nvmm_x86_svm.c revision 1.53 1 /* $NetBSD: nvmm_x86_svm.c,v 1.53 2019/10/28 08:30:49 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.53 2019/10/28 08:30:49 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 volatile uint64_t mach_htlb_gen;
508 };
509
510 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
511 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
512 sizeof(struct nvmm_vcpu_conf_cpuid),
513 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
514 sizeof(struct nvmm_vcpu_conf_tpr)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544
545 /* Intr state */
546 bool int_window_exit;
547 bool nmi_window_exit;
548 bool evt_pending;
549
550 /* Guest state */
551 uint64_t gxcr0;
552 uint64_t gprs[NVMM_X64_NGPR];
553 uint64_t drs[NVMM_X64_NDR];
554 uint64_t gtsc;
555 struct xsave_header gfpu __aligned(64);
556
557 /* VCPU configuration. */
558 bool cpuidpresent[SVM_NCPUIDS];
559 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
560 };
561
562 static void
563 svm_vmcb_cache_default(struct vmcb *vmcb)
564 {
565 vmcb->ctrl.vmcb_clean =
566 VMCB_CTRL_VMCB_CLEAN_I |
567 VMCB_CTRL_VMCB_CLEAN_IOPM |
568 VMCB_CTRL_VMCB_CLEAN_ASID |
569 VMCB_CTRL_VMCB_CLEAN_TPR |
570 VMCB_CTRL_VMCB_CLEAN_NP |
571 VMCB_CTRL_VMCB_CLEAN_CR |
572 VMCB_CTRL_VMCB_CLEAN_DR |
573 VMCB_CTRL_VMCB_CLEAN_DT |
574 VMCB_CTRL_VMCB_CLEAN_SEG |
575 VMCB_CTRL_VMCB_CLEAN_CR2 |
576 VMCB_CTRL_VMCB_CLEAN_LBR |
577 VMCB_CTRL_VMCB_CLEAN_AVIC;
578 }
579
580 static void
581 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
582 {
583 if (flags & NVMM_X64_STATE_SEGS) {
584 vmcb->ctrl.vmcb_clean &=
585 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
586 }
587 if (flags & NVMM_X64_STATE_CRS) {
588 vmcb->ctrl.vmcb_clean &=
589 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
590 VMCB_CTRL_VMCB_CLEAN_TPR);
591 }
592 if (flags & NVMM_X64_STATE_DRS) {
593 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
594 }
595 if (flags & NVMM_X64_STATE_MSRS) {
596 /* CR for EFER, NP for PAT. */
597 vmcb->ctrl.vmcb_clean &=
598 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
599 }
600 }
601
602 static inline void
603 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
604 {
605 vmcb->ctrl.vmcb_clean &= ~flags;
606 }
607
608 static inline void
609 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
610 {
611 vmcb->ctrl.vmcb_clean = 0;
612 }
613
614 #define SVM_EVENT_TYPE_HW_INT 0
615 #define SVM_EVENT_TYPE_NMI 2
616 #define SVM_EVENT_TYPE_EXC 3
617 #define SVM_EVENT_TYPE_SW_INT 4
618
619 static void
620 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
621 {
622 struct svm_cpudata *cpudata = vcpu->cpudata;
623 struct vmcb *vmcb = cpudata->vmcb;
624
625 if (nmi) {
626 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
627 cpudata->nmi_window_exit = true;
628 } else {
629 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
630 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
631 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
632 cpudata->int_window_exit = true;
633 }
634
635 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
636 }
637
638 static void
639 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
640 {
641 struct svm_cpudata *cpudata = vcpu->cpudata;
642 struct vmcb *vmcb = cpudata->vmcb;
643
644 if (nmi) {
645 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
646 cpudata->nmi_window_exit = false;
647 } else {
648 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
649 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
650 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
651 cpudata->int_window_exit = false;
652 }
653
654 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
655 }
656
657 static inline int
658 svm_event_has_error(uint8_t vector)
659 {
660 switch (vector) {
661 case 8: /* #DF */
662 case 10: /* #TS */
663 case 11: /* #NP */
664 case 12: /* #SS */
665 case 13: /* #GP */
666 case 14: /* #PF */
667 case 17: /* #AC */
668 case 30: /* #SX */
669 return 1;
670 default:
671 return 0;
672 }
673 }
674
675 static int
676 svm_vcpu_inject(struct nvmm_cpu *vcpu)
677 {
678 struct nvmm_comm_page *comm = vcpu->comm;
679 struct svm_cpudata *cpudata = vcpu->cpudata;
680 struct vmcb *vmcb = cpudata->vmcb;
681 u_int evtype;
682 uint8_t vector;
683 uint64_t error;
684 int type = 0, err = 0;
685
686 evtype = comm->event.type;
687 vector = comm->event.vector;
688 error = comm->event.u.excp.error;
689 __insn_barrier();
690
691 switch (evtype) {
692 case NVMM_VCPU_EVENT_EXCP:
693 type = SVM_EVENT_TYPE_EXC;
694 if (vector == 2 || vector >= 32)
695 return EINVAL;
696 if (vector == 3 || vector == 0)
697 return EINVAL;
698 err = svm_event_has_error(vector);
699 break;
700 case NVMM_VCPU_EVENT_INTR:
701 type = SVM_EVENT_TYPE_HW_INT;
702 if (vector == 2) {
703 type = SVM_EVENT_TYPE_NMI;
704 svm_event_waitexit_enable(vcpu, true);
705 }
706 err = 0;
707 break;
708 default:
709 return EINVAL;
710 }
711
712 vmcb->ctrl.eventinj =
713 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
714 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
715 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
716 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
717 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
718
719 cpudata->evt_pending = true;
720
721 return 0;
722 }
723
724 static void
725 svm_inject_ud(struct nvmm_cpu *vcpu)
726 {
727 struct nvmm_comm_page *comm = vcpu->comm;
728 int ret __diagused;
729
730 comm->event.type = NVMM_VCPU_EVENT_EXCP;
731 comm->event.vector = 6;
732 comm->event.u.excp.error = 0;
733
734 ret = svm_vcpu_inject(vcpu);
735 KASSERT(ret == 0);
736 }
737
738 static void
739 svm_inject_gp(struct nvmm_cpu *vcpu)
740 {
741 struct nvmm_comm_page *comm = vcpu->comm;
742 int ret __diagused;
743
744 comm->event.type = NVMM_VCPU_EVENT_EXCP;
745 comm->event.vector = 13;
746 comm->event.u.excp.error = 0;
747
748 ret = svm_vcpu_inject(vcpu);
749 KASSERT(ret == 0);
750 }
751
752 static inline int
753 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
754 {
755 if (__predict_true(!vcpu->comm->event_commit)) {
756 return 0;
757 }
758 vcpu->comm->event_commit = false;
759 return svm_vcpu_inject(vcpu);
760 }
761
762 static inline void
763 svm_inkernel_advance(struct vmcb *vmcb)
764 {
765 /*
766 * Maybe we should also apply single-stepping and debug exceptions.
767 * Matters for guest-ring3, because it can execute 'cpuid' under a
768 * debugger.
769 */
770 vmcb->state.rip = vmcb->ctrl.nrip;
771 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
772 }
773
774 static void
775 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
776 {
777 struct svm_cpudata *cpudata = vcpu->cpudata;
778 uint64_t cr4;
779
780 switch (eax) {
781 case 0x00000001:
782 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
783
784 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
785 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
786 CPUID_LOCAL_APIC_ID);
787
788 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
789 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
790
791 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
792
793 /* CPUID2_OSXSAVE depends on CR4. */
794 cr4 = cpudata->vmcb->state.cr4;
795 if (!(cr4 & CR4_OSXSAVE)) {
796 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
797 }
798 break;
799 case 0x00000005:
800 case 0x00000006:
801 cpudata->vmcb->state.rax = 0;
802 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
803 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
804 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
805 break;
806 case 0x00000007:
807 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
808 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
809 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
810 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
811 break;
812 case 0x0000000D:
813 if (svm_xcr0_mask == 0) {
814 break;
815 }
816 switch (ecx) {
817 case 0:
818 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
819 if (cpudata->gxcr0 & XCR0_SSE) {
820 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
821 } else {
822 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
823 }
824 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
825 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
826 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
827 break;
828 case 1:
829 cpudata->vmcb->state.rax &= ~CPUID_PES1_XSAVES;
830 break;
831 }
832 break;
833 case 0x40000000:
834 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
835 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
836 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
837 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
838 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
839 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
840 break;
841 case 0x80000001:
842 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
843 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
844 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
845 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
846 break;
847 default:
848 break;
849 }
850 }
851
852 static void
853 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
854 {
855 exit->u.insn.npc = vmcb->ctrl.nrip;
856 exit->reason = reason;
857 }
858
859 static void
860 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
861 struct nvmm_vcpu_exit *exit)
862 {
863 struct svm_cpudata *cpudata = vcpu->cpudata;
864 struct nvmm_vcpu_conf_cpuid *cpuid;
865 uint64_t eax, ecx;
866 u_int descs[4];
867 size_t i;
868
869 eax = cpudata->vmcb->state.rax;
870 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
871 x86_cpuid2(eax, ecx, descs);
872
873 cpudata->vmcb->state.rax = descs[0];
874 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
875 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
876 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
877
878 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
879
880 for (i = 0; i < SVM_NCPUIDS; i++) {
881 if (!cpudata->cpuidpresent[i]) {
882 continue;
883 }
884 cpuid = &cpudata->cpuid[i];
885 if (cpuid->leaf != eax) {
886 continue;
887 }
888
889 if (cpuid->exit) {
890 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
891 return;
892 }
893 KASSERT(cpuid->mask);
894
895 /* del */
896 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
897 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
898 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
899 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
900
901 /* set */
902 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
903 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
904 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
905 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
906
907 break;
908 }
909
910 svm_inkernel_advance(cpudata->vmcb);
911 exit->reason = NVMM_VCPU_EXIT_NONE;
912 }
913
914 static void
915 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
916 struct nvmm_vcpu_exit *exit)
917 {
918 struct svm_cpudata *cpudata = vcpu->cpudata;
919 struct vmcb *vmcb = cpudata->vmcb;
920
921 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
922 svm_event_waitexit_disable(vcpu, false);
923 }
924
925 svm_inkernel_advance(cpudata->vmcb);
926 exit->reason = NVMM_VCPU_EXIT_HALTED;
927 }
928
929 #define SVM_EXIT_IO_PORT __BITS(31,16)
930 #define SVM_EXIT_IO_SEG __BITS(12,10)
931 #define SVM_EXIT_IO_A64 __BIT(9)
932 #define SVM_EXIT_IO_A32 __BIT(8)
933 #define SVM_EXIT_IO_A16 __BIT(7)
934 #define SVM_EXIT_IO_SZ32 __BIT(6)
935 #define SVM_EXIT_IO_SZ16 __BIT(5)
936 #define SVM_EXIT_IO_SZ8 __BIT(4)
937 #define SVM_EXIT_IO_REP __BIT(3)
938 #define SVM_EXIT_IO_STR __BIT(2)
939 #define SVM_EXIT_IO_IN __BIT(0)
940
941 static void
942 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
943 struct nvmm_vcpu_exit *exit)
944 {
945 struct svm_cpudata *cpudata = vcpu->cpudata;
946 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
947 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
948
949 exit->reason = NVMM_VCPU_EXIT_IO;
950
951 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
952 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
953
954 if (svm_decode_assist) {
955 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
956 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
957 } else {
958 exit->u.io.seg = -1;
959 }
960
961 if (info & SVM_EXIT_IO_A64) {
962 exit->u.io.address_size = 8;
963 } else if (info & SVM_EXIT_IO_A32) {
964 exit->u.io.address_size = 4;
965 } else if (info & SVM_EXIT_IO_A16) {
966 exit->u.io.address_size = 2;
967 }
968
969 if (info & SVM_EXIT_IO_SZ32) {
970 exit->u.io.operand_size = 4;
971 } else if (info & SVM_EXIT_IO_SZ16) {
972 exit->u.io.operand_size = 2;
973 } else if (info & SVM_EXIT_IO_SZ8) {
974 exit->u.io.operand_size = 1;
975 }
976
977 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
978 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
979 exit->u.io.npc = nextpc;
980
981 svm_vcpu_state_provide(vcpu,
982 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
983 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
984 }
985
986 static const uint64_t msr_ignore_list[] = {
987 0xc0010055, /* MSR_CMPHALT */
988 MSR_DE_CFG,
989 MSR_IC_CFG,
990 MSR_UCODE_AMD_PATCHLEVEL
991 };
992
993 static bool
994 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
995 struct nvmm_vcpu_exit *exit)
996 {
997 struct svm_cpudata *cpudata = vcpu->cpudata;
998 struct vmcb *vmcb = cpudata->vmcb;
999 uint64_t val;
1000 size_t i;
1001
1002 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1003 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1004 val = NB_CFG_INITAPICCPUIDLO;
1005 vmcb->state.rax = (val & 0xFFFFFFFF);
1006 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1007 goto handled;
1008 }
1009 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1010 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1011 continue;
1012 val = 0;
1013 vmcb->state.rax = (val & 0xFFFFFFFF);
1014 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1015 goto handled;
1016 }
1017 } else {
1018 if (exit->u.wrmsr.msr == MSR_EFER) {
1019 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1020 goto error;
1021 }
1022 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1023 EFER_TLB_FLUSH) {
1024 cpudata->gtlb_want_flush = true;
1025 }
1026 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1027 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1028 goto handled;
1029 }
1030 if (exit->u.wrmsr.msr == MSR_TSC) {
1031 cpudata->gtsc = exit->u.wrmsr.val;
1032 cpudata->gtsc_want_update = true;
1033 goto handled;
1034 }
1035 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1036 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1037 continue;
1038 goto handled;
1039 }
1040 }
1041
1042 return false;
1043
1044 handled:
1045 svm_inkernel_advance(cpudata->vmcb);
1046 return true;
1047
1048 error:
1049 svm_inject_gp(vcpu);
1050 return true;
1051 }
1052
1053 static inline void
1054 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1055 struct nvmm_vcpu_exit *exit)
1056 {
1057 struct svm_cpudata *cpudata = vcpu->cpudata;
1058
1059 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1060 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1061 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1062
1063 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1064 exit->reason = NVMM_VCPU_EXIT_NONE;
1065 return;
1066 }
1067
1068 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1069 }
1070
1071 static inline void
1072 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1073 struct nvmm_vcpu_exit *exit)
1074 {
1075 struct svm_cpudata *cpudata = vcpu->cpudata;
1076 uint64_t rdx, rax;
1077
1078 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1079 rax = cpudata->vmcb->state.rax;
1080
1081 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1082 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1083 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1084 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1085
1086 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1087 exit->reason = NVMM_VCPU_EXIT_NONE;
1088 return;
1089 }
1090
1091 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1092 }
1093
1094 static void
1095 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1096 struct nvmm_vcpu_exit *exit)
1097 {
1098 struct svm_cpudata *cpudata = vcpu->cpudata;
1099 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1100
1101 if (info == 0) {
1102 svm_exit_rdmsr(mach, vcpu, exit);
1103 } else {
1104 svm_exit_wrmsr(mach, vcpu, exit);
1105 }
1106 }
1107
1108 static void
1109 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1110 struct nvmm_vcpu_exit *exit)
1111 {
1112 struct svm_cpudata *cpudata = vcpu->cpudata;
1113 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1114
1115 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1116 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1117 exit->u.mem.prot = PROT_WRITE;
1118 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1119 exit->u.mem.prot = PROT_EXEC;
1120 else
1121 exit->u.mem.prot = PROT_READ;
1122 exit->u.mem.gpa = gpa;
1123 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1124 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1125 sizeof(exit->u.mem.inst_bytes));
1126
1127 svm_vcpu_state_provide(vcpu,
1128 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1129 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1130 }
1131
1132 static void
1133 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1134 struct nvmm_vcpu_exit *exit)
1135 {
1136 struct svm_cpudata *cpudata = vcpu->cpudata;
1137 struct vmcb *vmcb = cpudata->vmcb;
1138 uint64_t val;
1139
1140 exit->reason = NVMM_VCPU_EXIT_NONE;
1141
1142 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1143 (vmcb->state.rax & 0xFFFFFFFF);
1144
1145 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1146 goto error;
1147 } else if (__predict_false(vmcb->state.cpl != 0)) {
1148 goto error;
1149 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1150 goto error;
1151 } else if (__predict_false((val & XCR0_X87) == 0)) {
1152 goto error;
1153 }
1154
1155 cpudata->gxcr0 = val;
1156 if (svm_xcr0_mask != 0) {
1157 wrxcr(0, cpudata->gxcr0);
1158 }
1159
1160 svm_inkernel_advance(cpudata->vmcb);
1161 return;
1162
1163 error:
1164 svm_inject_gp(vcpu);
1165 }
1166
1167 static void
1168 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1169 {
1170 exit->u.inv.hwcode = code;
1171 exit->reason = NVMM_VCPU_EXIT_INVALID;
1172 }
1173
1174 /* -------------------------------------------------------------------------- */
1175
1176 static void
1177 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1178 {
1179 struct svm_cpudata *cpudata = vcpu->cpudata;
1180
1181 fpu_save();
1182 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1183
1184 if (svm_xcr0_mask != 0) {
1185 cpudata->hxcr0 = rdxcr(0);
1186 wrxcr(0, cpudata->gxcr0);
1187 }
1188 }
1189
1190 static void
1191 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1192 {
1193 struct svm_cpudata *cpudata = vcpu->cpudata;
1194
1195 if (svm_xcr0_mask != 0) {
1196 cpudata->gxcr0 = rdxcr(0);
1197 wrxcr(0, cpudata->hxcr0);
1198 }
1199
1200 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1201 }
1202
1203 static void
1204 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1205 {
1206 struct svm_cpudata *cpudata = vcpu->cpudata;
1207
1208 x86_dbregs_save(curlwp);
1209
1210 ldr7(0);
1211
1212 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1213 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1214 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1215 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1216 }
1217
1218 static void
1219 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1220 {
1221 struct svm_cpudata *cpudata = vcpu->cpudata;
1222
1223 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1224 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1225 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1226 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1227
1228 x86_dbregs_restore(curlwp);
1229 }
1230
1231 static void
1232 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1233 {
1234 struct svm_cpudata *cpudata = vcpu->cpudata;
1235
1236 cpudata->fsbase = rdmsr(MSR_FSBASE);
1237 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1238 }
1239
1240 static void
1241 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1242 {
1243 struct svm_cpudata *cpudata = vcpu->cpudata;
1244
1245 wrmsr(MSR_STAR, cpudata->star);
1246 wrmsr(MSR_LSTAR, cpudata->lstar);
1247 wrmsr(MSR_CSTAR, cpudata->cstar);
1248 wrmsr(MSR_SFMASK, cpudata->sfmask);
1249 wrmsr(MSR_FSBASE, cpudata->fsbase);
1250 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1251 }
1252
1253 /* -------------------------------------------------------------------------- */
1254
1255 static inline void
1256 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1257 {
1258 struct svm_cpudata *cpudata = vcpu->cpudata;
1259
1260 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1261 cpudata->gtlb_want_flush = true;
1262 }
1263 }
1264
1265 static inline void
1266 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1267 {
1268 /*
1269 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1270 * executing on this hCPU and the hTLB already got flushed, or it
1271 * was executing on another hCPU in which case the catchup is done
1272 * in svm_gtlb_catchup().
1273 */
1274 }
1275
1276 static inline uint64_t
1277 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1278 {
1279 struct vmcb *vmcb = cpudata->vmcb;
1280 uint64_t machgen;
1281
1282 machgen = machdata->mach_htlb_gen;
1283 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1284 return machgen;
1285 }
1286
1287 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1288 return machgen;
1289 }
1290
1291 static inline void
1292 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1293 {
1294 struct vmcb *vmcb = cpudata->vmcb;
1295
1296 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1297 cpudata->vcpu_htlb_gen = machgen;
1298 }
1299 }
1300
1301 static inline void
1302 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1303 {
1304 cpudata->evt_pending = false;
1305
1306 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1307 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1308 cpudata->evt_pending = true;
1309 }
1310 }
1311
1312 static int
1313 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1314 struct nvmm_vcpu_exit *exit)
1315 {
1316 struct nvmm_comm_page *comm = vcpu->comm;
1317 struct svm_machdata *machdata = mach->machdata;
1318 struct svm_cpudata *cpudata = vcpu->cpudata;
1319 struct vmcb *vmcb = cpudata->vmcb;
1320 uint64_t machgen;
1321 int hcpu, s;
1322
1323 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1324 return EINVAL;
1325 }
1326 svm_vcpu_state_commit(vcpu);
1327 comm->state_cached = 0;
1328
1329 kpreempt_disable();
1330 hcpu = cpu_number();
1331
1332 svm_gtlb_catchup(vcpu, hcpu);
1333 svm_htlb_catchup(vcpu, hcpu);
1334
1335 if (vcpu->hcpu_last != hcpu) {
1336 svm_vmcb_cache_flush_all(vmcb);
1337 cpudata->gtsc_want_update = true;
1338 }
1339
1340 svm_vcpu_guest_dbregs_enter(vcpu);
1341 svm_vcpu_guest_misc_enter(vcpu);
1342 svm_vcpu_guest_fpu_enter(vcpu);
1343
1344 while (1) {
1345 if (cpudata->gtlb_want_flush) {
1346 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1347 } else {
1348 vmcb->ctrl.tlb_ctrl = 0;
1349 }
1350
1351 if (__predict_false(cpudata->gtsc_want_update)) {
1352 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1353 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1354 }
1355
1356 s = splhigh();
1357 machgen = svm_htlb_flush(machdata, cpudata);
1358 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1359 svm_htlb_flush_ack(cpudata, machgen);
1360 splx(s);
1361
1362 svm_vmcb_cache_default(vmcb);
1363
1364 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1365 cpudata->gtlb_want_flush = false;
1366 cpudata->gtsc_want_update = false;
1367 vcpu->hcpu_last = hcpu;
1368 }
1369 svm_exit_evt(cpudata, vmcb);
1370
1371 switch (vmcb->ctrl.exitcode) {
1372 case VMCB_EXITCODE_INTR:
1373 case VMCB_EXITCODE_NMI:
1374 exit->reason = NVMM_VCPU_EXIT_NONE;
1375 break;
1376 case VMCB_EXITCODE_VINTR:
1377 svm_event_waitexit_disable(vcpu, false);
1378 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1379 break;
1380 case VMCB_EXITCODE_IRET:
1381 svm_event_waitexit_disable(vcpu, true);
1382 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1383 break;
1384 case VMCB_EXITCODE_CPUID:
1385 svm_exit_cpuid(mach, vcpu, exit);
1386 break;
1387 case VMCB_EXITCODE_HLT:
1388 svm_exit_hlt(mach, vcpu, exit);
1389 break;
1390 case VMCB_EXITCODE_IOIO:
1391 svm_exit_io(mach, vcpu, exit);
1392 break;
1393 case VMCB_EXITCODE_MSR:
1394 svm_exit_msr(mach, vcpu, exit);
1395 break;
1396 case VMCB_EXITCODE_SHUTDOWN:
1397 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1398 break;
1399 case VMCB_EXITCODE_RDPMC:
1400 case VMCB_EXITCODE_RSM:
1401 case VMCB_EXITCODE_INVLPGA:
1402 case VMCB_EXITCODE_VMRUN:
1403 case VMCB_EXITCODE_VMMCALL:
1404 case VMCB_EXITCODE_VMLOAD:
1405 case VMCB_EXITCODE_VMSAVE:
1406 case VMCB_EXITCODE_STGI:
1407 case VMCB_EXITCODE_CLGI:
1408 case VMCB_EXITCODE_SKINIT:
1409 case VMCB_EXITCODE_RDTSCP:
1410 svm_inject_ud(vcpu);
1411 exit->reason = NVMM_VCPU_EXIT_NONE;
1412 break;
1413 case VMCB_EXITCODE_MONITOR:
1414 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1415 break;
1416 case VMCB_EXITCODE_MWAIT:
1417 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1418 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1419 break;
1420 case VMCB_EXITCODE_XSETBV:
1421 svm_exit_xsetbv(mach, vcpu, exit);
1422 break;
1423 case VMCB_EXITCODE_NPF:
1424 svm_exit_npf(mach, vcpu, exit);
1425 break;
1426 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1427 default:
1428 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1429 break;
1430 }
1431
1432 /* If no reason to return to userland, keep rolling. */
1433 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1434 break;
1435 }
1436 if (curcpu()->ci_data.cpu_softints != 0) {
1437 break;
1438 }
1439 if (curlwp->l_flag & LW_USERRET) {
1440 break;
1441 }
1442 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1443 break;
1444 }
1445 }
1446
1447 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1448
1449 svm_vcpu_guest_fpu_leave(vcpu);
1450 svm_vcpu_guest_misc_leave(vcpu);
1451 svm_vcpu_guest_dbregs_leave(vcpu);
1452
1453 kpreempt_enable();
1454
1455 exit->exitstate.rflags = vmcb->state.rflags;
1456 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1457 exit->exitstate.int_shadow =
1458 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1459 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1460 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1461 exit->exitstate.evt_pending = cpudata->evt_pending;
1462
1463 return 0;
1464 }
1465
1466 /* -------------------------------------------------------------------------- */
1467
1468 static int
1469 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1470 {
1471 struct pglist pglist;
1472 paddr_t _pa;
1473 vaddr_t _va;
1474 size_t i;
1475 int ret;
1476
1477 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1478 &pglist, 1, 0);
1479 if (ret != 0)
1480 return ENOMEM;
1481 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1482 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1483 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1484 if (_va == 0)
1485 goto error;
1486
1487 for (i = 0; i < npages; i++) {
1488 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1489 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1490 }
1491 pmap_update(pmap_kernel());
1492
1493 memset((void *)_va, 0, npages * PAGE_SIZE);
1494
1495 *pa = _pa;
1496 *va = _va;
1497 return 0;
1498
1499 error:
1500 for (i = 0; i < npages; i++) {
1501 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1502 }
1503 return ENOMEM;
1504 }
1505
1506 static void
1507 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1508 {
1509 size_t i;
1510
1511 pmap_kremove(va, npages * PAGE_SIZE);
1512 pmap_update(pmap_kernel());
1513 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1514 for (i = 0; i < npages; i++) {
1515 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1516 }
1517 }
1518
1519 /* -------------------------------------------------------------------------- */
1520
1521 #define SVM_MSRBM_READ __BIT(0)
1522 #define SVM_MSRBM_WRITE __BIT(1)
1523
1524 static void
1525 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1526 {
1527 uint64_t byte;
1528 uint8_t bitoff;
1529
1530 if (msr < 0x00002000) {
1531 /* Range 1 */
1532 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1533 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1534 /* Range 2 */
1535 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1536 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1537 /* Range 3 */
1538 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1539 } else {
1540 panic("%s: wrong range", __func__);
1541 }
1542
1543 bitoff = (msr & 0x3) << 1;
1544
1545 if (read) {
1546 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1547 }
1548 if (write) {
1549 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1550 }
1551 }
1552
1553 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1554 #define SVM_SEG_ATTRIB_S __BIT(4)
1555 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1556 #define SVM_SEG_ATTRIB_P __BIT(7)
1557 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1558 #define SVM_SEG_ATTRIB_L __BIT(9)
1559 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1560 #define SVM_SEG_ATTRIB_G __BIT(11)
1561
1562 static void
1563 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1564 struct vmcb_segment *vseg)
1565 {
1566 vseg->selector = seg->selector;
1567 vseg->attrib =
1568 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1569 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1570 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1571 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1572 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1573 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1574 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1575 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1576 vseg->limit = seg->limit;
1577 vseg->base = seg->base;
1578 }
1579
1580 static void
1581 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1582 {
1583 seg->selector = vseg->selector;
1584 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1585 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1586 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1587 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1588 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1589 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1590 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1591 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1592 seg->limit = vseg->limit;
1593 seg->base = vseg->base;
1594 }
1595
1596 static inline bool
1597 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1598 uint64_t flags)
1599 {
1600 if (flags & NVMM_X64_STATE_CRS) {
1601 if ((vmcb->state.cr0 ^
1602 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1603 return true;
1604 }
1605 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1606 return true;
1607 }
1608 if ((vmcb->state.cr4 ^
1609 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1610 return true;
1611 }
1612 }
1613
1614 if (flags & NVMM_X64_STATE_MSRS) {
1615 if ((vmcb->state.efer ^
1616 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1617 return true;
1618 }
1619 }
1620
1621 return false;
1622 }
1623
1624 static void
1625 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1626 {
1627 struct nvmm_comm_page *comm = vcpu->comm;
1628 const struct nvmm_x64_state *state = &comm->state;
1629 struct svm_cpudata *cpudata = vcpu->cpudata;
1630 struct vmcb *vmcb = cpudata->vmcb;
1631 struct fxsave *fpustate;
1632 uint64_t flags;
1633
1634 flags = comm->state_wanted;
1635
1636 if (svm_state_tlb_flush(vmcb, state, flags)) {
1637 cpudata->gtlb_want_flush = true;
1638 }
1639
1640 if (flags & NVMM_X64_STATE_SEGS) {
1641 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1642 &vmcb->state.cs);
1643 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1644 &vmcb->state.ds);
1645 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1646 &vmcb->state.es);
1647 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1648 &vmcb->state.fs);
1649 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1650 &vmcb->state.gs);
1651 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1652 &vmcb->state.ss);
1653 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1654 &vmcb->state.gdt);
1655 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1656 &vmcb->state.idt);
1657 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1658 &vmcb->state.ldt);
1659 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1660 &vmcb->state.tr);
1661
1662 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1663 }
1664
1665 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1666 if (flags & NVMM_X64_STATE_GPRS) {
1667 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1668
1669 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1670 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1671 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1672 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1673 }
1674
1675 if (flags & NVMM_X64_STATE_CRS) {
1676 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1677 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1678 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1679 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1680
1681 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1682 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1683 VMCB_CTRL_V_TPR);
1684
1685 if (svm_xcr0_mask != 0) {
1686 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1687 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1688 cpudata->gxcr0 &= svm_xcr0_mask;
1689 cpudata->gxcr0 |= XCR0_X87;
1690 }
1691 }
1692
1693 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1694 if (flags & NVMM_X64_STATE_DRS) {
1695 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1696
1697 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1698 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1699 }
1700
1701 if (flags & NVMM_X64_STATE_MSRS) {
1702 /*
1703 * EFER_SVME is mandatory.
1704 */
1705 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1706 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1707 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1708 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1709 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1710 vmcb->state.kernelgsbase =
1711 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1712 vmcb->state.sysenter_cs =
1713 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1714 vmcb->state.sysenter_esp =
1715 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1716 vmcb->state.sysenter_eip =
1717 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1718 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1719
1720 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1721 cpudata->gtsc_want_update = true;
1722 }
1723
1724 if (flags & NVMM_X64_STATE_INTR) {
1725 if (state->intr.int_shadow) {
1726 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1727 } else {
1728 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1729 }
1730
1731 if (state->intr.int_window_exiting) {
1732 svm_event_waitexit_enable(vcpu, false);
1733 } else {
1734 svm_event_waitexit_disable(vcpu, false);
1735 }
1736
1737 if (state->intr.nmi_window_exiting) {
1738 svm_event_waitexit_enable(vcpu, true);
1739 } else {
1740 svm_event_waitexit_disable(vcpu, true);
1741 }
1742 }
1743
1744 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1745 if (flags & NVMM_X64_STATE_FPU) {
1746 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1747 sizeof(state->fpu));
1748
1749 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1750 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1751 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1752
1753 if (svm_xcr0_mask != 0) {
1754 /* Reset XSTATE_BV, to force a reload. */
1755 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1756 }
1757 }
1758
1759 svm_vmcb_cache_update(vmcb, flags);
1760
1761 comm->state_wanted = 0;
1762 comm->state_cached |= flags;
1763 }
1764
1765 static void
1766 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1767 {
1768 struct nvmm_comm_page *comm = vcpu->comm;
1769 struct nvmm_x64_state *state = &comm->state;
1770 struct svm_cpudata *cpudata = vcpu->cpudata;
1771 struct vmcb *vmcb = cpudata->vmcb;
1772 uint64_t flags;
1773
1774 flags = comm->state_wanted;
1775
1776 if (flags & NVMM_X64_STATE_SEGS) {
1777 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1778 &vmcb->state.cs);
1779 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1780 &vmcb->state.ds);
1781 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1782 &vmcb->state.es);
1783 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1784 &vmcb->state.fs);
1785 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1786 &vmcb->state.gs);
1787 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1788 &vmcb->state.ss);
1789 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1790 &vmcb->state.gdt);
1791 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1792 &vmcb->state.idt);
1793 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1794 &vmcb->state.ldt);
1795 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1796 &vmcb->state.tr);
1797
1798 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1799 }
1800
1801 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1802 if (flags & NVMM_X64_STATE_GPRS) {
1803 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1804
1805 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1806 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1807 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1808 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1809 }
1810
1811 if (flags & NVMM_X64_STATE_CRS) {
1812 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1813 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1814 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1815 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1816 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1817 VMCB_CTRL_V_TPR);
1818 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1819 }
1820
1821 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1822 if (flags & NVMM_X64_STATE_DRS) {
1823 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1824
1825 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1826 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1827 }
1828
1829 if (flags & NVMM_X64_STATE_MSRS) {
1830 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1831 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1832 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1833 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1834 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1835 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1836 vmcb->state.kernelgsbase;
1837 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1838 vmcb->state.sysenter_cs;
1839 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1840 vmcb->state.sysenter_esp;
1841 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1842 vmcb->state.sysenter_eip;
1843 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1844 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1845
1846 /* Hide SVME. */
1847 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1848 }
1849
1850 if (flags & NVMM_X64_STATE_INTR) {
1851 state->intr.int_shadow =
1852 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1853 state->intr.int_window_exiting = cpudata->int_window_exit;
1854 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1855 state->intr.evt_pending = cpudata->evt_pending;
1856 }
1857
1858 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1859 if (flags & NVMM_X64_STATE_FPU) {
1860 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1861 sizeof(state->fpu));
1862 }
1863
1864 comm->state_wanted = 0;
1865 comm->state_cached |= flags;
1866 }
1867
1868 static void
1869 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1870 {
1871 vcpu->comm->state_wanted = flags;
1872 svm_vcpu_getstate(vcpu);
1873 }
1874
1875 static void
1876 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1877 {
1878 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1879 vcpu->comm->state_commit = 0;
1880 svm_vcpu_setstate(vcpu);
1881 }
1882
1883 /* -------------------------------------------------------------------------- */
1884
1885 static void
1886 svm_asid_alloc(struct nvmm_cpu *vcpu)
1887 {
1888 struct svm_cpudata *cpudata = vcpu->cpudata;
1889 struct vmcb *vmcb = cpudata->vmcb;
1890 size_t i, oct, bit;
1891
1892 mutex_enter(&svm_asidlock);
1893
1894 for (i = 0; i < svm_maxasid; i++) {
1895 oct = i / 8;
1896 bit = i % 8;
1897
1898 if (svm_asidmap[oct] & __BIT(bit)) {
1899 continue;
1900 }
1901
1902 svm_asidmap[oct] |= __BIT(bit);
1903 vmcb->ctrl.guest_asid = i;
1904 mutex_exit(&svm_asidlock);
1905 return;
1906 }
1907
1908 /*
1909 * No free ASID. Use the last one, which is shared and requires
1910 * special TLB handling.
1911 */
1912 cpudata->shared_asid = true;
1913 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1914 mutex_exit(&svm_asidlock);
1915 }
1916
1917 static void
1918 svm_asid_free(struct nvmm_cpu *vcpu)
1919 {
1920 struct svm_cpudata *cpudata = vcpu->cpudata;
1921 struct vmcb *vmcb = cpudata->vmcb;
1922 size_t oct, bit;
1923
1924 if (cpudata->shared_asid) {
1925 return;
1926 }
1927
1928 oct = vmcb->ctrl.guest_asid / 8;
1929 bit = vmcb->ctrl.guest_asid % 8;
1930
1931 mutex_enter(&svm_asidlock);
1932 svm_asidmap[oct] &= ~__BIT(bit);
1933 mutex_exit(&svm_asidlock);
1934 }
1935
1936 static void
1937 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1938 {
1939 struct svm_cpudata *cpudata = vcpu->cpudata;
1940 struct vmcb *vmcb = cpudata->vmcb;
1941
1942 /* Allow reads/writes of Control Registers. */
1943 vmcb->ctrl.intercept_cr = 0;
1944
1945 /* Allow reads/writes of Debug Registers. */
1946 vmcb->ctrl.intercept_dr = 0;
1947
1948 /* Allow exceptions 0 to 31. */
1949 vmcb->ctrl.intercept_vec = 0;
1950
1951 /*
1952 * Allow:
1953 * - SMI [smm interrupts]
1954 * - VINTR [virtual interrupts]
1955 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1956 * - RIDTR [reads of IDTR]
1957 * - RGDTR [reads of GDTR]
1958 * - RLDTR [reads of LDTR]
1959 * - RTR [reads of TR]
1960 * - WIDTR [writes of IDTR]
1961 * - WGDTR [writes of GDTR]
1962 * - WLDTR [writes of LDTR]
1963 * - WTR [writes of TR]
1964 * - RDTSC [rdtsc instruction]
1965 * - PUSHF [pushf instruction]
1966 * - POPF [popf instruction]
1967 * - IRET [iret instruction]
1968 * - INTN [int $n instructions]
1969 * - INVD [invd instruction]
1970 * - PAUSE [pause instruction]
1971 * - INVLPG [invplg instruction]
1972 * - TASKSW [task switches]
1973 *
1974 * Intercept the rest below.
1975 */
1976 vmcb->ctrl.intercept_misc1 =
1977 VMCB_CTRL_INTERCEPT_INTR |
1978 VMCB_CTRL_INTERCEPT_NMI |
1979 VMCB_CTRL_INTERCEPT_INIT |
1980 VMCB_CTRL_INTERCEPT_RDPMC |
1981 VMCB_CTRL_INTERCEPT_CPUID |
1982 VMCB_CTRL_INTERCEPT_RSM |
1983 VMCB_CTRL_INTERCEPT_HLT |
1984 VMCB_CTRL_INTERCEPT_INVLPGA |
1985 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1986 VMCB_CTRL_INTERCEPT_MSR_PROT |
1987 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1988 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1989
1990 /*
1991 * Allow:
1992 * - ICEBP [icebp instruction]
1993 * - WBINVD [wbinvd instruction]
1994 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
1995 *
1996 * Intercept the rest below.
1997 */
1998 vmcb->ctrl.intercept_misc2 =
1999 VMCB_CTRL_INTERCEPT_VMRUN |
2000 VMCB_CTRL_INTERCEPT_VMMCALL |
2001 VMCB_CTRL_INTERCEPT_VMLOAD |
2002 VMCB_CTRL_INTERCEPT_VMSAVE |
2003 VMCB_CTRL_INTERCEPT_STGI |
2004 VMCB_CTRL_INTERCEPT_CLGI |
2005 VMCB_CTRL_INTERCEPT_SKINIT |
2006 VMCB_CTRL_INTERCEPT_RDTSCP |
2007 VMCB_CTRL_INTERCEPT_MONITOR |
2008 VMCB_CTRL_INTERCEPT_MWAIT |
2009 VMCB_CTRL_INTERCEPT_XSETBV;
2010
2011 /* Intercept all I/O accesses. */
2012 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2013 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2014
2015 /* Allow direct access to certain MSRs. */
2016 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2017 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2018 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2019 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2020 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2021 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2022 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2023 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2024 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2025 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2026 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2027 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2028 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2029 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2030 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2031
2032 /* Generate ASID. */
2033 svm_asid_alloc(vcpu);
2034
2035 /* Virtual TPR. */
2036 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2037
2038 /* Enable Nested Paging. */
2039 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2040 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2041
2042 /* Init XSAVE header. */
2043 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2044 cpudata->gfpu.xsh_xcomp_bv = 0;
2045
2046 /* These MSRs are static. */
2047 cpudata->star = rdmsr(MSR_STAR);
2048 cpudata->lstar = rdmsr(MSR_LSTAR);
2049 cpudata->cstar = rdmsr(MSR_CSTAR);
2050 cpudata->sfmask = rdmsr(MSR_SFMASK);
2051
2052 /* Install the RESET state. */
2053 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2054 sizeof(nvmm_x86_reset_state));
2055 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2056 vcpu->comm->state_cached = 0;
2057 svm_vcpu_setstate(vcpu);
2058 }
2059
2060 static int
2061 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2062 {
2063 struct svm_cpudata *cpudata;
2064 int error;
2065
2066 /* Allocate the SVM cpudata. */
2067 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2068 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2069 UVM_KMF_WIRED|UVM_KMF_ZERO);
2070 vcpu->cpudata = cpudata;
2071
2072 /* VMCB */
2073 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2074 VMCB_NPAGES);
2075 if (error)
2076 goto error;
2077
2078 /* I/O Bitmap */
2079 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2080 IOBM_NPAGES);
2081 if (error)
2082 goto error;
2083
2084 /* MSR Bitmap */
2085 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2086 MSRBM_NPAGES);
2087 if (error)
2088 goto error;
2089
2090 /* Init the VCPU info. */
2091 svm_vcpu_init(mach, vcpu);
2092
2093 return 0;
2094
2095 error:
2096 if (cpudata->vmcb_pa) {
2097 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2098 VMCB_NPAGES);
2099 }
2100 if (cpudata->iobm_pa) {
2101 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2102 IOBM_NPAGES);
2103 }
2104 if (cpudata->msrbm_pa) {
2105 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2106 MSRBM_NPAGES);
2107 }
2108 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2109 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2110 return error;
2111 }
2112
2113 static void
2114 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2115 {
2116 struct svm_cpudata *cpudata = vcpu->cpudata;
2117
2118 svm_asid_free(vcpu);
2119
2120 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2121 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2122 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2123
2124 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2125 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2126 }
2127
2128 /* -------------------------------------------------------------------------- */
2129
2130 static int
2131 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2132 {
2133 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2134 size_t i;
2135
2136 if (__predict_false(cpuid->mask && cpuid->exit)) {
2137 return EINVAL;
2138 }
2139 if (__predict_false(cpuid->mask &&
2140 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2141 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2142 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2143 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2144 return EINVAL;
2145 }
2146
2147 /* If unset, delete, to restore the default behavior. */
2148 if (!cpuid->mask && !cpuid->exit) {
2149 for (i = 0; i < SVM_NCPUIDS; i++) {
2150 if (!cpudata->cpuidpresent[i]) {
2151 continue;
2152 }
2153 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2154 cpudata->cpuidpresent[i] = false;
2155 }
2156 }
2157 return 0;
2158 }
2159
2160 /* If already here, replace. */
2161 for (i = 0; i < SVM_NCPUIDS; i++) {
2162 if (!cpudata->cpuidpresent[i]) {
2163 continue;
2164 }
2165 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2166 memcpy(&cpudata->cpuid[i], cpuid,
2167 sizeof(struct nvmm_vcpu_conf_cpuid));
2168 return 0;
2169 }
2170 }
2171
2172 /* Not here, insert. */
2173 for (i = 0; i < SVM_NCPUIDS; i++) {
2174 if (!cpudata->cpuidpresent[i]) {
2175 cpudata->cpuidpresent[i] = true;
2176 memcpy(&cpudata->cpuid[i], cpuid,
2177 sizeof(struct nvmm_vcpu_conf_cpuid));
2178 return 0;
2179 }
2180 }
2181
2182 return ENOBUFS;
2183 }
2184
2185 static int
2186 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2187 {
2188 struct svm_cpudata *cpudata = vcpu->cpudata;
2189
2190 switch (op) {
2191 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2192 return svm_vcpu_configure_cpuid(cpudata, data);
2193 default:
2194 return EINVAL;
2195 }
2196 }
2197
2198 /* -------------------------------------------------------------------------- */
2199
2200 static void
2201 svm_tlb_flush(struct pmap *pm)
2202 {
2203 struct nvmm_machine *mach = pm->pm_data;
2204 struct svm_machdata *machdata = mach->machdata;
2205
2206 atomic_inc_64(&machdata->mach_htlb_gen);
2207
2208 /* Generates IPIs, which cause #VMEXITs. */
2209 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_UPDATE);
2210 }
2211
2212 static void
2213 svm_machine_create(struct nvmm_machine *mach)
2214 {
2215 struct svm_machdata *machdata;
2216
2217 /* Fill in pmap info. */
2218 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2219 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2220
2221 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2222 mach->machdata = machdata;
2223
2224 /* Start with an hTLB flush everywhere. */
2225 machdata->mach_htlb_gen = 1;
2226 }
2227
2228 static void
2229 svm_machine_destroy(struct nvmm_machine *mach)
2230 {
2231 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2232 }
2233
2234 static int
2235 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2236 {
2237 panic("%s: impossible", __func__);
2238 }
2239
2240 /* -------------------------------------------------------------------------- */
2241
2242 static bool
2243 svm_ident(void)
2244 {
2245 u_int descs[4];
2246 uint64_t msr;
2247
2248 if (cpu_vendor != CPUVENDOR_AMD) {
2249 return false;
2250 }
2251 if (!(cpu_feature[3] & CPUID_SVM)) {
2252 return false;
2253 }
2254
2255 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2256 return false;
2257 }
2258 x86_cpuid(0x8000000a, descs);
2259
2260 /* Want Nested Paging. */
2261 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2262 return false;
2263 }
2264
2265 /* Want nRIP. */
2266 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2267 return false;
2268 }
2269
2270 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2271
2272 msr = rdmsr(MSR_VMCR);
2273 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2274 return false;
2275 }
2276
2277 return true;
2278 }
2279
2280 static void
2281 svm_init_asid(uint32_t maxasid)
2282 {
2283 size_t i, j, allocsz;
2284
2285 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2286
2287 /* Arbitrarily limit. */
2288 maxasid = uimin(maxasid, 8192);
2289
2290 svm_maxasid = maxasid;
2291 allocsz = roundup(maxasid, 8) / 8;
2292 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2293
2294 /* ASID 0 is reserved for the host. */
2295 svm_asidmap[0] |= __BIT(0);
2296
2297 /* ASID n-1 is special, we share it. */
2298 i = (maxasid - 1) / 8;
2299 j = (maxasid - 1) % 8;
2300 svm_asidmap[i] |= __BIT(j);
2301 }
2302
2303 static void
2304 svm_change_cpu(void *arg1, void *arg2)
2305 {
2306 bool enable = (bool)arg1;
2307 uint64_t msr;
2308
2309 msr = rdmsr(MSR_VMCR);
2310 if (msr & VMCR_SVMED) {
2311 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2312 }
2313
2314 if (!enable) {
2315 wrmsr(MSR_VM_HSAVE_PA, 0);
2316 }
2317
2318 msr = rdmsr(MSR_EFER);
2319 if (enable) {
2320 msr |= EFER_SVME;
2321 } else {
2322 msr &= ~EFER_SVME;
2323 }
2324 wrmsr(MSR_EFER, msr);
2325
2326 if (enable) {
2327 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2328 }
2329 }
2330
2331 static void
2332 svm_init(void)
2333 {
2334 CPU_INFO_ITERATOR cii;
2335 struct cpu_info *ci;
2336 struct vm_page *pg;
2337 u_int descs[4];
2338 uint64_t xc;
2339
2340 x86_cpuid(0x8000000a, descs);
2341
2342 /* The guest TLB flush command. */
2343 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2344 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2345 } else {
2346 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2347 }
2348
2349 /* Init the ASID. */
2350 svm_init_asid(descs[1]);
2351
2352 /* Init the XCR0 mask. */
2353 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2354
2355 memset(hsave, 0, sizeof(hsave));
2356 for (CPU_INFO_FOREACH(cii, ci)) {
2357 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2358 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2359 }
2360
2361 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2362 xc_wait(xc);
2363 }
2364
2365 static void
2366 svm_fini_asid(void)
2367 {
2368 size_t allocsz;
2369
2370 allocsz = roundup(svm_maxasid, 8) / 8;
2371 kmem_free(svm_asidmap, allocsz);
2372
2373 mutex_destroy(&svm_asidlock);
2374 }
2375
2376 static void
2377 svm_fini(void)
2378 {
2379 uint64_t xc;
2380 size_t i;
2381
2382 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2383 xc_wait(xc);
2384
2385 for (i = 0; i < MAXCPUS; i++) {
2386 if (hsave[i].pa != 0)
2387 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2388 }
2389
2390 svm_fini_asid();
2391 }
2392
2393 static void
2394 svm_capability(struct nvmm_capability *cap)
2395 {
2396 cap->arch.mach_conf_support = 0;
2397 cap->arch.vcpu_conf_support =
2398 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2399 cap->arch.xcr0_mask = svm_xcr0_mask;
2400 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2401 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2402 }
2403
2404 const struct nvmm_impl nvmm_x86_svm = {
2405 .ident = svm_ident,
2406 .init = svm_init,
2407 .fini = svm_fini,
2408 .capability = svm_capability,
2409 .mach_conf_max = NVMM_X86_MACH_NCONF,
2410 .mach_conf_sizes = NULL,
2411 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2412 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2413 .state_size = sizeof(struct nvmm_x64_state),
2414 .machine_create = svm_machine_create,
2415 .machine_destroy = svm_machine_destroy,
2416 .machine_configure = svm_machine_configure,
2417 .vcpu_create = svm_vcpu_create,
2418 .vcpu_destroy = svm_vcpu_destroy,
2419 .vcpu_configure = svm_vcpu_configure,
2420 .vcpu_setstate = svm_vcpu_setstate,
2421 .vcpu_getstate = svm_vcpu_getstate,
2422 .vcpu_inject = svm_vcpu_inject,
2423 .vcpu_run = svm_vcpu_run
2424 };
2425