;
705 if (vector == 3 || vector == 0)
706 return EINVAL;
707 err = svm_event_has_error(vector);
708 break;
709 default:
710 return EINVAL;
711 }
712
713 vmcb->ctrl.eventinj =
714 __SHIFTIN(vector, VMCB_CTRL_EVENTINJ_VECTOR) |
715 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
716 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
717 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
718 __SHIFTIN(error, VMCB_CTRL_EVENTINJ_ERRORCODE);
719
720 cpudata->evt_pending = true;
721
722 return 0;
723 }
724
725 static void
726 svm_inject_ud(struct nvmm_cpu *vcpu)
727 {
728 struct nvmm_comm_page *comm = vcpu->comm;
729 int ret __diagused;
730
731 comm->event.type = NVMM_EVENT_EXCEPTION;
732 comm->event.vector = 6;
733 comm->event.u.error = 0;
734
735 ret = svm_vcpu_inject(vcpu);
736 KASSERT(ret == 0);
737 }
738
739 static void
740 svm_inject_gp(struct nvmm_cpu *vcpu)
741 {
742 struct nvmm_comm_page *comm = vcpu->comm;
743 int ret __diagused;
744
745 comm->event.type = NVMM_EVENT_EXCEPTION;
746 comm->event.vector = 13;
747 comm->event.u.error = 0;
748
749 ret = svm_vcpu_inject(vcpu);
750 KASSERT(ret == 0);
751 }
752
753 static inline int
754 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
755 {
756 if (__predict_true(!vcpu->comm->event_commit)) {
757 return 0;
758 }
759 vcpu->comm->event_commit = false;
760 return svm_vcpu_inject(vcpu);
761 }
762
763 static inline void
764 svm_inkernel_advance(struct vmcb *vmcb)
765 {
766 /*
767 * Maybe we should also apply single-stepping and debug exceptions.
768 * Matters for guest-ring3, because it can execute 'cpuid' under a
769 * debugger.
770 */
771 vmcb->state.rip = vmcb->ctrl.nrip;
772 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
773 }
774
775 static void
776 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
777 {
778 struct svm_cpudata *cpudata = vcpu->cpudata;
779 uint64_t cr4;
780
781 switch (eax) {
782 case 0x00000001:
783 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
784
785 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
786 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
787 CPUID_LOCAL_APIC_ID);
788
789 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
790 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
791
792 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
793
794 /* CPUID2_OSXSAVE depends on CR4. */
795 cr4 = cpudata->vmcb->state.cr4;
796 if (!(cr4 & CR4_OSXSAVE)) {
797 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
798 }
799 break;
800 case 0x00000005:
801 case 0x00000006:
802 cpudata->vmcb->state.rax = 0;
803 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
804 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
805 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
806 break;
807 case 0x00000007:
808 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
809 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
810 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
811 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
812 break;
813 case 0x0000000D:
814 if (svm_xcr0_mask == 0) {
815 break;
816 }
817 switch (ecx) {
818 case 0:
819 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
820 if (cpudata->gxcr0 & XCR0_SSE) {
821 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
822 } else {
823 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
824 }
825 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
826 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
827 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
828 break;
829 case 1:
830 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
831 break;
832 }
833 break;
834 case 0x40000000:
835 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
836 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
837 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
838 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
839 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
840 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
841 break;
842 case 0x80000001:
843 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
844 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
845 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
846 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
847 break;
848 default:
849 break;
850 }
851 }
852
853 static void
854 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
855 struct nvmm_exit *exit)
856 {
857 struct svm_machdata *machdata = mach->machdata;
858 struct svm_cpudata *cpudata = vcpu->cpudata;
859 struct nvmm_mach_conf_x86_cpuid *cpuid;
860 uint64_t eax, ecx;
861 u_int descs[4];
862 size_t i;
863
864 eax = cpudata->vmcb->state.rax;
865 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
866 x86_cpuid2(eax, ecx, descs);
867
868 cpudata->vmcb->state.rax = descs[0];
869 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
870 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
871 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
872
873 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
874
875 for (i = 0; i < SVM_NCPUIDS; i++) {
876 cpuid = &machdata->cpuid[i];
877 if (!machdata->cpuidpresent[i]) {
878 continue;
879 }
880 if (cpuid->leaf != eax) {
881 continue;
882 }
883
884 /* del */
885 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
886 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
887 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
888 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
889
890 /* set */
891 cpudata->vmcb->state.rax |= cpuid->set.eax;
892 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
893 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
894 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
895
896 break;
897 }
898
899 svm_inkernel_advance(cpudata->vmcb);
900 exit->reason = NVMM_EXIT_NONE;
901 }
902
903 static void
904 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
905 struct nvmm_exit *exit)
906 {
907 struct svm_cpudata *cpudata = vcpu->cpudata;
908 struct vmcb *vmcb = cpudata->vmcb;
909
910 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
911 svm_event_waitexit_disable(vcpu, false);
912 }
913
914 svm_inkernel_advance(cpudata->vmcb);
915 exit->reason = NVMM_EXIT_HALTED;
916 }
917
918 #define SVM_EXIT_IO_PORT __BITS(31,16)
919 #define SVM_EXIT_IO_SEG __BITS(12,10)
920 #define SVM_EXIT_IO_A64 __BIT(9)
921 #define SVM_EXIT_IO_A32 __BIT(8)
922 #define SVM_EXIT_IO_A16 __BIT(7)
923 #define SVM_EXIT_IO_SZ32 __BIT(6)
924 #define SVM_EXIT_IO_SZ16 __BIT(5)
925 #define SVM_EXIT_IO_SZ8 __BIT(4)
926 #define SVM_EXIT_IO_REP __BIT(3)
927 #define SVM_EXIT_IO_STR __BIT(2)
928 #define SVM_EXIT_IO_IN __BIT(0)
929
930 static void
931 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
932 struct nvmm_exit *exit)
933 {
934 struct svm_cpudata *cpudata = vcpu->cpudata;
935 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
936 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
937
938 exit->reason = NVMM_EXIT_IO;
939
940 if (info & SVM_EXIT_IO_IN) {
941 exit->u.io.type = NVMM_EXIT_IO_IN;
942 } else {
943 exit->u.io.type = NVMM_EXIT_IO_OUT;
944 }
945
946 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
947
948 if (svm_decode_assist) {
949 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
950 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
951 } else {
952 exit->u.io.seg = -1;
953 }
954
955 if (info & SVM_EXIT_IO_A64) {
956 exit->u.io.address_size = 8;
957 } else if (info & SVM_EXIT_IO_A32) {
958 exit->u.io.address_size = 4;
959 } else if (info & SVM_EXIT_IO_A16) {
960 exit->u.io.address_size = 2;
961 }
962
963 if (info & SVM_EXIT_IO_SZ32) {
964 exit->u.io.operand_size = 4;
965 } else if (info & SVM_EXIT_IO_SZ16) {
966 exit->u.io.operand_size = 2;
967 } else if (info & SVM_EXIT_IO_SZ8) {
968 exit->u.io.operand_size = 1;
969 }
970
971 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
972 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
973 exit->u.io.npc = nextpc;
974
975 svm_vcpu_state_provide(vcpu,
976 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
977 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
978 }
979
980 static const uint64_t msr_ignore_list[] = {
981 0xc0010055, /* MSR_CMPHALT */
982 MSR_DE_CFG,
983 MSR_IC_CFG,
984 MSR_UCODE_AMD_PATCHLEVEL
985 };
986
987 static bool
988 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
989 struct nvmm_exit *exit)
990 {
991 struct svm_cpudata *cpudata = vcpu->cpudata;
992 struct vmcb *vmcb = cpudata->vmcb;
993 uint64_t val;
994 size_t i;
995
996 switch (exit->u.msr.type) {
997 case NVMM_EXIT_MSR_RDMSR:
998 if (exit->u.msr.msr == MSR_NB_CFG) {
999 val = NB_CFG_INITAPICCPUIDLO;
1000 vmcb->state.rax = (val & 0xFFFFFFFF);
1001 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1002 goto handled;
1003 }
1004 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1005 if (msr_ignore_list[i] != exit->u.msr.msr)
1006 continue;
1007 val = 0;
1008 vmcb->state.rax = (val & 0xFFFFFFFF);
1009 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1010 goto handled;
1011 }
1012 break;
1013 case NVMM_EXIT_MSR_WRMSR:
1014 if (exit->u.msr.msr == MSR_EFER) {
1015 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
1016 goto error;
1017 }
1018 if ((vmcb->state.efer ^ exit->u.msr.val) &
1019 EFER_TLB_FLUSH) {
1020 cpudata->gtlb_want_flush = true;
1021 }
1022 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
1023 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1024 goto handled;
1025 }
1026 if (exit->u.msr.msr == MSR_TSC) {
1027 cpudata->gtsc = exit->u.msr.val;
1028 cpudata->gtsc_want_update = true;
1029 goto handled;
1030 }
1031 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1032 if (msr_ignore_list[i] != exit->u.msr.msr)
1033 continue;
1034 goto handled;
1035 }
1036 break;
1037 }
1038
1039 return false;
1040
1041 handled:
1042 svm_inkernel_advance(cpudata->vmcb);
1043 return true;
1044
1045 error:
1046 svm_inject_gp(vcpu);
1047 return true;
1048 }
1049
1050 static void
1051 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1052 struct nvmm_exit *exit)
1053 {
1054 struct svm_cpudata *cpudata = vcpu->cpudata;
1055 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1056
1057 if (info == 0) {
1058 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1059 } else {
1060 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1061 }
1062
1063 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1064
1065 if (info == 1) {
1066 uint64_t rdx, rax;
1067 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1068 rax = cpudata->vmcb->state.rax;
1069 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1070 } else {
1071 exit->u.msr.val = 0;
1072 }
1073
1074 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1075 exit->reason = NVMM_EXIT_NONE;
1076 return;
1077 }
1078
1079 exit->reason = NVMM_EXIT_MSR;
1080 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1081
1082 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1083 }
1084
1085 static void
1086 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1087 struct nvmm_exit *exit)
1088 {
1089 struct svm_cpudata *cpudata = vcpu->cpudata;
1090 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1091
1092 exit->reason = NVMM_EXIT_MEMORY;
1093 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1094 exit->u.mem.prot = PROT_WRITE;
1095 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1096 exit->u.mem.prot = PROT_EXEC;
1097 else
1098 exit->u.mem.prot = PROT_READ;
1099 exit->u.mem.gpa = gpa;
1100 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1101 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1102 sizeof(exit->u.mem.inst_bytes));
1103
1104 svm_vcpu_state_provide(vcpu,
1105 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1106 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1107 }
1108
1109 static void
1110 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1111 {
1112 exit->u.insn.npc = vmcb->ctrl.nrip;
1113 exit->reason = reason;
1114 }
1115
1116 static void
1117 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1118 struct nvmm_exit *exit)
1119 {
1120 struct svm_cpudata *cpudata = vcpu->cpudata;
1121 struct vmcb *vmcb = cpudata->vmcb;
1122 uint64_t val;
1123
1124 exit->reason = NVMM_EXIT_NONE;
1125
1126 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1127 (vmcb->state.rax & 0xFFFFFFFF);
1128
1129 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1130 goto error;
1131 } else if (__predict_false(vmcb->state.cpl != 0)) {
1132 goto error;
1133 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1134 goto error;
1135 } else if (__predict_false((val & XCR0_X87) == 0)) {
1136 goto error;
1137 }
1138
1139 cpudata->gxcr0 = val;
1140
1141 svm_inkernel_advance(cpudata->vmcb);
1142 return;
1143
1144 error:
1145 svm_inject_gp(vcpu);
1146 }
1147
1148 static void
1149 svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1150 {
1151 exit->u.inv.hwcode = code;
1152 exit->reason = NVMM_EXIT_INVALID;
1153 }
1154
1155 /* -------------------------------------------------------------------------- */
1156
1157 static void
1158 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1159 {
1160 struct svm_cpudata *cpudata = vcpu->cpudata;
1161
1162 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1163
1164 fpu_area_save(&cpudata->hfpu, svm_xcr0_mask);
1165 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1166
1167 if (svm_xcr0_mask != 0) {
1168 cpudata->hxcr0 = rdxcr(0);
1169 wrxcr(0, cpudata->gxcr0);
1170 }
1171 }
1172
1173 static void
1174 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1175 {
1176 struct svm_cpudata *cpudata = vcpu->cpudata;
1177
1178 if (svm_xcr0_mask != 0) {
1179 cpudata->gxcr0 = rdxcr(0);
1180 wrxcr(0, cpudata->hxcr0);
1181 }
1182
1183 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1184 fpu_area_restore(&cpudata->hfpu, svm_xcr0_mask);
1185
1186 if (cpudata->ts_set) {
1187 stts();
1188 }
1189 }
1190
1191 static void
1192 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1193 {
1194 struct svm_cpudata *cpudata = vcpu->cpudata;
1195
1196 x86_dbregs_save(curlwp);
1197
1198 ldr7(0);
1199
1200 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1201 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1202 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1203 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1204 }
1205
1206 static void
1207 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1208 {
1209 struct svm_cpudata *cpudata = vcpu->cpudata;
1210
1211 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1212 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1213 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1214 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1215
1216 x86_dbregs_restore(curlwp);
1217 }
1218
1219 static void
1220 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1221 {
1222 struct svm_cpudata *cpudata = vcpu->cpudata;
1223
1224 cpudata->fsbase = rdmsr(MSR_FSBASE);
1225 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1226 }
1227
1228 static void
1229 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1230 {
1231 struct svm_cpudata *cpudata = vcpu->cpudata;
1232
1233 wrmsr(MSR_STAR, cpudata->star);
1234 wrmsr(MSR_LSTAR, cpudata->lstar);
1235 wrmsr(MSR_CSTAR, cpudata->cstar);
1236 wrmsr(MSR_SFMASK, cpudata->sfmask);
1237 wrmsr(MSR_FSBASE, cpudata->fsbase);
1238 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1239 }
1240
1241 /* -------------------------------------------------------------------------- */
1242
1243 static inline void
1244 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1245 {
1246 struct svm_cpudata *cpudata = vcpu->cpudata;
1247
1248 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1249 cpudata->gtlb_want_flush = true;
1250 }
1251 }
1252
1253 static inline void
1254 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1255 {
1256 /*
1257 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1258 * executing on this hCPU and the hTLB already got flushed, or it
1259 * was executing on another hCPU in which case the catchup is done
1260 * in svm_gtlb_catchup().
1261 */
1262 }
1263
1264 static inline uint64_t
1265 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1266 {
1267 struct vmcb *vmcb = cpudata->vmcb;
1268 uint64_t machgen;
1269
1270 machgen = machdata->mach_htlb_gen;
1271 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1272 return machgen;
1273 }
1274
1275 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1276 return machgen;
1277 }
1278
1279 static inline void
1280 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1281 {
1282 struct vmcb *vmcb = cpudata->vmcb;
1283
1284 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1285 cpudata->vcpu_htlb_gen = machgen;
1286 }
1287 }
1288
1289 static inline void
1290 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1291 {
1292 cpudata->evt_pending = false;
1293
1294 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1295 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1296 cpudata->evt_pending = true;
1297 }
1298 }
1299
1300 static int
1301 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1302 struct nvmm_exit *exit)
1303 {
1304 struct nvmm_comm_page *comm = vcpu->comm;
1305 struct svm_machdata *machdata = mach->machdata;
1306 struct svm_cpudata *cpudata = vcpu->cpudata;
1307 struct vmcb *vmcb = cpudata->vmcb;
1308 uint64_t machgen;
1309 int hcpu, s;
1310
1311 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1312 return EINVAL;
1313 }
1314 svm_vcpu_state_commit(vcpu);
1315 comm->state_cached = 0;
1316
1317 kpreempt_disable();
1318 hcpu = cpu_number();
1319
1320 svm_gtlb_catchup(vcpu, hcpu);
1321 svm_htlb_catchup(vcpu, hcpu);
1322
1323 if (vcpu->hcpu_last != hcpu) {
1324 svm_vmcb_cache_flush_all(vmcb);
1325 cpudata->gtsc_want_update = true;
1326 }
1327
1328 svm_vcpu_guest_dbregs_enter(vcpu);
1329 svm_vcpu_guest_misc_enter(vcpu);
1330
1331 while (1) {
1332 if (cpudata->gtlb_want_flush) {
1333 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1334 } else {
1335 vmcb->ctrl.tlb_ctrl = 0;
1336 }
1337
1338 if (__predict_false(cpudata->gtsc_want_update)) {
1339 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1340 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1341 }
1342
1343 s = splhigh();
1344 machgen = svm_htlb_flush(machdata, cpudata);
1345 svm_vcpu_guest_fpu_enter(vcpu);
1346 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1347 svm_vcpu_guest_fpu_leave(vcpu);
1348 svm_htlb_flush_ack(cpudata, machgen);
1349 splx(s);
1350
1351 svm_vmcb_cache_default(vmcb);
1352
1353 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1354 cpudata->gtlb_want_flush = false;
1355 cpudata->gtsc_want_update = false;
1356 vcpu->hcpu_last = hcpu;
1357 }
1358 svm_exit_evt(cpudata, vmcb);
1359
1360 switch (vmcb->ctrl.exitcode) {
1361 case VMCB_EXITCODE_INTR:
1362 case VMCB_EXITCODE_NMI:
1363 exit->reason = NVMM_EXIT_NONE;
1364 break;
1365 case VMCB_EXITCODE_VINTR:
1366 svm_event_waitexit_disable(vcpu, false);
1367 exit->reason = NVMM_EXIT_INT_READY;
1368 break;
1369 case VMCB_EXITCODE_IRET:
1370 svm_event_waitexit_disable(vcpu, true);
1371 exit->reason = NVMM_EXIT_NMI_READY;
1372 break;
1373 case VMCB_EXITCODE_CPUID:
1374 svm_exit_cpuid(mach, vcpu, exit);
1375 break;
1376 case VMCB_EXITCODE_HLT:
1377 svm_exit_hlt(mach, vcpu, exit);
1378 break;
1379 case VMCB_EXITCODE_IOIO:
1380 svm_exit_io(mach, vcpu, exit);
1381 break;
1382 case VMCB_EXITCODE_MSR:
1383 svm_exit_msr(mach, vcpu, exit);
1384 break;
1385 case VMCB_EXITCODE_SHUTDOWN:
1386 exit->reason = NVMM_EXIT_SHUTDOWN;
1387 break;
1388 case VMCB_EXITCODE_RDPMC:
1389 case VMCB_EXITCODE_RSM:
1390 case VMCB_EXITCODE_INVLPGA:
1391 case VMCB_EXITCODE_VMRUN:
1392 case VMCB_EXITCODE_VMMCALL:
1393 case VMCB_EXITCODE_VMLOAD:
1394 case VMCB_EXITCODE_VMSAVE:
1395 case VMCB_EXITCODE_STGI:
1396 case VMCB_EXITCODE_CLGI:
1397 case VMCB_EXITCODE_SKINIT:
1398 case VMCB_EXITCODE_RDTSCP:
1399 svm_inject_ud(vcpu);
1400 exit->reason = NVMM_EXIT_NONE;
1401 break;
1402 case VMCB_EXITCODE_MONITOR:
1403 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1404 break;
1405 case VMCB_EXITCODE_MWAIT:
1406 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1407 break;
1408 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1409 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1410 break;
1411 case VMCB_EXITCODE_XSETBV:
1412 svm_exit_xsetbv(mach, vcpu, exit);
1413 break;
1414 case VMCB_EXITCODE_NPF:
1415 svm_exit_npf(mach, vcpu, exit);
1416 break;
1417 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1418 default:
1419 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1420 break;
1421 }
1422
1423 /* If no reason to return to userland, keep rolling. */
1424 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1425 break;
1426 }
1427 if (curcpu()->ci_data.cpu_softints != 0) {
1428 break;
1429 }
1430 if (curlwp->l_flag & LW_USERRET) {
1431 break;
1432 }
1433 if (exit->reason != NVMM_EXIT_NONE) {
1434 break;
1435 }
1436 }
1437
1438 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1439
1440 svm_vcpu_guest_misc_leave(vcpu);
1441 svm_vcpu_guest_dbregs_leave(vcpu);
1442
1443 kpreempt_enable();
1444
1445 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1446 VMCB_CTRL_V_TPR);
1447 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1448
1449 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1450 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1451 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1452 cpudata->int_window_exit;
1453 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1454 cpudata->nmi_window_exit;
1455 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1456 cpudata->evt_pending;
1457
1458 return 0;
1459 }
1460
1461 /* -------------------------------------------------------------------------- */
1462
1463 static int
1464 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1465 {
1466 struct pglist pglist;
1467 paddr_t _pa;
1468 vaddr_t _va;
1469 size_t i;
1470 int ret;
1471
1472 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1473 &pglist, 1, 0);
1474 if (ret != 0)
1475 return ENOMEM;
1476 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1477 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1478 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1479 if (_va == 0)
1480 goto error;
1481
1482 for (i = 0; i < npages; i++) {
1483 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1484 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1485 }
1486 pmap_update(pmap_kernel());
1487
1488 memset((void *)_va, 0, npages * PAGE_SIZE);
1489
1490 *pa = _pa;
1491 *va = _va;
1492 return 0;
1493
1494 error:
1495 for (i = 0; i < npages; i++) {
1496 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1497 }
1498 return ENOMEM;
1499 }
1500
1501 static void
1502 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1503 {
1504 size_t i;
1505
1506 pmap_kremove(va, npages * PAGE_SIZE);
1507 pmap_update(pmap_kernel());
1508 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1509 for (i = 0; i < npages; i++) {
1510 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1511 }
1512 }
1513
1514 /* -------------------------------------------------------------------------- */
1515
1516 #define SVM_MSRBM_READ __BIT(0)
1517 #define SVM_MSRBM_WRITE __BIT(1)
1518
1519 static void
1520 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1521 {
1522 uint64_t byte;
1523 uint8_t bitoff;
1524
1525 if (msr < 0x00002000) {
1526 /* Range 1 */
1527 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1528 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1529 /* Range 2 */
1530 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1531 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1532 /* Range 3 */
1533 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1534 } else {
1535 panic("%s: wrong range", __func__);
1536 }
1537
1538 bitoff = (msr & 0x3) << 1;
1539
1540 if (read) {
1541 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1542 }
1543 if (write) {
1544 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1545 }
1546 }
1547
1548 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1549 #define SVM_SEG_ATTRIB_S __BIT(4)
1550 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1551 #define SVM_SEG_ATTRIB_P __BIT(7)
1552 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1553 #define SVM_SEG_ATTRIB_L __BIT(9)
1554 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1555 #define SVM_SEG_ATTRIB_G __BIT(11)
1556
1557 static void
1558 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1559 struct vmcb_segment *vseg)
1560 {
1561 vseg->selector = seg->selector;
1562 vseg->attrib =
1563 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1564 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1565 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1566 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1567 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1568 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1569 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1570 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1571 vseg->limit = seg->limit;
1572 vseg->base = seg->base;
1573 }
1574
1575 static void
1576 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1577 {
1578 seg->selector = vseg->selector;
1579 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1580 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1581 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1582 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1583 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1584 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1585 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1586 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1587 seg->limit = vseg->limit;
1588 seg->base = vseg->base;
1589 }
1590
1591 static inline bool
1592 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1593 uint64_t flags)
1594 {
1595 if (flags & NVMM_X64_STATE_CRS) {
1596 if ((vmcb->state.cr0 ^
1597 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1598 return true;
1599 }
1600 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1601 return true;
1602 }
1603 if ((vmcb->state.cr4 ^
1604 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1605 return true;
1606 }
1607 }
1608
1609 if (flags & NVMM_X64_STATE_MSRS) {
1610 if ((vmcb->state.efer ^
1611 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1612 return true;
1613 }
1614 }
1615
1616 return false;
1617 }
1618
1619 static void
1620 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1621 {
1622 struct nvmm_comm_page *comm = vcpu->comm;
1623 const struct nvmm_x64_state *state = &comm->state;
1624 struct svm_cpudata *cpudata = vcpu->cpudata;
1625 struct vmcb *vmcb = cpudata->vmcb;
1626 struct fxsave *fpustate;
1627 uint64_t flags;
1628
1629 flags = comm->state_wanted;
1630
1631 if (svm_state_tlb_flush(vmcb, state, flags)) {
1632 cpudata->gtlb_want_flush = true;
1633 }
1634
1635 if (flags & NVMM_X64_STATE_SEGS) {
1636 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1637 &vmcb->state.cs);
1638 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1639 &vmcb->state.ds);
1640 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1641 &vmcb->state.es);
1642 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1643 &vmcb->state.fs);
1644 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1645 &vmcb->state.gs);
1646 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1647 &vmcb->state.ss);
1648 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1649 &vmcb->state.gdt);
1650 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1651 &vmcb->state.idt);
1652 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1653 &vmcb->state.ldt);
1654 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1655 &vmcb->state.tr);
1656
1657 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1658 }
1659
1660 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1661 if (flags & NVMM_X64_STATE_GPRS) {
1662 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1663
1664 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1665 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1666 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1667 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1668 }
1669
1670 if (flags & NVMM_X64_STATE_CRS) {
1671 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1672 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1673 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1674 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1675
1676 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1677 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1678 VMCB_CTRL_V_TPR);
1679
1680 if (svm_xcr0_mask != 0) {
1681 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1682 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1683 cpudata->gxcr0 &= svm_xcr0_mask;
1684 cpudata->gxcr0 |= XCR0_X87;
1685 }
1686 }
1687
1688 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1689 if (flags & NVMM_X64_STATE_DRS) {
1690 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1691
1692 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1693 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1694 }
1695
1696 if (flags & NVMM_X64_STATE_MSRS) {
1697 /*
1698 * EFER_SVME is mandatory.
1699 */
1700 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1701 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1702 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1703 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1704 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1705 vmcb->state.kernelgsbase =
1706 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1707 vmcb->state.sysenter_cs =
1708 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1709 vmcb->state.sysenter_esp =
1710 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1711 vmcb->state.sysenter_eip =
1712 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1713 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1714
1715 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1716 cpudata->gtsc_want_update = true;
1717 }
1718
1719 if (flags & NVMM_X64_STATE_INTR) {
1720 if (state->intr.int_shadow) {
1721 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1722 } else {
1723 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1724 }
1725
1726 if (state->intr.int_window_exiting) {
1727 svm_event_waitexit_enable(vcpu, false);
1728 } else {
1729 svm_event_waitexit_disable(vcpu, false);
1730 }
1731
1732 if (state->intr.nmi_window_exiting) {
1733 svm_event_waitexit_enable(vcpu, true);
1734 } else {
1735 svm_event_waitexit_disable(vcpu, true);
1736 }
1737 }
1738
1739 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1740 if (flags & NVMM_X64_STATE_FPU) {
1741 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1742 sizeof(state->fpu));
1743
1744 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1745 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1746 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1747
1748 if (svm_xcr0_mask != 0) {
1749 /* Reset XSTATE_BV, to force a reload. */
1750 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1751 }
1752 }
1753
1754 svm_vmcb_cache_update(vmcb, flags);
1755
1756 comm->state_wanted = 0;
1757 comm->state_cached |= flags;
1758 }
1759
1760 static void
1761 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1762 {
1763 struct nvmm_comm_page *comm = vcpu->comm;
1764 struct nvmm_x64_state *state = &comm->state;
1765 struct svm_cpudata *cpudata = vcpu->cpudata;
1766 struct vmcb *vmcb = cpudata->vmcb;
1767 uint64_t flags;
1768
1769 flags = comm->state_wanted;
1770
1771 if (flags & NVMM_X64_STATE_SEGS) {
1772 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1773 &vmcb->state.cs);
1774 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1775 &vmcb->state.ds);
1776 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1777 &vmcb->state.es);
1778 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1779 &vmcb->state.fs);
1780 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1781 &vmcb->state.gs);
1782 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1783 &vmcb->state.ss);
1784 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1785 &vmcb->state.gdt);
1786 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1787 &vmcb->state.idt);
1788 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1789 &vmcb->state.ldt);
1790 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1791 &vmcb->state.tr);
1792
1793 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1794 }
1795
1796 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1797 if (flags & NVMM_X64_STATE_GPRS) {
1798 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1799
1800 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1801 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1802 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1803 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1804 }
1805
1806 if (flags & NVMM_X64_STATE_CRS) {
1807 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1808 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1809 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1810 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1811 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1812 VMCB_CTRL_V_TPR);
1813 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1814 }
1815
1816 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1817 if (flags & NVMM_X64_STATE_DRS) {
1818 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1819
1820 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1821 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1822 }
1823
1824 if (flags & NVMM_X64_STATE_MSRS) {
1825 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1826 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1827 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1828 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1829 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1830 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1831 vmcb->state.kernelgsbase;
1832 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1833 vmcb->state.sysenter_cs;
1834 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1835 vmcb->state.sysenter_esp;
1836 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1837 vmcb->state.sysenter_eip;
1838 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1839 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1840
1841 /* Hide SVME. */
1842 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1843 }
1844
1845 if (flags & NVMM_X64_STATE_INTR) {
1846 state->intr.int_shadow =
1847 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1848 state->intr.int_window_exiting = cpudata->int_window_exit;
1849 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1850 state->intr.evt_pending = cpudata->evt_pending;
1851 }
1852
1853 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1854 if (flags & NVMM_X64_STATE_FPU) {
1855 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1856 sizeof(state->fpu));
1857 }
1858
1859 comm->state_wanted = 0;
1860 comm->state_cached |= flags;
1861 }
1862
1863 static void
1864 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1865 {
1866 vcpu->comm->state_wanted = flags;
1867 svm_vcpu_getstate(vcpu);
1868 }
1869
1870 static void
1871 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1872 {
1873 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1874 vcpu->comm->state_commit = 0;
1875 svm_vcpu_setstate(vcpu);
1876 }
1877
1878 /* -------------------------------------------------------------------------- */
1879
1880 static void
1881 svm_asid_alloc(struct nvmm_cpu *vcpu)
1882 {
1883 struct svm_cpudata *cpudata = vcpu->cpudata;
1884 struct vmcb *vmcb = cpudata->vmcb;
1885 size_t i, oct, bit;
1886
1887 mutex_enter(&svm_asidlock);
1888
1889 for (i = 0; i < svm_maxasid; i++) {
1890 oct = i / 8;
1891 bit = i % 8;
1892
1893 if (svm_asidmap[oct] & __BIT(bit)) {
1894 continue;
1895 }
1896
1897 svm_asidmap[oct] |= __BIT(bit);
1898 vmcb->ctrl.guest_asid = i;
1899 mutex_exit(&svm_asidlock);
1900 return;
1901 }
1902
1903 /*
1904 * No free ASID. Use the last one, which is shared and requires
1905 * special TLB handling.
1906 */
1907 cpudata->shared_asid = true;
1908 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1909 mutex_exit(&svm_asidlock);
1910 }
1911
1912 static void
1913 svm_asid_free(struct nvmm_cpu *vcpu)
1914 {
1915 struct svm_cpudata *cpudata = vcpu->cpudata;
1916 struct vmcb *vmcb = cpudata->vmcb;
1917 size_t oct, bit;
1918
1919 if (cpudata->shared_asid) {
1920 return;
1921 }
1922
1923 oct = vmcb->ctrl.guest_asid / 8;
1924 bit = vmcb->ctrl.guest_asid % 8;
1925
1926 mutex_enter(&svm_asidlock);
1927 svm_asidmap[oct] &= ~__BIT(bit);
1928 mutex_exit(&svm_asidlock);
1929 }
1930
1931 static void
1932 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1933 {
1934 struct svm_cpudata *cpudata = vcpu->cpudata;
1935 struct vmcb *vmcb = cpudata->vmcb;
1936
1937 /* Allow reads/writes of Control Registers. */
1938 vmcb->ctrl.intercept_cr = 0;
1939
1940 /* Allow reads/writes of Debug Registers. */
1941 vmcb->ctrl.intercept_dr = 0;
1942
1943 /* Allow exceptions 0 to 31. */
1944 vmcb->ctrl.intercept_vec = 0;
1945
1946 /*
1947 * Allow:
1948 * - SMI [smm interrupts]
1949 * - VINTR [virtual interrupts]
1950 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1951 * - RIDTR [reads of IDTR]
1952 * - RGDTR [reads of GDTR]
1953 * - RLDTR [reads of LDTR]
1954 * - RTR [reads of TR]
1955 * - WIDTR [writes of IDTR]
1956 * - WGDTR [writes of GDTR]
1957 * - WLDTR [writes of LDTR]
1958 * - WTR [writes of TR]
1959 * - RDTSC [rdtsc instruction]
1960 * - PUSHF [pushf instruction]
1961 * - POPF [popf instruction]
1962 * - IRET [iret instruction]
1963 * - INTN [int $n instructions]
1964 * - INVD [invd instruction]
1965 * - PAUSE [pause instruction]
1966 * - INVLPG [invplg instruction]
1967 * - TASKSW [task switches]
1968 *
1969 * Intercept the rest below.
1970 */
1971 vmcb->ctrl.intercept_misc1 =
1972 VMCB_CTRL_INTERCEPT_INTR |
1973 VMCB_CTRL_INTERCEPT_NMI |
1974 VMCB_CTRL_INTERCEPT_INIT |
1975 VMCB_CTRL_INTERCEPT_RDPMC |
1976 VMCB_CTRL_INTERCEPT_CPUID |
1977 VMCB_CTRL_INTERCEPT_RSM |
1978 VMCB_CTRL_INTERCEPT_HLT |
1979 VMCB_CTRL_INTERCEPT_INVLPGA |
1980 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1981 VMCB_CTRL_INTERCEPT_MSR_PROT |
1982 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1983 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1984
1985 /*
1986 * Allow:
1987 * - ICEBP [icebp instruction]
1988 * - WBINVD [wbinvd instruction]
1989 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1990 *
1991 * Intercept the rest below.
1992 */
1993 vmcb->ctrl.intercept_misc2 =
1994 VMCB_CTRL_INTERCEPT_VMRUN |
1995 VMCB_CTRL_INTERCEPT_VMMCALL |
1996 VMCB_CTRL_INTERCEPT_VMLOAD |
1997 VMCB_CTRL_INTERCEPT_VMSAVE |
1998 VMCB_CTRL_INTERCEPT_STGI |
1999 VMCB_CTRL_INTERCEPT_CLGI |
2000 VMCB_CTRL_INTERCEPT_SKINIT |
2001 VMCB_CTRL_INTERCEPT_RDTSCP |
2002 VMCB_CTRL_INTERCEPT_MONITOR |
2003 VMCB_CTRL_INTERCEPT_MWAIT |
2004 VMCB_CTRL_INTERCEPT_XSETBV;
2005
2006 /* Intercept all I/O accesses. */
2007 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2008 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2009
2010 /* Allow direct access to certain MSRs. */
2011 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2012 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2013 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2014 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2015 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2016 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2017 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2018 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2019 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2020 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2021 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2022 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2023 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2024 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2025 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2026
2027 /* Generate ASID. */
2028 svm_asid_alloc(vcpu);
2029
2030 /* Virtual TPR. */
2031 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2032
2033 /* Enable Nested Paging. */
2034 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2035 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2036
2037 /* Init XSAVE header. */
2038 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2039 cpudata->gfpu.xsh_xcomp_bv = 0;
2040
2041 /* These MSRs are static. */
2042 cpudata->star = rdmsr(MSR_STAR);
2043 cpudata->lstar = rdmsr(MSR_LSTAR);
2044 cpudata->cstar = rdmsr(MSR_CSTAR);
2045 cpudata->sfmask = rdmsr(MSR_SFMASK);
2046
2047 /* Install the RESET state. */
2048 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2049 sizeof(nvmm_x86_reset_state));
2050 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2051 vcpu->comm->state_cached = 0;
2052 svm_vcpu_setstate(vcpu);
2053 }
2054
2055 static int
2056 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2057 {
2058 struct svm_cpudata *cpudata;
2059 int error;
2060
2061 /* Allocate the SVM cpudata. */
2062 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2063 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2064 UVM_KMF_WIRED|UVM_KMF_ZERO);
2065 vcpu->cpudata = cpudata;
2066
2067 /* VMCB */
2068 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2069 VMCB_NPAGES);
2070 if (error)
2071 goto error;
2072
2073 /* I/O Bitmap */
2074 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2075 IOBM_NPAGES);
2076 if (error)
2077 goto error;
2078
2079 /* MSR Bitmap */
2080 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2081 MSRBM_NPAGES);
2082 if (error)
2083 goto error;
2084
2085 /* Init the VCPU info. */
2086 svm_vcpu_init(mach, vcpu);
2087
2088 return 0;
2089
2090 error:
2091 if (cpudata->vmcb_pa) {
2092 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2093 VMCB_NPAGES);
2094 }
2095 if (cpudata->iobm_pa) {
2096 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2097 IOBM_NPAGES);
2098 }
2099 if (cpudata->msrbm_pa) {
2100 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2101 MSRBM_NPAGES);
2102 }
2103 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2104 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2105 return error;
2106 }
2107
2108 static void
2109 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2110 {
2111 struct svm_cpudata *cpudata = vcpu->cpudata;
2112
2113 svm_asid_free(vcpu);
2114
2115 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2116 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2117 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2118
2119 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2120 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2121 }
2122
2123 /* -------------------------------------------------------------------------- */
2124
2125 static void
2126 svm_tlb_flush(struct pmap *pm)
2127 {
2128 struct nvmm_machine *mach = pm->pm_data;
2129 struct svm_machdata *machdata = mach->machdata;
2130
2131 atomic_inc_64(&machdata->mach_htlb_gen);
2132
2133 /* Generates IPIs, which cause #VMEXITs. */
2134 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2135 }
2136
2137 static void
2138 svm_machine_create(struct nvmm_machine *mach)
2139 {
2140 struct svm_machdata *machdata;
2141
2142 /* Fill in pmap info. */
2143 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2144 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2145
2146 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2147 mach->machdata = machdata;
2148
2149 /* Start with an hTLB flush everywhere. */
2150 machdata->mach_htlb_gen = 1;
2151 }
2152
2153 static void
2154 svm_machine_destroy(struct nvmm_machine *mach)
2155 {
2156 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2157 }
2158
2159 static int
2160 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2161 {
2162 struct nvmm_mach_conf_x86_cpuid *cpuid = data;
2163 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2164 size_t i;
2165
2166 if (__predict_false(op != NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID))) {
2167 return EINVAL;
2168 }
2169
2170 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2171 (cpuid->set.ebx & cpuid->del.ebx) ||
2172 (cpuid->set.ecx & cpuid->del.ecx) ||
2173 (cpuid->set.edx & cpuid->del.edx))) {
2174 return EINVAL;
2175 }
2176
2177 /* If already here, replace. */
2178 for (i = 0; i < SVM_NCPUIDS; i++) {
2179 if (!machdata->cpuidpresent[i]) {
2180 continue;
2181 }
2182 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2183 memcpy(&machdata->cpuid[i], cpuid,
2184 sizeof(struct nvmm_mach_conf_x86_cpuid));
2185 return 0;
2186 }
2187 }
2188
2189 /* Not here, insert. */
2190 for (i = 0; i < SVM_NCPUIDS; i++) {
2191 if (!machdata->cpuidpresent[i]) {
2192 machdata->cpuidpresent[i] = true;
2193 memcpy(&machdata->cpuid[i], cpuid,
2194 sizeof(struct nvmm_mach_conf_x86_cpuid));
2195 return 0;
2196 }
2197 }
2198
2199 return ENOBUFS;
2200 }
2201
2202 /* -------------------------------------------------------------------------- */
2203
2204 static bool
2205 svm_ident(void)
2206 {
2207 u_int descs[4];
2208 uint64_t msr;
2209
2210 if (cpu_vendor != CPUVENDOR_AMD) {
2211 return false;
2212 }
2213 if (!(cpu_feature[3] & CPUID_SVM)) {
2214 return false;
2215 }
2216
2217 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2218 return false;
2219 }
2220 x86_cpuid(0x8000000a, descs);
2221
2222 /* Want Nested Paging. */
2223 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2224 return false;
2225 }
2226
2227 /* Want nRIP. */
2228 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2229 return false;
2230 }
2231
2232 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2233
2234 msr = rdmsr(MSR_VMCR);
2235 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2236 return false;
2237 }
2238
2239 return true;
2240 }
2241
2242 static void
2243 svm_init_asid(uint32_t maxasid)
2244 {
2245 size_t i, j, allocsz;
2246
2247 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2248
2249 /* Arbitrarily limit. */
2250 maxasid = uimin(maxasid, 8192);
2251
2252 svm_maxasid = maxasid;
2253 allocsz = roundup(maxasid, 8) / 8;
2254 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2255
2256 /* ASID 0 is reserved for the host. */
2257 svm_asidmap[0] |= __BIT(0);
2258
2259 /* ASID n-1 is special, we share it. */
2260 i = (maxasid - 1) / 8;
2261 j = (maxasid - 1) % 8;
2262 svm_asidmap[i] |= __BIT(j);
2263 }
2264
2265 static void
2266 svm_change_cpu(void *arg1, void *arg2)
2267 {
2268 bool enable = (bool)arg1;
2269 uint64_t msr;
2270
2271 msr = rdmsr(MSR_VMCR);
2272 if (msr & VMCR_SVMED) {
2273 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2274 }
2275
2276 if (!enable) {
2277 wrmsr(MSR_VM_HSAVE_PA, 0);
2278 }
2279
2280 msr = rdmsr(MSR_EFER);
2281 if (enable) {
2282 msr |= EFER_SVME;
2283 } else {
2284 msr &= ~EFER_SVME;
2285 }
2286 wrmsr(MSR_EFER, msr);
2287
2288 if (enable) {
2289 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2290 }
2291 }
2292
2293 static void
2294 svm_init(void)
2295 {
2296 CPU_INFO_ITERATOR cii;
2297 struct cpu_info *ci;
2298 struct vm_page *pg;
2299 u_int descs[4];
2300 uint64_t xc;
2301
2302 x86_cpuid(0x8000000a, descs);
2303
2304 /* The guest TLB flush command. */
2305 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2306 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2307 } else {
2308 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2309 }
2310
2311 /* Init the ASID. */
2312 svm_init_asid(descs[1]);
2313
2314 /* Init the XCR0 mask. */
2315 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2316
2317 memset(hsave, 0, sizeof(hsave));
2318 for (CPU_INFO_FOREACH(cii, ci)) {
2319 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2320 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2321 }
2322
2323 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2324 xc_wait(xc);
2325 }
2326
2327 static void
2328 svm_fini_asid(void)
2329 {
2330 size_t allocsz;
2331
2332 allocsz = roundup(svm_maxasid, 8) / 8;
2333 kmem_free(svm_asidmap, allocsz);
2334
2335 mutex_destroy(&svm_asidlock);
2336 }
2337
2338 static void
2339 svm_fini(void)
2340 {
2341 uint64_t xc;
2342 size_t i;
2343
2344 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2345 xc_wait(xc);
2346
2347 for (i = 0; i < MAXCPUS; i++) {
2348 if (hsave[i].pa != 0)
2349 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2350 }
2351
2352 svm_fini_asid();
2353 }
2354
2355 static void
2356 svm_capability(struct nvmm_capability *cap)
2357 {
2358 cap->arch.xcr0_mask = svm_xcr0_mask;
2359 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2360 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2361 }
2362
2363 const struct nvmm_impl nvmm_x86_svm = {
2364 .ident = svm_ident,
2365 .init = svm_init,
2366 .fini = svm_fini,
2367 .capability = svm_capability,
2368 .conf_max = NVMM_X86_NCONF,
2369 .conf_sizes = svm_conf_sizes,
2370 .state_size = sizeof(struct nvmm_x64_state),
2371 .machine_create = svm_machine_create,
2372 .machine_destroy = svm_machine_destroy,
2373 .machine_configure = svm_machine_configure,
2374 .vcpu_create = svm_vcpu_create,
2375 .vcpu_destroy = svm_vcpu_destroy,
2376 .vcpu_setstate = svm_vcpu_setstate,
2377 .vcpu_getstate = svm_vcpu_getstate,
2378 .vcpu_inject = svm_vcpu_inject,
2379 .vcpu_run = svm_vcpu_run
2380 };
2381