nvmm_x86_svm.c revision 1.51 1 /* $NetBSD: nvmm_x86_svm.c,v 1.51 2019/10/23 07:01:11 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.51 2019/10/23 07:01:11 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 volatile uint64_t mach_htlb_gen;
508 };
509
510 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
511 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
512 sizeof(struct nvmm_vcpu_conf_cpuid)
513 };
514
515 struct svm_cpudata {
516 /* General */
517 bool shared_asid;
518 bool gtlb_want_flush;
519 bool gtsc_want_update;
520 uint64_t vcpu_htlb_gen;
521
522 /* VMCB */
523 struct vmcb *vmcb;
524 paddr_t vmcb_pa;
525
526 /* I/O bitmap */
527 uint8_t *iobm;
528 paddr_t iobm_pa;
529
530 /* MSR bitmap */
531 uint8_t *msrbm;
532 paddr_t msrbm_pa;
533
534 /* Host state */
535 uint64_t hxcr0;
536 uint64_t star;
537 uint64_t lstar;
538 uint64_t cstar;
539 uint64_t sfmask;
540 uint64_t fsbase;
541 uint64_t kernelgsbase;
542
543 /* Intr state */
544 bool int_window_exit;
545 bool nmi_window_exit;
546 bool evt_pending;
547
548 /* Guest state */
549 uint64_t gxcr0;
550 uint64_t gprs[NVMM_X64_NGPR];
551 uint64_t drs[NVMM_X64_NDR];
552 uint64_t gtsc;
553 struct xsave_header gfpu __aligned(64);
554
555 /* VCPU configuration. */
556 bool cpuidpresent[SVM_NCPUIDS];
557 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
558 };
559
560 static void
561 svm_vmcb_cache_default(struct vmcb *vmcb)
562 {
563 vmcb->ctrl.vmcb_clean =
564 VMCB_CTRL_VMCB_CLEAN_I |
565 VMCB_CTRL_VMCB_CLEAN_IOPM |
566 VMCB_CTRL_VMCB_CLEAN_ASID |
567 VMCB_CTRL_VMCB_CLEAN_TPR |
568 VMCB_CTRL_VMCB_CLEAN_NP |
569 VMCB_CTRL_VMCB_CLEAN_CR |
570 VMCB_CTRL_VMCB_CLEAN_DR |
571 VMCB_CTRL_VMCB_CLEAN_DT |
572 VMCB_CTRL_VMCB_CLEAN_SEG |
573 VMCB_CTRL_VMCB_CLEAN_CR2 |
574 VMCB_CTRL_VMCB_CLEAN_LBR |
575 VMCB_CTRL_VMCB_CLEAN_AVIC;
576 }
577
578 static void
579 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
580 {
581 if (flags & NVMM_X64_STATE_SEGS) {
582 vmcb->ctrl.vmcb_clean &=
583 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
584 }
585 if (flags & NVMM_X64_STATE_CRS) {
586 vmcb->ctrl.vmcb_clean &=
587 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
588 VMCB_CTRL_VMCB_CLEAN_TPR);
589 }
590 if (flags & NVMM_X64_STATE_DRS) {
591 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
592 }
593 if (flags & NVMM_X64_STATE_MSRS) {
594 /* CR for EFER, NP for PAT. */
595 vmcb->ctrl.vmcb_clean &=
596 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
597 }
598 }
599
600 static inline void
601 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
602 {
603 vmcb->ctrl.vmcb_clean &= ~flags;
604 }
605
606 static inline void
607 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
608 {
609 vmcb->ctrl.vmcb_clean = 0;
610 }
611
612 #define SVM_EVENT_TYPE_HW_INT 0
613 #define SVM_EVENT_TYPE_NMI 2
614 #define SVM_EVENT_TYPE_EXC 3
615 #define SVM_EVENT_TYPE_SW_INT 4
616
617 static void
618 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
619 {
620 struct svm_cpudata *cpudata = vcpu->cpudata;
621 struct vmcb *vmcb = cpudata->vmcb;
622
623 if (nmi) {
624 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
625 cpudata->nmi_window_exit = true;
626 } else {
627 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
628 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
629 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
630 cpudata->int_window_exit = true;
631 }
632
633 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
634 }
635
636 static void
637 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
638 {
639 struct svm_cpudata *cpudata = vcpu->cpudata;
640 struct vmcb *vmcb = cpudata->vmcb;
641
642 if (nmi) {
643 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
644 cpudata->nmi_window_exit = false;
645 } else {
646 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
647 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
648 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
649 cpudata->int_window_exit = false;
650 }
651
652 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
653 }
654
655 static inline int
656 svm_event_has_error(uint8_t vector)
657 {
658 switch (vector) {
659 case 8: /* #DF */
660 case 10: /* #TS */
661 case 11: /* #NP */
662 case 12: /* #SS */
663 case 13: /* #GP */
664 case 14: /* #PF */
665 case 17: /* #AC */
666 case 30: /* #SX */
667 return 1;
668 default:
669 return 0;
670 }
671 }
672
673 static int
674 svm_vcpu_inject(struct nvmm_cpu *vcpu)
675 {
676 struct nvmm_comm_page *comm = vcpu->comm;
677 struct svm_cpudata *cpudata = vcpu->cpudata;
678 struct vmcb *vmcb = cpudata->vmcb;
679 u_int evtype;
680 uint8_t vector;
681 uint64_t error;
682 int type = 0, err = 0;
683
684 evtype = comm->event.type;
685 vector = comm->event.vector;
686 error = comm->event.u.excp.error;
687 __insn_barrier();
688
689 switch (evtype) {
690 case NVMM_VCPU_EVENT_EXCP:
691 type = SVM_EVENT_TYPE_EXC;
692 if (vector == 2 || vector >= 32)
693 return EINVAL;
694 if (vector == 3 || vector == 0)
695 return EINVAL;
696 err = svm_event_has_error(vector);
697 break;
698 case NVMM_VCPU_EVENT_INTR:
699 type = SVM_EVENT_TYPE_HW_INT;
700 if (vector == 2) {
701 type = SVM_EVENT_TYPE_NMI;
702 svm_event_waitexit_enable(vcpu, true);
703 }
704 err = 0;
705 break;
706 default:
707 return EINVAL;
708 }
709
710 vmcb->ctrl.eventinj =
711 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
712 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
713 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
714 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
715 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
716
717 cpudata->evt_pending = true;
718
719 return 0;
720 }
721
722 static void
723 svm_inject_ud(struct nvmm_cpu *vcpu)
724 {
725 struct nvmm_comm_page *comm = vcpu->comm;
726 int ret __diagused;
727
728 comm->event.type = NVMM_VCPU_EVENT_EXCP;
729 comm->event.vector = 6;
730 comm->event.u.excp.error = 0;
731
732 ret = svm_vcpu_inject(vcpu);
733 KASSERT(ret == 0);
734 }
735
736 static void
737 svm_inject_gp(struct nvmm_cpu *vcpu)
738 {
739 struct nvmm_comm_page *comm = vcpu->comm;
740 int ret __diagused;
741
742 comm->event.type = NVMM_VCPU_EVENT_EXCP;
743 comm->event.vector = 13;
744 comm->event.u.excp.error = 0;
745
746 ret = svm_vcpu_inject(vcpu);
747 KASSERT(ret == 0);
748 }
749
750 static inline int
751 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
752 {
753 if (__predict_true(!vcpu->comm->event_commit)) {
754 return 0;
755 }
756 vcpu->comm->event_commit = false;
757 return svm_vcpu_inject(vcpu);
758 }
759
760 static inline void
761 svm_inkernel_advance(struct vmcb *vmcb)
762 {
763 /*
764 * Maybe we should also apply single-stepping and debug exceptions.
765 * Matters for guest-ring3, because it can execute 'cpuid' under a
766 * debugger.
767 */
768 vmcb->state.rip = vmcb->ctrl.nrip;
769 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
770 }
771
772 static void
773 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
774 {
775 struct svm_cpudata *cpudata = vcpu->cpudata;
776 uint64_t cr4;
777
778 switch (eax) {
779 case 0x00000001:
780 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
781
782 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
783 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
784 CPUID_LOCAL_APIC_ID);
785
786 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
787 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
788
789 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
790
791 /* CPUID2_OSXSAVE depends on CR4. */
792 cr4 = cpudata->vmcb->state.cr4;
793 if (!(cr4 & CR4_OSXSAVE)) {
794 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
795 }
796 break;
797 case 0x00000005:
798 case 0x00000006:
799 cpudata->vmcb->state.rax = 0;
800 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
801 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
802 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
803 break;
804 case 0x00000007:
805 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
806 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
807 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
808 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
809 break;
810 case 0x0000000D:
811 if (svm_xcr0_mask == 0) {
812 break;
813 }
814 switch (ecx) {
815 case 0:
816 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
817 if (cpudata->gxcr0 & XCR0_SSE) {
818 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
819 } else {
820 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
821 }
822 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
823 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
824 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
825 break;
826 case 1:
827 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
828 break;
829 }
830 break;
831 case 0x40000000:
832 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
833 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
834 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
835 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
836 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
837 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
838 break;
839 case 0x80000001:
840 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
841 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
842 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
843 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
844 break;
845 default:
846 break;
847 }
848 }
849
850 static void
851 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
852 {
853 exit->u.insn.npc = vmcb->ctrl.nrip;
854 exit->reason = reason;
855 }
856
857 static void
858 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
859 struct nvmm_vcpu_exit *exit)
860 {
861 struct svm_cpudata *cpudata = vcpu->cpudata;
862 struct nvmm_vcpu_conf_cpuid *cpuid;
863 uint64_t eax, ecx;
864 u_int descs[4];
865 size_t i;
866
867 eax = cpudata->vmcb->state.rax;
868 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
869 x86_cpuid2(eax, ecx, descs);
870
871 cpudata->vmcb->state.rax = descs[0];
872 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
873 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
874 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
875
876 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
877
878 for (i = 0; i < SVM_NCPUIDS; i++) {
879 if (!cpudata->cpuidpresent[i]) {
880 continue;
881 }
882 cpuid = &cpudata->cpuid[i];
883 if (cpuid->leaf != eax) {
884 continue;
885 }
886
887 if (cpuid->exit) {
888 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
889 return;
890 }
891 KASSERT(cpuid->mask);
892
893 /* del */
894 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
895 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
896 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
897 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
898
899 /* set */
900 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
901 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
902 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
903 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
904
905 break;
906 }
907
908 svm_inkernel_advance(cpudata->vmcb);
909 exit->reason = NVMM_VCPU_EXIT_NONE;
910 }
911
912 static void
913 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
914 struct nvmm_vcpu_exit *exit)
915 {
916 struct svm_cpudata *cpudata = vcpu->cpudata;
917 struct vmcb *vmcb = cpudata->vmcb;
918
919 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
920 svm_event_waitexit_disable(vcpu, false);
921 }
922
923 svm_inkernel_advance(cpudata->vmcb);
924 exit->reason = NVMM_VCPU_EXIT_HALTED;
925 }
926
927 #define SVM_EXIT_IO_PORT __BITS(31,16)
928 #define SVM_EXIT_IO_SEG __BITS(12,10)
929 #define SVM_EXIT_IO_A64 __BIT(9)
930 #define SVM_EXIT_IO_A32 __BIT(8)
931 #define SVM_EXIT_IO_A16 __BIT(7)
932 #define SVM_EXIT_IO_SZ32 __BIT(6)
933 #define SVM_EXIT_IO_SZ16 __BIT(5)
934 #define SVM_EXIT_IO_SZ8 __BIT(4)
935 #define SVM_EXIT_IO_REP __BIT(3)
936 #define SVM_EXIT_IO_STR __BIT(2)
937 #define SVM_EXIT_IO_IN __BIT(0)
938
939 static void
940 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
941 struct nvmm_vcpu_exit *exit)
942 {
943 struct svm_cpudata *cpudata = vcpu->cpudata;
944 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
945 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
946
947 exit->reason = NVMM_VCPU_EXIT_IO;
948
949 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
950 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
951
952 if (svm_decode_assist) {
953 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
954 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
955 } else {
956 exit->u.io.seg = -1;
957 }
958
959 if (info & SVM_EXIT_IO_A64) {
960 exit->u.io.address_size = 8;
961 } else if (info & SVM_EXIT_IO_A32) {
962 exit->u.io.address_size = 4;
963 } else if (info & SVM_EXIT_IO_A16) {
964 exit->u.io.address_size = 2;
965 }
966
967 if (info & SVM_EXIT_IO_SZ32) {
968 exit->u.io.operand_size = 4;
969 } else if (info & SVM_EXIT_IO_SZ16) {
970 exit->u.io.operand_size = 2;
971 } else if (info & SVM_EXIT_IO_SZ8) {
972 exit->u.io.operand_size = 1;
973 }
974
975 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
976 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
977 exit->u.io.npc = nextpc;
978
979 svm_vcpu_state_provide(vcpu,
980 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
981 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
982 }
983
984 static const uint64_t msr_ignore_list[] = {
985 0xc0010055, /* MSR_CMPHALT */
986 MSR_DE_CFG,
987 MSR_IC_CFG,
988 MSR_UCODE_AMD_PATCHLEVEL
989 };
990
991 static bool
992 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
993 struct nvmm_vcpu_exit *exit)
994 {
995 struct svm_cpudata *cpudata = vcpu->cpudata;
996 struct vmcb *vmcb = cpudata->vmcb;
997 uint64_t val;
998 size_t i;
999
1000 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1001 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1002 val = NB_CFG_INITAPICCPUIDLO;
1003 vmcb->state.rax = (val & 0xFFFFFFFF);
1004 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1005 goto handled;
1006 }
1007 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1008 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1009 continue;
1010 val = 0;
1011 vmcb->state.rax = (val & 0xFFFFFFFF);
1012 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1013 goto handled;
1014 }
1015 } else {
1016 if (exit->u.wrmsr.msr == MSR_EFER) {
1017 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1018 goto error;
1019 }
1020 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1021 EFER_TLB_FLUSH) {
1022 cpudata->gtlb_want_flush = true;
1023 }
1024 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1025 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1026 goto handled;
1027 }
1028 if (exit->u.wrmsr.msr == MSR_TSC) {
1029 cpudata->gtsc = exit->u.wrmsr.val;
1030 cpudata->gtsc_want_update = true;
1031 goto handled;
1032 }
1033 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1034 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1035 continue;
1036 goto handled;
1037 }
1038 }
1039
1040 return false;
1041
1042 handled:
1043 svm_inkernel_advance(cpudata->vmcb);
1044 return true;
1045
1046 error:
1047 svm_inject_gp(vcpu);
1048 return true;
1049 }
1050
1051 static inline void
1052 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1053 struct nvmm_vcpu_exit *exit)
1054 {
1055 struct svm_cpudata *cpudata = vcpu->cpudata;
1056
1057 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1058 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1059 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1060
1061 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1062 exit->reason = NVMM_VCPU_EXIT_NONE;
1063 return;
1064 }
1065
1066 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1067 }
1068
1069 static inline void
1070 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1071 struct nvmm_vcpu_exit *exit)
1072 {
1073 struct svm_cpudata *cpudata = vcpu->cpudata;
1074 uint64_t rdx, rax;
1075
1076 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1077 rax = cpudata->vmcb->state.rax;
1078
1079 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1080 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1081 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1082 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1083
1084 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1085 exit->reason = NVMM_VCPU_EXIT_NONE;
1086 return;
1087 }
1088
1089 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1090 }
1091
1092 static void
1093 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1094 struct nvmm_vcpu_exit *exit)
1095 {
1096 struct svm_cpudata *cpudata = vcpu->cpudata;
1097 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1098
1099 if (info == 0) {
1100 svm_exit_rdmsr(mach, vcpu, exit);
1101 } else {
1102 svm_exit_wrmsr(mach, vcpu, exit);
1103 }
1104 }
1105
1106 static void
1107 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1108 struct nvmm_vcpu_exit *exit)
1109 {
1110 struct svm_cpudata *cpudata = vcpu->cpudata;
1111 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1112
1113 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1114 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1115 exit->u.mem.prot = PROT_WRITE;
1116 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1117 exit->u.mem.prot = PROT_EXEC;
1118 else
1119 exit->u.mem.prot = PROT_READ;
1120 exit->u.mem.gpa = gpa;
1121 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1122 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1123 sizeof(exit->u.mem.inst_bytes));
1124
1125 svm_vcpu_state_provide(vcpu,
1126 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1127 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1128 }
1129
1130 static void
1131 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1132 struct nvmm_vcpu_exit *exit)
1133 {
1134 struct svm_cpudata *cpudata = vcpu->cpudata;
1135 struct vmcb *vmcb = cpudata->vmcb;
1136 uint64_t val;
1137
1138 exit->reason = NVMM_VCPU_EXIT_NONE;
1139
1140 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1141 (vmcb->state.rax & 0xFFFFFFFF);
1142
1143 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1144 goto error;
1145 } else if (__predict_false(vmcb->state.cpl != 0)) {
1146 goto error;
1147 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1148 goto error;
1149 } else if (__predict_false((val & XCR0_X87) == 0)) {
1150 goto error;
1151 }
1152
1153 cpudata->gxcr0 = val;
1154 if (svm_xcr0_mask != 0) {
1155 wrxcr(0, cpudata->gxcr0);
1156 }
1157
1158 svm_inkernel_advance(cpudata->vmcb);
1159 return;
1160
1161 error:
1162 svm_inject_gp(vcpu);
1163 }
1164
1165 static void
1166 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1167 {
1168 exit->u.inv.hwcode = code;
1169 exit->reason = NVMM_VCPU_EXIT_INVALID;
1170 }
1171
1172 /* -------------------------------------------------------------------------- */
1173
1174 static void
1175 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1176 {
1177 struct svm_cpudata *cpudata = vcpu->cpudata;
1178
1179 fpu_save();
1180 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1181
1182 if (svm_xcr0_mask != 0) {
1183 cpudata->hxcr0 = rdxcr(0);
1184 wrxcr(0, cpudata->gxcr0);
1185 }
1186 }
1187
1188 static void
1189 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1190 {
1191 struct svm_cpudata *cpudata = vcpu->cpudata;
1192
1193 if (svm_xcr0_mask != 0) {
1194 cpudata->gxcr0 = rdxcr(0);
1195 wrxcr(0, cpudata->hxcr0);
1196 }
1197
1198 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1199 }
1200
1201 static void
1202 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1203 {
1204 struct svm_cpudata *cpudata = vcpu->cpudata;
1205
1206 x86_dbregs_save(curlwp);
1207
1208 ldr7(0);
1209
1210 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1211 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1212 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1213 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1214 }
1215
1216 static void
1217 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1218 {
1219 struct svm_cpudata *cpudata = vcpu->cpudata;
1220
1221 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1222 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1223 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1224 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1225
1226 x86_dbregs_restore(curlwp);
1227 }
1228
1229 static void
1230 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1231 {
1232 struct svm_cpudata *cpudata = vcpu->cpudata;
1233
1234 cpudata->fsbase = rdmsr(MSR_FSBASE);
1235 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1236 }
1237
1238 static void
1239 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1240 {
1241 struct svm_cpudata *cpudata = vcpu->cpudata;
1242
1243 wrmsr(MSR_STAR, cpudata->star);
1244 wrmsr(MSR_LSTAR, cpudata->lstar);
1245 wrmsr(MSR_CSTAR, cpudata->cstar);
1246 wrmsr(MSR_SFMASK, cpudata->sfmask);
1247 wrmsr(MSR_FSBASE, cpudata->fsbase);
1248 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1249 }
1250
1251 /* -------------------------------------------------------------------------- */
1252
1253 static inline void
1254 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1255 {
1256 struct svm_cpudata *cpudata = vcpu->cpudata;
1257
1258 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1259 cpudata->gtlb_want_flush = true;
1260 }
1261 }
1262
1263 static inline void
1264 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1265 {
1266 /*
1267 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1268 * executing on this hCPU and the hTLB already got flushed, or it
1269 * was executing on another hCPU in which case the catchup is done
1270 * in svm_gtlb_catchup().
1271 */
1272 }
1273
1274 static inline uint64_t
1275 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1276 {
1277 struct vmcb *vmcb = cpudata->vmcb;
1278 uint64_t machgen;
1279
1280 machgen = machdata->mach_htlb_gen;
1281 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1282 return machgen;
1283 }
1284
1285 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1286 return machgen;
1287 }
1288
1289 static inline void
1290 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1291 {
1292 struct vmcb *vmcb = cpudata->vmcb;
1293
1294 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1295 cpudata->vcpu_htlb_gen = machgen;
1296 }
1297 }
1298
1299 static inline void
1300 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1301 {
1302 cpudata->evt_pending = false;
1303
1304 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1305 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1306 cpudata->evt_pending = true;
1307 }
1308 }
1309
1310 static int
1311 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1312 struct nvmm_vcpu_exit *exit)
1313 {
1314 struct nvmm_comm_page *comm = vcpu->comm;
1315 struct svm_machdata *machdata = mach->machdata;
1316 struct svm_cpudata *cpudata = vcpu->cpudata;
1317 struct vmcb *vmcb = cpudata->vmcb;
1318 uint64_t machgen;
1319 int hcpu, s;
1320
1321 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1322 return EINVAL;
1323 }
1324 svm_vcpu_state_commit(vcpu);
1325 comm->state_cached = 0;
1326
1327 kpreempt_disable();
1328 hcpu = cpu_number();
1329
1330 svm_gtlb_catchup(vcpu, hcpu);
1331 svm_htlb_catchup(vcpu, hcpu);
1332
1333 if (vcpu->hcpu_last != hcpu) {
1334 svm_vmcb_cache_flush_all(vmcb);
1335 cpudata->gtsc_want_update = true;
1336 }
1337
1338 svm_vcpu_guest_dbregs_enter(vcpu);
1339 svm_vcpu_guest_misc_enter(vcpu);
1340 svm_vcpu_guest_fpu_enter(vcpu);
1341
1342 while (1) {
1343 if (cpudata->gtlb_want_flush) {
1344 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1345 } else {
1346 vmcb->ctrl.tlb_ctrl = 0;
1347 }
1348
1349 if (__predict_false(cpudata->gtsc_want_update)) {
1350 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1351 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1352 }
1353
1354 s = splhigh();
1355 machgen = svm_htlb_flush(machdata, cpudata);
1356 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1357 svm_htlb_flush_ack(cpudata, machgen);
1358 splx(s);
1359
1360 svm_vmcb_cache_default(vmcb);
1361
1362 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1363 cpudata->gtlb_want_flush = false;
1364 cpudata->gtsc_want_update = false;
1365 vcpu->hcpu_last = hcpu;
1366 }
1367 svm_exit_evt(cpudata, vmcb);
1368
1369 switch (vmcb->ctrl.exitcode) {
1370 case VMCB_EXITCODE_INTR:
1371 case VMCB_EXITCODE_NMI:
1372 exit->reason = NVMM_VCPU_EXIT_NONE;
1373 break;
1374 case VMCB_EXITCODE_VINTR:
1375 svm_event_waitexit_disable(vcpu, false);
1376 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1377 break;
1378 case VMCB_EXITCODE_IRET:
1379 svm_event_waitexit_disable(vcpu, true);
1380 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1381 break;
1382 case VMCB_EXITCODE_CPUID:
1383 svm_exit_cpuid(mach, vcpu, exit);
1384 break;
1385 case VMCB_EXITCODE_HLT:
1386 svm_exit_hlt(mach, vcpu, exit);
1387 break;
1388 case VMCB_EXITCODE_IOIO:
1389 svm_exit_io(mach, vcpu, exit);
1390 break;
1391 case VMCB_EXITCODE_MSR:
1392 svm_exit_msr(mach, vcpu, exit);
1393 break;
1394 case VMCB_EXITCODE_SHUTDOWN:
1395 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1396 break;
1397 case VMCB_EXITCODE_RDPMC:
1398 case VMCB_EXITCODE_RSM:
1399 case VMCB_EXITCODE_INVLPGA:
1400 case VMCB_EXITCODE_VMRUN:
1401 case VMCB_EXITCODE_VMMCALL:
1402 case VMCB_EXITCODE_VMLOAD:
1403 case VMCB_EXITCODE_VMSAVE:
1404 case VMCB_EXITCODE_STGI:
1405 case VMCB_EXITCODE_CLGI:
1406 case VMCB_EXITCODE_SKINIT:
1407 case VMCB_EXITCODE_RDTSCP:
1408 svm_inject_ud(vcpu);
1409 exit->reason = NVMM_VCPU_EXIT_NONE;
1410 break;
1411 case VMCB_EXITCODE_MONITOR:
1412 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1413 break;
1414 case VMCB_EXITCODE_MWAIT:
1415 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1416 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1417 break;
1418 case VMCB_EXITCODE_XSETBV:
1419 svm_exit_xsetbv(mach, vcpu, exit);
1420 break;
1421 case VMCB_EXITCODE_NPF:
1422 svm_exit_npf(mach, vcpu, exit);
1423 break;
1424 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1425 default:
1426 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1427 break;
1428 }
1429
1430 /* If no reason to return to userland, keep rolling. */
1431 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1432 break;
1433 }
1434 if (curcpu()->ci_data.cpu_softints != 0) {
1435 break;
1436 }
1437 if (curlwp->l_flag & LW_USERRET) {
1438 break;
1439 }
1440 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1441 break;
1442 }
1443 }
1444
1445 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1446
1447 svm_vcpu_guest_fpu_leave(vcpu);
1448 svm_vcpu_guest_misc_leave(vcpu);
1449 svm_vcpu_guest_dbregs_leave(vcpu);
1450
1451 kpreempt_enable();
1452
1453 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1454 VMCB_CTRL_V_TPR);
1455 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] = vmcb->state.rflags;
1456
1457 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1458 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1459 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1460 cpudata->int_window_exit;
1461 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1462 cpudata->nmi_window_exit;
1463 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1464 cpudata->evt_pending;
1465
1466 return 0;
1467 }
1468
1469 /* -------------------------------------------------------------------------- */
1470
1471 static int
1472 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1473 {
1474 struct pglist pglist;
1475 paddr_t _pa;
1476 vaddr_t _va;
1477 size_t i;
1478 int ret;
1479
1480 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1481 &pglist, 1, 0);
1482 if (ret != 0)
1483 return ENOMEM;
1484 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1485 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1486 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1487 if (_va == 0)
1488 goto error;
1489
1490 for (i = 0; i < npages; i++) {
1491 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1492 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1493 }
1494 pmap_update(pmap_kernel());
1495
1496 memset((void *)_va, 0, npages * PAGE_SIZE);
1497
1498 *pa = _pa;
1499 *va = _va;
1500 return 0;
1501
1502 error:
1503 for (i = 0; i < npages; i++) {
1504 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1505 }
1506 return ENOMEM;
1507 }
1508
1509 static void
1510 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1511 {
1512 size_t i;
1513
1514 pmap_kremove(va, npages * PAGE_SIZE);
1515 pmap_update(pmap_kernel());
1516 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1517 for (i = 0; i < npages; i++) {
1518 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1519 }
1520 }
1521
1522 /* -------------------------------------------------------------------------- */
1523
1524 #define SVM_MSRBM_READ __BIT(0)
1525 #define SVM_MSRBM_WRITE __BIT(1)
1526
1527 static void
1528 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1529 {
1530 uint64_t byte;
1531 uint8_t bitoff;
1532
1533 if (msr < 0x00002000) {
1534 /* Range 1 */
1535 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1536 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1537 /* Range 2 */
1538 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1539 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1540 /* Range 3 */
1541 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1542 } else {
1543 panic("%s: wrong range", __func__);
1544 }
1545
1546 bitoff = (msr & 0x3) << 1;
1547
1548 if (read) {
1549 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1550 }
1551 if (write) {
1552 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1553 }
1554 }
1555
1556 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1557 #define SVM_SEG_ATTRIB_S __BIT(4)
1558 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1559 #define SVM_SEG_ATTRIB_P __BIT(7)
1560 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1561 #define SVM_SEG_ATTRIB_L __BIT(9)
1562 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1563 #define SVM_SEG_ATTRIB_G __BIT(11)
1564
1565 static void
1566 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1567 struct vmcb_segment *vseg)
1568 {
1569 vseg->selector = seg->selector;
1570 vseg->attrib =
1571 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1572 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1573 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1574 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1575 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1576 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1577 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1578 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1579 vseg->limit = seg->limit;
1580 vseg->base = seg->base;
1581 }
1582
1583 static void
1584 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1585 {
1586 seg->selector = vseg->selector;
1587 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1588 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1589 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1590 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1591 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1592 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1593 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1594 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1595 seg->limit = vseg->limit;
1596 seg->base = vseg->base;
1597 }
1598
1599 static inline bool
1600 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1601 uint64_t flags)
1602 {
1603 if (flags & NVMM_X64_STATE_CRS) {
1604 if ((vmcb->state.cr0 ^
1605 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1606 return true;
1607 }
1608 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1609 return true;
1610 }
1611 if ((vmcb->state.cr4 ^
1612 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1613 return true;
1614 }
1615 }
1616
1617 if (flags & NVMM_X64_STATE_MSRS) {
1618 if ((vmcb->state.efer ^
1619 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1620 return true;
1621 }
1622 }
1623
1624 return false;
1625 }
1626
1627 static void
1628 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1629 {
1630 struct nvmm_comm_page *comm = vcpu->comm;
1631 const struct nvmm_x64_state *state = &comm->state;
1632 struct svm_cpudata *cpudata = vcpu->cpudata;
1633 struct vmcb *vmcb = cpudata->vmcb;
1634 struct fxsave *fpustate;
1635 uint64_t flags;
1636
1637 flags = comm->state_wanted;
1638
1639 if (svm_state_tlb_flush(vmcb, state, flags)) {
1640 cpudata->gtlb_want_flush = true;
1641 }
1642
1643 if (flags & NVMM_X64_STATE_SEGS) {
1644 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1645 &vmcb->state.cs);
1646 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1647 &vmcb->state.ds);
1648 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1649 &vmcb->state.es);
1650 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1651 &vmcb->state.fs);
1652 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1653 &vmcb->state.gs);
1654 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1655 &vmcb->state.ss);
1656 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1657 &vmcb->state.gdt);
1658 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1659 &vmcb->state.idt);
1660 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1661 &vmcb->state.ldt);
1662 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1663 &vmcb->state.tr);
1664
1665 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1666 }
1667
1668 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1669 if (flags & NVMM_X64_STATE_GPRS) {
1670 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1671
1672 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1673 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1674 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1675 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1676 }
1677
1678 if (flags & NVMM_X64_STATE_CRS) {
1679 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1680 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1681 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1682 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1683
1684 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1685 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1686 VMCB_CTRL_V_TPR);
1687
1688 if (svm_xcr0_mask != 0) {
1689 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1690 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1691 cpudata->gxcr0 &= svm_xcr0_mask;
1692 cpudata->gxcr0 |= XCR0_X87;
1693 }
1694 }
1695
1696 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1697 if (flags & NVMM_X64_STATE_DRS) {
1698 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1699
1700 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1701 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1702 }
1703
1704 if (flags & NVMM_X64_STATE_MSRS) {
1705 /*
1706 * EFER_SVME is mandatory.
1707 */
1708 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1709 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1710 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1711 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1712 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1713 vmcb->state.kernelgsbase =
1714 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1715 vmcb->state.sysenter_cs =
1716 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1717 vmcb->state.sysenter_esp =
1718 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1719 vmcb->state.sysenter_eip =
1720 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1721 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1722
1723 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1724 cpudata->gtsc_want_update = true;
1725 }
1726
1727 if (flags & NVMM_X64_STATE_INTR) {
1728 if (state->intr.int_shadow) {
1729 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1730 } else {
1731 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1732 }
1733
1734 if (state->intr.int_window_exiting) {
1735 svm_event_waitexit_enable(vcpu, false);
1736 } else {
1737 svm_event_waitexit_disable(vcpu, false);
1738 }
1739
1740 if (state->intr.nmi_window_exiting) {
1741 svm_event_waitexit_enable(vcpu, true);
1742 } else {
1743 svm_event_waitexit_disable(vcpu, true);
1744 }
1745 }
1746
1747 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1748 if (flags & NVMM_X64_STATE_FPU) {
1749 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1750 sizeof(state->fpu));
1751
1752 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1753 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1754 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1755
1756 if (svm_xcr0_mask != 0) {
1757 /* Reset XSTATE_BV, to force a reload. */
1758 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1759 }
1760 }
1761
1762 svm_vmcb_cache_update(vmcb, flags);
1763
1764 comm->state_wanted = 0;
1765 comm->state_cached |= flags;
1766 }
1767
1768 static void
1769 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1770 {
1771 struct nvmm_comm_page *comm = vcpu->comm;
1772 struct nvmm_x64_state *state = &comm->state;
1773 struct svm_cpudata *cpudata = vcpu->cpudata;
1774 struct vmcb *vmcb = cpudata->vmcb;
1775 uint64_t flags;
1776
1777 flags = comm->state_wanted;
1778
1779 if (flags & NVMM_X64_STATE_SEGS) {
1780 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1781 &vmcb->state.cs);
1782 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1783 &vmcb->state.ds);
1784 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1785 &vmcb->state.es);
1786 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1787 &vmcb->state.fs);
1788 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1789 &vmcb->state.gs);
1790 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1791 &vmcb->state.ss);
1792 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1793 &vmcb->state.gdt);
1794 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1795 &vmcb->state.idt);
1796 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1797 &vmcb->state.ldt);
1798 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1799 &vmcb->state.tr);
1800
1801 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1802 }
1803
1804 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1805 if (flags & NVMM_X64_STATE_GPRS) {
1806 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1807
1808 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1809 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1810 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1811 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1812 }
1813
1814 if (flags & NVMM_X64_STATE_CRS) {
1815 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1816 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1817 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1818 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1819 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1820 VMCB_CTRL_V_TPR);
1821 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1822 }
1823
1824 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1825 if (flags & NVMM_X64_STATE_DRS) {
1826 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1827
1828 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1829 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1830 }
1831
1832 if (flags & NVMM_X64_STATE_MSRS) {
1833 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1834 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1835 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1836 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1837 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1838 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1839 vmcb->state.kernelgsbase;
1840 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1841 vmcb->state.sysenter_cs;
1842 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1843 vmcb->state.sysenter_esp;
1844 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1845 vmcb->state.sysenter_eip;
1846 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1847 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1848
1849 /* Hide SVME. */
1850 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1851 }
1852
1853 if (flags & NVMM_X64_STATE_INTR) {
1854 state->intr.int_shadow =
1855 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1856 state->intr.int_window_exiting = cpudata->int_window_exit;
1857 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1858 state->intr.evt_pending = cpudata->evt_pending;
1859 }
1860
1861 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1862 if (flags & NVMM_X64_STATE_FPU) {
1863 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1864 sizeof(state->fpu));
1865 }
1866
1867 comm->state_wanted = 0;
1868 comm->state_cached |= flags;
1869 }
1870
1871 static void
1872 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1873 {
1874 vcpu->comm->state_wanted = flags;
1875 svm_vcpu_getstate(vcpu);
1876 }
1877
1878 static void
1879 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1880 {
1881 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1882 vcpu->comm->state_commit = 0;
1883 svm_vcpu_setstate(vcpu);
1884 }
1885
1886 /* -------------------------------------------------------------------------- */
1887
1888 static void
1889 svm_asid_alloc(struct nvmm_cpu *vcpu)
1890 {
1891 struct svm_cpudata *cpudata = vcpu->cpudata;
1892 struct vmcb *vmcb = cpudata->vmcb;
1893 size_t i, oct, bit;
1894
1895 mutex_enter(&svm_asidlock);
1896
1897 for (i = 0; i < svm_maxasid; i++) {
1898 oct = i / 8;
1899 bit = i % 8;
1900
1901 if (svm_asidmap[oct] & __BIT(bit)) {
1902 continue;
1903 }
1904
1905 svm_asidmap[oct] |= __BIT(bit);
1906 vmcb->ctrl.guest_asid = i;
1907 mutex_exit(&svm_asidlock);
1908 return;
1909 }
1910
1911 /*
1912 * No free ASID. Use the last one, which is shared and requires
1913 * special TLB handling.
1914 */
1915 cpudata->shared_asid = true;
1916 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1917 mutex_exit(&svm_asidlock);
1918 }
1919
1920 static void
1921 svm_asid_free(struct nvmm_cpu *vcpu)
1922 {
1923 struct svm_cpudata *cpudata = vcpu->cpudata;
1924 struct vmcb *vmcb = cpudata->vmcb;
1925 size_t oct, bit;
1926
1927 if (cpudata->shared_asid) {
1928 return;
1929 }
1930
1931 oct = vmcb->ctrl.guest_asid / 8;
1932 bit = vmcb->ctrl.guest_asid % 8;
1933
1934 mutex_enter(&svm_asidlock);
1935 svm_asidmap[oct] &= ~__BIT(bit);
1936 mutex_exit(&svm_asidlock);
1937 }
1938
1939 static void
1940 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1941 {
1942 struct svm_cpudata *cpudata = vcpu->cpudata;
1943 struct vmcb *vmcb = cpudata->vmcb;
1944
1945 /* Allow reads/writes of Control Registers. */
1946 vmcb->ctrl.intercept_cr = 0;
1947
1948 /* Allow reads/writes of Debug Registers. */
1949 vmcb->ctrl.intercept_dr = 0;
1950
1951 /* Allow exceptions 0 to 31. */
1952 vmcb->ctrl.intercept_vec = 0;
1953
1954 /*
1955 * Allow:
1956 * - SMI [smm interrupts]
1957 * - VINTR [virtual interrupts]
1958 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1959 * - RIDTR [reads of IDTR]
1960 * - RGDTR [reads of GDTR]
1961 * - RLDTR [reads of LDTR]
1962 * - RTR [reads of TR]
1963 * - WIDTR [writes of IDTR]
1964 * - WGDTR [writes of GDTR]
1965 * - WLDTR [writes of LDTR]
1966 * - WTR [writes of TR]
1967 * - RDTSC [rdtsc instruction]
1968 * - PUSHF [pushf instruction]
1969 * - POPF [popf instruction]
1970 * - IRET [iret instruction]
1971 * - INTN [int $n instructions]
1972 * - INVD [invd instruction]
1973 * - PAUSE [pause instruction]
1974 * - INVLPG [invplg instruction]
1975 * - TASKSW [task switches]
1976 *
1977 * Intercept the rest below.
1978 */
1979 vmcb->ctrl.intercept_misc1 =
1980 VMCB_CTRL_INTERCEPT_INTR |
1981 VMCB_CTRL_INTERCEPT_NMI |
1982 VMCB_CTRL_INTERCEPT_INIT |
1983 VMCB_CTRL_INTERCEPT_RDPMC |
1984 VMCB_CTRL_INTERCEPT_CPUID |
1985 VMCB_CTRL_INTERCEPT_RSM |
1986 VMCB_CTRL_INTERCEPT_HLT |
1987 VMCB_CTRL_INTERCEPT_INVLPGA |
1988 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1989 VMCB_CTRL_INTERCEPT_MSR_PROT |
1990 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1991 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1992
1993 /*
1994 * Allow:
1995 * - ICEBP [icebp instruction]
1996 * - WBINVD [wbinvd instruction]
1997 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1998 *
1999 * Intercept the rest below.
2000 */
2001 vmcb->ctrl.intercept_misc2 =
2002 VMCB_CTRL_INTERCEPT_VMRUN |
2003 VMCB_CTRL_INTERCEPT_VMMCALL |
2004 VMCB_CTRL_INTERCEPT_VMLOAD |
2005 VMCB_CTRL_INTERCEPT_VMSAVE |
2006 VMCB_CTRL_INTERCEPT_STGI |
2007 VMCB_CTRL_INTERCEPT_CLGI |
2008 VMCB_CTRL_INTERCEPT_SKINIT |
2009 VMCB_CTRL_INTERCEPT_RDTSCP |
2010 VMCB_CTRL_INTERCEPT_MONITOR |
2011 VMCB_CTRL_INTERCEPT_MWAIT |
2012 VMCB_CTRL_INTERCEPT_XSETBV;
2013
2014 /* Intercept all I/O accesses. */
2015 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2016 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2017
2018 /* Allow direct access to certain MSRs. */
2019 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2020 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2021 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2022 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2023 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2024 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2025 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2026 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2027 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2028 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2029 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2030 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2031 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2032 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2033 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2034
2035 /* Generate ASID. */
2036 svm_asid_alloc(vcpu);
2037
2038 /* Virtual TPR. */
2039 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2040
2041 /* Enable Nested Paging. */
2042 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2043 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2044
2045 /* Init XSAVE header. */
2046 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2047 cpudata->gfpu.xsh_xcomp_bv = 0;
2048
2049 /* These MSRs are static. */
2050 cpudata->star = rdmsr(MSR_STAR);
2051 cpudata->lstar = rdmsr(MSR_LSTAR);
2052 cpudata->cstar = rdmsr(MSR_CSTAR);
2053 cpudata->sfmask = rdmsr(MSR_SFMASK);
2054
2055 /* Install the RESET state. */
2056 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2057 sizeof(nvmm_x86_reset_state));
2058 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2059 vcpu->comm->state_cached = 0;
2060 svm_vcpu_setstate(vcpu);
2061 }
2062
2063 static int
2064 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2065 {
2066 struct svm_cpudata *cpudata;
2067 int error;
2068
2069 /* Allocate the SVM cpudata. */
2070 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2071 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2072 UVM_KMF_WIRED|UVM_KMF_ZERO);
2073 vcpu->cpudata = cpudata;
2074
2075 /* VMCB */
2076 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2077 VMCB_NPAGES);
2078 if (error)
2079 goto error;
2080
2081 /* I/O Bitmap */
2082 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2083 IOBM_NPAGES);
2084 if (error)
2085 goto error;
2086
2087 /* MSR Bitmap */
2088 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2089 MSRBM_NPAGES);
2090 if (error)
2091 goto error;
2092
2093 /* Init the VCPU info. */
2094 svm_vcpu_init(mach, vcpu);
2095
2096 return 0;
2097
2098 error:
2099 if (cpudata->vmcb_pa) {
2100 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2101 VMCB_NPAGES);
2102 }
2103 if (cpudata->iobm_pa) {
2104 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2105 IOBM_NPAGES);
2106 }
2107 if (cpudata->msrbm_pa) {
2108 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2109 MSRBM_NPAGES);
2110 }
2111 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2112 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2113 return error;
2114 }
2115
2116 static void
2117 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2118 {
2119 struct svm_cpudata *cpudata = vcpu->cpudata;
2120
2121 svm_asid_free(vcpu);
2122
2123 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2124 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2125 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2126
2127 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2128 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2129 }
2130
2131 static int
2132 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2133 {
2134 struct svm_cpudata *cpudata = vcpu->cpudata;
2135 struct nvmm_vcpu_conf_cpuid *cpuid;
2136 size_t i;
2137
2138 if (__predict_false(op != NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID))) {
2139 return EINVAL;
2140 }
2141 cpuid = data;
2142
2143 if (__predict_false(cpuid->mask && cpuid->exit)) {
2144 return EINVAL;
2145 }
2146 if (__predict_false(cpuid->mask &&
2147 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2148 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2149 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2150 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2151 return EINVAL;
2152 }
2153
2154 /* If unset, delete, to restore the default behavior. */
2155 if (!cpuid->mask && !cpuid->exit) {
2156 for (i = 0; i < SVM_NCPUIDS; i++) {
2157 if (!cpudata->cpuidpresent[i]) {
2158 continue;
2159 }
2160 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2161 cpudata->cpuidpresent[i] = false;
2162 }
2163 }
2164 return 0;
2165 }
2166
2167 /* If already here, replace. */
2168 for (i = 0; i < SVM_NCPUIDS; i++) {
2169 if (!cpudata->cpuidpresent[i]) {
2170 continue;
2171 }
2172 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2173 memcpy(&cpudata->cpuid[i], cpuid,
2174 sizeof(struct nvmm_vcpu_conf_cpuid));
2175 return 0;
2176 }
2177 }
2178
2179 /* Not here, insert. */
2180 for (i = 0; i < SVM_NCPUIDS; i++) {
2181 if (!cpudata->cpuidpresent[i]) {
2182 cpudata->cpuidpresent[i] = true;
2183 memcpy(&cpudata->cpuid[i], cpuid,
2184 sizeof(struct nvmm_vcpu_conf_cpuid));
2185 return 0;
2186 }
2187 }
2188
2189 return ENOBUFS;
2190 }
2191
2192 /* -------------------------------------------------------------------------- */
2193
2194 static void
2195 svm_tlb_flush(struct pmap *pm)
2196 {
2197 struct nvmm_machine *mach = pm->pm_data;
2198 struct svm_machdata *machdata = mach->machdata;
2199
2200 atomic_inc_64(&machdata->mach_htlb_gen);
2201
2202 /* Generates IPIs, which cause #VMEXITs. */
2203 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2204 }
2205
2206 static void
2207 svm_machine_create(struct nvmm_machine *mach)
2208 {
2209 struct svm_machdata *machdata;
2210
2211 /* Fill in pmap info. */
2212 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2213 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2214
2215 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2216 mach->machdata = machdata;
2217
2218 /* Start with an hTLB flush everywhere. */
2219 machdata->mach_htlb_gen = 1;
2220 }
2221
2222 static void
2223 svm_machine_destroy(struct nvmm_machine *mach)
2224 {
2225 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2226 }
2227
2228 static int
2229 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2230 {
2231 panic("%s: impossible", __func__);
2232 }
2233
2234 /* -------------------------------------------------------------------------- */
2235
2236 static bool
2237 svm_ident(void)
2238 {
2239 u_int descs[4];
2240 uint64_t msr;
2241
2242 if (cpu_vendor != CPUVENDOR_AMD) {
2243 return false;
2244 }
2245 if (!(cpu_feature[3] & CPUID_SVM)) {
2246 return false;
2247 }
2248
2249 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2250 return false;
2251 }
2252 x86_cpuid(0x8000000a, descs);
2253
2254 /* Want Nested Paging. */
2255 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2256 return false;
2257 }
2258
2259 /* Want nRIP. */
2260 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2261 return false;
2262 }
2263
2264 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2265
2266 msr = rdmsr(MSR_VMCR);
2267 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2268 return false;
2269 }
2270
2271 return true;
2272 }
2273
2274 static void
2275 svm_init_asid(uint32_t maxasid)
2276 {
2277 size_t i, j, allocsz;
2278
2279 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2280
2281 /* Arbitrarily limit. */
2282 maxasid = uimin(maxasid, 8192);
2283
2284 svm_maxasid = maxasid;
2285 allocsz = roundup(maxasid, 8) / 8;
2286 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2287
2288 /* ASID 0 is reserved for the host. */
2289 svm_asidmap[0] |= __BIT(0);
2290
2291 /* ASID n-1 is special, we share it. */
2292 i = (maxasid - 1) / 8;
2293 j = (maxasid - 1) % 8;
2294 svm_asidmap[i] |= __BIT(j);
2295 }
2296
2297 static void
2298 svm_change_cpu(void *arg1, void *arg2)
2299 {
2300 bool enable = (bool)arg1;
2301 uint64_t msr;
2302
2303 msr = rdmsr(MSR_VMCR);
2304 if (msr & VMCR_SVMED) {
2305 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2306 }
2307
2308 if (!enable) {
2309 wrmsr(MSR_VM_HSAVE_PA, 0);
2310 }
2311
2312 msr = rdmsr(MSR_EFER);
2313 if (enable) {
2314 msr |= EFER_SVME;
2315 } else {
2316 msr &= ~EFER_SVME;
2317 }
2318 wrmsr(MSR_EFER, msr);
2319
2320 if (enable) {
2321 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2322 }
2323 }
2324
2325 static void
2326 svm_init(void)
2327 {
2328 CPU_INFO_ITERATOR cii;
2329 struct cpu_info *ci;
2330 struct vm_page *pg;
2331 u_int descs[4];
2332 uint64_t xc;
2333
2334 x86_cpuid(0x8000000a, descs);
2335
2336 /* The guest TLB flush command. */
2337 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2338 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2339 } else {
2340 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2341 }
2342
2343 /* Init the ASID. */
2344 svm_init_asid(descs[1]);
2345
2346 /* Init the XCR0 mask. */
2347 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2348
2349 memset(hsave, 0, sizeof(hsave));
2350 for (CPU_INFO_FOREACH(cii, ci)) {
2351 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2352 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2353 }
2354
2355 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2356 xc_wait(xc);
2357 }
2358
2359 static void
2360 svm_fini_asid(void)
2361 {
2362 size_t allocsz;
2363
2364 allocsz = roundup(svm_maxasid, 8) / 8;
2365 kmem_free(svm_asidmap, allocsz);
2366
2367 mutex_destroy(&svm_asidlock);
2368 }
2369
2370 static void
2371 svm_fini(void)
2372 {
2373 uint64_t xc;
2374 size_t i;
2375
2376 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2377 xc_wait(xc);
2378
2379 for (i = 0; i < MAXCPUS; i++) {
2380 if (hsave[i].pa != 0)
2381 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2382 }
2383
2384 svm_fini_asid();
2385 }
2386
2387 static void
2388 svm_capability(struct nvmm_capability *cap)
2389 {
2390 cap->arch.xcr0_mask = svm_xcr0_mask;
2391 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2392 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2393 }
2394
2395 const struct nvmm_impl nvmm_x86_svm = {
2396 .ident = svm_ident,
2397 .init = svm_init,
2398 .fini = svm_fini,
2399 .capability = svm_capability,
2400 .mach_conf_max = NVMM_X86_MACH_NCONF,
2401 .mach_conf_sizes = NULL,
2402 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2403 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2404 .state_size = sizeof(struct nvmm_x64_state),
2405 .machine_create = svm_machine_create,
2406 .machine_destroy = svm_machine_destroy,
2407 .machine_configure = svm_machine_configure,
2408 .vcpu_create = svm_vcpu_create,
2409 .vcpu_destroy = svm_vcpu_destroy,
2410 .vcpu_configure = svm_vcpu_configure,
2411 .vcpu_setstate = svm_vcpu_setstate,
2412 .vcpu_getstate = svm_vcpu_getstate,
2413 .vcpu_inject = svm_vcpu_inject,
2414 .vcpu_run = svm_vcpu_run
2415 };
2416