nvmm_x86_svm.c revision 1.68 1 /* $NetBSD: nvmm_x86_svm.c,v 1.68 2020/08/18 17:03:10 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.68 2020/08/18 17:03:10 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 static inline void
60 svm_clgi(void)
61 {
62 asm volatile ("clgi" ::: "memory");
63 }
64
65 static inline void
66 svm_stgi(void)
67 {
68 asm volatile ("stgi" ::: "memory");
69 }
70
71 #define MSR_VM_HSAVE_PA 0xC0010117
72
73 /* -------------------------------------------------------------------------- */
74
75 #define VMCB_EXITCODE_CR0_READ 0x0000
76 #define VMCB_EXITCODE_CR1_READ 0x0001
77 #define VMCB_EXITCODE_CR2_READ 0x0002
78 #define VMCB_EXITCODE_CR3_READ 0x0003
79 #define VMCB_EXITCODE_CR4_READ 0x0004
80 #define VMCB_EXITCODE_CR5_READ 0x0005
81 #define VMCB_EXITCODE_CR6_READ 0x0006
82 #define VMCB_EXITCODE_CR7_READ 0x0007
83 #define VMCB_EXITCODE_CR8_READ 0x0008
84 #define VMCB_EXITCODE_CR9_READ 0x0009
85 #define VMCB_EXITCODE_CR10_READ 0x000A
86 #define VMCB_EXITCODE_CR11_READ 0x000B
87 #define VMCB_EXITCODE_CR12_READ 0x000C
88 #define VMCB_EXITCODE_CR13_READ 0x000D
89 #define VMCB_EXITCODE_CR14_READ 0x000E
90 #define VMCB_EXITCODE_CR15_READ 0x000F
91 #define VMCB_EXITCODE_CR0_WRITE 0x0010
92 #define VMCB_EXITCODE_CR1_WRITE 0x0011
93 #define VMCB_EXITCODE_CR2_WRITE 0x0012
94 #define VMCB_EXITCODE_CR3_WRITE 0x0013
95 #define VMCB_EXITCODE_CR4_WRITE 0x0014
96 #define VMCB_EXITCODE_CR5_WRITE 0x0015
97 #define VMCB_EXITCODE_CR6_WRITE 0x0016
98 #define VMCB_EXITCODE_CR7_WRITE 0x0017
99 #define VMCB_EXITCODE_CR8_WRITE 0x0018
100 #define VMCB_EXITCODE_CR9_WRITE 0x0019
101 #define VMCB_EXITCODE_CR10_WRITE 0x001A
102 #define VMCB_EXITCODE_CR11_WRITE 0x001B
103 #define VMCB_EXITCODE_CR12_WRITE 0x001C
104 #define VMCB_EXITCODE_CR13_WRITE 0x001D
105 #define VMCB_EXITCODE_CR14_WRITE 0x001E
106 #define VMCB_EXITCODE_CR15_WRITE 0x001F
107 #define VMCB_EXITCODE_DR0_READ 0x0020
108 #define VMCB_EXITCODE_DR1_READ 0x0021
109 #define VMCB_EXITCODE_DR2_READ 0x0022
110 #define VMCB_EXITCODE_DR3_READ 0x0023
111 #define VMCB_EXITCODE_DR4_READ 0x0024
112 #define VMCB_EXITCODE_DR5_READ 0x0025
113 #define VMCB_EXITCODE_DR6_READ 0x0026
114 #define VMCB_EXITCODE_DR7_READ 0x0027
115 #define VMCB_EXITCODE_DR8_READ 0x0028
116 #define VMCB_EXITCODE_DR9_READ 0x0029
117 #define VMCB_EXITCODE_DR10_READ 0x002A
118 #define VMCB_EXITCODE_DR11_READ 0x002B
119 #define VMCB_EXITCODE_DR12_READ 0x002C
120 #define VMCB_EXITCODE_DR13_READ 0x002D
121 #define VMCB_EXITCODE_DR14_READ 0x002E
122 #define VMCB_EXITCODE_DR15_READ 0x002F
123 #define VMCB_EXITCODE_DR0_WRITE 0x0030
124 #define VMCB_EXITCODE_DR1_WRITE 0x0031
125 #define VMCB_EXITCODE_DR2_WRITE 0x0032
126 #define VMCB_EXITCODE_DR3_WRITE 0x0033
127 #define VMCB_EXITCODE_DR4_WRITE 0x0034
128 #define VMCB_EXITCODE_DR5_WRITE 0x0035
129 #define VMCB_EXITCODE_DR6_WRITE 0x0036
130 #define VMCB_EXITCODE_DR7_WRITE 0x0037
131 #define VMCB_EXITCODE_DR8_WRITE 0x0038
132 #define VMCB_EXITCODE_DR9_WRITE 0x0039
133 #define VMCB_EXITCODE_DR10_WRITE 0x003A
134 #define VMCB_EXITCODE_DR11_WRITE 0x003B
135 #define VMCB_EXITCODE_DR12_WRITE 0x003C
136 #define VMCB_EXITCODE_DR13_WRITE 0x003D
137 #define VMCB_EXITCODE_DR14_WRITE 0x003E
138 #define VMCB_EXITCODE_DR15_WRITE 0x003F
139 #define VMCB_EXITCODE_EXCP0 0x0040
140 #define VMCB_EXITCODE_EXCP1 0x0041
141 #define VMCB_EXITCODE_EXCP2 0x0042
142 #define VMCB_EXITCODE_EXCP3 0x0043
143 #define VMCB_EXITCODE_EXCP4 0x0044
144 #define VMCB_EXITCODE_EXCP5 0x0045
145 #define VMCB_EXITCODE_EXCP6 0x0046
146 #define VMCB_EXITCODE_EXCP7 0x0047
147 #define VMCB_EXITCODE_EXCP8 0x0048
148 #define VMCB_EXITCODE_EXCP9 0x0049
149 #define VMCB_EXITCODE_EXCP10 0x004A
150 #define VMCB_EXITCODE_EXCP11 0x004B
151 #define VMCB_EXITCODE_EXCP12 0x004C
152 #define VMCB_EXITCODE_EXCP13 0x004D
153 #define VMCB_EXITCODE_EXCP14 0x004E
154 #define VMCB_EXITCODE_EXCP15 0x004F
155 #define VMCB_EXITCODE_EXCP16 0x0050
156 #define VMCB_EXITCODE_EXCP17 0x0051
157 #define VMCB_EXITCODE_EXCP18 0x0052
158 #define VMCB_EXITCODE_EXCP19 0x0053
159 #define VMCB_EXITCODE_EXCP20 0x0054
160 #define VMCB_EXITCODE_EXCP21 0x0055
161 #define VMCB_EXITCODE_EXCP22 0x0056
162 #define VMCB_EXITCODE_EXCP23 0x0057
163 #define VMCB_EXITCODE_EXCP24 0x0058
164 #define VMCB_EXITCODE_EXCP25 0x0059
165 #define VMCB_EXITCODE_EXCP26 0x005A
166 #define VMCB_EXITCODE_EXCP27 0x005B
167 #define VMCB_EXITCODE_EXCP28 0x005C
168 #define VMCB_EXITCODE_EXCP29 0x005D
169 #define VMCB_EXITCODE_EXCP30 0x005E
170 #define VMCB_EXITCODE_EXCP31 0x005F
171 #define VMCB_EXITCODE_INTR 0x0060
172 #define VMCB_EXITCODE_NMI 0x0061
173 #define VMCB_EXITCODE_SMI 0x0062
174 #define VMCB_EXITCODE_INIT 0x0063
175 #define VMCB_EXITCODE_VINTR 0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
177 #define VMCB_EXITCODE_IDTR_READ 0x0066
178 #define VMCB_EXITCODE_GDTR_READ 0x0067
179 #define VMCB_EXITCODE_LDTR_READ 0x0068
180 #define VMCB_EXITCODE_TR_READ 0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
184 #define VMCB_EXITCODE_TR_WRITE 0x006D
185 #define VMCB_EXITCODE_RDTSC 0x006E
186 #define VMCB_EXITCODE_RDPMC 0x006F
187 #define VMCB_EXITCODE_PUSHF 0x0070
188 #define VMCB_EXITCODE_POPF 0x0071
189 #define VMCB_EXITCODE_CPUID 0x0072
190 #define VMCB_EXITCODE_RSM 0x0073
191 #define VMCB_EXITCODE_IRET 0x0074
192 #define VMCB_EXITCODE_SWINT 0x0075
193 #define VMCB_EXITCODE_INVD 0x0076
194 #define VMCB_EXITCODE_PAUSE 0x0077
195 #define VMCB_EXITCODE_HLT 0x0078
196 #define VMCB_EXITCODE_INVLPG 0x0079
197 #define VMCB_EXITCODE_INVLPGA 0x007A
198 #define VMCB_EXITCODE_IOIO 0x007B
199 #define VMCB_EXITCODE_MSR 0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
202 #define VMCB_EXITCODE_SHUTDOWN 0x007F
203 #define VMCB_EXITCODE_VMRUN 0x0080
204 #define VMCB_EXITCODE_VMMCALL 0x0081
205 #define VMCB_EXITCODE_VMLOAD 0x0082
206 #define VMCB_EXITCODE_VMSAVE 0x0083
207 #define VMCB_EXITCODE_STGI 0x0084
208 #define VMCB_EXITCODE_CLGI 0x0085
209 #define VMCB_EXITCODE_SKINIT 0x0086
210 #define VMCB_EXITCODE_RDTSCP 0x0087
211 #define VMCB_EXITCODE_ICEBP 0x0088
212 #define VMCB_EXITCODE_WBINVD 0x0089
213 #define VMCB_EXITCODE_MONITOR 0x008A
214 #define VMCB_EXITCODE_MWAIT 0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
216 #define VMCB_EXITCODE_XSETBV 0x008D
217 #define VMCB_EXITCODE_RDPRU 0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
235 #define VMCB_EXITCODE_INVLPGB 0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
237 #define VMCB_EXITCODE_INVPCID 0x00A2
238 #define VMCB_EXITCODE_MCOMMIT 0x00A3
239 #define VMCB_EXITCODE_TLBSYNC 0x00A4
240 #define VMCB_EXITCODE_NPF 0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
243 #define VMCB_EXITCODE_VMGEXIT 0x0403
244 #define VMCB_EXITCODE_BUSY -2ULL
245 #define VMCB_EXITCODE_INVALID -1ULL
246
247 /* -------------------------------------------------------------------------- */
248
249 struct vmcb_ctrl {
250 uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
253
254 uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
257
258 uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
260
261 uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
294
295 uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
313
314 uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
320
321 uint8_t rsvd1[36];
322 uint16_t pause_filt_thresh;
323 uint16_t pause_filt_cnt;
324 uint64_t iopm_base_pa;
325 uint64_t msrpm_base_pa;
326 uint64_t tsc_offset;
327 uint32_t guest_asid;
328
329 uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
333
334 uint64_t v;
335 #define VMCB_CTRL_V_TPR __BITS(3,0)
336 #define VMCB_CTRL_V_IRQ __BIT(8)
337 #define VMCB_CTRL_V_VGIF __BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
344
345 uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
347 #define VMCB_CTRL_INTR_MASK __BIT(1)
348
349 uint64_t exitcode;
350 uint64_t exitinfo1;
351 uint64_t exitinfo2;
352
353 uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
359
360 uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP __BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
366
367 uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
369
370 uint64_t ghcb;
371
372 uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
378
379 uint64_t n_cr3;
380
381 uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
384
385 uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
398
399 uint32_t rsvd2;
400 uint64_t nrip;
401 uint8_t inst_len;
402 uint8_t inst_bytes[15];
403 uint64_t avic_abpp;
404 uint64_t rsvd3;
405 uint64_t avic_ltp;
406
407 uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
410
411 uint64_t rsvd4;
412 uint64_t vmsa_ptr;
413
414 uint8_t pad[752];
415 } __packed;
416
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418
419 struct vmcb_segment {
420 uint16_t selector;
421 uint16_t attrib; /* hidden */
422 uint32_t limit; /* hidden */
423 uint64_t base; /* hidden */
424 } __packed;
425
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427
428 struct vmcb_state {
429 struct vmcb_segment es;
430 struct vmcb_segment cs;
431 struct vmcb_segment ss;
432 struct vmcb_segment ds;
433 struct vmcb_segment fs;
434 struct vmcb_segment gs;
435 struct vmcb_segment gdt;
436 struct vmcb_segment ldt;
437 struct vmcb_segment idt;
438 struct vmcb_segment tr;
439 uint8_t rsvd1[43];
440 uint8_t cpl;
441 uint8_t rsvd2[4];
442 uint64_t efer;
443 uint8_t rsvd3[112];
444 uint64_t cr4;
445 uint64_t cr3;
446 uint64_t cr0;
447 uint64_t dr7;
448 uint64_t dr6;
449 uint64_t rflags;
450 uint64_t rip;
451 uint8_t rsvd4[88];
452 uint64_t rsp;
453 uint8_t rsvd5[24];
454 uint64_t rax;
455 uint64_t star;
456 uint64_t lstar;
457 uint64_t cstar;
458 uint64_t sfmask;
459 uint64_t kernelgsbase;
460 uint64_t sysenter_cs;
461 uint64_t sysenter_esp;
462 uint64_t sysenter_eip;
463 uint64_t cr2;
464 uint8_t rsvd6[32];
465 uint64_t g_pat;
466 uint64_t dbgctl;
467 uint64_t br_from;
468 uint64_t br_to;
469 uint64_t int_from;
470 uint64_t int_to;
471 uint8_t pad[2408];
472 } __packed;
473
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475
476 struct vmcb {
477 struct vmcb_ctrl ctrl;
478 struct vmcb_state state;
479 } __packed;
480
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483
484 /* -------------------------------------------------------------------------- */
485
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488
489 struct svm_hsave {
490 paddr_t pa;
491 };
492
493 static struct svm_hsave hsave[MAXCPUS];
494
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501
502 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504
505 #define SVM_NCPUIDS 32
506
507 #define VMCB_NPAGES 1
508
509 #define MSRBM_NPAGES 2
510 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
511
512 #define IOBM_NPAGES 3
513 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
514
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518
519 #define EFER_TLB_FLUSH \
520 (EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525
526 /* -------------------------------------------------------------------------- */
527
528 struct svm_machdata {
529 volatile uint64_t mach_htlb_gen;
530 };
531
532 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
533 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
534 sizeof(struct nvmm_vcpu_conf_cpuid),
535 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
536 sizeof(struct nvmm_vcpu_conf_tpr)
537 };
538
539 struct svm_cpudata {
540 /* General */
541 bool shared_asid;
542 bool gtlb_want_flush;
543 bool gtsc_want_update;
544 uint64_t vcpu_htlb_gen;
545
546 /* VMCB */
547 struct vmcb *vmcb;
548 paddr_t vmcb_pa;
549
550 /* I/O bitmap */
551 uint8_t *iobm;
552 paddr_t iobm_pa;
553
554 /* MSR bitmap */
555 uint8_t *msrbm;
556 paddr_t msrbm_pa;
557
558 /* Host state */
559 uint64_t hxcr0;
560 uint64_t star;
561 uint64_t lstar;
562 uint64_t cstar;
563 uint64_t sfmask;
564 uint64_t fsbase;
565 uint64_t kernelgsbase;
566
567 /* Intr state */
568 bool int_window_exit;
569 bool nmi_window_exit;
570 bool evt_pending;
571
572 /* Guest state */
573 uint64_t gxcr0;
574 uint64_t gprs[NVMM_X64_NGPR];
575 uint64_t drs[NVMM_X64_NDR];
576 uint64_t gtsc;
577 struct xsave_header gfpu __aligned(64);
578
579 /* VCPU configuration. */
580 bool cpuidpresent[SVM_NCPUIDS];
581 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
582 };
583
584 static void
585 svm_vmcb_cache_default(struct vmcb *vmcb)
586 {
587 vmcb->ctrl.vmcb_clean =
588 VMCB_CTRL_VMCB_CLEAN_I |
589 VMCB_CTRL_VMCB_CLEAN_IOPM |
590 VMCB_CTRL_VMCB_CLEAN_ASID |
591 VMCB_CTRL_VMCB_CLEAN_TPR |
592 VMCB_CTRL_VMCB_CLEAN_NP |
593 VMCB_CTRL_VMCB_CLEAN_CR |
594 VMCB_CTRL_VMCB_CLEAN_DR |
595 VMCB_CTRL_VMCB_CLEAN_DT |
596 VMCB_CTRL_VMCB_CLEAN_SEG |
597 VMCB_CTRL_VMCB_CLEAN_CR2 |
598 VMCB_CTRL_VMCB_CLEAN_LBR |
599 VMCB_CTRL_VMCB_CLEAN_AVIC;
600 }
601
602 static void
603 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
604 {
605 if (flags & NVMM_X64_STATE_SEGS) {
606 vmcb->ctrl.vmcb_clean &=
607 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
608 }
609 if (flags & NVMM_X64_STATE_CRS) {
610 vmcb->ctrl.vmcb_clean &=
611 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
612 VMCB_CTRL_VMCB_CLEAN_TPR);
613 }
614 if (flags & NVMM_X64_STATE_DRS) {
615 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
616 }
617 if (flags & NVMM_X64_STATE_MSRS) {
618 /* CR for EFER, NP for PAT. */
619 vmcb->ctrl.vmcb_clean &=
620 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
621 }
622 }
623
624 static inline void
625 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
626 {
627 vmcb->ctrl.vmcb_clean &= ~flags;
628 }
629
630 static inline void
631 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
632 {
633 vmcb->ctrl.vmcb_clean = 0;
634 }
635
636 #define SVM_EVENT_TYPE_HW_INT 0
637 #define SVM_EVENT_TYPE_NMI 2
638 #define SVM_EVENT_TYPE_EXC 3
639 #define SVM_EVENT_TYPE_SW_INT 4
640
641 static void
642 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
643 {
644 struct svm_cpudata *cpudata = vcpu->cpudata;
645 struct vmcb *vmcb = cpudata->vmcb;
646
647 if (nmi) {
648 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
649 cpudata->nmi_window_exit = true;
650 } else {
651 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
652 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
653 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
654 cpudata->int_window_exit = true;
655 }
656
657 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
658 }
659
660 static void
661 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
662 {
663 struct svm_cpudata *cpudata = vcpu->cpudata;
664 struct vmcb *vmcb = cpudata->vmcb;
665
666 if (nmi) {
667 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
668 cpudata->nmi_window_exit = false;
669 } else {
670 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
671 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
672 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
673 cpudata->int_window_exit = false;
674 }
675
676 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
677 }
678
679 static inline int
680 svm_event_has_error(uint8_t vector)
681 {
682 switch (vector) {
683 case 8: /* #DF */
684 case 10: /* #TS */
685 case 11: /* #NP */
686 case 12: /* #SS */
687 case 13: /* #GP */
688 case 14: /* #PF */
689 case 17: /* #AC */
690 case 30: /* #SX */
691 return 1;
692 default:
693 return 0;
694 }
695 }
696
697 static int
698 svm_vcpu_inject(struct nvmm_cpu *vcpu)
699 {
700 struct nvmm_comm_page *comm = vcpu->comm;
701 struct svm_cpudata *cpudata = vcpu->cpudata;
702 struct vmcb *vmcb = cpudata->vmcb;
703 u_int evtype;
704 uint8_t vector;
705 uint64_t error;
706 int type = 0, err = 0;
707
708 evtype = comm->event.type;
709 vector = comm->event.vector;
710 error = comm->event.u.excp.error;
711 __insn_barrier();
712
713 switch (evtype) {
714 case NVMM_VCPU_EVENT_EXCP:
715 type = SVM_EVENT_TYPE_EXC;
716 if (vector == 2 || vector >= 32)
717 return EINVAL;
718 if (vector == 3 || vector == 0)
719 return EINVAL;
720 err = svm_event_has_error(vector);
721 break;
722 case NVMM_VCPU_EVENT_INTR:
723 type = SVM_EVENT_TYPE_HW_INT;
724 if (vector == 2) {
725 type = SVM_EVENT_TYPE_NMI;
726 svm_event_waitexit_enable(vcpu, true);
727 }
728 err = 0;
729 break;
730 default:
731 return EINVAL;
732 }
733
734 vmcb->ctrl.eventinj =
735 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
736 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
737 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
738 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
739 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
740
741 cpudata->evt_pending = true;
742
743 return 0;
744 }
745
746 static void
747 svm_inject_ud(struct nvmm_cpu *vcpu)
748 {
749 struct nvmm_comm_page *comm = vcpu->comm;
750 int ret __diagused;
751
752 comm->event.type = NVMM_VCPU_EVENT_EXCP;
753 comm->event.vector = 6;
754 comm->event.u.excp.error = 0;
755
756 ret = svm_vcpu_inject(vcpu);
757 KASSERT(ret == 0);
758 }
759
760 static void
761 svm_inject_gp(struct nvmm_cpu *vcpu)
762 {
763 struct nvmm_comm_page *comm = vcpu->comm;
764 int ret __diagused;
765
766 comm->event.type = NVMM_VCPU_EVENT_EXCP;
767 comm->event.vector = 13;
768 comm->event.u.excp.error = 0;
769
770 ret = svm_vcpu_inject(vcpu);
771 KASSERT(ret == 0);
772 }
773
774 static inline int
775 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
776 {
777 if (__predict_true(!vcpu->comm->event_commit)) {
778 return 0;
779 }
780 vcpu->comm->event_commit = false;
781 return svm_vcpu_inject(vcpu);
782 }
783
784 static inline void
785 svm_inkernel_advance(struct vmcb *vmcb)
786 {
787 /*
788 * Maybe we should also apply single-stepping and debug exceptions.
789 * Matters for guest-ring3, because it can execute 'cpuid' under a
790 * debugger.
791 */
792 vmcb->state.rip = vmcb->ctrl.nrip;
793 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
794 }
795
796 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
797
798 static void
799 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
800 {
801 struct svm_cpudata *cpudata = vcpu->cpudata;
802 uint64_t cr4;
803
804 switch (eax) {
805 case 0x00000001:
806 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
807
808 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
809 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
810 CPUID_LOCAL_APIC_ID);
811
812 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
813 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
814
815 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
816
817 /* CPUID2_OSXSAVE depends on CR4. */
818 cr4 = cpudata->vmcb->state.cr4;
819 if (!(cr4 & CR4_OSXSAVE)) {
820 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
821 }
822 break;
823 case 0x00000002: /* Empty */
824 case 0x00000003: /* Empty */
825 case 0x00000004: /* Empty */
826 case 0x00000005: /* Monitor/MWait */
827 case 0x00000006: /* Power Management Related Features */
828 cpudata->vmcb->state.rax = 0;
829 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
830 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
831 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
832 break;
833 case 0x00000007: /* Structured Extended Features */
834 cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
835 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
836 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
837 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
838 break;
839 case 0x00000008: /* Empty */
840 case 0x00000009: /* Empty */
841 case 0x0000000A: /* Empty */
842 case 0x0000000B: /* Empty */
843 case 0x0000000C: /* Empty */
844 cpudata->vmcb->state.rax = 0;
845 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
846 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
847 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
848 break;
849 case 0x0000000D: /* Processor Extended State Enumeration */
850 if (svm_xcr0_mask == 0) {
851 break;
852 }
853 switch (ecx) {
854 case 0:
855 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
856 if (cpudata->gxcr0 & XCR0_SSE) {
857 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
858 } else {
859 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
860 }
861 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
862 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
863 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
864 break;
865 case 1:
866 cpudata->vmcb->state.rax &=
867 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
868 CPUID_PES1_XGETBV);
869 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
870 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
871 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
872 break;
873 default:
874 cpudata->vmcb->state.rax = 0;
875 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
876 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
877 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
878 break;
879 }
880 break;
881
882 case 0x40000000: /* Hypervisor Information */
883 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
884 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
885 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
886 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
887 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
888 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
889 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
890 break;
891
892 case 0x80000001:
893 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
894 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
895 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
896 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
897 break;
898 default:
899 break;
900 }
901 }
902
903 static void
904 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
905 {
906 exit->u.insn.npc = vmcb->ctrl.nrip;
907 exit->reason = reason;
908 }
909
910 static void
911 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
912 struct nvmm_vcpu_exit *exit)
913 {
914 struct svm_cpudata *cpudata = vcpu->cpudata;
915 struct nvmm_vcpu_conf_cpuid *cpuid;
916 uint64_t eax, ecx;
917 u_int descs[4];
918 size_t i;
919
920 eax = cpudata->vmcb->state.rax;
921 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
922 x86_cpuid2(eax, ecx, descs);
923
924 cpudata->vmcb->state.rax = descs[0];
925 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
926 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
927 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
928
929 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
930
931 for (i = 0; i < SVM_NCPUIDS; i++) {
932 if (!cpudata->cpuidpresent[i]) {
933 continue;
934 }
935 cpuid = &cpudata->cpuid[i];
936 if (cpuid->leaf != eax) {
937 continue;
938 }
939
940 if (cpuid->exit) {
941 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
942 return;
943 }
944 KASSERT(cpuid->mask);
945
946 /* del */
947 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
948 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
949 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
950 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
951
952 /* set */
953 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
954 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
955 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
956 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
957
958 break;
959 }
960
961 svm_inkernel_advance(cpudata->vmcb);
962 exit->reason = NVMM_VCPU_EXIT_NONE;
963 }
964
965 static void
966 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
967 struct nvmm_vcpu_exit *exit)
968 {
969 struct svm_cpudata *cpudata = vcpu->cpudata;
970 struct vmcb *vmcb = cpudata->vmcb;
971
972 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
973 svm_event_waitexit_disable(vcpu, false);
974 }
975
976 svm_inkernel_advance(cpudata->vmcb);
977 exit->reason = NVMM_VCPU_EXIT_HALTED;
978 }
979
980 #define SVM_EXIT_IO_PORT __BITS(31,16)
981 #define SVM_EXIT_IO_SEG __BITS(12,10)
982 #define SVM_EXIT_IO_A64 __BIT(9)
983 #define SVM_EXIT_IO_A32 __BIT(8)
984 #define SVM_EXIT_IO_A16 __BIT(7)
985 #define SVM_EXIT_IO_SZ32 __BIT(6)
986 #define SVM_EXIT_IO_SZ16 __BIT(5)
987 #define SVM_EXIT_IO_SZ8 __BIT(4)
988 #define SVM_EXIT_IO_REP __BIT(3)
989 #define SVM_EXIT_IO_STR __BIT(2)
990 #define SVM_EXIT_IO_IN __BIT(0)
991
992 static void
993 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
994 struct nvmm_vcpu_exit *exit)
995 {
996 struct svm_cpudata *cpudata = vcpu->cpudata;
997 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
998 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
999
1000 exit->reason = NVMM_VCPU_EXIT_IO;
1001
1002 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1003 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1004
1005 if (svm_decode_assist) {
1006 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1007 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1008 } else {
1009 exit->u.io.seg = -1;
1010 }
1011
1012 if (info & SVM_EXIT_IO_A64) {
1013 exit->u.io.address_size = 8;
1014 } else if (info & SVM_EXIT_IO_A32) {
1015 exit->u.io.address_size = 4;
1016 } else if (info & SVM_EXIT_IO_A16) {
1017 exit->u.io.address_size = 2;
1018 }
1019
1020 if (info & SVM_EXIT_IO_SZ32) {
1021 exit->u.io.operand_size = 4;
1022 } else if (info & SVM_EXIT_IO_SZ16) {
1023 exit->u.io.operand_size = 2;
1024 } else if (info & SVM_EXIT_IO_SZ8) {
1025 exit->u.io.operand_size = 1;
1026 }
1027
1028 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1029 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1030 exit->u.io.npc = nextpc;
1031
1032 svm_vcpu_state_provide(vcpu,
1033 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1034 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1035 }
1036
1037 static const uint64_t msr_ignore_list[] = {
1038 0xc0010055, /* MSR_CMPHALT */
1039 MSR_DE_CFG,
1040 MSR_IC_CFG,
1041 MSR_UCODE_AMD_PATCHLEVEL
1042 };
1043
1044 static bool
1045 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1046 struct nvmm_vcpu_exit *exit)
1047 {
1048 struct svm_cpudata *cpudata = vcpu->cpudata;
1049 struct vmcb *vmcb = cpudata->vmcb;
1050 uint64_t val;
1051 size_t i;
1052
1053 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1054 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1055 val = NB_CFG_INITAPICCPUIDLO;
1056 vmcb->state.rax = (val & 0xFFFFFFFF);
1057 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1058 goto handled;
1059 }
1060 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1061 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1062 continue;
1063 val = 0;
1064 vmcb->state.rax = (val & 0xFFFFFFFF);
1065 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1066 goto handled;
1067 }
1068 } else {
1069 if (exit->u.wrmsr.msr == MSR_EFER) {
1070 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1071 goto error;
1072 }
1073 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1074 EFER_TLB_FLUSH) {
1075 cpudata->gtlb_want_flush = true;
1076 }
1077 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1078 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1079 goto handled;
1080 }
1081 if (exit->u.wrmsr.msr == MSR_TSC) {
1082 cpudata->gtsc = exit->u.wrmsr.val;
1083 cpudata->gtsc_want_update = true;
1084 goto handled;
1085 }
1086 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1087 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1088 continue;
1089 goto handled;
1090 }
1091 }
1092
1093 return false;
1094
1095 handled:
1096 svm_inkernel_advance(cpudata->vmcb);
1097 return true;
1098
1099 error:
1100 svm_inject_gp(vcpu);
1101 return true;
1102 }
1103
1104 static inline void
1105 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1106 struct nvmm_vcpu_exit *exit)
1107 {
1108 struct svm_cpudata *cpudata = vcpu->cpudata;
1109
1110 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1111 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1112 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1113
1114 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1115 exit->reason = NVMM_VCPU_EXIT_NONE;
1116 return;
1117 }
1118
1119 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1120 }
1121
1122 static inline void
1123 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1124 struct nvmm_vcpu_exit *exit)
1125 {
1126 struct svm_cpudata *cpudata = vcpu->cpudata;
1127 uint64_t rdx, rax;
1128
1129 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1130 rax = cpudata->vmcb->state.rax;
1131
1132 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1133 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1134 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1135 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1136
1137 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1138 exit->reason = NVMM_VCPU_EXIT_NONE;
1139 return;
1140 }
1141
1142 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1143 }
1144
1145 static void
1146 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1147 struct nvmm_vcpu_exit *exit)
1148 {
1149 struct svm_cpudata *cpudata = vcpu->cpudata;
1150 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1151
1152 if (info == 0) {
1153 svm_exit_rdmsr(mach, vcpu, exit);
1154 } else {
1155 svm_exit_wrmsr(mach, vcpu, exit);
1156 }
1157 }
1158
1159 static void
1160 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1161 struct nvmm_vcpu_exit *exit)
1162 {
1163 struct svm_cpudata *cpudata = vcpu->cpudata;
1164 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1165
1166 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1167 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1168 exit->u.mem.prot = PROT_WRITE;
1169 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1170 exit->u.mem.prot = PROT_EXEC;
1171 else
1172 exit->u.mem.prot = PROT_READ;
1173 exit->u.mem.gpa = gpa;
1174 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1175 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1176 sizeof(exit->u.mem.inst_bytes));
1177
1178 svm_vcpu_state_provide(vcpu,
1179 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1180 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1181 }
1182
1183 static void
1184 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1185 struct nvmm_vcpu_exit *exit)
1186 {
1187 struct svm_cpudata *cpudata = vcpu->cpudata;
1188 struct vmcb *vmcb = cpudata->vmcb;
1189 uint64_t val;
1190
1191 exit->reason = NVMM_VCPU_EXIT_NONE;
1192
1193 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1194 (vmcb->state.rax & 0xFFFFFFFF);
1195
1196 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1197 goto error;
1198 } else if (__predict_false(vmcb->state.cpl != 0)) {
1199 goto error;
1200 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1201 goto error;
1202 } else if (__predict_false((val & XCR0_X87) == 0)) {
1203 goto error;
1204 }
1205
1206 cpudata->gxcr0 = val;
1207 if (svm_xcr0_mask != 0) {
1208 wrxcr(0, cpudata->gxcr0);
1209 }
1210
1211 svm_inkernel_advance(cpudata->vmcb);
1212 return;
1213
1214 error:
1215 svm_inject_gp(vcpu);
1216 }
1217
1218 static void
1219 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1220 {
1221 exit->u.inv.hwcode = code;
1222 exit->reason = NVMM_VCPU_EXIT_INVALID;
1223 }
1224
1225 /* -------------------------------------------------------------------------- */
1226
1227 static void
1228 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1229 {
1230 struct svm_cpudata *cpudata = vcpu->cpudata;
1231
1232 fpu_kern_enter();
1233 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1234
1235 if (svm_xcr0_mask != 0) {
1236 cpudata->hxcr0 = rdxcr(0);
1237 wrxcr(0, cpudata->gxcr0);
1238 }
1239 }
1240
1241 static void
1242 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1243 {
1244 struct svm_cpudata *cpudata = vcpu->cpudata;
1245
1246 if (svm_xcr0_mask != 0) {
1247 cpudata->gxcr0 = rdxcr(0);
1248 wrxcr(0, cpudata->hxcr0);
1249 }
1250
1251 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1252 fpu_kern_leave();
1253 }
1254
1255 static void
1256 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1257 {
1258 struct svm_cpudata *cpudata = vcpu->cpudata;
1259
1260 x86_dbregs_save(curlwp);
1261
1262 ldr7(0);
1263
1264 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1265 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1266 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1267 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1268 }
1269
1270 static void
1271 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1272 {
1273 struct svm_cpudata *cpudata = vcpu->cpudata;
1274
1275 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1276 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1277 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1278 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1279
1280 x86_dbregs_restore(curlwp);
1281 }
1282
1283 static void
1284 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1285 {
1286 struct svm_cpudata *cpudata = vcpu->cpudata;
1287
1288 cpudata->fsbase = rdmsr(MSR_FSBASE);
1289 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1290 }
1291
1292 static void
1293 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1294 {
1295 struct svm_cpudata *cpudata = vcpu->cpudata;
1296
1297 wrmsr(MSR_STAR, cpudata->star);
1298 wrmsr(MSR_LSTAR, cpudata->lstar);
1299 wrmsr(MSR_CSTAR, cpudata->cstar);
1300 wrmsr(MSR_SFMASK, cpudata->sfmask);
1301 wrmsr(MSR_FSBASE, cpudata->fsbase);
1302 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1303 }
1304
1305 /* -------------------------------------------------------------------------- */
1306
1307 static inline void
1308 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1309 {
1310 struct svm_cpudata *cpudata = vcpu->cpudata;
1311
1312 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1313 cpudata->gtlb_want_flush = true;
1314 }
1315 }
1316
1317 static inline void
1318 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1319 {
1320 /*
1321 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1322 * executing on this hCPU and the hTLB already got flushed, or it
1323 * was executing on another hCPU in which case the catchup is done
1324 * in svm_gtlb_catchup().
1325 */
1326 }
1327
1328 static inline uint64_t
1329 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1330 {
1331 struct vmcb *vmcb = cpudata->vmcb;
1332 uint64_t machgen;
1333
1334 machgen = machdata->mach_htlb_gen;
1335 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1336 return machgen;
1337 }
1338
1339 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1340 return machgen;
1341 }
1342
1343 static inline void
1344 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1345 {
1346 struct vmcb *vmcb = cpudata->vmcb;
1347
1348 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1349 cpudata->vcpu_htlb_gen = machgen;
1350 }
1351 }
1352
1353 static inline void
1354 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1355 {
1356 cpudata->evt_pending = false;
1357
1358 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1359 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1360 cpudata->evt_pending = true;
1361 }
1362 }
1363
1364 static int
1365 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1366 struct nvmm_vcpu_exit *exit)
1367 {
1368 struct nvmm_comm_page *comm = vcpu->comm;
1369 struct svm_machdata *machdata = mach->machdata;
1370 struct svm_cpudata *cpudata = vcpu->cpudata;
1371 struct vmcb *vmcb = cpudata->vmcb;
1372 uint64_t machgen;
1373 int hcpu;
1374
1375 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1376 return EINVAL;
1377 }
1378 svm_vcpu_state_commit(vcpu);
1379 comm->state_cached = 0;
1380
1381 kpreempt_disable();
1382 hcpu = cpu_number();
1383
1384 svm_gtlb_catchup(vcpu, hcpu);
1385 svm_htlb_catchup(vcpu, hcpu);
1386
1387 if (vcpu->hcpu_last != hcpu) {
1388 svm_vmcb_cache_flush_all(vmcb);
1389 cpudata->gtsc_want_update = true;
1390 }
1391
1392 svm_vcpu_guest_dbregs_enter(vcpu);
1393 svm_vcpu_guest_misc_enter(vcpu);
1394 svm_vcpu_guest_fpu_enter(vcpu);
1395
1396 while (1) {
1397 if (cpudata->gtlb_want_flush) {
1398 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1399 } else {
1400 vmcb->ctrl.tlb_ctrl = 0;
1401 }
1402
1403 if (__predict_false(cpudata->gtsc_want_update)) {
1404 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1405 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1406 }
1407
1408 svm_clgi();
1409 machgen = svm_htlb_flush(machdata, cpudata);
1410 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1411 svm_htlb_flush_ack(cpudata, machgen);
1412 svm_stgi();
1413
1414 svm_vmcb_cache_default(vmcb);
1415
1416 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1417 cpudata->gtlb_want_flush = false;
1418 cpudata->gtsc_want_update = false;
1419 vcpu->hcpu_last = hcpu;
1420 }
1421 svm_exit_evt(cpudata, vmcb);
1422
1423 switch (vmcb->ctrl.exitcode) {
1424 case VMCB_EXITCODE_INTR:
1425 case VMCB_EXITCODE_NMI:
1426 exit->reason = NVMM_VCPU_EXIT_NONE;
1427 break;
1428 case VMCB_EXITCODE_VINTR:
1429 svm_event_waitexit_disable(vcpu, false);
1430 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1431 break;
1432 case VMCB_EXITCODE_IRET:
1433 svm_event_waitexit_disable(vcpu, true);
1434 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1435 break;
1436 case VMCB_EXITCODE_CPUID:
1437 svm_exit_cpuid(mach, vcpu, exit);
1438 break;
1439 case VMCB_EXITCODE_HLT:
1440 svm_exit_hlt(mach, vcpu, exit);
1441 break;
1442 case VMCB_EXITCODE_IOIO:
1443 svm_exit_io(mach, vcpu, exit);
1444 break;
1445 case VMCB_EXITCODE_MSR:
1446 svm_exit_msr(mach, vcpu, exit);
1447 break;
1448 case VMCB_EXITCODE_SHUTDOWN:
1449 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1450 break;
1451 case VMCB_EXITCODE_RDPMC:
1452 case VMCB_EXITCODE_RSM:
1453 case VMCB_EXITCODE_INVLPGA:
1454 case VMCB_EXITCODE_VMRUN:
1455 case VMCB_EXITCODE_VMMCALL:
1456 case VMCB_EXITCODE_VMLOAD:
1457 case VMCB_EXITCODE_VMSAVE:
1458 case VMCB_EXITCODE_STGI:
1459 case VMCB_EXITCODE_CLGI:
1460 case VMCB_EXITCODE_SKINIT:
1461 case VMCB_EXITCODE_RDTSCP:
1462 case VMCB_EXITCODE_RDPRU:
1463 case VMCB_EXITCODE_INVLPGB:
1464 case VMCB_EXITCODE_INVPCID:
1465 case VMCB_EXITCODE_MCOMMIT:
1466 case VMCB_EXITCODE_TLBSYNC:
1467 svm_inject_ud(vcpu);
1468 exit->reason = NVMM_VCPU_EXIT_NONE;
1469 break;
1470 case VMCB_EXITCODE_MONITOR:
1471 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1472 break;
1473 case VMCB_EXITCODE_MWAIT:
1474 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1475 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1476 break;
1477 case VMCB_EXITCODE_XSETBV:
1478 svm_exit_xsetbv(mach, vcpu, exit);
1479 break;
1480 case VMCB_EXITCODE_NPF:
1481 svm_exit_npf(mach, vcpu, exit);
1482 break;
1483 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1484 default:
1485 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1486 break;
1487 }
1488
1489 /* If no reason to return to userland, keep rolling. */
1490 if (nvmm_return_needed()) {
1491 break;
1492 }
1493 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1494 break;
1495 }
1496 }
1497
1498 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1499
1500 svm_vcpu_guest_fpu_leave(vcpu);
1501 svm_vcpu_guest_misc_leave(vcpu);
1502 svm_vcpu_guest_dbregs_leave(vcpu);
1503
1504 kpreempt_enable();
1505
1506 exit->exitstate.rflags = vmcb->state.rflags;
1507 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1508 exit->exitstate.int_shadow =
1509 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1510 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1511 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1512 exit->exitstate.evt_pending = cpudata->evt_pending;
1513
1514 return 0;
1515 }
1516
1517 /* -------------------------------------------------------------------------- */
1518
1519 static int
1520 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1521 {
1522 struct pglist pglist;
1523 paddr_t _pa;
1524 vaddr_t _va;
1525 size_t i;
1526 int ret;
1527
1528 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1529 &pglist, 1, 0);
1530 if (ret != 0)
1531 return ENOMEM;
1532 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1533 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1534 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1535 if (_va == 0)
1536 goto error;
1537
1538 for (i = 0; i < npages; i++) {
1539 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1540 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1541 }
1542 pmap_update(pmap_kernel());
1543
1544 memset((void *)_va, 0, npages * PAGE_SIZE);
1545
1546 *pa = _pa;
1547 *va = _va;
1548 return 0;
1549
1550 error:
1551 for (i = 0; i < npages; i++) {
1552 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1553 }
1554 return ENOMEM;
1555 }
1556
1557 static void
1558 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1559 {
1560 size_t i;
1561
1562 pmap_kremove(va, npages * PAGE_SIZE);
1563 pmap_update(pmap_kernel());
1564 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1565 for (i = 0; i < npages; i++) {
1566 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1567 }
1568 }
1569
1570 /* -------------------------------------------------------------------------- */
1571
1572 #define SVM_MSRBM_READ __BIT(0)
1573 #define SVM_MSRBM_WRITE __BIT(1)
1574
1575 static void
1576 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1577 {
1578 uint64_t byte;
1579 uint8_t bitoff;
1580
1581 if (msr < 0x00002000) {
1582 /* Range 1 */
1583 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1584 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1585 /* Range 2 */
1586 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1587 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1588 /* Range 3 */
1589 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1590 } else {
1591 panic("%s: wrong range", __func__);
1592 }
1593
1594 bitoff = (msr & 0x3) << 1;
1595
1596 if (read) {
1597 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1598 }
1599 if (write) {
1600 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1601 }
1602 }
1603
1604 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1605 #define SVM_SEG_ATTRIB_S __BIT(4)
1606 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1607 #define SVM_SEG_ATTRIB_P __BIT(7)
1608 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1609 #define SVM_SEG_ATTRIB_L __BIT(9)
1610 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1611 #define SVM_SEG_ATTRIB_G __BIT(11)
1612
1613 static void
1614 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1615 struct vmcb_segment *vseg)
1616 {
1617 vseg->selector = seg->selector;
1618 vseg->attrib =
1619 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1620 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1621 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1622 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1623 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1624 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1625 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1626 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1627 vseg->limit = seg->limit;
1628 vseg->base = seg->base;
1629 }
1630
1631 static void
1632 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1633 {
1634 seg->selector = vseg->selector;
1635 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1636 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1637 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1638 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1639 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1640 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1641 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1642 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1643 seg->limit = vseg->limit;
1644 seg->base = vseg->base;
1645 }
1646
1647 static inline bool
1648 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1649 uint64_t flags)
1650 {
1651 if (flags & NVMM_X64_STATE_CRS) {
1652 if ((vmcb->state.cr0 ^
1653 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1654 return true;
1655 }
1656 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1657 return true;
1658 }
1659 if ((vmcb->state.cr4 ^
1660 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1661 return true;
1662 }
1663 }
1664
1665 if (flags & NVMM_X64_STATE_MSRS) {
1666 if ((vmcb->state.efer ^
1667 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1668 return true;
1669 }
1670 }
1671
1672 return false;
1673 }
1674
1675 static void
1676 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1677 {
1678 struct nvmm_comm_page *comm = vcpu->comm;
1679 const struct nvmm_x64_state *state = &comm->state;
1680 struct svm_cpudata *cpudata = vcpu->cpudata;
1681 struct vmcb *vmcb = cpudata->vmcb;
1682 struct fxsave *fpustate;
1683 uint64_t flags;
1684
1685 flags = comm->state_wanted;
1686
1687 if (svm_state_tlb_flush(vmcb, state, flags)) {
1688 cpudata->gtlb_want_flush = true;
1689 }
1690
1691 if (flags & NVMM_X64_STATE_SEGS) {
1692 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1693 &vmcb->state.cs);
1694 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1695 &vmcb->state.ds);
1696 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1697 &vmcb->state.es);
1698 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1699 &vmcb->state.fs);
1700 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1701 &vmcb->state.gs);
1702 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1703 &vmcb->state.ss);
1704 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1705 &vmcb->state.gdt);
1706 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1707 &vmcb->state.idt);
1708 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1709 &vmcb->state.ldt);
1710 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1711 &vmcb->state.tr);
1712
1713 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1714 }
1715
1716 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1717 if (flags & NVMM_X64_STATE_GPRS) {
1718 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1719
1720 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1721 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1722 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1723 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1724 }
1725
1726 if (flags & NVMM_X64_STATE_CRS) {
1727 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1728 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1729 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1730 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1731
1732 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1733 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1734 VMCB_CTRL_V_TPR);
1735
1736 if (svm_xcr0_mask != 0) {
1737 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1738 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1739 cpudata->gxcr0 &= svm_xcr0_mask;
1740 cpudata->gxcr0 |= XCR0_X87;
1741 }
1742 }
1743
1744 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1745 if (flags & NVMM_X64_STATE_DRS) {
1746 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1747
1748 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1749 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1750 }
1751
1752 if (flags & NVMM_X64_STATE_MSRS) {
1753 /*
1754 * EFER_SVME is mandatory.
1755 */
1756 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1757 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1758 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1759 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1760 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1761 vmcb->state.kernelgsbase =
1762 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1763 vmcb->state.sysenter_cs =
1764 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1765 vmcb->state.sysenter_esp =
1766 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1767 vmcb->state.sysenter_eip =
1768 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1769 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1770
1771 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1772 cpudata->gtsc_want_update = true;
1773 }
1774
1775 if (flags & NVMM_X64_STATE_INTR) {
1776 if (state->intr.int_shadow) {
1777 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1778 } else {
1779 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1780 }
1781
1782 if (state->intr.int_window_exiting) {
1783 svm_event_waitexit_enable(vcpu, false);
1784 } else {
1785 svm_event_waitexit_disable(vcpu, false);
1786 }
1787
1788 if (state->intr.nmi_window_exiting) {
1789 svm_event_waitexit_enable(vcpu, true);
1790 } else {
1791 svm_event_waitexit_disable(vcpu, true);
1792 }
1793 }
1794
1795 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1796 if (flags & NVMM_X64_STATE_FPU) {
1797 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1798 sizeof(state->fpu));
1799
1800 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1801 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1802 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1803
1804 if (svm_xcr0_mask != 0) {
1805 /* Reset XSTATE_BV, to force a reload. */
1806 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1807 }
1808 }
1809
1810 svm_vmcb_cache_update(vmcb, flags);
1811
1812 comm->state_wanted = 0;
1813 comm->state_cached |= flags;
1814 }
1815
1816 static void
1817 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1818 {
1819 struct nvmm_comm_page *comm = vcpu->comm;
1820 struct nvmm_x64_state *state = &comm->state;
1821 struct svm_cpudata *cpudata = vcpu->cpudata;
1822 struct vmcb *vmcb = cpudata->vmcb;
1823 uint64_t flags;
1824
1825 flags = comm->state_wanted;
1826
1827 if (flags & NVMM_X64_STATE_SEGS) {
1828 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1829 &vmcb->state.cs);
1830 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1831 &vmcb->state.ds);
1832 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1833 &vmcb->state.es);
1834 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1835 &vmcb->state.fs);
1836 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1837 &vmcb->state.gs);
1838 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1839 &vmcb->state.ss);
1840 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1841 &vmcb->state.gdt);
1842 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1843 &vmcb->state.idt);
1844 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1845 &vmcb->state.ldt);
1846 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1847 &vmcb->state.tr);
1848
1849 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1850 }
1851
1852 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1853 if (flags & NVMM_X64_STATE_GPRS) {
1854 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1855
1856 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1857 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1858 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1859 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1860 }
1861
1862 if (flags & NVMM_X64_STATE_CRS) {
1863 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1864 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1865 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1866 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1867 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1868 VMCB_CTRL_V_TPR);
1869 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1870 }
1871
1872 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1873 if (flags & NVMM_X64_STATE_DRS) {
1874 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1875
1876 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1877 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1878 }
1879
1880 if (flags & NVMM_X64_STATE_MSRS) {
1881 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1882 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1883 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1884 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1885 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1886 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1887 vmcb->state.kernelgsbase;
1888 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1889 vmcb->state.sysenter_cs;
1890 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1891 vmcb->state.sysenter_esp;
1892 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1893 vmcb->state.sysenter_eip;
1894 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1895 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1896
1897 /* Hide SVME. */
1898 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1899 }
1900
1901 if (flags & NVMM_X64_STATE_INTR) {
1902 state->intr.int_shadow =
1903 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1904 state->intr.int_window_exiting = cpudata->int_window_exit;
1905 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1906 state->intr.evt_pending = cpudata->evt_pending;
1907 }
1908
1909 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1910 if (flags & NVMM_X64_STATE_FPU) {
1911 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1912 sizeof(state->fpu));
1913 }
1914
1915 comm->state_wanted = 0;
1916 comm->state_cached |= flags;
1917 }
1918
1919 static void
1920 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1921 {
1922 vcpu->comm->state_wanted = flags;
1923 svm_vcpu_getstate(vcpu);
1924 }
1925
1926 static void
1927 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1928 {
1929 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1930 vcpu->comm->state_commit = 0;
1931 svm_vcpu_setstate(vcpu);
1932 }
1933
1934 /* -------------------------------------------------------------------------- */
1935
1936 static void
1937 svm_asid_alloc(struct nvmm_cpu *vcpu)
1938 {
1939 struct svm_cpudata *cpudata = vcpu->cpudata;
1940 struct vmcb *vmcb = cpudata->vmcb;
1941 size_t i, oct, bit;
1942
1943 mutex_enter(&svm_asidlock);
1944
1945 for (i = 0; i < svm_maxasid; i++) {
1946 oct = i / 8;
1947 bit = i % 8;
1948
1949 if (svm_asidmap[oct] & __BIT(bit)) {
1950 continue;
1951 }
1952
1953 svm_asidmap[oct] |= __BIT(bit);
1954 vmcb->ctrl.guest_asid = i;
1955 mutex_exit(&svm_asidlock);
1956 return;
1957 }
1958
1959 /*
1960 * No free ASID. Use the last one, which is shared and requires
1961 * special TLB handling.
1962 */
1963 cpudata->shared_asid = true;
1964 vmcb->ctrl.guest_asid = svm_maxasid - 1;
1965 mutex_exit(&svm_asidlock);
1966 }
1967
1968 static void
1969 svm_asid_free(struct nvmm_cpu *vcpu)
1970 {
1971 struct svm_cpudata *cpudata = vcpu->cpudata;
1972 struct vmcb *vmcb = cpudata->vmcb;
1973 size_t oct, bit;
1974
1975 if (cpudata->shared_asid) {
1976 return;
1977 }
1978
1979 oct = vmcb->ctrl.guest_asid / 8;
1980 bit = vmcb->ctrl.guest_asid % 8;
1981
1982 mutex_enter(&svm_asidlock);
1983 svm_asidmap[oct] &= ~__BIT(bit);
1984 mutex_exit(&svm_asidlock);
1985 }
1986
1987 static void
1988 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1989 {
1990 struct svm_cpudata *cpudata = vcpu->cpudata;
1991 struct vmcb *vmcb = cpudata->vmcb;
1992
1993 /* Allow reads/writes of Control Registers. */
1994 vmcb->ctrl.intercept_cr = 0;
1995
1996 /* Allow reads/writes of Debug Registers. */
1997 vmcb->ctrl.intercept_dr = 0;
1998
1999 /* Allow exceptions 0 to 31. */
2000 vmcb->ctrl.intercept_vec = 0;
2001
2002 /*
2003 * Allow:
2004 * - SMI [smm interrupts]
2005 * - VINTR [virtual interrupts]
2006 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2007 * - RIDTR [reads of IDTR]
2008 * - RGDTR [reads of GDTR]
2009 * - RLDTR [reads of LDTR]
2010 * - RTR [reads of TR]
2011 * - WIDTR [writes of IDTR]
2012 * - WGDTR [writes of GDTR]
2013 * - WLDTR [writes of LDTR]
2014 * - WTR [writes of TR]
2015 * - RDTSC [rdtsc instruction]
2016 * - PUSHF [pushf instruction]
2017 * - POPF [popf instruction]
2018 * - IRET [iret instruction]
2019 * - INTN [int $n instructions]
2020 * - INVD [invd instruction]
2021 * - PAUSE [pause instruction]
2022 * - INVLPG [invplg instruction]
2023 * - TASKSW [task switches]
2024 *
2025 * Intercept the rest below.
2026 */
2027 vmcb->ctrl.intercept_misc1 =
2028 VMCB_CTRL_INTERCEPT_INTR |
2029 VMCB_CTRL_INTERCEPT_NMI |
2030 VMCB_CTRL_INTERCEPT_INIT |
2031 VMCB_CTRL_INTERCEPT_RDPMC |
2032 VMCB_CTRL_INTERCEPT_CPUID |
2033 VMCB_CTRL_INTERCEPT_RSM |
2034 VMCB_CTRL_INTERCEPT_HLT |
2035 VMCB_CTRL_INTERCEPT_INVLPGA |
2036 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2037 VMCB_CTRL_INTERCEPT_MSR_PROT |
2038 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2039 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2040
2041 /*
2042 * Allow:
2043 * - ICEBP [icebp instruction]
2044 * - WBINVD [wbinvd instruction]
2045 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2046 *
2047 * Intercept the rest below.
2048 */
2049 vmcb->ctrl.intercept_misc2 =
2050 VMCB_CTRL_INTERCEPT_VMRUN |
2051 VMCB_CTRL_INTERCEPT_VMMCALL |
2052 VMCB_CTRL_INTERCEPT_VMLOAD |
2053 VMCB_CTRL_INTERCEPT_VMSAVE |
2054 VMCB_CTRL_INTERCEPT_STGI |
2055 VMCB_CTRL_INTERCEPT_CLGI |
2056 VMCB_CTRL_INTERCEPT_SKINIT |
2057 VMCB_CTRL_INTERCEPT_RDTSCP |
2058 VMCB_CTRL_INTERCEPT_MONITOR |
2059 VMCB_CTRL_INTERCEPT_MWAIT |
2060 VMCB_CTRL_INTERCEPT_XSETBV |
2061 VMCB_CTRL_INTERCEPT_RDPRU;
2062
2063 /*
2064 * Intercept everything.
2065 */
2066 vmcb->ctrl.intercept_misc3 =
2067 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2068 VMCB_CTRL_INTERCEPT_PCID |
2069 VMCB_CTRL_INTERCEPT_MCOMMIT |
2070 VMCB_CTRL_INTERCEPT_TLBSYNC;
2071
2072 /* Intercept all I/O accesses. */
2073 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2074 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2075
2076 /* Allow direct access to certain MSRs. */
2077 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2078 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2079 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2080 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2081 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2082 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2083 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2084 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2085 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2086 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2087 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2088 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2089 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2090 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2091 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2092
2093 /* Generate ASID. */
2094 svm_asid_alloc(vcpu);
2095
2096 /* Virtual TPR. */
2097 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2098
2099 /* Enable Nested Paging. */
2100 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2101 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2102
2103 /* Init XSAVE header. */
2104 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2105 cpudata->gfpu.xsh_xcomp_bv = 0;
2106
2107 /* These MSRs are static. */
2108 cpudata->star = rdmsr(MSR_STAR);
2109 cpudata->lstar = rdmsr(MSR_LSTAR);
2110 cpudata->cstar = rdmsr(MSR_CSTAR);
2111 cpudata->sfmask = rdmsr(MSR_SFMASK);
2112
2113 /* Install the RESET state. */
2114 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2115 sizeof(nvmm_x86_reset_state));
2116 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2117 vcpu->comm->state_cached = 0;
2118 svm_vcpu_setstate(vcpu);
2119 }
2120
2121 static int
2122 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2123 {
2124 struct svm_cpudata *cpudata;
2125 int error;
2126
2127 /* Allocate the SVM cpudata. */
2128 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2129 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2130 UVM_KMF_WIRED|UVM_KMF_ZERO);
2131 vcpu->cpudata = cpudata;
2132
2133 /* VMCB */
2134 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2135 VMCB_NPAGES);
2136 if (error)
2137 goto error;
2138
2139 /* I/O Bitmap */
2140 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2141 IOBM_NPAGES);
2142 if (error)
2143 goto error;
2144
2145 /* MSR Bitmap */
2146 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2147 MSRBM_NPAGES);
2148 if (error)
2149 goto error;
2150
2151 /* Init the VCPU info. */
2152 svm_vcpu_init(mach, vcpu);
2153
2154 return 0;
2155
2156 error:
2157 if (cpudata->vmcb_pa) {
2158 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2159 VMCB_NPAGES);
2160 }
2161 if (cpudata->iobm_pa) {
2162 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2163 IOBM_NPAGES);
2164 }
2165 if (cpudata->msrbm_pa) {
2166 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2167 MSRBM_NPAGES);
2168 }
2169 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2170 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2171 return error;
2172 }
2173
2174 static void
2175 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2176 {
2177 struct svm_cpudata *cpudata = vcpu->cpudata;
2178
2179 svm_asid_free(vcpu);
2180
2181 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2182 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2183 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2184
2185 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2186 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2187 }
2188
2189 /* -------------------------------------------------------------------------- */
2190
2191 static int
2192 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2193 {
2194 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2195 size_t i;
2196
2197 if (__predict_false(cpuid->mask && cpuid->exit)) {
2198 return EINVAL;
2199 }
2200 if (__predict_false(cpuid->mask &&
2201 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2202 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2203 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2204 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2205 return EINVAL;
2206 }
2207
2208 /* If unset, delete, to restore the default behavior. */
2209 if (!cpuid->mask && !cpuid->exit) {
2210 for (i = 0; i < SVM_NCPUIDS; i++) {
2211 if (!cpudata->cpuidpresent[i]) {
2212 continue;
2213 }
2214 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2215 cpudata->cpuidpresent[i] = false;
2216 }
2217 }
2218 return 0;
2219 }
2220
2221 /* If already here, replace. */
2222 for (i = 0; i < SVM_NCPUIDS; i++) {
2223 if (!cpudata->cpuidpresent[i]) {
2224 continue;
2225 }
2226 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2227 memcpy(&cpudata->cpuid[i], cpuid,
2228 sizeof(struct nvmm_vcpu_conf_cpuid));
2229 return 0;
2230 }
2231 }
2232
2233 /* Not here, insert. */
2234 for (i = 0; i < SVM_NCPUIDS; i++) {
2235 if (!cpudata->cpuidpresent[i]) {
2236 cpudata->cpuidpresent[i] = true;
2237 memcpy(&cpudata->cpuid[i], cpuid,
2238 sizeof(struct nvmm_vcpu_conf_cpuid));
2239 return 0;
2240 }
2241 }
2242
2243 return ENOBUFS;
2244 }
2245
2246 static int
2247 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2248 {
2249 struct svm_cpudata *cpudata = vcpu->cpudata;
2250
2251 switch (op) {
2252 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2253 return svm_vcpu_configure_cpuid(cpudata, data);
2254 default:
2255 return EINVAL;
2256 }
2257 }
2258
2259 /* -------------------------------------------------------------------------- */
2260
2261 static void
2262 svm_tlb_flush(struct pmap *pm)
2263 {
2264 struct nvmm_machine *mach = pm->pm_data;
2265 struct svm_machdata *machdata = mach->machdata;
2266
2267 atomic_inc_64(&machdata->mach_htlb_gen);
2268
2269 /* Generates IPIs, which cause #VMEXITs. */
2270 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2271 }
2272
2273 static void
2274 svm_machine_create(struct nvmm_machine *mach)
2275 {
2276 struct svm_machdata *machdata;
2277
2278 /* Fill in pmap info. */
2279 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2280 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2281
2282 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2283 mach->machdata = machdata;
2284
2285 /* Start with an hTLB flush everywhere. */
2286 machdata->mach_htlb_gen = 1;
2287 }
2288
2289 static void
2290 svm_machine_destroy(struct nvmm_machine *mach)
2291 {
2292 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2293 }
2294
2295 static int
2296 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2297 {
2298 panic("%s: impossible", __func__);
2299 }
2300
2301 /* -------------------------------------------------------------------------- */
2302
2303 static bool
2304 svm_ident(void)
2305 {
2306 u_int descs[4];
2307 uint64_t msr;
2308
2309 if (cpu_vendor != CPUVENDOR_AMD) {
2310 return false;
2311 }
2312 if (!(cpu_feature[3] & CPUID_SVM)) {
2313 printf("NVMM: SVM not supported\n");
2314 return false;
2315 }
2316
2317 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2318 printf("NVMM: CPUID leaf not available\n");
2319 return false;
2320 }
2321 x86_cpuid(0x8000000a, descs);
2322
2323 /* Want Nested Paging. */
2324 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2325 printf("NVMM: SVM-NP not supported\n");
2326 return false;
2327 }
2328
2329 /* Want nRIP. */
2330 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2331 printf("NVMM: SVM-NRIPS not supported\n");
2332 return false;
2333 }
2334
2335 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2336
2337 msr = rdmsr(MSR_VMCR);
2338 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2339 printf("NVMM: SVM disabled in BIOS\n");
2340 return false;
2341 }
2342
2343 return true;
2344 }
2345
2346 static void
2347 svm_init_asid(uint32_t maxasid)
2348 {
2349 size_t i, j, allocsz;
2350
2351 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2352
2353 /* Arbitrarily limit. */
2354 maxasid = uimin(maxasid, 8192);
2355
2356 svm_maxasid = maxasid;
2357 allocsz = roundup(maxasid, 8) / 8;
2358 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2359
2360 /* ASID 0 is reserved for the host. */
2361 svm_asidmap[0] |= __BIT(0);
2362
2363 /* ASID n-1 is special, we share it. */
2364 i = (maxasid - 1) / 8;
2365 j = (maxasid - 1) % 8;
2366 svm_asidmap[i] |= __BIT(j);
2367 }
2368
2369 static void
2370 svm_change_cpu(void *arg1, void *arg2)
2371 {
2372 bool enable = arg1 != NULL;
2373 uint64_t msr;
2374
2375 msr = rdmsr(MSR_VMCR);
2376 if (msr & VMCR_SVMED) {
2377 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2378 }
2379
2380 if (!enable) {
2381 wrmsr(MSR_VM_HSAVE_PA, 0);
2382 }
2383
2384 msr = rdmsr(MSR_EFER);
2385 if (enable) {
2386 msr |= EFER_SVME;
2387 } else {
2388 msr &= ~EFER_SVME;
2389 }
2390 wrmsr(MSR_EFER, msr);
2391
2392 if (enable) {
2393 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2394 }
2395 }
2396
2397 static void
2398 svm_init(void)
2399 {
2400 CPU_INFO_ITERATOR cii;
2401 struct cpu_info *ci;
2402 struct vm_page *pg;
2403 u_int descs[4];
2404 uint64_t xc;
2405
2406 x86_cpuid(0x8000000a, descs);
2407
2408 /* The guest TLB flush command. */
2409 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2410 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2411 } else {
2412 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2413 }
2414
2415 /* Init the ASID. */
2416 svm_init_asid(descs[1]);
2417
2418 /* Init the XCR0 mask. */
2419 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2420
2421 memset(hsave, 0, sizeof(hsave));
2422 for (CPU_INFO_FOREACH(cii, ci)) {
2423 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2424 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2425 }
2426
2427 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2428 xc_wait(xc);
2429 }
2430
2431 static void
2432 svm_fini_asid(void)
2433 {
2434 size_t allocsz;
2435
2436 allocsz = roundup(svm_maxasid, 8) / 8;
2437 kmem_free(svm_asidmap, allocsz);
2438
2439 mutex_destroy(&svm_asidlock);
2440 }
2441
2442 static void
2443 svm_fini(void)
2444 {
2445 uint64_t xc;
2446 size_t i;
2447
2448 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2449 xc_wait(xc);
2450
2451 for (i = 0; i < MAXCPUS; i++) {
2452 if (hsave[i].pa != 0)
2453 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2454 }
2455
2456 svm_fini_asid();
2457 }
2458
2459 static void
2460 svm_capability(struct nvmm_capability *cap)
2461 {
2462 cap->arch.mach_conf_support = 0;
2463 cap->arch.vcpu_conf_support =
2464 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2465 cap->arch.xcr0_mask = svm_xcr0_mask;
2466 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2467 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2468 }
2469
2470 const struct nvmm_impl nvmm_x86_svm = {
2471 .name = "x86-svm",
2472 .ident = svm_ident,
2473 .init = svm_init,
2474 .fini = svm_fini,
2475 .capability = svm_capability,
2476 .mach_conf_max = NVMM_X86_MACH_NCONF,
2477 .mach_conf_sizes = NULL,
2478 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2479 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2480 .state_size = sizeof(struct nvmm_x64_state),
2481 .machine_create = svm_machine_create,
2482 .machine_destroy = svm_machine_destroy,
2483 .machine_configure = svm_machine_configure,
2484 .vcpu_create = svm_vcpu_create,
2485 .vcpu_destroy = svm_vcpu_destroy,
2486 .vcpu_configure = svm_vcpu_configure,
2487 .vcpu_setstate = svm_vcpu_setstate,
2488 .vcpu_getstate = svm_vcpu_getstate,
2489 .vcpu_inject = svm_vcpu_inject,
2490 .vcpu_run = svm_vcpu_run
2491 };
2492