nvmm_x86_svm.c revision 1.59 1 /* $NetBSD: nvmm_x86_svm.c,v 1.59 2020/04/30 16:50:17 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.59 2020/04/30 16:50:17 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 #define MSR_VM_HSAVE_PA 0xC0010117
60
61 /* -------------------------------------------------------------------------- */
62
63 #define VMCB_EXITCODE_CR0_READ 0x0000
64 #define VMCB_EXITCODE_CR1_READ 0x0001
65 #define VMCB_EXITCODE_CR2_READ 0x0002
66 #define VMCB_EXITCODE_CR3_READ 0x0003
67 #define VMCB_EXITCODE_CR4_READ 0x0004
68 #define VMCB_EXITCODE_CR5_READ 0x0005
69 #define VMCB_EXITCODE_CR6_READ 0x0006
70 #define VMCB_EXITCODE_CR7_READ 0x0007
71 #define VMCB_EXITCODE_CR8_READ 0x0008
72 #define VMCB_EXITCODE_CR9_READ 0x0009
73 #define VMCB_EXITCODE_CR10_READ 0x000A
74 #define VMCB_EXITCODE_CR11_READ 0x000B
75 #define VMCB_EXITCODE_CR12_READ 0x000C
76 #define VMCB_EXITCODE_CR13_READ 0x000D
77 #define VMCB_EXITCODE_CR14_READ 0x000E
78 #define VMCB_EXITCODE_CR15_READ 0x000F
79 #define VMCB_EXITCODE_CR0_WRITE 0x0010
80 #define VMCB_EXITCODE_CR1_WRITE 0x0011
81 #define VMCB_EXITCODE_CR2_WRITE 0x0012
82 #define VMCB_EXITCODE_CR3_WRITE 0x0013
83 #define VMCB_EXITCODE_CR4_WRITE 0x0014
84 #define VMCB_EXITCODE_CR5_WRITE 0x0015
85 #define VMCB_EXITCODE_CR6_WRITE 0x0016
86 #define VMCB_EXITCODE_CR7_WRITE 0x0017
87 #define VMCB_EXITCODE_CR8_WRITE 0x0018
88 #define VMCB_EXITCODE_CR9_WRITE 0x0019
89 #define VMCB_EXITCODE_CR10_WRITE 0x001A
90 #define VMCB_EXITCODE_CR11_WRITE 0x001B
91 #define VMCB_EXITCODE_CR12_WRITE 0x001C
92 #define VMCB_EXITCODE_CR13_WRITE 0x001D
93 #define VMCB_EXITCODE_CR14_WRITE 0x001E
94 #define VMCB_EXITCODE_CR15_WRITE 0x001F
95 #define VMCB_EXITCODE_DR0_READ 0x0020
96 #define VMCB_EXITCODE_DR1_READ 0x0021
97 #define VMCB_EXITCODE_DR2_READ 0x0022
98 #define VMCB_EXITCODE_DR3_READ 0x0023
99 #define VMCB_EXITCODE_DR4_READ 0x0024
100 #define VMCB_EXITCODE_DR5_READ 0x0025
101 #define VMCB_EXITCODE_DR6_READ 0x0026
102 #define VMCB_EXITCODE_DR7_READ 0x0027
103 #define VMCB_EXITCODE_DR8_READ 0x0028
104 #define VMCB_EXITCODE_DR9_READ 0x0029
105 #define VMCB_EXITCODE_DR10_READ 0x002A
106 #define VMCB_EXITCODE_DR11_READ 0x002B
107 #define VMCB_EXITCODE_DR12_READ 0x002C
108 #define VMCB_EXITCODE_DR13_READ 0x002D
109 #define VMCB_EXITCODE_DR14_READ 0x002E
110 #define VMCB_EXITCODE_DR15_READ 0x002F
111 #define VMCB_EXITCODE_DR0_WRITE 0x0030
112 #define VMCB_EXITCODE_DR1_WRITE 0x0031
113 #define VMCB_EXITCODE_DR2_WRITE 0x0032
114 #define VMCB_EXITCODE_DR3_WRITE 0x0033
115 #define VMCB_EXITCODE_DR4_WRITE 0x0034
116 #define VMCB_EXITCODE_DR5_WRITE 0x0035
117 #define VMCB_EXITCODE_DR6_WRITE 0x0036
118 #define VMCB_EXITCODE_DR7_WRITE 0x0037
119 #define VMCB_EXITCODE_DR8_WRITE 0x0038
120 #define VMCB_EXITCODE_DR9_WRITE 0x0039
121 #define VMCB_EXITCODE_DR10_WRITE 0x003A
122 #define VMCB_EXITCODE_DR11_WRITE 0x003B
123 #define VMCB_EXITCODE_DR12_WRITE 0x003C
124 #define VMCB_EXITCODE_DR13_WRITE 0x003D
125 #define VMCB_EXITCODE_DR14_WRITE 0x003E
126 #define VMCB_EXITCODE_DR15_WRITE 0x003F
127 #define VMCB_EXITCODE_EXCP0 0x0040
128 #define VMCB_EXITCODE_EXCP1 0x0041
129 #define VMCB_EXITCODE_EXCP2 0x0042
130 #define VMCB_EXITCODE_EXCP3 0x0043
131 #define VMCB_EXITCODE_EXCP4 0x0044
132 #define VMCB_EXITCODE_EXCP5 0x0045
133 #define VMCB_EXITCODE_EXCP6 0x0046
134 #define VMCB_EXITCODE_EXCP7 0x0047
135 #define VMCB_EXITCODE_EXCP8 0x0048
136 #define VMCB_EXITCODE_EXCP9 0x0049
137 #define VMCB_EXITCODE_EXCP10 0x004A
138 #define VMCB_EXITCODE_EXCP11 0x004B
139 #define VMCB_EXITCODE_EXCP12 0x004C
140 #define VMCB_EXITCODE_EXCP13 0x004D
141 #define VMCB_EXITCODE_EXCP14 0x004E
142 #define VMCB_EXITCODE_EXCP15 0x004F
143 #define VMCB_EXITCODE_EXCP16 0x0050
144 #define VMCB_EXITCODE_EXCP17 0x0051
145 #define VMCB_EXITCODE_EXCP18 0x0052
146 #define VMCB_EXITCODE_EXCP19 0x0053
147 #define VMCB_EXITCODE_EXCP20 0x0054
148 #define VMCB_EXITCODE_EXCP21 0x0055
149 #define VMCB_EXITCODE_EXCP22 0x0056
150 #define VMCB_EXITCODE_EXCP23 0x0057
151 #define VMCB_EXITCODE_EXCP24 0x0058
152 #define VMCB_EXITCODE_EXCP25 0x0059
153 #define VMCB_EXITCODE_EXCP26 0x005A
154 #define VMCB_EXITCODE_EXCP27 0x005B
155 #define VMCB_EXITCODE_EXCP28 0x005C
156 #define VMCB_EXITCODE_EXCP29 0x005D
157 #define VMCB_EXITCODE_EXCP30 0x005E
158 #define VMCB_EXITCODE_EXCP31 0x005F
159 #define VMCB_EXITCODE_INTR 0x0060
160 #define VMCB_EXITCODE_NMI 0x0061
161 #define VMCB_EXITCODE_SMI 0x0062
162 #define VMCB_EXITCODE_INIT 0x0063
163 #define VMCB_EXITCODE_VINTR 0x0064
164 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
165 #define VMCB_EXITCODE_IDTR_READ 0x0066
166 #define VMCB_EXITCODE_GDTR_READ 0x0067
167 #define VMCB_EXITCODE_LDTR_READ 0x0068
168 #define VMCB_EXITCODE_TR_READ 0x0069
169 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
170 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
171 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
172 #define VMCB_EXITCODE_TR_WRITE 0x006D
173 #define VMCB_EXITCODE_RDTSC 0x006E
174 #define VMCB_EXITCODE_RDPMC 0x006F
175 #define VMCB_EXITCODE_PUSHF 0x0070
176 #define VMCB_EXITCODE_POPF 0x0071
177 #define VMCB_EXITCODE_CPUID 0x0072
178 #define VMCB_EXITCODE_RSM 0x0073
179 #define VMCB_EXITCODE_IRET 0x0074
180 #define VMCB_EXITCODE_SWINT 0x0075
181 #define VMCB_EXITCODE_INVD 0x0076
182 #define VMCB_EXITCODE_PAUSE 0x0077
183 #define VMCB_EXITCODE_HLT 0x0078
184 #define VMCB_EXITCODE_INVLPG 0x0079
185 #define VMCB_EXITCODE_INVLPGA 0x007A
186 #define VMCB_EXITCODE_IOIO 0x007B
187 #define VMCB_EXITCODE_MSR 0x007C
188 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
189 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
190 #define VMCB_EXITCODE_SHUTDOWN 0x007F
191 #define VMCB_EXITCODE_VMRUN 0x0080
192 #define VMCB_EXITCODE_VMMCALL 0x0081
193 #define VMCB_EXITCODE_VMLOAD 0x0082
194 #define VMCB_EXITCODE_VMSAVE 0x0083
195 #define VMCB_EXITCODE_STGI 0x0084
196 #define VMCB_EXITCODE_CLGI 0x0085
197 #define VMCB_EXITCODE_SKINIT 0x0086
198 #define VMCB_EXITCODE_RDTSCP 0x0087
199 #define VMCB_EXITCODE_ICEBP 0x0088
200 #define VMCB_EXITCODE_WBINVD 0x0089
201 #define VMCB_EXITCODE_MONITOR 0x008A
202 #define VMCB_EXITCODE_MWAIT 0x008B
203 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
204 #define VMCB_EXITCODE_XSETBV 0x008D
205 #define VMCB_EXITCODE_RDPRU 0x008E
206 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
207 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
208 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
209 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
210 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
211 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
212 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
213 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
214 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
215 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
216 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
217 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
218 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
219 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
220 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
221 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
222 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
223 #define VMCB_EXITCODE_MCOMMIT 0x00A3
224 #define VMCB_EXITCODE_NPF 0x0400
225 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
226 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
227 #define VMCB_EXITCODE_VMGEXIT 0x0403
228 #define VMCB_EXITCODE_INVALID -1
229
230 /* -------------------------------------------------------------------------- */
231
232 struct vmcb_ctrl {
233 uint32_t intercept_cr;
234 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
235 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
236
237 uint32_t intercept_dr;
238 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
239 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
240
241 uint32_t intercept_vec;
242 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
243
244 uint32_t intercept_misc1;
245 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
246 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
247 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
248 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
249 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
250 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
251 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
252 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
253 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
254 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
255 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
256 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
257 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
258 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
259 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
260 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
261 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
262 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
263 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
264 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
265 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
266 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
267 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
268 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
269 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
270 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
271 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
272 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
273 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
274 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
275 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
276 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
277
278 uint32_t intercept_misc2;
279 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
280 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
281 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
282 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
283 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
284 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
285 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
286 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
287 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
288 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
289 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
290 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
291 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
292 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
293 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
294 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
295 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
296
297 uint32_t intercept_misc3;
298 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
299
300 uint8_t rsvd1[36];
301 uint16_t pause_filt_thresh;
302 uint16_t pause_filt_cnt;
303 uint64_t iopm_base_pa;
304 uint64_t msrpm_base_pa;
305 uint64_t tsc_offset;
306 uint32_t guest_asid;
307
308 uint32_t tlb_ctrl;
309 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
310 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
311 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
312
313 uint64_t v;
314 #define VMCB_CTRL_V_TPR __BITS(3,0)
315 #define VMCB_CTRL_V_IRQ __BIT(8)
316 #define VMCB_CTRL_V_VGIF __BIT(9)
317 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
318 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
319 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
320 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
321 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
322 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
323
324 uint64_t intr;
325 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
326
327 uint64_t exitcode;
328 uint64_t exitinfo1;
329 uint64_t exitinfo2;
330
331 uint64_t exitintinfo;
332 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
333 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
334 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
335 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
336 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
337
338 uint64_t enable1;
339 #define VMCB_CTRL_ENABLE_NP __BIT(0)
340 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
341 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
342 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
343 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
344
345 uint64_t avic;
346 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
347
348 uint64_t ghcb;
349
350 uint64_t eventinj;
351 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
352 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
353 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
354 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
355 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
356
357 uint64_t n_cr3;
358
359 uint64_t enable2;
360 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
361 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
362
363 uint32_t vmcb_clean;
364 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
365 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
366 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
367 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
368 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
369 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
370 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
371 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
372 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
373 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
374 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
375 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
376
377 uint32_t rsvd2;
378 uint64_t nrip;
379 uint8_t inst_len;
380 uint8_t inst_bytes[15];
381 uint64_t avic_abpp;
382 uint64_t rsvd3;
383 uint64_t avic_ltp;
384
385 uint64_t avic_phys;
386 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
387 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
388
389 uint64_t rsvd4;
390 uint64_t vmcb_ptr;
391
392 uint8_t pad[752];
393 } __packed;
394
395 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
396
397 struct vmcb_segment {
398 uint16_t selector;
399 uint16_t attrib; /* hidden */
400 uint32_t limit; /* hidden */
401 uint64_t base; /* hidden */
402 } __packed;
403
404 CTASSERT(sizeof(struct vmcb_segment) == 16);
405
406 struct vmcb_state {
407 struct vmcb_segment es;
408 struct vmcb_segment cs;
409 struct vmcb_segment ss;
410 struct vmcb_segment ds;
411 struct vmcb_segment fs;
412 struct vmcb_segment gs;
413 struct vmcb_segment gdt;
414 struct vmcb_segment ldt;
415 struct vmcb_segment idt;
416 struct vmcb_segment tr;
417 uint8_t rsvd1[43];
418 uint8_t cpl;
419 uint8_t rsvd2[4];
420 uint64_t efer;
421 uint8_t rsvd3[112];
422 uint64_t cr4;
423 uint64_t cr3;
424 uint64_t cr0;
425 uint64_t dr7;
426 uint64_t dr6;
427 uint64_t rflags;
428 uint64_t rip;
429 uint8_t rsvd4[88];
430 uint64_t rsp;
431 uint8_t rsvd5[24];
432 uint64_t rax;
433 uint64_t star;
434 uint64_t lstar;
435 uint64_t cstar;
436 uint64_t sfmask;
437 uint64_t kernelgsbase;
438 uint64_t sysenter_cs;
439 uint64_t sysenter_esp;
440 uint64_t sysenter_eip;
441 uint64_t cr2;
442 uint8_t rsvd6[32];
443 uint64_t g_pat;
444 uint64_t dbgctl;
445 uint64_t br_from;
446 uint64_t br_to;
447 uint64_t int_from;
448 uint64_t int_to;
449 uint8_t pad[2408];
450 } __packed;
451
452 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
453
454 struct vmcb {
455 struct vmcb_ctrl ctrl;
456 struct vmcb_state state;
457 } __packed;
458
459 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
460 CTASSERT(offsetof(struct vmcb, state) == 0x400);
461
462 /* -------------------------------------------------------------------------- */
463
464 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
465 static void svm_vcpu_state_commit(struct nvmm_cpu *);
466
467 struct svm_hsave {
468 paddr_t pa;
469 };
470
471 static struct svm_hsave hsave[MAXCPUS];
472
473 static uint8_t *svm_asidmap __read_mostly;
474 static uint32_t svm_maxasid __read_mostly;
475 static kmutex_t svm_asidlock __cacheline_aligned;
476
477 static bool svm_decode_assist __read_mostly;
478 static uint32_t svm_ctrl_tlb_flush __read_mostly;
479
480 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
481 static uint64_t svm_xcr0_mask __read_mostly;
482
483 #define SVM_NCPUIDS 32
484
485 #define VMCB_NPAGES 1
486
487 #define MSRBM_NPAGES 2
488 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
489
490 #define IOBM_NPAGES 3
491 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
492
493 /* Does not include EFER_LMSLE. */
494 #define EFER_VALID \
495 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
496
497 #define EFER_TLB_FLUSH \
498 (EFER_NXE|EFER_LMA|EFER_LME)
499 #define CR0_TLB_FLUSH \
500 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
501 #define CR4_TLB_FLUSH \
502 (CR4_PGE|CR4_PAE|CR4_PSE)
503
504 /* -------------------------------------------------------------------------- */
505
506 struct svm_machdata {
507 volatile uint64_t mach_htlb_gen;
508 };
509
510 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
511 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
512 sizeof(struct nvmm_vcpu_conf_cpuid),
513 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
514 sizeof(struct nvmm_vcpu_conf_tpr)
515 };
516
517 struct svm_cpudata {
518 /* General */
519 bool shared_asid;
520 bool gtlb_want_flush;
521 bool gtsc_want_update;
522 uint64_t vcpu_htlb_gen;
523
524 /* VMCB */
525 struct vmcb *vmcb;
526 paddr_t vmcb_pa;
527
528 /* I/O bitmap */
529 uint8_t *iobm;
530 paddr_t iobm_pa;
531
532 /* MSR bitmap */
533 uint8_t *msrbm;
534 paddr_t msrbm_pa;
535
536 /* Host state */
537 uint64_t hxcr0;
538 uint64_t star;
539 uint64_t lstar;
540 uint64_t cstar;
541 uint64_t sfmask;
542 uint64_t fsbase;
543 uint64_t kernelgsbase;
544
545 /* Intr state */
546 bool int_window_exit;
547 bool nmi_window_exit;
548 bool evt_pending;
549
550 /* Guest state */
551 uint64_t gxcr0;
552 uint64_t gprs[NVMM_X64_NGPR];
553 uint64_t drs[NVMM_X64_NDR];
554 uint64_t gtsc;
555 struct xsave_header gfpu __aligned(64);
556
557 /* VCPU configuration. */
558 bool cpuidpresent[SVM_NCPUIDS];
559 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
560 };
561
562 static void
563 svm_vmcb_cache_default(struct vmcb *vmcb)
564 {
565 vmcb->ctrl.vmcb_clean =
566 VMCB_CTRL_VMCB_CLEAN_I |
567 VMCB_CTRL_VMCB_CLEAN_IOPM |
568 VMCB_CTRL_VMCB_CLEAN_ASID |
569 VMCB_CTRL_VMCB_CLEAN_TPR |
570 VMCB_CTRL_VMCB_CLEAN_NP |
571 VMCB_CTRL_VMCB_CLEAN_CR |
572 VMCB_CTRL_VMCB_CLEAN_DR |
573 VMCB_CTRL_VMCB_CLEAN_DT |
574 VMCB_CTRL_VMCB_CLEAN_SEG |
575 VMCB_CTRL_VMCB_CLEAN_CR2 |
576 VMCB_CTRL_VMCB_CLEAN_LBR |
577 VMCB_CTRL_VMCB_CLEAN_AVIC;
578 }
579
580 static void
581 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
582 {
583 if (flags & NVMM_X64_STATE_SEGS) {
584 vmcb->ctrl.vmcb_clean &=
585 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
586 }
587 if (flags & NVMM_X64_STATE_CRS) {
588 vmcb->ctrl.vmcb_clean &=
589 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
590 VMCB_CTRL_VMCB_CLEAN_TPR);
591 }
592 if (flags & NVMM_X64_STATE_DRS) {
593 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
594 }
595 if (flags & NVMM_X64_STATE_MSRS) {
596 /* CR for EFER, NP for PAT. */
597 vmcb->ctrl.vmcb_clean &=
598 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
599 }
600 }
601
602 static inline void
603 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
604 {
605 vmcb->ctrl.vmcb_clean &= ~flags;
606 }
607
608 static inline void
609 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
610 {
611 vmcb->ctrl.vmcb_clean = 0;
612 }
613
614 #define SVM_EVENT_TYPE_HW_INT 0
615 #define SVM_EVENT_TYPE_NMI 2
616 #define SVM_EVENT_TYPE_EXC 3
617 #define SVM_EVENT_TYPE_SW_INT 4
618
619 static void
620 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
621 {
622 struct svm_cpudata *cpudata = vcpu->cpudata;
623 struct vmcb *vmcb = cpudata->vmcb;
624
625 if (nmi) {
626 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
627 cpudata->nmi_window_exit = true;
628 } else {
629 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
630 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
631 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
632 cpudata->int_window_exit = true;
633 }
634
635 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
636 }
637
638 static void
639 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
640 {
641 struct svm_cpudata *cpudata = vcpu->cpudata;
642 struct vmcb *vmcb = cpudata->vmcb;
643
644 if (nmi) {
645 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
646 cpudata->nmi_window_exit = false;
647 } else {
648 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
649 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
650 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
651 cpudata->int_window_exit = false;
652 }
653
654 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
655 }
656
657 static inline int
658 svm_event_has_error(uint8_t vector)
659 {
660 switch (vector) {
661 case 8: /* #DF */
662 case 10: /* #TS */
663 case 11: /* #NP */
664 case 12: /* #SS */
665 case 13: /* #GP */
666 case 14: /* #PF */
667 case 17: /* #AC */
668 case 30: /* #SX */
669 return 1;
670 default:
671 return 0;
672 }
673 }
674
675 static int
676 svm_vcpu_inject(struct nvmm_cpu *vcpu)
677 {
678 struct nvmm_comm_page *comm = vcpu->comm;
679 struct svm_cpudata *cpudata = vcpu->cpudata;
680 struct vmcb *vmcb = cpudata->vmcb;
681 u_int evtype;
682 uint8_t vector;
683 uint64_t error;
684 int type = 0, err = 0;
685
686 evtype = comm->event.type;
687 vector = comm->event.vector;
688 error = comm->event.u.excp.error;
689 __insn_barrier();
690
691 switch (evtype) {
692 case NVMM_VCPU_EVENT_EXCP:
693 type = SVM_EVENT_TYPE_EXC;
694 if (vector == 2 || vector >= 32)
695 return EINVAL;
696 if (vector == 3 || vector == 0)
697 return EINVAL;
698 err = svm_event_has_error(vector);
699 break;
700 case NVMM_VCPU_EVENT_INTR:
701 type = SVM_EVENT_TYPE_HW_INT;
702 if (vector == 2) {
703 type = SVM_EVENT_TYPE_NMI;
704 svm_event_waitexit_enable(vcpu, true);
705 }
706 err = 0;
707 break;
708 default:
709 return EINVAL;
710 }
711
712 vmcb->ctrl.eventinj =
713 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
714 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
715 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
716 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
717 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
718
719 cpudata->evt_pending = true;
720
721 return 0;
722 }
723
724 static void
725 svm_inject_ud(struct nvmm_cpu *vcpu)
726 {
727 struct nvmm_comm_page *comm = vcpu->comm;
728 int ret __diagused;
729
730 comm->event.type = NVMM_VCPU_EVENT_EXCP;
731 comm->event.vector = 6;
732 comm->event.u.excp.error = 0;
733
734 ret = svm_vcpu_inject(vcpu);
735 KASSERT(ret == 0);
736 }
737
738 static void
739 svm_inject_gp(struct nvmm_cpu *vcpu)
740 {
741 struct nvmm_comm_page *comm = vcpu->comm;
742 int ret __diagused;
743
744 comm->event.type = NVMM_VCPU_EVENT_EXCP;
745 comm->event.vector = 13;
746 comm->event.u.excp.error = 0;
747
748 ret = svm_vcpu_inject(vcpu);
749 KASSERT(ret == 0);
750 }
751
752 static inline int
753 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
754 {
755 if (__predict_true(!vcpu->comm->event_commit)) {
756 return 0;
757 }
758 vcpu->comm->event_commit = false;
759 return svm_vcpu_inject(vcpu);
760 }
761
762 static inline void
763 svm_inkernel_advance(struct vmcb *vmcb)
764 {
765 /*
766 * Maybe we should also apply single-stepping and debug exceptions.
767 * Matters for guest-ring3, because it can execute 'cpuid' under a
768 * debugger.
769 */
770 vmcb->state.rip = vmcb->ctrl.nrip;
771 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
772 }
773
774 static void
775 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
776 {
777 struct svm_cpudata *cpudata = vcpu->cpudata;
778 uint64_t cr4;
779
780 switch (eax) {
781 case 0x00000001:
782 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
783
784 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
785 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
786 CPUID_LOCAL_APIC_ID);
787
788 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
789 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
790
791 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
792
793 /* CPUID2_OSXSAVE depends on CR4. */
794 cr4 = cpudata->vmcb->state.cr4;
795 if (!(cr4 & CR4_OSXSAVE)) {
796 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
797 }
798 break;
799 case 0x00000005:
800 case 0x00000006:
801 cpudata->vmcb->state.rax = 0;
802 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
803 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
804 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
805 break;
806 case 0x00000007:
807 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
808 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
809 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
810 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
811 break;
812 case 0x0000000D:
813 if (svm_xcr0_mask == 0) {
814 break;
815 }
816 switch (ecx) {
817 case 0:
818 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
819 if (cpudata->gxcr0 & XCR0_SSE) {
820 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
821 } else {
822 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
823 }
824 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
825 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
826 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
827 break;
828 case 1:
829 cpudata->vmcb->state.rax &=
830 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
831 CPUID_PES1_XGETBV);
832 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
833 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
834 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
835 break;
836 default:
837 cpudata->vmcb->state.rax = 0;
838 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
839 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
840 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
841 break;
842 }
843 break;
844 case 0x40000000:
845 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
846 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
847 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
848 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
849 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
850 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
851 break;
852 case 0x80000001:
853 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
854 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
855 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
856 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
857 break;
858 default:
859 break;
860 }
861 }
862
863 static void
864 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
865 {
866 exit->u.insn.npc = vmcb->ctrl.nrip;
867 exit->reason = reason;
868 }
869
870 static void
871 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
872 struct nvmm_vcpu_exit *exit)
873 {
874 struct svm_cpudata *cpudata = vcpu->cpudata;
875 struct nvmm_vcpu_conf_cpuid *cpuid;
876 uint64_t eax, ecx;
877 u_int descs[4];
878 size_t i;
879
880 eax = cpudata->vmcb->state.rax;
881 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
882 x86_cpuid2(eax, ecx, descs);
883
884 cpudata->vmcb->state.rax = descs[0];
885 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
886 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
887 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
888
889 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
890
891 for (i = 0; i < SVM_NCPUIDS; i++) {
892 if (!cpudata->cpuidpresent[i]) {
893 continue;
894 }
895 cpuid = &cpudata->cpuid[i];
896 if (cpuid->leaf != eax) {
897 continue;
898 }
899
900 if (cpuid->exit) {
901 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
902 return;
903 }
904 KASSERT(cpuid->mask);
905
906 /* del */
907 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
908 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
909 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
910 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
911
912 /* set */
913 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
914 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
915 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
916 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
917
918 break;
919 }
920
921 svm_inkernel_advance(cpudata->vmcb);
922 exit->reason = NVMM_VCPU_EXIT_NONE;
923 }
924
925 static void
926 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
927 struct nvmm_vcpu_exit *exit)
928 {
929 struct svm_cpudata *cpudata = vcpu->cpudata;
930 struct vmcb *vmcb = cpudata->vmcb;
931
932 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
933 svm_event_waitexit_disable(vcpu, false);
934 }
935
936 svm_inkernel_advance(cpudata->vmcb);
937 exit->reason = NVMM_VCPU_EXIT_HALTED;
938 }
939
940 #define SVM_EXIT_IO_PORT __BITS(31,16)
941 #define SVM_EXIT_IO_SEG __BITS(12,10)
942 #define SVM_EXIT_IO_A64 __BIT(9)
943 #define SVM_EXIT_IO_A32 __BIT(8)
944 #define SVM_EXIT_IO_A16 __BIT(7)
945 #define SVM_EXIT_IO_SZ32 __BIT(6)
946 #define SVM_EXIT_IO_SZ16 __BIT(5)
947 #define SVM_EXIT_IO_SZ8 __BIT(4)
948 #define SVM_EXIT_IO_REP __BIT(3)
949 #define SVM_EXIT_IO_STR __BIT(2)
950 #define SVM_EXIT_IO_IN __BIT(0)
951
952 static void
953 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
954 struct nvmm_vcpu_exit *exit)
955 {
956 struct svm_cpudata *cpudata = vcpu->cpudata;
957 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
958 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
959
960 exit->reason = NVMM_VCPU_EXIT_IO;
961
962 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
963 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
964
965 if (svm_decode_assist) {
966 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
967 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
968 } else {
969 exit->u.io.seg = -1;
970 }
971
972 if (info & SVM_EXIT_IO_A64) {
973 exit->u.io.address_size = 8;
974 } else if (info & SVM_EXIT_IO_A32) {
975 exit->u.io.address_size = 4;
976 } else if (info & SVM_EXIT_IO_A16) {
977 exit->u.io.address_size = 2;
978 }
979
980 if (info & SVM_EXIT_IO_SZ32) {
981 exit->u.io.operand_size = 4;
982 } else if (info & SVM_EXIT_IO_SZ16) {
983 exit->u.io.operand_size = 2;
984 } else if (info & SVM_EXIT_IO_SZ8) {
985 exit->u.io.operand_size = 1;
986 }
987
988 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
989 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
990 exit->u.io.npc = nextpc;
991
992 svm_vcpu_state_provide(vcpu,
993 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
994 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
995 }
996
997 static const uint64_t msr_ignore_list[] = {
998 0xc0010055, /* MSR_CMPHALT */
999 MSR_DE_CFG,
1000 MSR_IC_CFG,
1001 MSR_UCODE_AMD_PATCHLEVEL
1002 };
1003
1004 static bool
1005 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1006 struct nvmm_vcpu_exit *exit)
1007 {
1008 struct svm_cpudata *cpudata = vcpu->cpudata;
1009 struct vmcb *vmcb = cpudata->vmcb;
1010 uint64_t val;
1011 size_t i;
1012
1013 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1014 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1015 val = NB_CFG_INITAPICCPUIDLO;
1016 vmcb->state.rax = (val & 0xFFFFFFFF);
1017 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1018 goto handled;
1019 }
1020 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1021 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1022 continue;
1023 val = 0;
1024 vmcb->state.rax = (val & 0xFFFFFFFF);
1025 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1026 goto handled;
1027 }
1028 } else {
1029 if (exit->u.wrmsr.msr == MSR_EFER) {
1030 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1031 goto error;
1032 }
1033 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1034 EFER_TLB_FLUSH) {
1035 cpudata->gtlb_want_flush = true;
1036 }
1037 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1038 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1039 goto handled;
1040 }
1041 if (exit->u.wrmsr.msr == MSR_TSC) {
1042 cpudata->gtsc = exit->u.wrmsr.val;
1043 cpudata->gtsc_want_update = true;
1044 goto handled;
1045 }
1046 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1047 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1048 continue;
1049 goto handled;
1050 }
1051 }
1052
1053 return false;
1054
1055 handled:
1056 svm_inkernel_advance(cpudata->vmcb);
1057 return true;
1058
1059 error:
1060 svm_inject_gp(vcpu);
1061 return true;
1062 }
1063
1064 static inline void
1065 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1066 struct nvmm_vcpu_exit *exit)
1067 {
1068 struct svm_cpudata *cpudata = vcpu->cpudata;
1069
1070 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1071 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1072 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1073
1074 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1075 exit->reason = NVMM_VCPU_EXIT_NONE;
1076 return;
1077 }
1078
1079 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1080 }
1081
1082 static inline void
1083 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1084 struct nvmm_vcpu_exit *exit)
1085 {
1086 struct svm_cpudata *cpudata = vcpu->cpudata;
1087 uint64_t rdx, rax;
1088
1089 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1090 rax = cpudata->vmcb->state.rax;
1091
1092 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1093 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1094 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1095 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1096
1097 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1098 exit->reason = NVMM_VCPU_EXIT_NONE;
1099 return;
1100 }
1101
1102 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1103 }
1104
1105 static void
1106 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1107 struct nvmm_vcpu_exit *exit)
1108 {
1109 struct svm_cpudata *cpudata = vcpu->cpudata;
1110 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1111
1112 if (info == 0) {
1113 svm_exit_rdmsr(mach, vcpu, exit);
1114 } else {
1115 svm_exit_wrmsr(mach, vcpu, exit);
1116 }
1117 }
1118
1119 static void
1120 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1121 struct nvmm_vcpu_exit *exit)
1122 {
1123 struct svm_cpudata *cpudata = vcpu->cpudata;
1124 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1125
1126 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1127 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1128 exit->u.mem.prot = PROT_WRITE;
1129 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1130 exit->u.mem.prot = PROT_EXEC;
1131 else
1132 exit->u.mem.prot = PROT_READ;
1133 exit->u.mem.gpa = gpa;
1134 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1135 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1136 sizeof(exit->u.mem.inst_bytes));
1137
1138 svm_vcpu_state_provide(vcpu,
1139 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1140 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1141 }
1142
1143 static void
1144 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1145 struct nvmm_vcpu_exit *exit)
1146 {
1147 struct svm_cpudata *cpudata = vcpu->cpudata;
1148 struct vmcb *vmcb = cpudata->vmcb;
1149 uint64_t val;
1150
1151 exit->reason = NVMM_VCPU_EXIT_NONE;
1152
1153 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1154 (vmcb->state.rax & 0xFFFFFFFF);
1155
1156 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1157 goto error;
1158 } else if (__predict_false(vmcb->state.cpl != 0)) {
1159 goto error;
1160 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1161 goto error;
1162 } else if (__predict_false((val & XCR0_X87) == 0)) {
1163 goto error;
1164 }
1165
1166 cpudata->gxcr0 = val;
1167 if (svm_xcr0_mask != 0) {
1168 wrxcr(0, cpudata->gxcr0);
1169 }
1170
1171 svm_inkernel_advance(cpudata->vmcb);
1172 return;
1173
1174 error:
1175 svm_inject_gp(vcpu);
1176 }
1177
1178 static void
1179 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1180 {
1181 exit->u.inv.hwcode = code;
1182 exit->reason = NVMM_VCPU_EXIT_INVALID;
1183 }
1184
1185 /* -------------------------------------------------------------------------- */
1186
1187 static void
1188 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1189 {
1190 struct svm_cpudata *cpudata = vcpu->cpudata;
1191
1192 fpu_save();
1193 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1194
1195 if (svm_xcr0_mask != 0) {
1196 cpudata->hxcr0 = rdxcr(0);
1197 wrxcr(0, cpudata->gxcr0);
1198 }
1199 }
1200
1201 static void
1202 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1203 {
1204 struct svm_cpudata *cpudata = vcpu->cpudata;
1205
1206 if (svm_xcr0_mask != 0) {
1207 cpudata->gxcr0 = rdxcr(0);
1208 wrxcr(0, cpudata->hxcr0);
1209 }
1210
1211 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1212 }
1213
1214 static void
1215 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1216 {
1217 struct svm_cpudata *cpudata = vcpu->cpudata;
1218
1219 x86_dbregs_save(curlwp);
1220
1221 ldr7(0);
1222
1223 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1224 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1225 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1226 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1227 }
1228
1229 static void
1230 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1231 {
1232 struct svm_cpudata *cpudata = vcpu->cpudata;
1233
1234 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1235 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1236 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1237 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1238
1239 x86_dbregs_restore(curlwp);
1240 }
1241
1242 static void
1243 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1244 {
1245 struct svm_cpudata *cpudata = vcpu->cpudata;
1246
1247 cpudata->fsbase = rdmsr(MSR_FSBASE);
1248 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1249 }
1250
1251 static void
1252 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1253 {
1254 struct svm_cpudata *cpudata = vcpu->cpudata;
1255
1256 wrmsr(MSR_STAR, cpudata->star);
1257 wrmsr(MSR_LSTAR, cpudata->lstar);
1258 wrmsr(MSR_CSTAR, cpudata->cstar);
1259 wrmsr(MSR_SFMASK, cpudata->sfmask);
1260 wrmsr(MSR_FSBASE, cpudata->fsbase);
1261 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1262 }
1263
1264 /* -------------------------------------------------------------------------- */
1265
1266 static inline void
1267 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1268 {
1269 struct svm_cpudata *cpudata = vcpu->cpudata;
1270
1271 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1272 cpudata->gtlb_want_flush = true;
1273 }
1274 }
1275
1276 static inline void
1277 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1278 {
1279 /*
1280 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1281 * executing on this hCPU and the hTLB already got flushed, or it
1282 * was executing on another hCPU in which case the catchup is done
1283 * in svm_gtlb_catchup().
1284 */
1285 }
1286
1287 static inline uint64_t
1288 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1289 {
1290 struct vmcb *vmcb = cpudata->vmcb;
1291 uint64_t machgen;
1292
1293 machgen = machdata->mach_htlb_gen;
1294 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1295 return machgen;
1296 }
1297
1298 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1299 return machgen;
1300 }
1301
1302 static inline void
1303 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1304 {
1305 struct vmcb *vmcb = cpudata->vmcb;
1306
1307 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1308 cpudata->vcpu_htlb_gen = machgen;
1309 }
1310 }
1311
1312 static inline void
1313 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1314 {
1315 cpudata->evt_pending = false;
1316
1317 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1318 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1319 cpudata->evt_pending = true;
1320 }
1321 }
1322
1323 static int
1324 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1325 struct nvmm_vcpu_exit *exit)
1326 {
1327 struct nvmm_comm_page *comm = vcpu->comm;
1328 struct svm_machdata *machdata = mach->machdata;
1329 struct svm_cpudata *cpudata = vcpu->cpudata;
1330 struct vmcb *vmcb = cpudata->vmcb;
1331 uint64_t machgen;
1332 int hcpu, s;
1333
1334 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1335 return EINVAL;
1336 }
1337 svm_vcpu_state_commit(vcpu);
1338 comm->state_cached = 0;
1339
1340 kpreempt_disable();
1341 hcpu = cpu_number();
1342
1343 svm_gtlb_catchup(vcpu, hcpu);
1344 svm_htlb_catchup(vcpu, hcpu);
1345
1346 if (vcpu->hcpu_last != hcpu) {
1347 svm_vmcb_cache_flush_all(vmcb);
1348 cpudata->gtsc_want_update = true;
1349 }
1350
1351 svm_vcpu_guest_dbregs_enter(vcpu);
1352 svm_vcpu_guest_misc_enter(vcpu);
1353 svm_vcpu_guest_fpu_enter(vcpu);
1354
1355 while (1) {
1356 if (cpudata->gtlb_want_flush) {
1357 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1358 } else {
1359 vmcb->ctrl.tlb_ctrl = 0;
1360 }
1361
1362 if (__predict_false(cpudata->gtsc_want_update)) {
1363 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1364 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1365 }
1366
1367 s = splhigh();
1368 machgen = svm_htlb_flush(machdata, cpudata);
1369 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1370 svm_htlb_flush_ack(cpudata, machgen);
1371 splx(s);
1372
1373 svm_vmcb_cache_default(vmcb);
1374
1375 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1376 cpudata->gtlb_want_flush = false;
1377 cpudata->gtsc_want_update = false;
1378 vcpu->hcpu_last = hcpu;
1379 }
1380 svm_exit_evt(cpudata, vmcb);
1381
1382 switch (vmcb->ctrl.exitcode) {
1383 case VMCB_EXITCODE_INTR:
1384 case VMCB_EXITCODE_NMI:
1385 exit->reason = NVMM_VCPU_EXIT_NONE;
1386 break;
1387 case VMCB_EXITCODE_VINTR:
1388 svm_event_waitexit_disable(vcpu, false);
1389 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1390 break;
1391 case VMCB_EXITCODE_IRET:
1392 svm_event_waitexit_disable(vcpu, true);
1393 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1394 break;
1395 case VMCB_EXITCODE_CPUID:
1396 svm_exit_cpuid(mach, vcpu, exit);
1397 break;
1398 case VMCB_EXITCODE_HLT:
1399 svm_exit_hlt(mach, vcpu, exit);
1400 break;
1401 case VMCB_EXITCODE_IOIO:
1402 svm_exit_io(mach, vcpu, exit);
1403 break;
1404 case VMCB_EXITCODE_MSR:
1405 svm_exit_msr(mach, vcpu, exit);
1406 break;
1407 case VMCB_EXITCODE_SHUTDOWN:
1408 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1409 break;
1410 case VMCB_EXITCODE_RDPMC:
1411 case VMCB_EXITCODE_RSM:
1412 case VMCB_EXITCODE_INVLPGA:
1413 case VMCB_EXITCODE_VMRUN:
1414 case VMCB_EXITCODE_VMMCALL:
1415 case VMCB_EXITCODE_VMLOAD:
1416 case VMCB_EXITCODE_VMSAVE:
1417 case VMCB_EXITCODE_STGI:
1418 case VMCB_EXITCODE_CLGI:
1419 case VMCB_EXITCODE_SKINIT:
1420 case VMCB_EXITCODE_RDTSCP:
1421 svm_inject_ud(vcpu);
1422 exit->reason = NVMM_VCPU_EXIT_NONE;
1423 break;
1424 case VMCB_EXITCODE_MONITOR:
1425 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1426 break;
1427 case VMCB_EXITCODE_MWAIT:
1428 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1429 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1430 break;
1431 case VMCB_EXITCODE_XSETBV:
1432 svm_exit_xsetbv(mach, vcpu, exit);
1433 break;
1434 case VMCB_EXITCODE_NPF:
1435 svm_exit_npf(mach, vcpu, exit);
1436 break;
1437 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1438 default:
1439 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1440 break;
1441 }
1442
1443 /* If no reason to return to userland, keep rolling. */
1444 if (preempt_needed()) {
1445 break;
1446 }
1447 if (curlwp->l_flag & LW_USERRET) {
1448 break;
1449 }
1450 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1451 break;
1452 }
1453 }
1454
1455 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1456
1457 svm_vcpu_guest_fpu_leave(vcpu);
1458 svm_vcpu_guest_misc_leave(vcpu);
1459 svm_vcpu_guest_dbregs_leave(vcpu);
1460
1461 kpreempt_enable();
1462
1463 exit->exitstate.rflags = vmcb->state.rflags;
1464 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1465 exit->exitstate.int_shadow =
1466 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1467 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1468 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1469 exit->exitstate.evt_pending = cpudata->evt_pending;
1470
1471 return 0;
1472 }
1473
1474 /* -------------------------------------------------------------------------- */
1475
1476 static int
1477 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1478 {
1479 struct pglist pglist;
1480 paddr_t _pa;
1481 vaddr_t _va;
1482 size_t i;
1483 int ret;
1484
1485 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1486 &pglist, 1, 0);
1487 if (ret != 0)
1488 return ENOMEM;
1489 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1490 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1491 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1492 if (_va == 0)
1493 goto error;
1494
1495 for (i = 0; i < npages; i++) {
1496 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1497 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1498 }
1499 pmap_update(pmap_kernel());
1500
1501 memset((void *)_va, 0, npages * PAGE_SIZE);
1502
1503 *pa = _pa;
1504 *va = _va;
1505 return 0;
1506
1507 error:
1508 for (i = 0; i < npages; i++) {
1509 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1510 }
1511 return ENOMEM;
1512 }
1513
1514 static void
1515 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1516 {
1517 size_t i;
1518
1519 pmap_kremove(va, npages * PAGE_SIZE);
1520 pmap_update(pmap_kernel());
1521 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1522 for (i = 0; i < npages; i++) {
1523 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1524 }
1525 }
1526
1527 /* -------------------------------------------------------------------------- */
1528
1529 #define SVM_MSRBM_READ __BIT(0)
1530 #define SVM_MSRBM_WRITE __BIT(1)
1531
1532 static void
1533 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1534 {
1535 uint64_t byte;
1536 uint8_t bitoff;
1537
1538 if (msr < 0x00002000) {
1539 /* Range 1 */
1540 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1541 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1542 /* Range 2 */
1543 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1544 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1545 /* Range 3 */
1546 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1547 } else {
1548 panic("%s: wrong range", __func__);
1549 }
1550
1551 bitoff = (msr & 0x3) << 1;
1552
1553 if (read) {
1554 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1555 }
1556 if (write) {
1557 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1558 }
1559 }
1560
1561 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1562 #define SVM_SEG_ATTRIB_S __BIT(4)
1563 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1564 #define SVM_SEG_ATTRIB_P __BIT(7)
1565 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1566 #define SVM_SEG_ATTRIB_L __BIT(9)
1567 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1568 #define SVM_SEG_ATTRIB_G __BIT(11)
1569
1570 static void
1571 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1572 struct vmcb_segment *vseg)
1573 {
1574 vseg->selector = seg->selector;
1575 vseg->attrib =
1576 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1577 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1578 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1579 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1580 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1581 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1582 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1583 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1584 vseg->limit = seg->limit;
1585 vseg->base = seg->base;
1586 }
1587
1588 static void
1589 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1590 {
1591 seg->selector = vseg->selector;
1592 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1593 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1594 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1595 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1596 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1597 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1598 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1599 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1600 seg->limit = vseg->limit;
1601 seg->base = vseg->base;
1602 }
1603
1604 static inline bool
1605 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1606 uint64_t flags)
1607 {
1608 if (flags & NVMM_X64_STATE_CRS) {
1609 if ((vmcb->state.cr0 ^
1610 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1611 return true;
1612 }
1613 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1614 return true;
1615 }
1616 if ((vmcb->state.cr4 ^
1617 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1618 return true;
1619 }
1620 }
1621
1622 if (flags & NVMM_X64_STATE_MSRS) {
1623 if ((vmcb->state.efer ^
1624 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1625 return true;
1626 }
1627 }
1628
1629 return false;
1630 }
1631
1632 static void
1633 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1634 {
1635 struct nvmm_comm_page *comm = vcpu->comm;
1636 const struct nvmm_x64_state *state = &comm->state;
1637 struct svm_cpudata *cpudata = vcpu->cpudata;
1638 struct vmcb *vmcb = cpudata->vmcb;
1639 struct fxsave *fpustate;
1640 uint64_t flags;
1641
1642 flags = comm->state_wanted;
1643
1644 if (svm_state_tlb_flush(vmcb, state, flags)) {
1645 cpudata->gtlb_want_flush = true;
1646 }
1647
1648 if (flags & NVMM_X64_STATE_SEGS) {
1649 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1650 &vmcb->state.cs);
1651 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1652 &vmcb->state.ds);
1653 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1654 &vmcb->state.es);
1655 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1656 &vmcb->state.fs);
1657 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1658 &vmcb->state.gs);
1659 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1660 &vmcb->state.ss);
1661 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1662 &vmcb->state.gdt);
1663 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1664 &vmcb->state.idt);
1665 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1666 &vmcb->state.ldt);
1667 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1668 &vmcb->state.tr);
1669
1670 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1671 }
1672
1673 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1674 if (flags & NVMM_X64_STATE_GPRS) {
1675 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1676
1677 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1678 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1679 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1680 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1681 }
1682
1683 if (flags & NVMM_X64_STATE_CRS) {
1684 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1685 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1686 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1687 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1688
1689 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1690 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1691 VMCB_CTRL_V_TPR);
1692
1693 if (svm_xcr0_mask != 0) {
1694 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1695 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1696 cpudata->gxcr0 &= svm_xcr0_mask;
1697 cpudata->gxcr0 |= XCR0_X87;
1698 }
1699 }
1700
1701 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1702 if (flags & NVMM_X64_STATE_DRS) {
1703 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1704
1705 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1706 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1707 }
1708
1709 if (flags & NVMM_X64_STATE_MSRS) {
1710 /*
1711 * EFER_SVME is mandatory.
1712 */
1713 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1714 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1715 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1716 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1717 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1718 vmcb->state.kernelgsbase =
1719 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1720 vmcb->state.sysenter_cs =
1721 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1722 vmcb->state.sysenter_esp =
1723 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1724 vmcb->state.sysenter_eip =
1725 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1726 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1727
1728 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1729 cpudata->gtsc_want_update = true;
1730 }
1731
1732 if (flags & NVMM_X64_STATE_INTR) {
1733 if (state->intr.int_shadow) {
1734 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1735 } else {
1736 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1737 }
1738
1739 if (state->intr.int_window_exiting) {
1740 svm_event_waitexit_enable(vcpu, false);
1741 } else {
1742 svm_event_waitexit_disable(vcpu, false);
1743 }
1744
1745 if (state->intr.nmi_window_exiting) {
1746 svm_event_waitexit_enable(vcpu, true);
1747 } else {
1748 svm_event_waitexit_disable(vcpu, true);
1749 }
1750 }
1751
1752 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1753 if (flags & NVMM_X64_STATE_FPU) {
1754 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1755 sizeof(state->fpu));
1756
1757 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1758 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1759 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1760
1761 if (svm_xcr0_mask != 0) {
1762 /* Reset XSTATE_BV, to force a reload. */
1763 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1764 }
1765 }
1766
1767 svm_vmcb_cache_update(vmcb, flags);
1768
1769 comm->state_wanted = 0;
1770 comm->state_cached |= flags;
1771 }
1772
1773 static void
1774 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1775 {
1776 struct nvmm_comm_page *comm = vcpu->comm;
1777 struct nvmm_x64_state *state = &comm->state;
1778 struct svm_cpudata *cpudata = vcpu->cpudata;
1779 struct vmcb *vmcb = cpudata->vmcb;
1780 uint64_t flags;
1781
1782 flags = comm->state_wanted;
1783
1784 if (flags & NVMM_X64_STATE_SEGS) {
1785 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1786 &vmcb->state.cs);
1787 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1788 &vmcb->state.ds);
1789 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1790 &vmcb->state.es);
1791 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1792 &vmcb->state.fs);
1793 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1794 &vmcb->state.gs);
1795 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1796 &vmcb->state.ss);
1797 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1798 &vmcb->state.gdt);
1799 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1800 &vmcb->state.idt);
1801 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1802 &vmcb->state.ldt);
1803 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1804 &vmcb->state.tr);
1805
1806 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1807 }
1808
1809 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1810 if (flags & NVMM_X64_STATE_GPRS) {
1811 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1812
1813 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1814 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1815 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1816 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1817 }
1818
1819 if (flags & NVMM_X64_STATE_CRS) {
1820 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1821 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1822 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1823 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1824 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1825 VMCB_CTRL_V_TPR);
1826 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1827 }
1828
1829 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1830 if (flags & NVMM_X64_STATE_DRS) {
1831 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1832
1833 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1834 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1835 }
1836
1837 if (flags & NVMM_X64_STATE_MSRS) {
1838 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1839 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1840 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1841 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1842 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1843 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1844 vmcb->state.kernelgsbase;
1845 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1846 vmcb->state.sysenter_cs;
1847 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1848 vmcb->state.sysenter_esp;
1849 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1850 vmcb->state.sysenter_eip;
1851 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1852 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1853
1854 /* Hide SVME. */
1855 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1856 }
1857
1858 if (flags & NVMM_X64_STATE_INTR) {
1859 state->intr.int_shadow =
1860 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1861 state->intr.int_window_exiting = cpudata->int_window_exit;
1862 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1863 state->intr.evt_pending = cpudata->evt_pending;
1864 }
1865
1866 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1867 if (flags & NVMM_X64_STATE_FPU) {
1868 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1869 sizeof(state->fpu));
1870 }
1871
1872 comm->state_wanted = 0;
1873 comm->state_cached |= flags;
1874 }
1875
1876 static void
1877 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1878 {
1879 vcpu->comm->state_wanted = flags;
1880 svm_vcpu_getstate(vcpu);
1881 }
1882
1883 static void
1884 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1885 {
1886 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1887 vcpu->comm->state_commit = 0;
1888 svm_vcpu_setstate(vcpu);
1889 }
1890
1891 /* -------------------------------------------------------------------------- */
1892
1893 static void
1894 svm_asid_alloc(struct nvmm_cpu *vcpu)
1895 {
1896 struct svm_cpudata *cpudata = vcpu->cpudata;
1897 struct vmcb *vmcb = cpudata->vmcb;
1898 size_t i, oct, bit;
1899
1900 mutex_enter(&svm_asidlock);
1901
1902 for (i = 0; i < svm_maxasid; i++) {
1903 oct = i / 8;
1904 bit = i % 8;
1905
1906 if (svm_asidmap[oct] & __BIT(bit)) {
1907 continue;
1908 }
1909
1910 svm_asidmap[oct] |= __BIT(bit);
1911 vmcb->ctrl.guest_asid = i;
1912 mutex_exit(&svm_asidlock);
1913 return;
1914 }
1915
1916 /*
1917 * No free ASID. Use the last one, which is shared and requires
1918 * special TLB handling.
1919 */
1920 cpudata->shared_asid = true;
1921 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1922 mutex_exit(&svm_asidlock);
1923 }
1924
1925 static void
1926 svm_asid_free(struct nvmm_cpu *vcpu)
1927 {
1928 struct svm_cpudata *cpudata = vcpu->cpudata;
1929 struct vmcb *vmcb = cpudata->vmcb;
1930 size_t oct, bit;
1931
1932 if (cpudata->shared_asid) {
1933 return;
1934 }
1935
1936 oct = vmcb->ctrl.guest_asid / 8;
1937 bit = vmcb->ctrl.guest_asid % 8;
1938
1939 mutex_enter(&svm_asidlock);
1940 svm_asidmap[oct] &= ~__BIT(bit);
1941 mutex_exit(&svm_asidlock);
1942 }
1943
1944 static void
1945 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1946 {
1947 struct svm_cpudata *cpudata = vcpu->cpudata;
1948 struct vmcb *vmcb = cpudata->vmcb;
1949
1950 /* Allow reads/writes of Control Registers. */
1951 vmcb->ctrl.intercept_cr = 0;
1952
1953 /* Allow reads/writes of Debug Registers. */
1954 vmcb->ctrl.intercept_dr = 0;
1955
1956 /* Allow exceptions 0 to 31. */
1957 vmcb->ctrl.intercept_vec = 0;
1958
1959 /*
1960 * Allow:
1961 * - SMI [smm interrupts]
1962 * - VINTR [virtual interrupts]
1963 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
1964 * - RIDTR [reads of IDTR]
1965 * - RGDTR [reads of GDTR]
1966 * - RLDTR [reads of LDTR]
1967 * - RTR [reads of TR]
1968 * - WIDTR [writes of IDTR]
1969 * - WGDTR [writes of GDTR]
1970 * - WLDTR [writes of LDTR]
1971 * - WTR [writes of TR]
1972 * - RDTSC [rdtsc instruction]
1973 * - PUSHF [pushf instruction]
1974 * - POPF [popf instruction]
1975 * - IRET [iret instruction]
1976 * - INTN [int $n instructions]
1977 * - INVD [invd instruction]
1978 * - PAUSE [pause instruction]
1979 * - INVLPG [invplg instruction]
1980 * - TASKSW [task switches]
1981 *
1982 * Intercept the rest below.
1983 */
1984 vmcb->ctrl.intercept_misc1 =
1985 VMCB_CTRL_INTERCEPT_INTR |
1986 VMCB_CTRL_INTERCEPT_NMI |
1987 VMCB_CTRL_INTERCEPT_INIT |
1988 VMCB_CTRL_INTERCEPT_RDPMC |
1989 VMCB_CTRL_INTERCEPT_CPUID |
1990 VMCB_CTRL_INTERCEPT_RSM |
1991 VMCB_CTRL_INTERCEPT_HLT |
1992 VMCB_CTRL_INTERCEPT_INVLPGA |
1993 VMCB_CTRL_INTERCEPT_IOIO_PROT |
1994 VMCB_CTRL_INTERCEPT_MSR_PROT |
1995 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
1996 VMCB_CTRL_INTERCEPT_SHUTDOWN;
1997
1998 /*
1999 * Allow:
2000 * - ICEBP [icebp instruction]
2001 * - WBINVD [wbinvd instruction]
2002 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2003 *
2004 * Intercept the rest below.
2005 */
2006 vmcb->ctrl.intercept_misc2 =
2007 VMCB_CTRL_INTERCEPT_VMRUN |
2008 VMCB_CTRL_INTERCEPT_VMMCALL |
2009 VMCB_CTRL_INTERCEPT_VMLOAD |
2010 VMCB_CTRL_INTERCEPT_VMSAVE |
2011 VMCB_CTRL_INTERCEPT_STGI |
2012 VMCB_CTRL_INTERCEPT_CLGI |
2013 VMCB_CTRL_INTERCEPT_SKINIT |
2014 VMCB_CTRL_INTERCEPT_RDTSCP |
2015 VMCB_CTRL_INTERCEPT_MONITOR |
2016 VMCB_CTRL_INTERCEPT_MWAIT |
2017 VMCB_CTRL_INTERCEPT_XSETBV;
2018
2019 /* Intercept all I/O accesses. */
2020 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2021 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2022
2023 /* Allow direct access to certain MSRs. */
2024 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2025 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2026 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2027 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2028 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2029 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2030 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2031 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2032 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2033 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2034 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2035 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2036 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2037 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2038 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2039
2040 /* Generate ASID. */
2041 svm_asid_alloc(vcpu);
2042
2043 /* Virtual TPR. */
2044 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2045
2046 /* Enable Nested Paging. */
2047 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2048 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2049
2050 /* Init XSAVE header. */
2051 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2052 cpudata->gfpu.xsh_xcomp_bv = 0;
2053
2054 /* These MSRs are static. */
2055 cpudata->star = rdmsr(MSR_STAR);
2056 cpudata->lstar = rdmsr(MSR_LSTAR);
2057 cpudata->cstar = rdmsr(MSR_CSTAR);
2058 cpudata->sfmask = rdmsr(MSR_SFMASK);
2059
2060 /* Install the RESET state. */
2061 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2062 sizeof(nvmm_x86_reset_state));
2063 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2064 vcpu->comm->state_cached = 0;
2065 svm_vcpu_setstate(vcpu);
2066 }
2067
2068 static int
2069 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2070 {
2071 struct svm_cpudata *cpudata;
2072 int error;
2073
2074 /* Allocate the SVM cpudata. */
2075 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2076 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2077 UVM_KMF_WIRED|UVM_KMF_ZERO);
2078 vcpu->cpudata = cpudata;
2079
2080 /* VMCB */
2081 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2082 VMCB_NPAGES);
2083 if (error)
2084 goto error;
2085
2086 /* I/O Bitmap */
2087 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2088 IOBM_NPAGES);
2089 if (error)
2090 goto error;
2091
2092 /* MSR Bitmap */
2093 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2094 MSRBM_NPAGES);
2095 if (error)
2096 goto error;
2097
2098 /* Init the VCPU info. */
2099 svm_vcpu_init(mach, vcpu);
2100
2101 return 0;
2102
2103 error:
2104 if (cpudata->vmcb_pa) {
2105 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2106 VMCB_NPAGES);
2107 }
2108 if (cpudata->iobm_pa) {
2109 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2110 IOBM_NPAGES);
2111 }
2112 if (cpudata->msrbm_pa) {
2113 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2114 MSRBM_NPAGES);
2115 }
2116 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2117 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2118 return error;
2119 }
2120
2121 static void
2122 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2123 {
2124 struct svm_cpudata *cpudata = vcpu->cpudata;
2125
2126 svm_asid_free(vcpu);
2127
2128 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2129 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2130 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2131
2132 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2133 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2134 }
2135
2136 /* -------------------------------------------------------------------------- */
2137
2138 static int
2139 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2140 {
2141 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2142 size_t i;
2143
2144 if (__predict_false(cpuid->mask && cpuid->exit)) {
2145 return EINVAL;
2146 }
2147 if (__predict_false(cpuid->mask &&
2148 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2149 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2150 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2151 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2152 return EINVAL;
2153 }
2154
2155 /* If unset, delete, to restore the default behavior. */
2156 if (!cpuid->mask && !cpuid->exit) {
2157 for (i = 0; i < SVM_NCPUIDS; i++) {
2158 if (!cpudata->cpuidpresent[i]) {
2159 continue;
2160 }
2161 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2162 cpudata->cpuidpresent[i] = false;
2163 }
2164 }
2165 return 0;
2166 }
2167
2168 /* If already here, replace. */
2169 for (i = 0; i < SVM_NCPUIDS; i++) {
2170 if (!cpudata->cpuidpresent[i]) {
2171 continue;
2172 }
2173 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2174 memcpy(&cpudata->cpuid[i], cpuid,
2175 sizeof(struct nvmm_vcpu_conf_cpuid));
2176 return 0;
2177 }
2178 }
2179
2180 /* Not here, insert. */
2181 for (i = 0; i < SVM_NCPUIDS; i++) {
2182 if (!cpudata->cpuidpresent[i]) {
2183 cpudata->cpuidpresent[i] = true;
2184 memcpy(&cpudata->cpuid[i], cpuid,
2185 sizeof(struct nvmm_vcpu_conf_cpuid));
2186 return 0;
2187 }
2188 }
2189
2190 return ENOBUFS;
2191 }
2192
2193 static int
2194 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2195 {
2196 struct svm_cpudata *cpudata = vcpu->cpudata;
2197
2198 switch (op) {
2199 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2200 return svm_vcpu_configure_cpuid(cpudata, data);
2201 default:
2202 return EINVAL;
2203 }
2204 }
2205
2206 /* -------------------------------------------------------------------------- */
2207
2208 static void
2209 svm_tlb_flush(struct pmap *pm)
2210 {
2211 struct nvmm_machine *mach = pm->pm_data;
2212 struct svm_machdata *machdata = mach->machdata;
2213
2214 atomic_inc_64(&machdata->mach_htlb_gen);
2215
2216 /* Generates IPIs, which cause #VMEXITs. */
2217 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2218 }
2219
2220 static void
2221 svm_machine_create(struct nvmm_machine *mach)
2222 {
2223 struct svm_machdata *machdata;
2224
2225 /* Fill in pmap info. */
2226 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2227 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2228
2229 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2230 mach->machdata = machdata;
2231
2232 /* Start with an hTLB flush everywhere. */
2233 machdata->mach_htlb_gen = 1;
2234 }
2235
2236 static void
2237 svm_machine_destroy(struct nvmm_machine *mach)
2238 {
2239 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2240 }
2241
2242 static int
2243 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2244 {
2245 panic("%s: impossible", __func__);
2246 }
2247
2248 /* -------------------------------------------------------------------------- */
2249
2250 static bool
2251 svm_ident(void)
2252 {
2253 u_int descs[4];
2254 uint64_t msr;
2255
2256 if (cpu_vendor != CPUVENDOR_AMD) {
2257 return false;
2258 }
2259 if (!(cpu_feature[3] & CPUID_SVM)) {
2260 printf("NVMM: SVM not supported\n");
2261 return false;
2262 }
2263
2264 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2265 printf("NVMM: CPUID leaf not available\n");
2266 return false;
2267 }
2268 x86_cpuid(0x8000000a, descs);
2269
2270 /* Want Nested Paging. */
2271 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2272 printf("NVMM: SVM-NP not supported\n");
2273 return false;
2274 }
2275
2276 /* Want nRIP. */
2277 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2278 printf("NVMM: SVM-NRIPS not supported\n");
2279 return false;
2280 }
2281
2282 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2283
2284 msr = rdmsr(MSR_VMCR);
2285 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2286 printf("NVMM: SVM disabled in BIOS\n");
2287 return false;
2288 }
2289
2290 return true;
2291 }
2292
2293 static void
2294 svm_init_asid(uint32_t maxasid)
2295 {
2296 size_t i, j, allocsz;
2297
2298 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2299
2300 /* Arbitrarily limit. */
2301 maxasid = uimin(maxasid, 8192);
2302
2303 svm_maxasid = maxasid;
2304 allocsz = roundup(maxasid, 8) / 8;
2305 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2306
2307 /* ASID 0 is reserved for the host. */
2308 svm_asidmap[0] |= __BIT(0);
2309
2310 /* ASID n-1 is special, we share it. */
2311 i = (maxasid - 1) / 8;
2312 j = (maxasid - 1) % 8;
2313 svm_asidmap[i] |= __BIT(j);
2314 }
2315
2316 static void
2317 svm_change_cpu(void *arg1, void *arg2)
2318 {
2319 bool enable = arg1 != NULL;
2320 uint64_t msr;
2321
2322 msr = rdmsr(MSR_VMCR);
2323 if (msr & VMCR_SVMED) {
2324 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2325 }
2326
2327 if (!enable) {
2328 wrmsr(MSR_VM_HSAVE_PA, 0);
2329 }
2330
2331 msr = rdmsr(MSR_EFER);
2332 if (enable) {
2333 msr |= EFER_SVME;
2334 } else {
2335 msr &= ~EFER_SVME;
2336 }
2337 wrmsr(MSR_EFER, msr);
2338
2339 if (enable) {
2340 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2341 }
2342 }
2343
2344 static void
2345 svm_init(void)
2346 {
2347 CPU_INFO_ITERATOR cii;
2348 struct cpu_info *ci;
2349 struct vm_page *pg;
2350 u_int descs[4];
2351 uint64_t xc;
2352
2353 x86_cpuid(0x8000000a, descs);
2354
2355 /* The guest TLB flush command. */
2356 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2357 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2358 } else {
2359 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2360 }
2361
2362 /* Init the ASID. */
2363 svm_init_asid(descs[1]);
2364
2365 /* Init the XCR0 mask. */
2366 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2367
2368 memset(hsave, 0, sizeof(hsave));
2369 for (CPU_INFO_FOREACH(cii, ci)) {
2370 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2371 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2372 }
2373
2374 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2375 xc_wait(xc);
2376 }
2377
2378 static void
2379 svm_fini_asid(void)
2380 {
2381 size_t allocsz;
2382
2383 allocsz = roundup(svm_maxasid, 8) / 8;
2384 kmem_free(svm_asidmap, allocsz);
2385
2386 mutex_destroy(&svm_asidlock);
2387 }
2388
2389 static void
2390 svm_fini(void)
2391 {
2392 uint64_t xc;
2393 size_t i;
2394
2395 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2396 xc_wait(xc);
2397
2398 for (i = 0; i < MAXCPUS; i++) {
2399 if (hsave[i].pa != 0)
2400 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2401 }
2402
2403 svm_fini_asid();
2404 }
2405
2406 static void
2407 svm_capability(struct nvmm_capability *cap)
2408 {
2409 cap->arch.mach_conf_support = 0;
2410 cap->arch.vcpu_conf_support =
2411 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2412 cap->arch.xcr0_mask = svm_xcr0_mask;
2413 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2414 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2415 }
2416
2417 const struct nvmm_impl nvmm_x86_svm = {
2418 .ident = svm_ident,
2419 .init = svm_init,
2420 .fini = svm_fini,
2421 .capability = svm_capability,
2422 .mach_conf_max = NVMM_X86_MACH_NCONF,
2423 .mach_conf_sizes = NULL,
2424 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2425 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2426 .state_size = sizeof(struct nvmm_x64_state),
2427 .machine_create = svm_machine_create,
2428 .machine_destroy = svm_machine_destroy,
2429 .machine_configure = svm_machine_configure,
2430 .vcpu_create = svm_vcpu_create,
2431 .vcpu_destroy = svm_vcpu_destroy,
2432 .vcpu_configure = svm_vcpu_configure,
2433 .vcpu_setstate = svm_vcpu_setstate,
2434 .vcpu_getstate = svm_vcpu_getstate,
2435 .vcpu_inject = svm_vcpu_inject,
2436 .vcpu_run = svm_vcpu_run
2437 };
2438