nvmm_x86_svm.c revision 1.50 1 /* $NetBSD: nvmm_x86_svm.c,v 1.50 2019/10/12 06:31:04 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.50 2019/10/12 06:31:04 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 bool cpuidpresent[SVM_NCPUIDS];
508 struct nvmm_mach_conf_x86_cpuid cpuid[SVM_NCPUIDS];
509 volatile uint64_t mach_htlb_gen;
510 };
511
512 static const size_t svm_conf_sizes[NVMM_X86_NCONF] = {
513 [NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID)] =
514 sizeof(struct nvmm_mach_conf_x86_cpuid)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544
545 /* Intr state */
546 bool int_window_exit;
547 bool nmi_window_exit;
548 bool evt_pending;
549
550 /* Guest state */
551 uint64_t gxcr0;
552 uint64_t gprs[NVMM_X64_NGPR];
553 uint64_t drs[NVMM_X64_NDR];
554 uint64_t gtsc;
555 struct xsave_header gfpu __aligned(64);
556 };
557
558 static void
559 svm_vmcb_cache_default(struct vmcb *vmcb)
560 {
561 vmcb->ctrl.vmcb_clean =
562 VMCB_CTRL_VMCB_CLEAN_I |
563 VMCB_CTRL_VMCB_CLEAN_IOPM |
564 VMCB_CTRL_VMCB_CLEAN_ASID |
565 VMCB_CTRL_VMCB_CLEAN_TPR |
566 VMCB_CTRL_VMCB_CLEAN_NP |
567 VMCB_CTRL_VMCB_CLEAN_CR |
568 VMCB_CTRL_VMCB_CLEAN_DR |
569 VMCB_CTRL_VMCB_CLEAN_DT |
570 VMCB_CTRL_VMCB_CLEAN_SEG |
571 VMCB_CTRL_VMCB_CLEAN_CR2 |
572 VMCB_CTRL_VMCB_CLEAN_LBR |
573 VMCB_CTRL_VMCB_CLEAN_AVIC;
574 }
575
576 static void
577 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
578 {
579 if (flags & NVMM_X64_STATE_SEGS) {
580 vmcb->ctrl.vmcb_clean &=
581 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
582 }
583 if (flags & NVMM_X64_STATE_CRS) {
584 vmcb->ctrl.vmcb_clean &=
585 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
586 VMCB_CTRL_VMCB_CLEAN_TPR);
587 }
588 if (flags & NVMM_X64_STATE_DRS) {
589 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
590 }
591 if (flags & NVMM_X64_STATE_MSRS) {
592 /* CR for EFER, NP for PAT. */
593 vmcb->ctrl.vmcb_clean &=
594 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
595 }
596 }
597
598 static inline void
599 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
600 {
601 vmcb->ctrl.vmcb_clean &= ~flags;
602 }
603
604 static inline void
605 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
606 {
607 vmcb->ctrl.vmcb_clean = 0;
608 }
609
610 #define SVM_EVENT_TYPE_HW_INT 0
611 #define SVM_EVENT_TYPE_NMI 2
612 #define SVM_EVENT_TYPE_EXC 3
613 #define SVM_EVENT_TYPE_SW_INT 4
614
615 static void
616 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
617 {
618 struct svm_cpudata *cpudata = vcpu->cpudata;
619 struct vmcb *vmcb = cpudata->vmcb;
620
621 if (nmi) {
622 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
623 cpudata->nmi_window_exit = true;
624 } else {
625 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
626 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
627 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
628 cpudata->int_window_exit = true;
629 }
630
631 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
632 }
633
634 static void
635 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
636 {
637 struct svm_cpudata *cpudata = vcpu->cpudata;
638 struct vmcb *vmcb = cpudata->vmcb;
639
640 if (nmi) {
641 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
642 cpudata->nmi_window_exit = false;
643 } else {
644 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
645 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
646 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
647 cpudata->int_window_exit = false;
648 }
649
650 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
651 }
652
653 static inline int
654 svm_event_has_error(uint64_t vector)
655 {
656 switch (vector) {
657 case 8: /* #DF */
658 case 10: /* #TS */
659 case 11: /* #NP */
660 case 12: /* #SS */
661 case 13: /* #GP */
662 case 14: /* #PF */
663 case 17: /* #AC */
664 case 30: /* #SX */
665 return 1;
666 default:
667 return 0;
668 }
669 }
670
671 static int
672 svm_vcpu_inject(struct nvmm_cpu *vcpu)
673 {
674 struct nvmm_comm_page *comm = vcpu->comm;
675 struct svm_cpudata *cpudata = vcpu->cpudata;
676 struct vmcb *vmcb = cpudata->vmcb;
677 enum nvmm_event_type evtype;
678 uint64_t vector, error;
679 int type = 0, err = 0;
680
681 evtype = comm->event.type;
682 vector = comm->event.vector;
683 error = comm->event.u.error;
684 __insn_barrier();
685
686 if (__predict_false(vector >= 256)) {
687 return EINVAL;
688 }
689
690 switch (evtype) {
691 case NVMM_EVENT_INTERRUPT_HW:
692 type = SVM_EVENT_TYPE_HW_INT;
693 if (vector == 2) {
694 type = SVM_EVENT_TYPE_NMI;
695 svm_event_waitexit_enable(vcpu, true);
696 }
697 err = 0;
698 break;
699 case NVMM_EVENT_EXCEPTION:
700 type = SVM_EVENT_TYPE_EXC;
701 if (vector == 2 || vector >= 32)
702 return EINVAL;
703 if (vector == 3 || vector == 0)
704 return EINVAL;
705 err = svm_event_has_error(vector);
706 break;
707 default:
708 return EINVAL;
709 }
710
711 vmcb->ctrl.eventinj =
712 __SHIFTIN(vector, VMCB_CTRL_EVENTINJ_VECTOR) |
713 __SHIFTIN(type, VMCB_CTRL_EVENTINJ_TYPE) |
714 __SHIFTIN(err, VMCB_CTRL_EVENTINJ_EV) |
715 __SHIFTIN(1, VMCB_CTRL_EVENTINJ_V) |
716 __SHIFTIN(error, VMCB_CTRL_EVENTINJ_ERRORCODE);
717
718 cpudata->evt_pending = true;
719
720 return 0;
721 }
722
723 static void
724 svm_inject_ud(struct nvmm_cpu *vcpu)
725 {
726 struct nvmm_comm_page *comm = vcpu->comm;
727 int ret __diagused;
728
729 comm->event.type = NVMM_EVENT_EXCEPTION;
730 comm->event.vector = 6;
731 comm->event.u.error = 0;
732
733 ret = svm_vcpu_inject(vcpu);
734 KASSERT(ret == 0);
735 }
736
737 static void
738 svm_inject_gp(struct nvmm_cpu *vcpu)
739 {
740 struct nvmm_comm_page *comm = vcpu->comm;
741 int ret __diagused;
742
743 comm->event.type = NVMM_EVENT_EXCEPTION;
744 comm->event.vector = 13;
745 comm->event.u.error = 0;
746
747 ret = svm_vcpu_inject(vcpu);
748 KASSERT(ret == 0);
749 }
750
751 static inline int
752 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
753 {
754 if (__predict_true(!vcpu->comm->event_commit)) {
755 return 0;
756 }
757 vcpu->comm->event_commit = false;
758 return svm_vcpu_inject(vcpu);
759 }
760
761 static inline void
762 svm_inkernel_advance(struct vmcb *vmcb)
763 {
764 /*
765 * Maybe we should also apply single-stepping and debug exceptions.
766 * Matters for guest-ring3, because it can execute 'cpuid' under a
767 * debugger.
768 */
769 vmcb->state.rip = vmcb->ctrl.nrip;
770 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
771 }
772
773 static void
774 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
775 {
776 struct svm_cpudata *cpudata = vcpu->cpudata;
777 uint64_t cr4;
778
779 switch (eax) {
780 case 0x00000001:
781 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
782
783 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
784 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
785 CPUID_LOCAL_APIC_ID);
786
787 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
788 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
789
790 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
791
792 /* CPUID2_OSXSAVE depends on CR4. */
793 cr4 = cpudata->vmcb->state.cr4;
794 if (!(cr4 & CR4_OSXSAVE)) {
795 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
796 }
797 break;
798 case 0x00000005:
799 case 0x00000006:
800 cpudata->vmcb->state.rax = 0;
801 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
802 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
803 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
804 break;
805 case 0x00000007:
806 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
807 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
808 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
809 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
810 break;
811 case 0x0000000D:
812 if (svm_xcr0_mask == 0) {
813 break;
814 }
815 switch (ecx) {
816 case 0:
817 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
818 if (cpudata->gxcr0 & XCR0_SSE) {
819 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
820 } else {
821 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
822 }
823 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
824 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
825 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
826 break;
827 case 1:
828 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
829 break;
830 }
831 break;
832 case 0x40000000:
833 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
834 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
835 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
836 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
837 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
838 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
839 break;
840 case 0x80000001:
841 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
842 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
843 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
844 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
845 break;
846 default:
847 break;
848 }
849 }
850
851 static void
852 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
853 struct nvmm_exit *exit)
854 {
855 struct svm_machdata *machdata = mach->machdata;
856 struct svm_cpudata *cpudata = vcpu->cpudata;
857 struct nvmm_mach_conf_x86_cpuid *cpuid;
858 uint64_t eax, ecx;
859 u_int descs[4];
860 size_t i;
861
862 eax = cpudata->vmcb->state.rax;
863 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
864 x86_cpuid2(eax, ecx, descs);
865
866 cpudata->vmcb->state.rax = descs[0];
867 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
868 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
869 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
870
871 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
872
873 for (i = 0; i < SVM_NCPUIDS; i++) {
874 cpuid = &machdata->cpuid[i];
875 if (!machdata->cpuidpresent[i]) {
876 continue;
877 }
878 if (cpuid->leaf != eax) {
879 continue;
880 }
881
882 /* del */
883 cpudata->vmcb->state.rax &= ~cpuid->del.eax;
884 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
885 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
886 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
887
888 /* set */
889 cpudata->vmcb->state.rax |= cpuid->set.eax;
890 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
891 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
892 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
893
894 break;
895 }
896
897 svm_inkernel_advance(cpudata->vmcb);
898 exit->reason = NVMM_EXIT_NONE;
899 }
900
901 static void
902 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
903 struct nvmm_exit *exit)
904 {
905 struct svm_cpudata *cpudata = vcpu->cpudata;
906 struct vmcb *vmcb = cpudata->vmcb;
907
908 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
909 svm_event_waitexit_disable(vcpu, false);
910 }
911
912 svm_inkernel_advance(cpudata->vmcb);
913 exit->reason = NVMM_EXIT_HALTED;
914 }
915
916 #define SVM_EXIT_IO_PORT __BITS(31,16)
917 #define SVM_EXIT_IO_SEG __BITS(12,10)
918 #define SVM_EXIT_IO_A64 __BIT(9)
919 #define SVM_EXIT_IO_A32 __BIT(8)
920 #define SVM_EXIT_IO_A16 __BIT(7)
921 #define SVM_EXIT_IO_SZ32 __BIT(6)
922 #define SVM_EXIT_IO_SZ16 __BIT(5)
923 #define SVM_EXIT_IO_SZ8 __BIT(4)
924 #define SVM_EXIT_IO_REP __BIT(3)
925 #define SVM_EXIT_IO_STR __BIT(2)
926 #define SVM_EXIT_IO_IN __BIT(0)
927
928 static void
929 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
930 struct nvmm_exit *exit)
931 {
932 struct svm_cpudata *cpudata = vcpu->cpudata;
933 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
934 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
935
936 exit->reason = NVMM_EXIT_IO;
937
938 if (info & SVM_EXIT_IO_IN) {
939 exit->u.io.type = NVMM_EXIT_IO_IN;
940 } else {
941 exit->u.io.type = NVMM_EXIT_IO_OUT;
942 }
943
944 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
945
946 if (svm_decode_assist) {
947 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
948 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
949 } else {
950 exit->u.io.seg = -1;
951 }
952
953 if (info & SVM_EXIT_IO_A64) {
954 exit->u.io.address_size = 8;
955 } else if (info & SVM_EXIT_IO_A32) {
956 exit->u.io.address_size = 4;
957 } else if (info & SVM_EXIT_IO_A16) {
958 exit->u.io.address_size = 2;
959 }
960
961 if (info & SVM_EXIT_IO_SZ32) {
962 exit->u.io.operand_size = 4;
963 } else if (info & SVM_EXIT_IO_SZ16) {
964 exit->u.io.operand_size = 2;
965 } else if (info & SVM_EXIT_IO_SZ8) {
966 exit->u.io.operand_size = 1;
967 }
968
969 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
970 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
971 exit->u.io.npc = nextpc;
972
973 svm_vcpu_state_provide(vcpu,
974 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
975 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
976 }
977
978 static const uint64_t msr_ignore_list[] = {
979 0xc0010055, /* MSR_CMPHALT */
980 MSR_DE_CFG,
981 MSR_IC_CFG,
982 MSR_UCODE_AMD_PATCHLEVEL
983 };
984
985 static bool
986 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
987 struct nvmm_exit *exit)
988 {
989 struct svm_cpudata *cpudata = vcpu->cpudata;
990 struct vmcb *vmcb = cpudata->vmcb;
991 uint64_t val;
992 size_t i;
993
994 switch (exit->u.msr.type) {
995 case NVMM_EXIT_MSR_RDMSR:
996 if (exit->u.msr.msr == MSR_NB_CFG) {
997 val = NB_CFG_INITAPICCPUIDLO;
998 vmcb->state.rax = (val & 0xFFFFFFFF);
999 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1000 goto handled;
1001 }
1002 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1003 if (msr_ignore_list[i] != exit->u.msr.msr)
1004 continue;
1005 val = 0;
1006 vmcb->state.rax = (val & 0xFFFFFFFF);
1007 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1008 goto handled;
1009 }
1010 break;
1011 case NVMM_EXIT_MSR_WRMSR:
1012 if (exit->u.msr.msr == MSR_EFER) {
1013 if (__predict_false(exit->u.msr.val & ~EFER_VALID)) {
1014 goto error;
1015 }
1016 if ((vmcb->state.efer ^ exit->u.msr.val) &
1017 EFER_TLB_FLUSH) {
1018 cpudata->gtlb_want_flush = true;
1019 }
1020 vmcb->state.efer = exit->u.msr.val | EFER_SVME;
1021 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1022 goto handled;
1023 }
1024 if (exit->u.msr.msr == MSR_TSC) {
1025 cpudata->gtsc = exit->u.msr.val;
1026 cpudata->gtsc_want_update = true;
1027 goto handled;
1028 }
1029 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1030 if (msr_ignore_list[i] != exit->u.msr.msr)
1031 continue;
1032 goto handled;
1033 }
1034 break;
1035 }
1036
1037 return false;
1038
1039 handled:
1040 svm_inkernel_advance(cpudata->vmcb);
1041 return true;
1042
1043 error:
1044 svm_inject_gp(vcpu);
1045 return true;
1046 }
1047
1048 static void
1049 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1050 struct nvmm_exit *exit)
1051 {
1052 struct svm_cpudata *cpudata = vcpu->cpudata;
1053 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1054
1055 if (info == 0) {
1056 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1057 } else {
1058 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1059 }
1060
1061 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1062
1063 if (info == 1) {
1064 uint64_t rdx, rax;
1065 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1066 rax = cpudata->vmcb->state.rax;
1067 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1068 } else {
1069 exit->u.msr.val = 0;
1070 }
1071
1072 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1073 exit->reason = NVMM_EXIT_NONE;
1074 return;
1075 }
1076
1077 exit->reason = NVMM_EXIT_MSR;
1078 exit->u.msr.npc = cpudata->vmcb->ctrl.nrip;
1079
1080 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1081 }
1082
1083 static void
1084 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1085 struct nvmm_exit *exit)
1086 {
1087 struct svm_cpudata *cpudata = vcpu->cpudata;
1088 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1089
1090 exit->reason = NVMM_EXIT_MEMORY;
1091 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1092 exit->u.mem.prot = PROT_WRITE;
1093 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1094 exit->u.mem.prot = PROT_EXEC;
1095 else
1096 exit->u.mem.prot = PROT_READ;
1097 exit->u.mem.gpa = gpa;
1098 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1099 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1100 sizeof(exit->u.mem.inst_bytes));
1101
1102 svm_vcpu_state_provide(vcpu,
1103 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1104 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1105 }
1106
1107 static void
1108 svm_exit_insn(struct vmcb *vmcb, struct nvmm_exit *exit, uint64_t reason)
1109 {
1110 exit->u.insn.npc = vmcb->ctrl.nrip;
1111 exit->reason = reason;
1112 }
1113
1114 static void
1115 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1116 struct nvmm_exit *exit)
1117 {
1118 struct svm_cpudata *cpudata = vcpu->cpudata;
1119 struct vmcb *vmcb = cpudata->vmcb;
1120 uint64_t val;
1121
1122 exit->reason = NVMM_EXIT_NONE;
1123
1124 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1125 (vmcb->state.rax & 0xFFFFFFFF);
1126
1127 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1128 goto error;
1129 } else if (__predict_false(vmcb->state.cpl != 0)) {
1130 goto error;
1131 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1132 goto error;
1133 } else if (__predict_false((val & XCR0_X87) == 0)) {
1134 goto error;
1135 }
1136
1137 cpudata->gxcr0 = val;
1138 if (svm_xcr0_mask != 0) {
1139 wrxcr(0, cpudata->gxcr0);
1140 }
1141
1142 svm_inkernel_advance(cpudata->vmcb);
1143 return;
1144
1145 error:
1146 svm_inject_gp(vcpu);
1147 }
1148
1149 static void
1150 svm_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1151 {
1152 exit->u.inv.hwcode = code;
1153 exit->reason = NVMM_EXIT_INVALID;
1154 }
1155
1156 /* -------------------------------------------------------------------------- */
1157
1158 static void
1159 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1160 {
1161 struct svm_cpudata *cpudata = vcpu->cpudata;
1162
1163 fpu_save();
1164 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1165
1166 if (svm_xcr0_mask != 0) {
1167 cpudata->hxcr0 = rdxcr(0);
1168 wrxcr(0, cpudata->gxcr0);
1169 }
1170 }
1171
1172 static void
1173 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1174 {
1175 struct svm_cpudata *cpudata = vcpu->cpudata;
1176
1177 if (svm_xcr0_mask != 0) {
1178 cpudata->gxcr0 = rdxcr(0);
1179 wrxcr(0, cpudata->hxcr0);
1180 }
1181
1182 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1183 }
1184
1185 static void
1186 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1187 {
1188 struct svm_cpudata *cpudata = vcpu->cpudata;
1189
1190 x86_dbregs_save(curlwp);
1191
1192 ldr7(0);
1193
1194 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1195 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1196 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1197 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1198 }
1199
1200 static void
1201 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1202 {
1203 struct svm_cpudata *cpudata = vcpu->cpudata;
1204
1205 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1206 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1207 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1208 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1209
1210 x86_dbregs_restore(curlwp);
1211 }
1212
1213 static void
1214 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1215 {
1216 struct svm_cpudata *cpudata = vcpu->cpudata;
1217
1218 cpudata->fsbase = rdmsr(MSR_FSBASE);
1219 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1220 }
1221
1222 static void
1223 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1224 {
1225 struct svm_cpudata *cpudata = vcpu->cpudata;
1226
1227 wrmsr(MSR_STAR, cpudata->star);
1228 wrmsr(MSR_LSTAR, cpudata->lstar);
1229 wrmsr(MSR_CSTAR, cpudata->cstar);
1230 wrmsr(MSR_SFMASK, cpudata->sfmask);
1231 wrmsr(MSR_FSBASE, cpudata->fsbase);
1232 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1233 }
1234
1235 /* -------------------------------------------------------------------------- */
1236
1237 static inline void
1238 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1239 {
1240 struct svm_cpudata *cpudata = vcpu->cpudata;
1241
1242 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1243 cpudata->gtlb_want_flush = true;
1244 }
1245 }
1246
1247 static inline void
1248 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1249 {
1250 /*
1251 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1252 * executing on this hCPU and the hTLB already got flushed, or it
1253 * was executing on another hCPU in which case the catchup is done
1254 * in svm_gtlb_catchup().
1255 */
1256 }
1257
1258 static inline uint64_t
1259 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1260 {
1261 struct vmcb *vmcb = cpudata->vmcb;
1262 uint64_t machgen;
1263
1264 machgen = machdata->mach_htlb_gen;
1265 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1266 return machgen;
1267 }
1268
1269 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1270 return machgen;
1271 }
1272
1273 static inline void
1274 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1275 {
1276 struct vmcb *vmcb = cpudata->vmcb;
1277
1278 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1279 cpudata->vcpu_htlb_gen = machgen;
1280 }
1281 }
1282
1283 static inline void
1284 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1285 {
1286 cpudata->evt_pending = false;
1287
1288 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1289 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1290 cpudata->evt_pending = true;
1291 }
1292 }
1293
1294 static int
1295 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1296 struct nvmm_exit *exit)
1297 {
1298 struct nvmm_comm_page *comm = vcpu->comm;
1299 struct svm_machdata *machdata = mach->machdata;
1300 struct svm_cpudata *cpudata = vcpu->cpudata;
1301 struct vmcb *vmcb = cpudata->vmcb;
1302 uint64_t machgen;
1303 int hcpu, s;
1304
1305 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1306 return EINVAL;
1307 }
1308 svm_vcpu_state_commit(vcpu);
1309 comm->state_cached = 0;
1310
1311 kpreempt_disable();
1312 hcpu = cpu_number();
1313
1314 svm_gtlb_catchup(vcpu, hcpu);
1315 svm_htlb_catchup(vcpu, hcpu);
1316
1317 if (vcpu->hcpu_last != hcpu) {
1318 svm_vmcb_cache_flush_all(vmcb);
1319 cpudata->gtsc_want_update = true;
1320 }
1321
1322 svm_vcpu_guest_dbregs_enter(vcpu);
1323 svm_vcpu_guest_misc_enter(vcpu);
1324 svm_vcpu_guest_fpu_enter(vcpu);
1325
1326 while (1) {
1327 if (cpudata->gtlb_want_flush) {
1328 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1329 } else {
1330 vmcb->ctrl.tlb_ctrl = 0;
1331 }
1332
1333 if (__predict_false(cpudata->gtsc_want_update)) {
1334 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1335 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1336 }
1337
1338 s = splhigh();
1339 machgen = svm_htlb_flush(machdata, cpudata);
1340 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1341 svm_htlb_flush_ack(cpudata, machgen);
1342 splx(s);
1343
1344 svm_vmcb_cache_default(vmcb);
1345
1346 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1347 cpudata->gtlb_want_flush = false;
1348 cpudata->gtsc_want_update = false;
1349 vcpu->hcpu_last = hcpu;
1350 }
1351 svm_exit_evt(cpudata, vmcb);
1352
1353 switch (vmcb->ctrl.exitcode) {
1354 case VMCB_EXITCODE_INTR:
1355 case VMCB_EXITCODE_NMI:
1356 exit->reason = NVMM_EXIT_NONE;
1357 break;
1358 case VMCB_EXITCODE_VINTR:
1359 svm_event_waitexit_disable(vcpu, false);
1360 exit->reason = NVMM_EXIT_INT_READY;
1361 break;
1362 case VMCB_EXITCODE_IRET:
1363 svm_event_waitexit_disable(vcpu, true);
1364 exit->reason = NVMM_EXIT_NMI_READY;
1365 break;
1366 case VMCB_EXITCODE_CPUID:
1367 svm_exit_cpuid(mach, vcpu, exit);
1368 break;
1369 case VMCB_EXITCODE_HLT:
1370 svm_exit_hlt(mach, vcpu, exit);
1371 break;
1372 case VMCB_EXITCODE_IOIO:
1373 svm_exit_io(mach, vcpu, exit);
1374 break;
1375 case VMCB_EXITCODE_MSR:
1376 svm_exit_msr(mach, vcpu, exit);
1377 break;
1378 case VMCB_EXITCODE_SHUTDOWN:
1379 exit->reason = NVMM_EXIT_SHUTDOWN;
1380 break;
1381 case VMCB_EXITCODE_RDPMC:
1382 case VMCB_EXITCODE_RSM:
1383 case VMCB_EXITCODE_INVLPGA:
1384 case VMCB_EXITCODE_VMRUN:
1385 case VMCB_EXITCODE_VMMCALL:
1386 case VMCB_EXITCODE_VMLOAD:
1387 case VMCB_EXITCODE_VMSAVE:
1388 case VMCB_EXITCODE_STGI:
1389 case VMCB_EXITCODE_CLGI:
1390 case VMCB_EXITCODE_SKINIT:
1391 case VMCB_EXITCODE_RDTSCP:
1392 svm_inject_ud(vcpu);
1393 exit->reason = NVMM_EXIT_NONE;
1394 break;
1395 case VMCB_EXITCODE_MONITOR:
1396 svm_exit_insn(vmcb, exit, NVMM_EXIT_MONITOR);
1397 break;
1398 case VMCB_EXITCODE_MWAIT:
1399 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT);
1400 break;
1401 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1402 svm_exit_insn(vmcb, exit, NVMM_EXIT_MWAIT_COND);
1403 break;
1404 case VMCB_EXITCODE_XSETBV:
1405 svm_exit_xsetbv(mach, vcpu, exit);
1406 break;
1407 case VMCB_EXITCODE_NPF:
1408 svm_exit_npf(mach, vcpu, exit);
1409 break;
1410 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1411 default:
1412 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1413 break;
1414 }
1415
1416 /* If no reason to return to userland, keep rolling. */
1417 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1418 break;
1419 }
1420 if (curcpu()->ci_data.cpu_softints != 0) {
1421 break;
1422 }
1423 if (curlwp->l_flag & LW_USERRET) {
1424 break;
1425 }
1426 if (exit->reason != NVMM_EXIT_NONE) {
1427 break;
1428 }
1429 }
1430
1431 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1432
1433 svm_vcpu_guest_fpu_leave(vcpu);
1434 svm_vcpu_guest_misc_leave(vcpu);
1435 svm_vcpu_guest_dbregs_leave(vcpu);
1436
1437 kpreempt_enable();
1438
1439 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1440 VMCB_CTRL_V_TPR);
1441 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1442
1443 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1444 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1445 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1446 cpudata->int_window_exit;
1447 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1448 cpudata->nmi_window_exit;
1449 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1450 cpudata->evt_pending;
1451
1452 return 0;
1453 }
1454
1455 /* -------------------------------------------------------------------------- */
1456
1457 static int
1458 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1459 {
1460 struct pglist pglist;
1461 paddr_t _pa;
1462 vaddr_t _va;
1463 size_t i;
1464 int ret;
1465
1466 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1467 &pglist, 1, 0);
1468 if (ret != 0)
1469 return ENOMEM;
1470 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1471 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1472 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1473 if (_va == 0)
1474 goto error;
1475
1476 for (i = 0; i < npages; i++) {
1477 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1478 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1479 }
1480 pmap_update(pmap_kernel());
1481
1482 memset((void *)_va, 0, npages * PAGE_SIZE);
1483
1484 *pa = _pa;
1485 *va = _va;
1486 return 0;
1487
1488 error:
1489 for (i = 0; i < npages; i++) {
1490 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1491 }
1492 return ENOMEM;
1493 }
1494
1495 static void
1496 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1497 {
1498 size_t i;
1499
1500 pmap_kremove(va, npages * PAGE_SIZE);
1501 pmap_update(pmap_kernel());
1502 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1503 for (i = 0; i < npages; i++) {
1504 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1505 }
1506 }
1507
1508 /* -------------------------------------------------------------------------- */
1509
1510 #define SVM_MSRBM_READ __BIT(0)
1511 #define SVM_MSRBM_WRITE __BIT(1)
1512
1513 static void
1514 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1515 {
1516 uint64_t byte;
1517 uint8_t bitoff;
1518
1519 if (msr < 0x00002000) {
1520 /* Range 1 */
1521 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1522 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1523 /* Range 2 */
1524 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1525 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1526 /* Range 3 */
1527 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1528 } else {
1529 panic("%s: wrong range", __func__);
1530 }
1531
1532 bitoff = (msr & 0x3) << 1;
1533
1534 if (read) {
1535 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1536 }
1537 if (write) {
1538 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1539 }
1540 }
1541
1542 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1543 #define SVM_SEG_ATTRIB_S __BIT(4)
1544 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1545 #define SVM_SEG_ATTRIB_P __BIT(7)
1546 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1547 #define SVM_SEG_ATTRIB_L __BIT(9)
1548 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1549 #define SVM_SEG_ATTRIB_G __BIT(11)
1550
1551 static void
1552 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1553 struct vmcb_segment *vseg)
1554 {
1555 vseg->selector = seg->selector;
1556 vseg->attrib =
1557 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1558 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1559 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1560 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1561 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1562 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1563 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1564 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1565 vseg->limit = seg->limit;
1566 vseg->base = seg->base;
1567 }
1568
1569 static void
1570 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1571 {
1572 seg->selector = vseg->selector;
1573 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1574 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1575 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1576 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1577 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1578 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1579 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1580 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1581 seg->limit = vseg->limit;
1582 seg->base = vseg->base;
1583 }
1584
1585 static inline bool
1586 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1587 uint64_t flags)
1588 {
1589 if (flags & NVMM_X64_STATE_CRS) {
1590 if ((vmcb->state.cr0 ^
1591 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1592 return true;
1593 }
1594 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1595 return true;
1596 }
1597 if ((vmcb->state.cr4 ^
1598 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1599 return true;
1600 }
1601 }
1602
1603 if (flags & NVMM_X64_STATE_MSRS) {
1604 if ((vmcb->state.efer ^
1605 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1606 return true;
1607 }
1608 }
1609
1610 return false;
1611 }
1612
1613 static void
1614 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1615 {
1616 struct nvmm_comm_page *comm = vcpu->comm;
1617 const struct nvmm_x64_state *state = &comm->state;
1618 struct svm_cpudata *cpudata = vcpu->cpudata;
1619 struct vmcb *vmcb = cpudata->vmcb;
1620 struct fxsave *fpustate;
1621 uint64_t flags;
1622
1623 flags = comm->state_wanted;
1624
1625 if (svm_state_tlb_flush(vmcb, state, flags)) {
1626 cpudata->gtlb_want_flush = true;
1627 }
1628
1629 if (flags & NVMM_X64_STATE_SEGS) {
1630 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1631 &vmcb->state.cs);
1632 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1633 &vmcb->state.ds);
1634 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1635 &vmcb->state.es);
1636 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1637 &vmcb->state.fs);
1638 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1639 &vmcb->state.gs);
1640 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1641 &vmcb->state.ss);
1642 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1643 &vmcb->state.gdt);
1644 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1645 &vmcb->state.idt);
1646 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1647 &vmcb->state.ldt);
1648 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1649 &vmcb->state.tr);
1650
1651 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1652 }
1653
1654 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1655 if (flags & NVMM_X64_STATE_GPRS) {
1656 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1657
1658 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1659 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1660 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1661 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1662 }
1663
1664 if (flags & NVMM_X64_STATE_CRS) {
1665 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1666 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1667 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1668 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1669
1670 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1671 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1672 VMCB_CTRL_V_TPR);
1673
1674 if (svm_xcr0_mask != 0) {
1675 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1676 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1677 cpudata->gxcr0 &= svm_xcr0_mask;
1678 cpudata->gxcr0 |= XCR0_X87;
1679 }
1680 }
1681
1682 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1683 if (flags & NVMM_X64_STATE_DRS) {
1684 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1685
1686 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1687 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1688 }
1689
1690 if (flags & NVMM_X64_STATE_MSRS) {
1691 /*
1692 * EFER_SVME is mandatory.
1693 */
1694 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1695 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1696 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1697 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1698 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1699 vmcb->state.kernelgsbase =
1700 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1701 vmcb->state.sysenter_cs =
1702 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1703 vmcb->state.sysenter_esp =
1704 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1705 vmcb->state.sysenter_eip =
1706 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1707 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1708
1709 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1710 cpudata->gtsc_want_update = true;
1711 }
1712
1713 if (flags & NVMM_X64_STATE_INTR) {
1714 if (state->intr.int_shadow) {
1715 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1716 } else {
1717 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1718 }
1719
1720 if (state->intr.int_window_exiting) {
1721 svm_event_waitexit_enable(vcpu, false);
1722 } else {
1723 svm_event_waitexit_disable(vcpu, false);
1724 }
1725
1726 if (state->intr.nmi_window_exiting) {
1727 svm_event_waitexit_enable(vcpu, true);
1728 } else {
1729 svm_event_waitexit_disable(vcpu, true);
1730 }
1731 }
1732
1733 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1734 if (flags & NVMM_X64_STATE_FPU) {
1735 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1736 sizeof(state->fpu));
1737
1738 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1739 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1740 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1741
1742 if (svm_xcr0_mask != 0) {
1743 /* Reset XSTATE_BV, to force a reload. */
1744 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1745 }
1746 }
1747
1748 svm_vmcb_cache_update(vmcb, flags);
1749
1750 comm->state_wanted = 0;
1751 comm->state_cached |= flags;
1752 }
1753
1754 static void
1755 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1756 {
1757 struct nvmm_comm_page *comm = vcpu->comm;
1758 struct nvmm_x64_state *state = &comm->state;
1759 struct svm_cpudata *cpudata = vcpu->cpudata;
1760 struct vmcb *vmcb = cpudata->vmcb;
1761 uint64_t flags;
1762
1763 flags = comm->state_wanted;
1764
1765 if (flags & NVMM_X64_STATE_SEGS) {
1766 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1767 &vmcb->state.cs);
1768 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1769 &vmcb->state.ds);
1770 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1771 &vmcb->state.es);
1772 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1773 &vmcb->state.fs);
1774 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1775 &vmcb->state.gs);
1776 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1777 &vmcb->state.ss);
1778 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1779 &vmcb->state.gdt);
1780 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1781 &vmcb->state.idt);
1782 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1783 &vmcb->state.ldt);
1784 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1785 &vmcb->state.tr);
1786
1787 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1788 }
1789
1790 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1791 if (flags & NVMM_X64_STATE_GPRS) {
1792 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1793
1794 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1795 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1796 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1797 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1798 }
1799
1800 if (flags & NVMM_X64_STATE_CRS) {
1801 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1802 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1803 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1804 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1805 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1806 VMCB_CTRL_V_TPR);
1807 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1808 }
1809
1810 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1811 if (flags & NVMM_X64_STATE_DRS) {
1812 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1813
1814 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1815 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1816 }
1817
1818 if (flags & NVMM_X64_STATE_MSRS) {
1819 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1820 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1821 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1822 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1823 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1824 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1825 vmcb->state.kernelgsbase;
1826 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1827 vmcb->state.sysenter_cs;
1828 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1829 vmcb->state.sysenter_esp;
1830 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1831 vmcb->state.sysenter_eip;
1832 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1833 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1834
1835 /* Hide SVME. */
1836 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1837 }
1838
1839 if (flags & NVMM_X64_STATE_INTR) {
1840 state->intr.int_shadow =
1841 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1842 state->intr.int_window_exiting = cpudata->int_window_exit;
1843 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1844 state->intr.evt_pending = cpudata->evt_pending;
1845 }
1846
1847 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1848 if (flags & NVMM_X64_STATE_FPU) {
1849 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1850 sizeof(state->fpu));
1851 }
1852
1853 comm->state_wanted = 0;
1854 comm->state_cached |= flags;
1855 }
1856
1857 static void
1858 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1859 {
1860 vcpu->comm->state_wanted = flags;
1861 svm_vcpu_getstate(vcpu);
1862 }
1863
1864 static void
1865 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1866 {
1867 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1868 vcpu->comm->state_commit = 0;
1869 svm_vcpu_setstate(vcpu);
1870 }
1871
1872 /* -------------------------------------------------------------------------- */
1873
1874 static void
1875 svm_asid_alloc(struct nvmm_cpu *vcpu)
1876 {
1877 struct svm_cpudata *cpudata = vcpu->cpudata;
1878 struct vmcb *vmcb = cpudata->vmcb;
1879 size_t i, oct, bit;
1880
1881 mutex_enter(&svm_asidlock);
1882
1883 for (i = 0; i < svm_maxasid; i++) {
1884 oct = i / 8;
1885 bit = i % 8;
1886
1887 if (svm_asidmap[oct] & __BIT(bit)) {
1888 continue;
1889 }
1890
1891 svm_asidmap[oct] |= __BIT(bit);
1892 vmcb->ctrl.guest_asid = i;
1893 mutex_exit(&svm_asidlock);
1894 return;
1895 }
1896
1897 /*
1898 * No free ASID. Use the last one, which is shared and requires
1899 * special TLB handling.
1900 */
1901 cpudata->shared_asid = true;
1902 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1903 mutex_exit(&svm_asidlock);
1904 }
1905
1906 static void
1907 svm_asid_free(struct nvmm_cpu *vcpu)
1908 {
1909 struct svm_cpudata *cpudata = vcpu->cpudata;
1910 struct vmcb *vmcb = cpudata->vmcb;
1911 size_t oct, bit;
1912
1913 if (cpudata->shared_asid) {
1914 return;
1915 }
1916
1917 oct = vmcb->ctrl.guest_asid / 8;
1918 bit = vmcb->ctrl.guest_asid % 8;
1919
1920 mutex_enter(&svm_asidlock);
1921 svm_asidmap[oct] &= ~__BIT(bit);
1922 mutex_exit(&svm_asidlock);
1923 }
1924
1925 static void
1926 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1927 {
1928 struct svm_cpudata *cpudata = vcpu->cpudata;
1929 struct vmcb *vmcb = cpudata->vmcb;
1930
1931 /* Allow reads/writes of Control Registers. */
1932 vmcb->ctrl.intercept_cr = 0;
1933
1934 /* Allow reads/writes of Debug Registers. */
1935 vmcb->ctrl.intercept_dr = 0;
1936
1937 /* Allow exceptions 0 to 31. */
1938 vmcb->ctrl.intercept_vec = 0;
1939
1940 /*
1941 * Allow:
1942 * - SMI [smm interrupts]
1943 * - VINTR [virtual interrupts]
1944 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1945 * - RIDTR [reads of IDTR]
1946 * - RGDTR [reads of GDTR]
1947 * - RLDTR [reads of LDTR]
1948 * - RTR [reads of TR]
1949 * - WIDTR [writes of IDTR]
1950 * - WGDTR [writes of GDTR]
1951 * - WLDTR [writes of LDTR]
1952 * - WTR [writes of TR]
1953 * - RDTSC [rdtsc instruction]
1954 * - PUSHF [pushf instruction]
1955 * - POPF [popf instruction]
1956 * - IRET [iret instruction]
1957 * - INTN [int $n instructions]
1958 * - INVD [invd instruction]
1959 * - PAUSE [pause instruction]
1960 * - INVLPG [invplg instruction]
1961 * - TASKSW [task switches]
1962 *
1963 * Intercept the rest below.
1964 */
1965 vmcb->ctrl.intercept_misc1 =
1966 VMCB_CTRL_INTERCEPT_INTR |
1967 VMCB_CTRL_INTERCEPT_NMI |
1968 VMCB_CTRL_INTERCEPT_INIT |
1969 VMCB_CTRL_INTERCEPT_RDPMC |
1970 VMCB_CTRL_INTERCEPT_CPUID |
1971 VMCB_CTRL_INTERCEPT_RSM |
1972 VMCB_CTRL_INTERCEPT_HLT |
1973 VMCB_CTRL_INTERCEPT_INVLPGA |
1974 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1975 VMCB_CTRL_INTERCEPT_MSR_PROT |
1976 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1977 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1978
1979 /*
1980 * Allow:
1981 * - ICEBP [icebp instruction]
1982 * - WBINVD [wbinvd instruction]
1983 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1984 *
1985 * Intercept the rest below.
1986 */
1987 vmcb->ctrl.intercept_misc2 =
1988 VMCB_CTRL_INTERCEPT_VMRUN |
1989 VMCB_CTRL_INTERCEPT_VMMCALL |
1990 VMCB_CTRL_INTERCEPT_VMLOAD |
1991 VMCB_CTRL_INTERCEPT_VMSAVE |
1992 VMCB_CTRL_INTERCEPT_STGI |
1993 VMCB_CTRL_INTERCEPT_CLGI |
1994 VMCB_CTRL_INTERCEPT_SKINIT |
1995 VMCB_CTRL_INTERCEPT_RDTSCP |
1996 VMCB_CTRL_INTERCEPT_MONITOR |
1997 VMCB_CTRL_INTERCEPT_MWAIT |
1998 VMCB_CTRL_INTERCEPT_XSETBV;
1999
2000 /* Intercept all I/O accesses. */
2001 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2002 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2003
2004 /* Allow direct access to certain MSRs. */
2005 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2006 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2007 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2008 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2009 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2010 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2011 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2012 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2013 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2014 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2015 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2016 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2017 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2018 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2019 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2020
2021 /* Generate ASID. */
2022 svm_asid_alloc(vcpu);
2023
2024 /* Virtual TPR. */
2025 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2026
2027 /* Enable Nested Paging. */
2028 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2029 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2030
2031 /* Init XSAVE header. */
2032 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2033 cpudata->gfpu.xsh_xcomp_bv = 0;
2034
2035 /* These MSRs are static. */
2036 cpudata->star = rdmsr(MSR_STAR);
2037 cpudata->lstar = rdmsr(MSR_LSTAR);
2038 cpudata->cstar = rdmsr(MSR_CSTAR);
2039 cpudata->sfmask = rdmsr(MSR_SFMASK);
2040
2041 /* Install the RESET state. */
2042 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2043 sizeof(nvmm_x86_reset_state));
2044 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2045 vcpu->comm->state_cached = 0;
2046 svm_vcpu_setstate(vcpu);
2047 }
2048
2049 static int
2050 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2051 {
2052 struct svm_cpudata *cpudata;
2053 int error;
2054
2055 /* Allocate the SVM cpudata. */
2056 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2057 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2058 UVM_KMF_WIRED|UVM_KMF_ZERO);
2059 vcpu->cpudata = cpudata;
2060
2061 /* VMCB */
2062 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2063 VMCB_NPAGES);
2064 if (error)
2065 goto error;
2066
2067 /* I/O Bitmap */
2068 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2069 IOBM_NPAGES);
2070 if (error)
2071 goto error;
2072
2073 /* MSR Bitmap */
2074 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2075 MSRBM_NPAGES);
2076 if (error)
2077 goto error;
2078
2079 /* Init the VCPU info. */
2080 svm_vcpu_init(mach, vcpu);
2081
2082 return 0;
2083
2084 error:
2085 if (cpudata->vmcb_pa) {
2086 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2087 VMCB_NPAGES);
2088 }
2089 if (cpudata->iobm_pa) {
2090 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2091 IOBM_NPAGES);
2092 }
2093 if (cpudata->msrbm_pa) {
2094 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2095 MSRBM_NPAGES);
2096 }
2097 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2098 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2099 return error;
2100 }
2101
2102 static void
2103 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2104 {
2105 struct svm_cpudata *cpudata = vcpu->cpudata;
2106
2107 svm_asid_free(vcpu);
2108
2109 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2110 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2111 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2112
2113 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2114 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2115 }
2116
2117 /* -------------------------------------------------------------------------- */
2118
2119 static void
2120 svm_tlb_flush(struct pmap *pm)
2121 {
2122 struct nvmm_machine *mach = pm->pm_data;
2123 struct svm_machdata *machdata = mach->machdata;
2124
2125 atomic_inc_64(&machdata->mach_htlb_gen);
2126
2127 /* Generates IPIs, which cause #VMEXITs. */
2128 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2129 }
2130
2131 static void
2132 svm_machine_create(struct nvmm_machine *mach)
2133 {
2134 struct svm_machdata *machdata;
2135
2136 /* Fill in pmap info. */
2137 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2138 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2139
2140 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2141 mach->machdata = machdata;
2142
2143 /* Start with an hTLB flush everywhere. */
2144 machdata->mach_htlb_gen = 1;
2145 }
2146
2147 static void
2148 svm_machine_destroy(struct nvmm_machine *mach)
2149 {
2150 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2151 }
2152
2153 static int
2154 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2155 {
2156 struct nvmm_mach_conf_x86_cpuid *cpuid = data;
2157 struct svm_machdata *machdata = (struct svm_machdata *)mach->machdata;
2158 size_t i;
2159
2160 if (__predict_false(op != NVMM_MACH_CONF_MD(NVMM_MACH_CONF_X86_CPUID))) {
2161 return EINVAL;
2162 }
2163
2164 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2165 (cpuid->set.ebx & cpuid->del.ebx) ||
2166 (cpuid->set.ecx & cpuid->del.ecx) ||
2167 (cpuid->set.edx & cpuid->del.edx))) {
2168 return EINVAL;
2169 }
2170
2171 /* If already here, replace. */
2172 for (i = 0; i < SVM_NCPUIDS; i++) {
2173 if (!machdata->cpuidpresent[i]) {
2174 continue;
2175 }
2176 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2177 memcpy(&machdata->cpuid[i], cpuid,
2178 sizeof(struct nvmm_mach_conf_x86_cpuid));
2179 return 0;
2180 }
2181 }
2182
2183 /* Not here, insert. */
2184 for (i = 0; i < SVM_NCPUIDS; i++) {
2185 if (!machdata->cpuidpresent[i]) {
2186 machdata->cpuidpresent[i] = true;
2187 memcpy(&machdata->cpuid[i], cpuid,
2188 sizeof(struct nvmm_mach_conf_x86_cpuid));
2189 return 0;
2190 }
2191 }
2192
2193 return ENOBUFS;
2194 }
2195
2196 /* -------------------------------------------------------------------------- */
2197
2198 static bool
2199 svm_ident(void)
2200 {
2201 u_int descs[4];
2202 uint64_t msr;
2203
2204 if (cpu_vendor != CPUVENDOR_AMD) {
2205 return false;
2206 }
2207 if (!(cpu_feature[3] & CPUID_SVM)) {
2208 return false;
2209 }
2210
2211 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2212 return false;
2213 }
2214 x86_cpuid(0x8000000a, descs);
2215
2216 /* Want Nested Paging. */
2217 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2218 return false;
2219 }
2220
2221 /* Want nRIP. */
2222 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2223 return false;
2224 }
2225
2226 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2227
2228 msr = rdmsr(MSR_VMCR);
2229 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2230 return false;
2231 }
2232
2233 return true;
2234 }
2235
2236 static void
2237 svm_init_asid(uint32_t maxasid)
2238 {
2239 size_t i, j, allocsz;
2240
2241 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2242
2243 /* Arbitrarily limit. */
2244 maxasid = uimin(maxasid, 8192);
2245
2246 svm_maxasid = maxasid;
2247 allocsz = roundup(maxasid, 8) / 8;
2248 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2249
2250 /* ASID 0 is reserved for the host. */
2251 svm_asidmap[0] |= __BIT(0);
2252
2253 /* ASID n-1 is special, we share it. */
2254 i = (maxasid - 1) / 8;
2255 j = (maxasid - 1) % 8;
2256 svm_asidmap[i] |= __BIT(j);
2257 }
2258
2259 static void
2260 svm_change_cpu(void *arg1, void *arg2)
2261 {
2262 bool enable = (bool)arg1;
2263 uint64_t msr;
2264
2265 msr = rdmsr(MSR_VMCR);
2266 if (msr & VMCR_SVMED) {
2267 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2268 }
2269
2270 if (!enable) {
2271 wrmsr(MSR_VM_HSAVE_PA, 0);
2272 }
2273
2274 msr = rdmsr(MSR_EFER);
2275 if (enable) {
2276 msr |= EFER_SVME;
2277 } else {
2278 msr &= ~EFER_SVME;
2279 }
2280 wrmsr(MSR_EFER, msr);
2281
2282 if (enable) {
2283 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2284 }
2285 }
2286
2287 static void
2288 svm_init(void)
2289 {
2290 CPU_INFO_ITERATOR cii;
2291 struct cpu_info *ci;
2292 struct vm_page *pg;
2293 u_int descs[4];
2294 uint64_t xc;
2295
2296 x86_cpuid(0x8000000a, descs);
2297
2298 /* The guest TLB flush command. */
2299 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2300 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2301 } else {
2302 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2303 }
2304
2305 /* Init the ASID. */
2306 svm_init_asid(descs[1]);
2307
2308 /* Init the XCR0 mask. */
2309 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2310
2311 memset(hsave, 0, sizeof(hsave));
2312 for (CPU_INFO_FOREACH(cii, ci)) {
2313 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2314 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2315 }
2316
2317 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2318 xc_wait(xc);
2319 }
2320
2321 static void
2322 svm_fini_asid(void)
2323 {
2324 size_t allocsz;
2325
2326 allocsz = roundup(svm_maxasid, 8) / 8;
2327 kmem_free(svm_asidmap, allocsz);
2328
2329 mutex_destroy(&svm_asidlock);
2330 }
2331
2332 static void
2333 svm_fini(void)
2334 {
2335 uint64_t xc;
2336 size_t i;
2337
2338 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2339 xc_wait(xc);
2340
2341 for (i = 0; i < MAXCPUS; i++) {
2342 if (hsave[i].pa != 0)
2343 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2344 }
2345
2346 svm_fini_asid();
2347 }
2348
2349 static void
2350 svm_capability(struct nvmm_capability *cap)
2351 {
2352 cap->arch.xcr0_mask = svm_xcr0_mask;
2353 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2354 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2355 }
2356
2357 const struct nvmm_impl nvmm_x86_svm = {
2358 .ident = svm_ident,
2359 .init = svm_init,
2360 .fini = svm_fini,
2361 .capability = svm_capability,
2362 .conf_max = NVMM_X86_NCONF,
2363 .conf_sizes = svm_conf_sizes,
2364 .state_size = sizeof(struct nvmm_x64_state),
2365 .machine_create = svm_machine_create,
2366 .machine_destroy = svm_machine_destroy,
2367 .machine_configure = svm_machine_configure,
2368 .vcpu_create = svm_vcpu_create,
2369 .vcpu_destroy = svm_vcpu_destroy,
2370 .vcpu_setstate = svm_vcpu_setstate,
2371 .vcpu_getstate = svm_vcpu_getstate,
2372 .vcpu_inject = svm_vcpu_inject,
2373 .vcpu_run = svm_vcpu_run
2374 };
2375