Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.68
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.68 2020/08/18 17:03:10 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.68 2020/08/18 17:03:10 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int svm_vmrun(paddr_t, uint64_t *);
     58 
     59 static inline void
     60 svm_clgi(void)
     61 {
     62 	asm volatile ("clgi" ::: "memory");
     63 }
     64 
     65 static inline void
     66 svm_stgi(void)
     67 {
     68 	asm volatile ("stgi" ::: "memory");
     69 }
     70 
     71 #define	MSR_VM_HSAVE_PA	0xC0010117
     72 
     73 /* -------------------------------------------------------------------------- */
     74 
     75 #define VMCB_EXITCODE_CR0_READ		0x0000
     76 #define VMCB_EXITCODE_CR1_READ		0x0001
     77 #define VMCB_EXITCODE_CR2_READ		0x0002
     78 #define VMCB_EXITCODE_CR3_READ		0x0003
     79 #define VMCB_EXITCODE_CR4_READ		0x0004
     80 #define VMCB_EXITCODE_CR5_READ		0x0005
     81 #define VMCB_EXITCODE_CR6_READ		0x0006
     82 #define VMCB_EXITCODE_CR7_READ		0x0007
     83 #define VMCB_EXITCODE_CR8_READ		0x0008
     84 #define VMCB_EXITCODE_CR9_READ		0x0009
     85 #define VMCB_EXITCODE_CR10_READ		0x000A
     86 #define VMCB_EXITCODE_CR11_READ		0x000B
     87 #define VMCB_EXITCODE_CR12_READ		0x000C
     88 #define VMCB_EXITCODE_CR13_READ		0x000D
     89 #define VMCB_EXITCODE_CR14_READ		0x000E
     90 #define VMCB_EXITCODE_CR15_READ		0x000F
     91 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     92 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     93 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     94 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     95 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     96 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     97 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     98 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     99 #define VMCB_EXITCODE_CR8_WRITE		0x0018
    100 #define VMCB_EXITCODE_CR9_WRITE		0x0019
    101 #define VMCB_EXITCODE_CR10_WRITE	0x001A
    102 #define VMCB_EXITCODE_CR11_WRITE	0x001B
    103 #define VMCB_EXITCODE_CR12_WRITE	0x001C
    104 #define VMCB_EXITCODE_CR13_WRITE	0x001D
    105 #define VMCB_EXITCODE_CR14_WRITE	0x001E
    106 #define VMCB_EXITCODE_CR15_WRITE	0x001F
    107 #define VMCB_EXITCODE_DR0_READ		0x0020
    108 #define VMCB_EXITCODE_DR1_READ		0x0021
    109 #define VMCB_EXITCODE_DR2_READ		0x0022
    110 #define VMCB_EXITCODE_DR3_READ		0x0023
    111 #define VMCB_EXITCODE_DR4_READ		0x0024
    112 #define VMCB_EXITCODE_DR5_READ		0x0025
    113 #define VMCB_EXITCODE_DR6_READ		0x0026
    114 #define VMCB_EXITCODE_DR7_READ		0x0027
    115 #define VMCB_EXITCODE_DR8_READ		0x0028
    116 #define VMCB_EXITCODE_DR9_READ		0x0029
    117 #define VMCB_EXITCODE_DR10_READ		0x002A
    118 #define VMCB_EXITCODE_DR11_READ		0x002B
    119 #define VMCB_EXITCODE_DR12_READ		0x002C
    120 #define VMCB_EXITCODE_DR13_READ		0x002D
    121 #define VMCB_EXITCODE_DR14_READ		0x002E
    122 #define VMCB_EXITCODE_DR15_READ		0x002F
    123 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    124 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    125 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    126 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    127 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    128 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    129 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    130 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    131 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    132 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    133 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    134 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    135 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    136 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    137 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    138 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    139 #define VMCB_EXITCODE_EXCP0		0x0040
    140 #define VMCB_EXITCODE_EXCP1		0x0041
    141 #define VMCB_EXITCODE_EXCP2		0x0042
    142 #define VMCB_EXITCODE_EXCP3		0x0043
    143 #define VMCB_EXITCODE_EXCP4		0x0044
    144 #define VMCB_EXITCODE_EXCP5		0x0045
    145 #define VMCB_EXITCODE_EXCP6		0x0046
    146 #define VMCB_EXITCODE_EXCP7		0x0047
    147 #define VMCB_EXITCODE_EXCP8		0x0048
    148 #define VMCB_EXITCODE_EXCP9		0x0049
    149 #define VMCB_EXITCODE_EXCP10		0x004A
    150 #define VMCB_EXITCODE_EXCP11		0x004B
    151 #define VMCB_EXITCODE_EXCP12		0x004C
    152 #define VMCB_EXITCODE_EXCP13		0x004D
    153 #define VMCB_EXITCODE_EXCP14		0x004E
    154 #define VMCB_EXITCODE_EXCP15		0x004F
    155 #define VMCB_EXITCODE_EXCP16		0x0050
    156 #define VMCB_EXITCODE_EXCP17		0x0051
    157 #define VMCB_EXITCODE_EXCP18		0x0052
    158 #define VMCB_EXITCODE_EXCP19		0x0053
    159 #define VMCB_EXITCODE_EXCP20		0x0054
    160 #define VMCB_EXITCODE_EXCP21		0x0055
    161 #define VMCB_EXITCODE_EXCP22		0x0056
    162 #define VMCB_EXITCODE_EXCP23		0x0057
    163 #define VMCB_EXITCODE_EXCP24		0x0058
    164 #define VMCB_EXITCODE_EXCP25		0x0059
    165 #define VMCB_EXITCODE_EXCP26		0x005A
    166 #define VMCB_EXITCODE_EXCP27		0x005B
    167 #define VMCB_EXITCODE_EXCP28		0x005C
    168 #define VMCB_EXITCODE_EXCP29		0x005D
    169 #define VMCB_EXITCODE_EXCP30		0x005E
    170 #define VMCB_EXITCODE_EXCP31		0x005F
    171 #define VMCB_EXITCODE_INTR		0x0060
    172 #define VMCB_EXITCODE_NMI		0x0061
    173 #define VMCB_EXITCODE_SMI		0x0062
    174 #define VMCB_EXITCODE_INIT		0x0063
    175 #define VMCB_EXITCODE_VINTR		0x0064
    176 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    177 #define VMCB_EXITCODE_IDTR_READ		0x0066
    178 #define VMCB_EXITCODE_GDTR_READ		0x0067
    179 #define VMCB_EXITCODE_LDTR_READ		0x0068
    180 #define VMCB_EXITCODE_TR_READ		0x0069
    181 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    182 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    183 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    184 #define VMCB_EXITCODE_TR_WRITE		0x006D
    185 #define VMCB_EXITCODE_RDTSC		0x006E
    186 #define VMCB_EXITCODE_RDPMC		0x006F
    187 #define VMCB_EXITCODE_PUSHF		0x0070
    188 #define VMCB_EXITCODE_POPF		0x0071
    189 #define VMCB_EXITCODE_CPUID		0x0072
    190 #define VMCB_EXITCODE_RSM		0x0073
    191 #define VMCB_EXITCODE_IRET		0x0074
    192 #define VMCB_EXITCODE_SWINT		0x0075
    193 #define VMCB_EXITCODE_INVD		0x0076
    194 #define VMCB_EXITCODE_PAUSE		0x0077
    195 #define VMCB_EXITCODE_HLT		0x0078
    196 #define VMCB_EXITCODE_INVLPG		0x0079
    197 #define VMCB_EXITCODE_INVLPGA		0x007A
    198 #define VMCB_EXITCODE_IOIO		0x007B
    199 #define VMCB_EXITCODE_MSR		0x007C
    200 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    201 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    202 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    203 #define VMCB_EXITCODE_VMRUN		0x0080
    204 #define VMCB_EXITCODE_VMMCALL		0x0081
    205 #define VMCB_EXITCODE_VMLOAD		0x0082
    206 #define VMCB_EXITCODE_VMSAVE		0x0083
    207 #define VMCB_EXITCODE_STGI		0x0084
    208 #define VMCB_EXITCODE_CLGI		0x0085
    209 #define VMCB_EXITCODE_SKINIT		0x0086
    210 #define VMCB_EXITCODE_RDTSCP		0x0087
    211 #define VMCB_EXITCODE_ICEBP		0x0088
    212 #define VMCB_EXITCODE_WBINVD		0x0089
    213 #define VMCB_EXITCODE_MONITOR		0x008A
    214 #define VMCB_EXITCODE_MWAIT		0x008B
    215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    216 #define VMCB_EXITCODE_XSETBV		0x008D
    217 #define VMCB_EXITCODE_RDPRU		0x008E
    218 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    219 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    220 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    221 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    222 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    223 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    224 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    225 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    226 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    227 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    228 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    229 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    230 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    231 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    232 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    233 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    234 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    235 #define VMCB_EXITCODE_INVLPGB		0x00A0
    236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL	0x00A1
    237 #define VMCB_EXITCODE_INVPCID		0x00A2
    238 #define VMCB_EXITCODE_MCOMMIT		0x00A3
    239 #define VMCB_EXITCODE_TLBSYNC		0x00A4
    240 #define VMCB_EXITCODE_NPF		0x0400
    241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    242 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    243 #define VMCB_EXITCODE_VMGEXIT		0x0403
    244 #define VMCB_EXITCODE_BUSY		-2ULL
    245 #define VMCB_EXITCODE_INVALID		-1ULL
    246 
    247 /* -------------------------------------------------------------------------- */
    248 
    249 struct vmcb_ctrl {
    250 	uint32_t intercept_cr;
    251 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    252 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    253 
    254 	uint32_t intercept_dr;
    255 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    256 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    257 
    258 	uint32_t intercept_vec;
    259 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    260 
    261 	uint32_t intercept_misc1;
    262 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    263 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    264 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    265 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    266 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    268 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    269 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    270 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    271 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    272 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    273 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    274 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    275 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    276 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    277 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    278 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    279 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    280 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    281 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    282 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    283 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    284 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    285 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    286 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    287 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    288 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    290 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    291 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    294 
    295 	uint32_t intercept_misc2;
    296 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    297 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    298 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    299 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    300 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    301 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    302 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    303 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    304 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    305 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    306 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    307 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(11)
    308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED	__BIT(12)
    309 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    310 #define VMCB_CTRL_INTERCEPT_RDPRU	__BIT(14)
    311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    313 
    314 	uint32_t intercept_misc3;
    315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL	__BIT(0)
    316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL	__BIT(1)
    317 #define VMCB_CTRL_INTERCEPT_PCID	__BIT(2)
    318 #define VMCB_CTRL_INTERCEPT_MCOMMIT	__BIT(3)
    319 #define VMCB_CTRL_INTERCEPT_TLBSYNC	__BIT(4)
    320 
    321 	uint8_t  rsvd1[36];
    322 	uint16_t pause_filt_thresh;
    323 	uint16_t pause_filt_cnt;
    324 	uint64_t iopm_base_pa;
    325 	uint64_t msrpm_base_pa;
    326 	uint64_t tsc_offset;
    327 	uint32_t guest_asid;
    328 
    329 	uint32_t tlb_ctrl;
    330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    333 
    334 	uint64_t v;
    335 #define VMCB_CTRL_V_TPR			__BITS(3,0)
    336 #define VMCB_CTRL_V_IRQ			__BIT(8)
    337 #define VMCB_CTRL_V_VGIF		__BIT(9)
    338 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    339 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    340 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    341 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    342 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    343 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    344 
    345 	uint64_t intr;
    346 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    347 #define VMCB_CTRL_INTR_MASK		__BIT(1)
    348 
    349 	uint64_t exitcode;
    350 	uint64_t exitinfo1;
    351 	uint64_t exitinfo2;
    352 
    353 	uint64_t exitintinfo;
    354 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    355 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    356 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    357 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    359 
    360 	uint64_t enable1;
    361 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    362 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    363 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    364 #define VMCB_CTRL_ENABLE_GMET		__BIT(3)
    365 #define VMCB_CTRL_ENABLE_VTE		__BIT(5)
    366 
    367 	uint64_t avic;
    368 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    369 
    370 	uint64_t ghcb;
    371 
    372 	uint64_t eventinj;
    373 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    374 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    375 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    376 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    377 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    378 
    379 	uint64_t n_cr3;
    380 
    381 	uint64_t enable2;
    382 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    383 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    384 
    385 	uint32_t vmcb_clean;
    386 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    387 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    388 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    389 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    390 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    391 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    392 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    393 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    394 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    395 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    396 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    397 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    398 
    399 	uint32_t rsvd2;
    400 	uint64_t nrip;
    401 	uint8_t	inst_len;
    402 	uint8_t	inst_bytes[15];
    403 	uint64_t avic_abpp;
    404 	uint64_t rsvd3;
    405 	uint64_t avic_ltp;
    406 
    407 	uint64_t avic_phys;
    408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    410 
    411 	uint64_t rsvd4;
    412 	uint64_t vmsa_ptr;
    413 
    414 	uint8_t	pad[752];
    415 } __packed;
    416 
    417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    418 
    419 struct vmcb_segment {
    420 	uint16_t selector;
    421 	uint16_t attrib;	/* hidden */
    422 	uint32_t limit;		/* hidden */
    423 	uint64_t base;		/* hidden */
    424 } __packed;
    425 
    426 CTASSERT(sizeof(struct vmcb_segment) == 16);
    427 
    428 struct vmcb_state {
    429 	struct   vmcb_segment es;
    430 	struct   vmcb_segment cs;
    431 	struct   vmcb_segment ss;
    432 	struct   vmcb_segment ds;
    433 	struct   vmcb_segment fs;
    434 	struct   vmcb_segment gs;
    435 	struct   vmcb_segment gdt;
    436 	struct   vmcb_segment ldt;
    437 	struct   vmcb_segment idt;
    438 	struct   vmcb_segment tr;
    439 	uint8_t	 rsvd1[43];
    440 	uint8_t	 cpl;
    441 	uint8_t  rsvd2[4];
    442 	uint64_t efer;
    443 	uint8_t	 rsvd3[112];
    444 	uint64_t cr4;
    445 	uint64_t cr3;
    446 	uint64_t cr0;
    447 	uint64_t dr7;
    448 	uint64_t dr6;
    449 	uint64_t rflags;
    450 	uint64_t rip;
    451 	uint8_t	 rsvd4[88];
    452 	uint64_t rsp;
    453 	uint8_t	 rsvd5[24];
    454 	uint64_t rax;
    455 	uint64_t star;
    456 	uint64_t lstar;
    457 	uint64_t cstar;
    458 	uint64_t sfmask;
    459 	uint64_t kernelgsbase;
    460 	uint64_t sysenter_cs;
    461 	uint64_t sysenter_esp;
    462 	uint64_t sysenter_eip;
    463 	uint64_t cr2;
    464 	uint8_t	 rsvd6[32];
    465 	uint64_t g_pat;
    466 	uint64_t dbgctl;
    467 	uint64_t br_from;
    468 	uint64_t br_to;
    469 	uint64_t int_from;
    470 	uint64_t int_to;
    471 	uint8_t	 pad[2408];
    472 } __packed;
    473 
    474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    475 
    476 struct vmcb {
    477 	struct vmcb_ctrl ctrl;
    478 	struct vmcb_state state;
    479 } __packed;
    480 
    481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    483 
    484 /* -------------------------------------------------------------------------- */
    485 
    486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
    487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
    488 
    489 struct svm_hsave {
    490 	paddr_t pa;
    491 };
    492 
    493 static struct svm_hsave hsave[MAXCPUS];
    494 
    495 static uint8_t *svm_asidmap __read_mostly;
    496 static uint32_t svm_maxasid __read_mostly;
    497 static kmutex_t svm_asidlock __cacheline_aligned;
    498 
    499 static bool svm_decode_assist __read_mostly;
    500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    501 
    502 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    503 static uint64_t svm_xcr0_mask __read_mostly;
    504 
    505 #define SVM_NCPUIDS	32
    506 
    507 #define VMCB_NPAGES	1
    508 
    509 #define MSRBM_NPAGES	2
    510 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    511 
    512 #define IOBM_NPAGES	3
    513 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    514 
    515 /* Does not include EFER_LMSLE. */
    516 #define EFER_VALID \
    517 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    518 
    519 #define EFER_TLB_FLUSH \
    520 	(EFER_NXE|EFER_LMA|EFER_LME)
    521 #define CR0_TLB_FLUSH \
    522 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    523 #define CR4_TLB_FLUSH \
    524 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
    525 
    526 /* -------------------------------------------------------------------------- */
    527 
    528 struct svm_machdata {
    529 	volatile uint64_t mach_htlb_gen;
    530 };
    531 
    532 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
    533 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
    534 	    sizeof(struct nvmm_vcpu_conf_cpuid),
    535 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
    536 	    sizeof(struct nvmm_vcpu_conf_tpr)
    537 };
    538 
    539 struct svm_cpudata {
    540 	/* General */
    541 	bool shared_asid;
    542 	bool gtlb_want_flush;
    543 	bool gtsc_want_update;
    544 	uint64_t vcpu_htlb_gen;
    545 
    546 	/* VMCB */
    547 	struct vmcb *vmcb;
    548 	paddr_t vmcb_pa;
    549 
    550 	/* I/O bitmap */
    551 	uint8_t *iobm;
    552 	paddr_t iobm_pa;
    553 
    554 	/* MSR bitmap */
    555 	uint8_t *msrbm;
    556 	paddr_t msrbm_pa;
    557 
    558 	/* Host state */
    559 	uint64_t hxcr0;
    560 	uint64_t star;
    561 	uint64_t lstar;
    562 	uint64_t cstar;
    563 	uint64_t sfmask;
    564 	uint64_t fsbase;
    565 	uint64_t kernelgsbase;
    566 
    567 	/* Intr state */
    568 	bool int_window_exit;
    569 	bool nmi_window_exit;
    570 	bool evt_pending;
    571 
    572 	/* Guest state */
    573 	uint64_t gxcr0;
    574 	uint64_t gprs[NVMM_X64_NGPR];
    575 	uint64_t drs[NVMM_X64_NDR];
    576 	uint64_t gtsc;
    577 	struct xsave_header gfpu __aligned(64);
    578 
    579 	/* VCPU configuration. */
    580 	bool cpuidpresent[SVM_NCPUIDS];
    581 	struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
    582 };
    583 
    584 static void
    585 svm_vmcb_cache_default(struct vmcb *vmcb)
    586 {
    587 	vmcb->ctrl.vmcb_clean =
    588 	    VMCB_CTRL_VMCB_CLEAN_I |
    589 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    590 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    591 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    592 	    VMCB_CTRL_VMCB_CLEAN_NP |
    593 	    VMCB_CTRL_VMCB_CLEAN_CR |
    594 	    VMCB_CTRL_VMCB_CLEAN_DR |
    595 	    VMCB_CTRL_VMCB_CLEAN_DT |
    596 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    597 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    598 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    599 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    600 }
    601 
    602 static void
    603 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    604 {
    605 	if (flags & NVMM_X64_STATE_SEGS) {
    606 		vmcb->ctrl.vmcb_clean &=
    607 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    608 	}
    609 	if (flags & NVMM_X64_STATE_CRS) {
    610 		vmcb->ctrl.vmcb_clean &=
    611 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    612 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    613 	}
    614 	if (flags & NVMM_X64_STATE_DRS) {
    615 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    616 	}
    617 	if (flags & NVMM_X64_STATE_MSRS) {
    618 		/* CR for EFER, NP for PAT. */
    619 		vmcb->ctrl.vmcb_clean &=
    620 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    621 	}
    622 }
    623 
    624 static inline void
    625 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    626 {
    627 	vmcb->ctrl.vmcb_clean &= ~flags;
    628 }
    629 
    630 static inline void
    631 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    632 {
    633 	vmcb->ctrl.vmcb_clean = 0;
    634 }
    635 
    636 #define SVM_EVENT_TYPE_HW_INT	0
    637 #define SVM_EVENT_TYPE_NMI	2
    638 #define SVM_EVENT_TYPE_EXC	3
    639 #define SVM_EVENT_TYPE_SW_INT	4
    640 
    641 static void
    642 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    643 {
    644 	struct svm_cpudata *cpudata = vcpu->cpudata;
    645 	struct vmcb *vmcb = cpudata->vmcb;
    646 
    647 	if (nmi) {
    648 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    649 		cpudata->nmi_window_exit = true;
    650 	} else {
    651 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    652 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    653 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    654 		cpudata->int_window_exit = true;
    655 	}
    656 
    657 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    658 }
    659 
    660 static void
    661 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    662 {
    663 	struct svm_cpudata *cpudata = vcpu->cpudata;
    664 	struct vmcb *vmcb = cpudata->vmcb;
    665 
    666 	if (nmi) {
    667 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    668 		cpudata->nmi_window_exit = false;
    669 	} else {
    670 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    671 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    672 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    673 		cpudata->int_window_exit = false;
    674 	}
    675 
    676 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    677 }
    678 
    679 static inline int
    680 svm_event_has_error(uint8_t vector)
    681 {
    682 	switch (vector) {
    683 	case 8:		/* #DF */
    684 	case 10:	/* #TS */
    685 	case 11:	/* #NP */
    686 	case 12:	/* #SS */
    687 	case 13:	/* #GP */
    688 	case 14:	/* #PF */
    689 	case 17:	/* #AC */
    690 	case 30:	/* #SX */
    691 		return 1;
    692 	default:
    693 		return 0;
    694 	}
    695 }
    696 
    697 static int
    698 svm_vcpu_inject(struct nvmm_cpu *vcpu)
    699 {
    700 	struct nvmm_comm_page *comm = vcpu->comm;
    701 	struct svm_cpudata *cpudata = vcpu->cpudata;
    702 	struct vmcb *vmcb = cpudata->vmcb;
    703 	u_int evtype;
    704 	uint8_t vector;
    705 	uint64_t error;
    706 	int type = 0, err = 0;
    707 
    708 	evtype = comm->event.type;
    709 	vector = comm->event.vector;
    710 	error = comm->event.u.excp.error;
    711 	__insn_barrier();
    712 
    713 	switch (evtype) {
    714 	case NVMM_VCPU_EVENT_EXCP:
    715 		type = SVM_EVENT_TYPE_EXC;
    716 		if (vector == 2 || vector >= 32)
    717 			return EINVAL;
    718 		if (vector == 3 || vector == 0)
    719 			return EINVAL;
    720 		err = svm_event_has_error(vector);
    721 		break;
    722 	case NVMM_VCPU_EVENT_INTR:
    723 		type = SVM_EVENT_TYPE_HW_INT;
    724 		if (vector == 2) {
    725 			type = SVM_EVENT_TYPE_NMI;
    726 			svm_event_waitexit_enable(vcpu, true);
    727 		}
    728 		err = 0;
    729 		break;
    730 	default:
    731 		return EINVAL;
    732 	}
    733 
    734 	vmcb->ctrl.eventinj =
    735 	    __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    736 	    __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
    737 	    __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
    738 	    __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
    739 	    __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    740 
    741 	cpudata->evt_pending = true;
    742 
    743 	return 0;
    744 }
    745 
    746 static void
    747 svm_inject_ud(struct nvmm_cpu *vcpu)
    748 {
    749 	struct nvmm_comm_page *comm = vcpu->comm;
    750 	int ret __diagused;
    751 
    752 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
    753 	comm->event.vector = 6;
    754 	comm->event.u.excp.error = 0;
    755 
    756 	ret = svm_vcpu_inject(vcpu);
    757 	KASSERT(ret == 0);
    758 }
    759 
    760 static void
    761 svm_inject_gp(struct nvmm_cpu *vcpu)
    762 {
    763 	struct nvmm_comm_page *comm = vcpu->comm;
    764 	int ret __diagused;
    765 
    766 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
    767 	comm->event.vector = 13;
    768 	comm->event.u.excp.error = 0;
    769 
    770 	ret = svm_vcpu_inject(vcpu);
    771 	KASSERT(ret == 0);
    772 }
    773 
    774 static inline int
    775 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
    776 {
    777 	if (__predict_true(!vcpu->comm->event_commit)) {
    778 		return 0;
    779 	}
    780 	vcpu->comm->event_commit = false;
    781 	return svm_vcpu_inject(vcpu);
    782 }
    783 
    784 static inline void
    785 svm_inkernel_advance(struct vmcb *vmcb)
    786 {
    787 	/*
    788 	 * Maybe we should also apply single-stepping and debug exceptions.
    789 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    790 	 * debugger.
    791 	 */
    792 	vmcb->state.rip = vmcb->ctrl.nrip;
    793 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    794 }
    795 
    796 #define SVM_CPUID_MAX_HYPERVISOR	0x40000000
    797 
    798 static void
    799 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    800 {
    801 	struct svm_cpudata *cpudata = vcpu->cpudata;
    802 	uint64_t cr4;
    803 
    804 	switch (eax) {
    805 	case 0x00000001:
    806 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
    807 
    808 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    809 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    810 		    CPUID_LOCAL_APIC_ID);
    811 
    812 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
    813 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
    814 
    815 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
    816 
    817 		/* CPUID2_OSXSAVE depends on CR4. */
    818 		cr4 = cpudata->vmcb->state.cr4;
    819 		if (!(cr4 & CR4_OSXSAVE)) {
    820 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
    821 		}
    822 		break;
    823 	case 0x00000002: /* Empty */
    824 	case 0x00000003: /* Empty */
    825 	case 0x00000004: /* Empty */
    826 	case 0x00000005: /* Monitor/MWait */
    827 	case 0x00000006: /* Power Management Related Features */
    828 		cpudata->vmcb->state.rax = 0;
    829 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    830 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    831 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    832 		break;
    833 	case 0x00000007: /* Structured Extended Features */
    834 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000007.eax;
    835 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
    836 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
    837 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
    838 		break;
    839 	case 0x00000008: /* Empty */
    840 	case 0x00000009: /* Empty */
    841 	case 0x0000000A: /* Empty */
    842 	case 0x0000000B: /* Empty */
    843 	case 0x0000000C: /* Empty */
    844 		cpudata->vmcb->state.rax = 0;
    845 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    846 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    847 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    848 		break;
    849 	case 0x0000000D: /* Processor Extended State Enumeration */
    850 		if (svm_xcr0_mask == 0) {
    851 			break;
    852 		}
    853 		switch (ecx) {
    854 		case 0:
    855 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    856 			if (cpudata->gxcr0 & XCR0_SSE) {
    857 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    858 			} else {
    859 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    860 			}
    861 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    862 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
    863 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    864 			break;
    865 		case 1:
    866 			cpudata->vmcb->state.rax &=
    867 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
    868 			     CPUID_PES1_XGETBV);
    869 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    870 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    871 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    872 			break;
    873 		default:
    874 			cpudata->vmcb->state.rax = 0;
    875 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    876 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    877 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    878 			break;
    879 		}
    880 		break;
    881 
    882 	case 0x40000000: /* Hypervisor Information */
    883 		cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
    884 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    885 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    886 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    887 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
    888 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
    889 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
    890 		break;
    891 
    892 	case 0x80000001:
    893 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
    894 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
    895 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
    896 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
    897 		break;
    898 	default:
    899 		break;
    900 	}
    901 }
    902 
    903 static void
    904 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
    905 {
    906 	exit->u.insn.npc = vmcb->ctrl.nrip;
    907 	exit->reason = reason;
    908 }
    909 
    910 static void
    911 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    912     struct nvmm_vcpu_exit *exit)
    913 {
    914 	struct svm_cpudata *cpudata = vcpu->cpudata;
    915 	struct nvmm_vcpu_conf_cpuid *cpuid;
    916 	uint64_t eax, ecx;
    917 	u_int descs[4];
    918 	size_t i;
    919 
    920 	eax = cpudata->vmcb->state.rax;
    921 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
    922 	x86_cpuid2(eax, ecx, descs);
    923 
    924 	cpudata->vmcb->state.rax = descs[0];
    925 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    926 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    927 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    928 
    929 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
    930 
    931 	for (i = 0; i < SVM_NCPUIDS; i++) {
    932 		if (!cpudata->cpuidpresent[i]) {
    933 			continue;
    934 		}
    935 		cpuid = &cpudata->cpuid[i];
    936 		if (cpuid->leaf != eax) {
    937 			continue;
    938 		}
    939 
    940 		if (cpuid->exit) {
    941 			svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
    942 			return;
    943 		}
    944 		KASSERT(cpuid->mask);
    945 
    946 		/* del */
    947 		cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
    948 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
    949 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
    950 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
    951 
    952 		/* set */
    953 		cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
    954 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
    955 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
    956 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
    957 
    958 		break;
    959 	}
    960 
    961 	svm_inkernel_advance(cpudata->vmcb);
    962 	exit->reason = NVMM_VCPU_EXIT_NONE;
    963 }
    964 
    965 static void
    966 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    967     struct nvmm_vcpu_exit *exit)
    968 {
    969 	struct svm_cpudata *cpudata = vcpu->cpudata;
    970 	struct vmcb *vmcb = cpudata->vmcb;
    971 
    972 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
    973 		svm_event_waitexit_disable(vcpu, false);
    974 	}
    975 
    976 	svm_inkernel_advance(cpudata->vmcb);
    977 	exit->reason = NVMM_VCPU_EXIT_HALTED;
    978 }
    979 
    980 #define SVM_EXIT_IO_PORT	__BITS(31,16)
    981 #define SVM_EXIT_IO_SEG		__BITS(12,10)
    982 #define SVM_EXIT_IO_A64		__BIT(9)
    983 #define SVM_EXIT_IO_A32		__BIT(8)
    984 #define SVM_EXIT_IO_A16		__BIT(7)
    985 #define SVM_EXIT_IO_SZ32	__BIT(6)
    986 #define SVM_EXIT_IO_SZ16	__BIT(5)
    987 #define SVM_EXIT_IO_SZ8		__BIT(4)
    988 #define SVM_EXIT_IO_REP		__BIT(3)
    989 #define SVM_EXIT_IO_STR		__BIT(2)
    990 #define SVM_EXIT_IO_IN		__BIT(0)
    991 
    992 static void
    993 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    994     struct nvmm_vcpu_exit *exit)
    995 {
    996 	struct svm_cpudata *cpudata = vcpu->cpudata;
    997 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
    998 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
    999 
   1000 	exit->reason = NVMM_VCPU_EXIT_IO;
   1001 
   1002 	exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
   1003 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
   1004 
   1005 	if (svm_decode_assist) {
   1006 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
   1007 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
   1008 	} else {
   1009 		exit->u.io.seg = -1;
   1010 	}
   1011 
   1012 	if (info & SVM_EXIT_IO_A64) {
   1013 		exit->u.io.address_size = 8;
   1014 	} else if (info & SVM_EXIT_IO_A32) {
   1015 		exit->u.io.address_size = 4;
   1016 	} else if (info & SVM_EXIT_IO_A16) {
   1017 		exit->u.io.address_size = 2;
   1018 	}
   1019 
   1020 	if (info & SVM_EXIT_IO_SZ32) {
   1021 		exit->u.io.operand_size = 4;
   1022 	} else if (info & SVM_EXIT_IO_SZ16) {
   1023 		exit->u.io.operand_size = 2;
   1024 	} else if (info & SVM_EXIT_IO_SZ8) {
   1025 		exit->u.io.operand_size = 1;
   1026 	}
   1027 
   1028 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
   1029 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
   1030 	exit->u.io.npc = nextpc;
   1031 
   1032 	svm_vcpu_state_provide(vcpu,
   1033 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1034 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1035 }
   1036 
   1037 static const uint64_t msr_ignore_list[] = {
   1038 	0xc0010055, /* MSR_CMPHALT */
   1039 	MSR_DE_CFG,
   1040 	MSR_IC_CFG,
   1041 	MSR_UCODE_AMD_PATCHLEVEL
   1042 };
   1043 
   1044 static bool
   1045 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1046     struct nvmm_vcpu_exit *exit)
   1047 {
   1048 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1049 	struct vmcb *vmcb = cpudata->vmcb;
   1050 	uint64_t val;
   1051 	size_t i;
   1052 
   1053 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
   1054 		if (exit->u.rdmsr.msr == MSR_NB_CFG) {
   1055 			val = NB_CFG_INITAPICCPUIDLO;
   1056 			vmcb->state.rax = (val & 0xFFFFFFFF);
   1057 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1058 			goto handled;
   1059 		}
   1060 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1061 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
   1062 				continue;
   1063 			val = 0;
   1064 			vmcb->state.rax = (val & 0xFFFFFFFF);
   1065 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1066 			goto handled;
   1067 		}
   1068 	} else {
   1069 		if (exit->u.wrmsr.msr == MSR_EFER) {
   1070 			if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
   1071 				goto error;
   1072 			}
   1073 			if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
   1074 			     EFER_TLB_FLUSH) {
   1075 				cpudata->gtlb_want_flush = true;
   1076 			}
   1077 			vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
   1078 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
   1079 			goto handled;
   1080 		}
   1081 		if (exit->u.wrmsr.msr == MSR_TSC) {
   1082 			cpudata->gtsc = exit->u.wrmsr.val;
   1083 			cpudata->gtsc_want_update = true;
   1084 			goto handled;
   1085 		}
   1086 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1087 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
   1088 				continue;
   1089 			goto handled;
   1090 		}
   1091 	}
   1092 
   1093 	return false;
   1094 
   1095 handled:
   1096 	svm_inkernel_advance(cpudata->vmcb);
   1097 	return true;
   1098 
   1099 error:
   1100 	svm_inject_gp(vcpu);
   1101 	return true;
   1102 }
   1103 
   1104 static inline void
   1105 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1106     struct nvmm_vcpu_exit *exit)
   1107 {
   1108 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1109 
   1110 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
   1111 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1112 	exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
   1113 
   1114 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1115 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1116 		return;
   1117 	}
   1118 
   1119 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1120 }
   1121 
   1122 static inline void
   1123 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1124     struct nvmm_vcpu_exit *exit)
   1125 {
   1126 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1127 	uint64_t rdx, rax;
   1128 
   1129 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1130 	rax = cpudata->vmcb->state.rax;
   1131 
   1132 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
   1133 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1134 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1135 	exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
   1136 
   1137 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1138 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1139 		return;
   1140 	}
   1141 
   1142 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1143 }
   1144 
   1145 static void
   1146 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1147     struct nvmm_vcpu_exit *exit)
   1148 {
   1149 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1150 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1151 
   1152 	if (info == 0) {
   1153 		svm_exit_rdmsr(mach, vcpu, exit);
   1154 	} else {
   1155 		svm_exit_wrmsr(mach, vcpu, exit);
   1156 	}
   1157 }
   1158 
   1159 static void
   1160 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1161     struct nvmm_vcpu_exit *exit)
   1162 {
   1163 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1164 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1165 
   1166 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
   1167 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1168 		exit->u.mem.prot = PROT_WRITE;
   1169 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
   1170 		exit->u.mem.prot = PROT_EXEC;
   1171 	else
   1172 		exit->u.mem.prot = PROT_READ;
   1173 	exit->u.mem.gpa = gpa;
   1174 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1175 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1176 	    sizeof(exit->u.mem.inst_bytes));
   1177 
   1178 	svm_vcpu_state_provide(vcpu,
   1179 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1180 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1181 }
   1182 
   1183 static void
   1184 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1185     struct nvmm_vcpu_exit *exit)
   1186 {
   1187 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1188 	struct vmcb *vmcb = cpudata->vmcb;
   1189 	uint64_t val;
   1190 
   1191 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1192 
   1193 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1194 	    (vmcb->state.rax & 0xFFFFFFFF);
   1195 
   1196 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1197 		goto error;
   1198 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1199 		goto error;
   1200 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1201 		goto error;
   1202 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1203 		goto error;
   1204 	}
   1205 
   1206 	cpudata->gxcr0 = val;
   1207 	if (svm_xcr0_mask != 0) {
   1208 		wrxcr(0, cpudata->gxcr0);
   1209 	}
   1210 
   1211 	svm_inkernel_advance(cpudata->vmcb);
   1212 	return;
   1213 
   1214 error:
   1215 	svm_inject_gp(vcpu);
   1216 }
   1217 
   1218 static void
   1219 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
   1220 {
   1221 	exit->u.inv.hwcode = code;
   1222 	exit->reason = NVMM_VCPU_EXIT_INVALID;
   1223 }
   1224 
   1225 /* -------------------------------------------------------------------------- */
   1226 
   1227 static void
   1228 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1229 {
   1230 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1231 
   1232 	fpu_kern_enter();
   1233 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
   1234 
   1235 	if (svm_xcr0_mask != 0) {
   1236 		cpudata->hxcr0 = rdxcr(0);
   1237 		wrxcr(0, cpudata->gxcr0);
   1238 	}
   1239 }
   1240 
   1241 static void
   1242 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1243 {
   1244 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1245 
   1246 	if (svm_xcr0_mask != 0) {
   1247 		cpudata->gxcr0 = rdxcr(0);
   1248 		wrxcr(0, cpudata->hxcr0);
   1249 	}
   1250 
   1251 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
   1252 	fpu_kern_leave();
   1253 }
   1254 
   1255 static void
   1256 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1257 {
   1258 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1259 
   1260 	x86_dbregs_save(curlwp);
   1261 
   1262 	ldr7(0);
   1263 
   1264 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1265 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1266 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1267 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1268 }
   1269 
   1270 static void
   1271 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1272 {
   1273 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1274 
   1275 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1276 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1277 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1278 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1279 
   1280 	x86_dbregs_restore(curlwp);
   1281 }
   1282 
   1283 static void
   1284 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1285 {
   1286 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1287 
   1288 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1289 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1290 }
   1291 
   1292 static void
   1293 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1294 {
   1295 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1296 
   1297 	wrmsr(MSR_STAR, cpudata->star);
   1298 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1299 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1300 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1301 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1302 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1303 }
   1304 
   1305 /* -------------------------------------------------------------------------- */
   1306 
   1307 static inline void
   1308 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1309 {
   1310 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1311 
   1312 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1313 		cpudata->gtlb_want_flush = true;
   1314 	}
   1315 }
   1316 
   1317 static inline void
   1318 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1319 {
   1320 	/*
   1321 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
   1322 	 * executing on this hCPU and the hTLB already got flushed, or it
   1323 	 * was executing on another hCPU in which case the catchup is done
   1324 	 * in svm_gtlb_catchup().
   1325 	 */
   1326 }
   1327 
   1328 static inline uint64_t
   1329 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
   1330 {
   1331 	struct vmcb *vmcb = cpudata->vmcb;
   1332 	uint64_t machgen;
   1333 
   1334 	machgen = machdata->mach_htlb_gen;
   1335 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1336 		return machgen;
   1337 	}
   1338 
   1339 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1340 	return machgen;
   1341 }
   1342 
   1343 static inline void
   1344 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
   1345 {
   1346 	struct vmcb *vmcb = cpudata->vmcb;
   1347 
   1348 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
   1349 		cpudata->vcpu_htlb_gen = machgen;
   1350 	}
   1351 }
   1352 
   1353 static inline void
   1354 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
   1355 {
   1356 	cpudata->evt_pending = false;
   1357 
   1358 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
   1359 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
   1360 		cpudata->evt_pending = true;
   1361 	}
   1362 }
   1363 
   1364 static int
   1365 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1366     struct nvmm_vcpu_exit *exit)
   1367 {
   1368 	struct nvmm_comm_page *comm = vcpu->comm;
   1369 	struct svm_machdata *machdata = mach->machdata;
   1370 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1371 	struct vmcb *vmcb = cpudata->vmcb;
   1372 	uint64_t machgen;
   1373 	int hcpu;
   1374 
   1375 	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
   1376 		return EINVAL;
   1377 	}
   1378 	svm_vcpu_state_commit(vcpu);
   1379 	comm->state_cached = 0;
   1380 
   1381 	kpreempt_disable();
   1382 	hcpu = cpu_number();
   1383 
   1384 	svm_gtlb_catchup(vcpu, hcpu);
   1385 	svm_htlb_catchup(vcpu, hcpu);
   1386 
   1387 	if (vcpu->hcpu_last != hcpu) {
   1388 		svm_vmcb_cache_flush_all(vmcb);
   1389 		cpudata->gtsc_want_update = true;
   1390 	}
   1391 
   1392 	svm_vcpu_guest_dbregs_enter(vcpu);
   1393 	svm_vcpu_guest_misc_enter(vcpu);
   1394 	svm_vcpu_guest_fpu_enter(vcpu);
   1395 
   1396 	while (1) {
   1397 		if (cpudata->gtlb_want_flush) {
   1398 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1399 		} else {
   1400 			vmcb->ctrl.tlb_ctrl = 0;
   1401 		}
   1402 
   1403 		if (__predict_false(cpudata->gtsc_want_update)) {
   1404 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
   1405 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
   1406 		}
   1407 
   1408 		svm_clgi();
   1409 		machgen = svm_htlb_flush(machdata, cpudata);
   1410 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1411 		svm_htlb_flush_ack(cpudata, machgen);
   1412 		svm_stgi();
   1413 
   1414 		svm_vmcb_cache_default(vmcb);
   1415 
   1416 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1417 			cpudata->gtlb_want_flush = false;
   1418 			cpudata->gtsc_want_update = false;
   1419 			vcpu->hcpu_last = hcpu;
   1420 		}
   1421 		svm_exit_evt(cpudata, vmcb);
   1422 
   1423 		switch (vmcb->ctrl.exitcode) {
   1424 		case VMCB_EXITCODE_INTR:
   1425 		case VMCB_EXITCODE_NMI:
   1426 			exit->reason = NVMM_VCPU_EXIT_NONE;
   1427 			break;
   1428 		case VMCB_EXITCODE_VINTR:
   1429 			svm_event_waitexit_disable(vcpu, false);
   1430 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
   1431 			break;
   1432 		case VMCB_EXITCODE_IRET:
   1433 			svm_event_waitexit_disable(vcpu, true);
   1434 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
   1435 			break;
   1436 		case VMCB_EXITCODE_CPUID:
   1437 			svm_exit_cpuid(mach, vcpu, exit);
   1438 			break;
   1439 		case VMCB_EXITCODE_HLT:
   1440 			svm_exit_hlt(mach, vcpu, exit);
   1441 			break;
   1442 		case VMCB_EXITCODE_IOIO:
   1443 			svm_exit_io(mach, vcpu, exit);
   1444 			break;
   1445 		case VMCB_EXITCODE_MSR:
   1446 			svm_exit_msr(mach, vcpu, exit);
   1447 			break;
   1448 		case VMCB_EXITCODE_SHUTDOWN:
   1449 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
   1450 			break;
   1451 		case VMCB_EXITCODE_RDPMC:
   1452 		case VMCB_EXITCODE_RSM:
   1453 		case VMCB_EXITCODE_INVLPGA:
   1454 		case VMCB_EXITCODE_VMRUN:
   1455 		case VMCB_EXITCODE_VMMCALL:
   1456 		case VMCB_EXITCODE_VMLOAD:
   1457 		case VMCB_EXITCODE_VMSAVE:
   1458 		case VMCB_EXITCODE_STGI:
   1459 		case VMCB_EXITCODE_CLGI:
   1460 		case VMCB_EXITCODE_SKINIT:
   1461 		case VMCB_EXITCODE_RDTSCP:
   1462 		case VMCB_EXITCODE_RDPRU:
   1463 		case VMCB_EXITCODE_INVLPGB:
   1464 		case VMCB_EXITCODE_INVPCID:
   1465 		case VMCB_EXITCODE_MCOMMIT:
   1466 		case VMCB_EXITCODE_TLBSYNC:
   1467 			svm_inject_ud(vcpu);
   1468 			exit->reason = NVMM_VCPU_EXIT_NONE;
   1469 			break;
   1470 		case VMCB_EXITCODE_MONITOR:
   1471 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
   1472 			break;
   1473 		case VMCB_EXITCODE_MWAIT:
   1474 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1475 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
   1476 			break;
   1477 		case VMCB_EXITCODE_XSETBV:
   1478 			svm_exit_xsetbv(mach, vcpu, exit);
   1479 			break;
   1480 		case VMCB_EXITCODE_NPF:
   1481 			svm_exit_npf(mach, vcpu, exit);
   1482 			break;
   1483 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1484 		default:
   1485 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
   1486 			break;
   1487 		}
   1488 
   1489 		/* If no reason to return to userland, keep rolling. */
   1490 		if (nvmm_return_needed()) {
   1491 			break;
   1492 		}
   1493 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
   1494 			break;
   1495 		}
   1496 	}
   1497 
   1498 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
   1499 
   1500 	svm_vcpu_guest_fpu_leave(vcpu);
   1501 	svm_vcpu_guest_misc_leave(vcpu);
   1502 	svm_vcpu_guest_dbregs_leave(vcpu);
   1503 
   1504 	kpreempt_enable();
   1505 
   1506 	exit->exitstate.rflags = vmcb->state.rflags;
   1507 	exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
   1508 	exit->exitstate.int_shadow =
   1509 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1510 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
   1511 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
   1512 	exit->exitstate.evt_pending = cpudata->evt_pending;
   1513 
   1514 	return 0;
   1515 }
   1516 
   1517 /* -------------------------------------------------------------------------- */
   1518 
   1519 static int
   1520 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1521 {
   1522 	struct pglist pglist;
   1523 	paddr_t _pa;
   1524 	vaddr_t _va;
   1525 	size_t i;
   1526 	int ret;
   1527 
   1528 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1529 	    &pglist, 1, 0);
   1530 	if (ret != 0)
   1531 		return ENOMEM;
   1532 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
   1533 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1534 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1535 	if (_va == 0)
   1536 		goto error;
   1537 
   1538 	for (i = 0; i < npages; i++) {
   1539 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1540 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1541 	}
   1542 	pmap_update(pmap_kernel());
   1543 
   1544 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1545 
   1546 	*pa = _pa;
   1547 	*va = _va;
   1548 	return 0;
   1549 
   1550 error:
   1551 	for (i = 0; i < npages; i++) {
   1552 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1553 	}
   1554 	return ENOMEM;
   1555 }
   1556 
   1557 static void
   1558 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1559 {
   1560 	size_t i;
   1561 
   1562 	pmap_kremove(va, npages * PAGE_SIZE);
   1563 	pmap_update(pmap_kernel());
   1564 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1565 	for (i = 0; i < npages; i++) {
   1566 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1567 	}
   1568 }
   1569 
   1570 /* -------------------------------------------------------------------------- */
   1571 
   1572 #define SVM_MSRBM_READ	__BIT(0)
   1573 #define SVM_MSRBM_WRITE	__BIT(1)
   1574 
   1575 static void
   1576 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1577 {
   1578 	uint64_t byte;
   1579 	uint8_t bitoff;
   1580 
   1581 	if (msr < 0x00002000) {
   1582 		/* Range 1 */
   1583 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1584 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1585 		/* Range 2 */
   1586 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1587 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1588 		/* Range 3 */
   1589 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1590 	} else {
   1591 		panic("%s: wrong range", __func__);
   1592 	}
   1593 
   1594 	bitoff = (msr & 0x3) << 1;
   1595 
   1596 	if (read) {
   1597 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1598 	}
   1599 	if (write) {
   1600 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1601 	}
   1602 }
   1603 
   1604 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
   1605 #define SVM_SEG_ATTRIB_S		__BIT(4)
   1606 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1607 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1608 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1609 #define SVM_SEG_ATTRIB_L		__BIT(9)
   1610 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
   1611 #define SVM_SEG_ATTRIB_G		__BIT(11)
   1612 
   1613 static void
   1614 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
   1615     struct vmcb_segment *vseg)
   1616 {
   1617 	vseg->selector = seg->selector;
   1618 	vseg->attrib =
   1619 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1620 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
   1621 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1622 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1623 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1624 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
   1625 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
   1626 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
   1627 	vseg->limit = seg->limit;
   1628 	vseg->base = seg->base;
   1629 }
   1630 
   1631 static void
   1632 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1633 {
   1634 	seg->selector = vseg->selector;
   1635 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1636 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
   1637 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1638 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1639 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1640 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
   1641 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
   1642 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
   1643 	seg->limit = vseg->limit;
   1644 	seg->base = vseg->base;
   1645 }
   1646 
   1647 static inline bool
   1648 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
   1649     uint64_t flags)
   1650 {
   1651 	if (flags & NVMM_X64_STATE_CRS) {
   1652 		if ((vmcb->state.cr0 ^
   1653 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1654 			return true;
   1655 		}
   1656 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1657 			return true;
   1658 		}
   1659 		if ((vmcb->state.cr4 ^
   1660 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1661 			return true;
   1662 		}
   1663 	}
   1664 
   1665 	if (flags & NVMM_X64_STATE_MSRS) {
   1666 		if ((vmcb->state.efer ^
   1667 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1668 			return true;
   1669 		}
   1670 	}
   1671 
   1672 	return false;
   1673 }
   1674 
   1675 static void
   1676 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
   1677 {
   1678 	struct nvmm_comm_page *comm = vcpu->comm;
   1679 	const struct nvmm_x64_state *state = &comm->state;
   1680 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1681 	struct vmcb *vmcb = cpudata->vmcb;
   1682 	struct fxsave *fpustate;
   1683 	uint64_t flags;
   1684 
   1685 	flags = comm->state_wanted;
   1686 
   1687 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1688 		cpudata->gtlb_want_flush = true;
   1689 	}
   1690 
   1691 	if (flags & NVMM_X64_STATE_SEGS) {
   1692 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1693 		    &vmcb->state.cs);
   1694 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1695 		    &vmcb->state.ds);
   1696 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1697 		    &vmcb->state.es);
   1698 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1699 		    &vmcb->state.fs);
   1700 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1701 		    &vmcb->state.gs);
   1702 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1703 		    &vmcb->state.ss);
   1704 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1705 		    &vmcb->state.gdt);
   1706 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1707 		    &vmcb->state.idt);
   1708 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1709 		    &vmcb->state.ldt);
   1710 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1711 		    &vmcb->state.tr);
   1712 
   1713 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1714 	}
   1715 
   1716 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1717 	if (flags & NVMM_X64_STATE_GPRS) {
   1718 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1719 
   1720 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1721 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1722 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1723 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1724 	}
   1725 
   1726 	if (flags & NVMM_X64_STATE_CRS) {
   1727 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1728 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1729 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1730 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1731 
   1732 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1733 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1734 		    VMCB_CTRL_V_TPR);
   1735 
   1736 		if (svm_xcr0_mask != 0) {
   1737 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1738 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1739 			cpudata->gxcr0 &= svm_xcr0_mask;
   1740 			cpudata->gxcr0 |= XCR0_X87;
   1741 		}
   1742 	}
   1743 
   1744 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1745 	if (flags & NVMM_X64_STATE_DRS) {
   1746 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1747 
   1748 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1749 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1750 	}
   1751 
   1752 	if (flags & NVMM_X64_STATE_MSRS) {
   1753 		/*
   1754 		 * EFER_SVME is mandatory.
   1755 		 */
   1756 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1757 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1758 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1759 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1760 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1761 		vmcb->state.kernelgsbase =
   1762 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1763 		vmcb->state.sysenter_cs =
   1764 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1765 		vmcb->state.sysenter_esp =
   1766 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1767 		vmcb->state.sysenter_eip =
   1768 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1769 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1770 
   1771 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   1772 		cpudata->gtsc_want_update = true;
   1773 	}
   1774 
   1775 	if (flags & NVMM_X64_STATE_INTR) {
   1776 		if (state->intr.int_shadow) {
   1777 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1778 		} else {
   1779 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1780 		}
   1781 
   1782 		if (state->intr.int_window_exiting) {
   1783 			svm_event_waitexit_enable(vcpu, false);
   1784 		} else {
   1785 			svm_event_waitexit_disable(vcpu, false);
   1786 		}
   1787 
   1788 		if (state->intr.nmi_window_exiting) {
   1789 			svm_event_waitexit_enable(vcpu, true);
   1790 		} else {
   1791 			svm_event_waitexit_disable(vcpu, true);
   1792 		}
   1793 	}
   1794 
   1795 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1796 	if (flags & NVMM_X64_STATE_FPU) {
   1797 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1798 		    sizeof(state->fpu));
   1799 
   1800 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1801 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1802 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1803 
   1804 		if (svm_xcr0_mask != 0) {
   1805 			/* Reset XSTATE_BV, to force a reload. */
   1806 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1807 		}
   1808 	}
   1809 
   1810 	svm_vmcb_cache_update(vmcb, flags);
   1811 
   1812 	comm->state_wanted = 0;
   1813 	comm->state_cached |= flags;
   1814 }
   1815 
   1816 static void
   1817 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
   1818 {
   1819 	struct nvmm_comm_page *comm = vcpu->comm;
   1820 	struct nvmm_x64_state *state = &comm->state;
   1821 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1822 	struct vmcb *vmcb = cpudata->vmcb;
   1823 	uint64_t flags;
   1824 
   1825 	flags = comm->state_wanted;
   1826 
   1827 	if (flags & NVMM_X64_STATE_SEGS) {
   1828 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1829 		    &vmcb->state.cs);
   1830 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1831 		    &vmcb->state.ds);
   1832 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1833 		    &vmcb->state.es);
   1834 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1835 		    &vmcb->state.fs);
   1836 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1837 		    &vmcb->state.gs);
   1838 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1839 		    &vmcb->state.ss);
   1840 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1841 		    &vmcb->state.gdt);
   1842 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1843 		    &vmcb->state.idt);
   1844 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1845 		    &vmcb->state.ldt);
   1846 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1847 		    &vmcb->state.tr);
   1848 
   1849 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   1850 	}
   1851 
   1852 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1853 	if (flags & NVMM_X64_STATE_GPRS) {
   1854 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   1855 
   1856 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   1857 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   1858 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   1859 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   1860 	}
   1861 
   1862 	if (flags & NVMM_X64_STATE_CRS) {
   1863 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   1864 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   1865 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   1866 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   1867 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   1868 		    VMCB_CTRL_V_TPR);
   1869 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   1870 	}
   1871 
   1872 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1873 	if (flags & NVMM_X64_STATE_DRS) {
   1874 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   1875 
   1876 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   1877 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   1878 	}
   1879 
   1880 	if (flags & NVMM_X64_STATE_MSRS) {
   1881 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   1882 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   1883 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   1884 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   1885 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   1886 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   1887 		    vmcb->state.kernelgsbase;
   1888 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   1889 		    vmcb->state.sysenter_cs;
   1890 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   1891 		    vmcb->state.sysenter_esp;
   1892 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   1893 		    vmcb->state.sysenter_eip;
   1894 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   1895 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   1896 
   1897 		/* Hide SVME. */
   1898 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   1899 	}
   1900 
   1901 	if (flags & NVMM_X64_STATE_INTR) {
   1902 		state->intr.int_shadow =
   1903 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   1904 		state->intr.int_window_exiting = cpudata->int_window_exit;
   1905 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   1906 		state->intr.evt_pending = cpudata->evt_pending;
   1907 	}
   1908 
   1909 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1910 	if (flags & NVMM_X64_STATE_FPU) {
   1911 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   1912 		    sizeof(state->fpu));
   1913 	}
   1914 
   1915 	comm->state_wanted = 0;
   1916 	comm->state_cached |= flags;
   1917 }
   1918 
   1919 static void
   1920 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
   1921 {
   1922 	vcpu->comm->state_wanted = flags;
   1923 	svm_vcpu_getstate(vcpu);
   1924 }
   1925 
   1926 static void
   1927 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
   1928 {
   1929 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
   1930 	vcpu->comm->state_commit = 0;
   1931 	svm_vcpu_setstate(vcpu);
   1932 }
   1933 
   1934 /* -------------------------------------------------------------------------- */
   1935 
   1936 static void
   1937 svm_asid_alloc(struct nvmm_cpu *vcpu)
   1938 {
   1939 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1940 	struct vmcb *vmcb = cpudata->vmcb;
   1941 	size_t i, oct, bit;
   1942 
   1943 	mutex_enter(&svm_asidlock);
   1944 
   1945 	for (i = 0; i < svm_maxasid; i++) {
   1946 		oct = i / 8;
   1947 		bit = i % 8;
   1948 
   1949 		if (svm_asidmap[oct] & __BIT(bit)) {
   1950 			continue;
   1951 		}
   1952 
   1953 		svm_asidmap[oct] |= __BIT(bit);
   1954 		vmcb->ctrl.guest_asid = i;
   1955 		mutex_exit(&svm_asidlock);
   1956 		return;
   1957 	}
   1958 
   1959 	/*
   1960 	 * No free ASID. Use the last one, which is shared and requires
   1961 	 * special TLB handling.
   1962 	 */
   1963 	cpudata->shared_asid = true;
   1964 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   1965 	mutex_exit(&svm_asidlock);
   1966 }
   1967 
   1968 static void
   1969 svm_asid_free(struct nvmm_cpu *vcpu)
   1970 {
   1971 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1972 	struct vmcb *vmcb = cpudata->vmcb;
   1973 	size_t oct, bit;
   1974 
   1975 	if (cpudata->shared_asid) {
   1976 		return;
   1977 	}
   1978 
   1979 	oct = vmcb->ctrl.guest_asid / 8;
   1980 	bit = vmcb->ctrl.guest_asid % 8;
   1981 
   1982 	mutex_enter(&svm_asidlock);
   1983 	svm_asidmap[oct] &= ~__BIT(bit);
   1984 	mutex_exit(&svm_asidlock);
   1985 }
   1986 
   1987 static void
   1988 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1989 {
   1990 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1991 	struct vmcb *vmcb = cpudata->vmcb;
   1992 
   1993 	/* Allow reads/writes of Control Registers. */
   1994 	vmcb->ctrl.intercept_cr = 0;
   1995 
   1996 	/* Allow reads/writes of Debug Registers. */
   1997 	vmcb->ctrl.intercept_dr = 0;
   1998 
   1999 	/* Allow exceptions 0 to 31. */
   2000 	vmcb->ctrl.intercept_vec = 0;
   2001 
   2002 	/*
   2003 	 * Allow:
   2004 	 *  - SMI [smm interrupts]
   2005 	 *  - VINTR [virtual interrupts]
   2006 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   2007 	 *  - RIDTR [reads of IDTR]
   2008 	 *  - RGDTR [reads of GDTR]
   2009 	 *  - RLDTR [reads of LDTR]
   2010 	 *  - RTR [reads of TR]
   2011 	 *  - WIDTR [writes of IDTR]
   2012 	 *  - WGDTR [writes of GDTR]
   2013 	 *  - WLDTR [writes of LDTR]
   2014 	 *  - WTR [writes of TR]
   2015 	 *  - RDTSC [rdtsc instruction]
   2016 	 *  - PUSHF [pushf instruction]
   2017 	 *  - POPF [popf instruction]
   2018 	 *  - IRET [iret instruction]
   2019 	 *  - INTN [int $n instructions]
   2020 	 *  - INVD [invd instruction]
   2021 	 *  - PAUSE [pause instruction]
   2022 	 *  - INVLPG [invplg instruction]
   2023 	 *  - TASKSW [task switches]
   2024 	 *
   2025 	 * Intercept the rest below.
   2026 	 */
   2027 	vmcb->ctrl.intercept_misc1 =
   2028 	    VMCB_CTRL_INTERCEPT_INTR |
   2029 	    VMCB_CTRL_INTERCEPT_NMI |
   2030 	    VMCB_CTRL_INTERCEPT_INIT |
   2031 	    VMCB_CTRL_INTERCEPT_RDPMC |
   2032 	    VMCB_CTRL_INTERCEPT_CPUID |
   2033 	    VMCB_CTRL_INTERCEPT_RSM |
   2034 	    VMCB_CTRL_INTERCEPT_HLT |
   2035 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   2036 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   2037 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   2038 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   2039 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   2040 
   2041 	/*
   2042 	 * Allow:
   2043 	 *  - ICEBP [icebp instruction]
   2044 	 *  - WBINVD [wbinvd instruction]
   2045 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   2046 	 *
   2047 	 * Intercept the rest below.
   2048 	 */
   2049 	vmcb->ctrl.intercept_misc2 =
   2050 	    VMCB_CTRL_INTERCEPT_VMRUN |
   2051 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   2052 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   2053 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   2054 	    VMCB_CTRL_INTERCEPT_STGI |
   2055 	    VMCB_CTRL_INTERCEPT_CLGI |
   2056 	    VMCB_CTRL_INTERCEPT_SKINIT |
   2057 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   2058 	    VMCB_CTRL_INTERCEPT_MONITOR |
   2059 	    VMCB_CTRL_INTERCEPT_MWAIT |
   2060 	    VMCB_CTRL_INTERCEPT_XSETBV |
   2061 	    VMCB_CTRL_INTERCEPT_RDPRU;
   2062 
   2063 	/*
   2064 	 * Intercept everything.
   2065 	 */
   2066 	vmcb->ctrl.intercept_misc3 =
   2067 	    VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
   2068 	    VMCB_CTRL_INTERCEPT_PCID |
   2069 	    VMCB_CTRL_INTERCEPT_MCOMMIT |
   2070 	    VMCB_CTRL_INTERCEPT_TLBSYNC;
   2071 
   2072 	/* Intercept all I/O accesses. */
   2073 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   2074 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   2075 
   2076 	/* Allow direct access to certain MSRs. */
   2077 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2078 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
   2079 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2080 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2081 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2082 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2083 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2084 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2085 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2086 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2087 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2088 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2089 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   2090 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2091 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   2092 
   2093 	/* Generate ASID. */
   2094 	svm_asid_alloc(vcpu);
   2095 
   2096 	/* Virtual TPR. */
   2097 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   2098 
   2099 	/* Enable Nested Paging. */
   2100 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   2101 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   2102 
   2103 	/* Init XSAVE header. */
   2104 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   2105 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2106 
   2107 	/* These MSRs are static. */
   2108 	cpudata->star = rdmsr(MSR_STAR);
   2109 	cpudata->lstar = rdmsr(MSR_LSTAR);
   2110 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2111 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2112 
   2113 	/* Install the RESET state. */
   2114 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
   2115 	    sizeof(nvmm_x86_reset_state));
   2116 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
   2117 	vcpu->comm->state_cached = 0;
   2118 	svm_vcpu_setstate(vcpu);
   2119 }
   2120 
   2121 static int
   2122 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2123 {
   2124 	struct svm_cpudata *cpudata;
   2125 	int error;
   2126 
   2127 	/* Allocate the SVM cpudata. */
   2128 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   2129 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2130 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2131 	vcpu->cpudata = cpudata;
   2132 
   2133 	/* VMCB */
   2134 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   2135 	    VMCB_NPAGES);
   2136 	if (error)
   2137 		goto error;
   2138 
   2139 	/* I/O Bitmap */
   2140 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   2141 	    IOBM_NPAGES);
   2142 	if (error)
   2143 		goto error;
   2144 
   2145 	/* MSR Bitmap */
   2146 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2147 	    MSRBM_NPAGES);
   2148 	if (error)
   2149 		goto error;
   2150 
   2151 	/* Init the VCPU info. */
   2152 	svm_vcpu_init(mach, vcpu);
   2153 
   2154 	return 0;
   2155 
   2156 error:
   2157 	if (cpudata->vmcb_pa) {
   2158 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   2159 		    VMCB_NPAGES);
   2160 	}
   2161 	if (cpudata->iobm_pa) {
   2162 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   2163 		    IOBM_NPAGES);
   2164 	}
   2165 	if (cpudata->msrbm_pa) {
   2166 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2167 		    MSRBM_NPAGES);
   2168 	}
   2169 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2170 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2171 	return error;
   2172 }
   2173 
   2174 static void
   2175 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2176 {
   2177 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2178 
   2179 	svm_asid_free(vcpu);
   2180 
   2181 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   2182 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   2183 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2184 
   2185 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2186 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2187 }
   2188 
   2189 /* -------------------------------------------------------------------------- */
   2190 
   2191 static int
   2192 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
   2193 {
   2194 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
   2195 	size_t i;
   2196 
   2197 	if (__predict_false(cpuid->mask && cpuid->exit)) {
   2198 		return EINVAL;
   2199 	}
   2200 	if (__predict_false(cpuid->mask &&
   2201 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
   2202 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
   2203 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
   2204 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
   2205 		return EINVAL;
   2206 	}
   2207 
   2208 	/* If unset, delete, to restore the default behavior. */
   2209 	if (!cpuid->mask && !cpuid->exit) {
   2210 		for (i = 0; i < SVM_NCPUIDS; i++) {
   2211 			if (!cpudata->cpuidpresent[i]) {
   2212 				continue;
   2213 			}
   2214 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2215 				cpudata->cpuidpresent[i] = false;
   2216 			}
   2217 		}
   2218 		return 0;
   2219 	}
   2220 
   2221 	/* If already here, replace. */
   2222 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2223 		if (!cpudata->cpuidpresent[i]) {
   2224 			continue;
   2225 		}
   2226 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2227 			memcpy(&cpudata->cpuid[i], cpuid,
   2228 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2229 			return 0;
   2230 		}
   2231 	}
   2232 
   2233 	/* Not here, insert. */
   2234 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2235 		if (!cpudata->cpuidpresent[i]) {
   2236 			cpudata->cpuidpresent[i] = true;
   2237 			memcpy(&cpudata->cpuid[i], cpuid,
   2238 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2239 			return 0;
   2240 		}
   2241 	}
   2242 
   2243 	return ENOBUFS;
   2244 }
   2245 
   2246 static int
   2247 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
   2248 {
   2249 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2250 
   2251 	switch (op) {
   2252 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
   2253 		return svm_vcpu_configure_cpuid(cpudata, data);
   2254 	default:
   2255 		return EINVAL;
   2256 	}
   2257 }
   2258 
   2259 /* -------------------------------------------------------------------------- */
   2260 
   2261 static void
   2262 svm_tlb_flush(struct pmap *pm)
   2263 {
   2264 	struct nvmm_machine *mach = pm->pm_data;
   2265 	struct svm_machdata *machdata = mach->machdata;
   2266 
   2267 	atomic_inc_64(&machdata->mach_htlb_gen);
   2268 
   2269 	/* Generates IPIs, which cause #VMEXITs. */
   2270 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
   2271 }
   2272 
   2273 static void
   2274 svm_machine_create(struct nvmm_machine *mach)
   2275 {
   2276 	struct svm_machdata *machdata;
   2277 
   2278 	/* Fill in pmap info. */
   2279 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   2280 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   2281 
   2282 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   2283 	mach->machdata = machdata;
   2284 
   2285 	/* Start with an hTLB flush everywhere. */
   2286 	machdata->mach_htlb_gen = 1;
   2287 }
   2288 
   2289 static void
   2290 svm_machine_destroy(struct nvmm_machine *mach)
   2291 {
   2292 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   2293 }
   2294 
   2295 static int
   2296 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2297 {
   2298 	panic("%s: impossible", __func__);
   2299 }
   2300 
   2301 /* -------------------------------------------------------------------------- */
   2302 
   2303 static bool
   2304 svm_ident(void)
   2305 {
   2306 	u_int descs[4];
   2307 	uint64_t msr;
   2308 
   2309 	if (cpu_vendor != CPUVENDOR_AMD) {
   2310 		return false;
   2311 	}
   2312 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2313 		printf("NVMM: SVM not supported\n");
   2314 		return false;
   2315 	}
   2316 
   2317 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2318 		printf("NVMM: CPUID leaf not available\n");
   2319 		return false;
   2320 	}
   2321 	x86_cpuid(0x8000000a, descs);
   2322 
   2323 	/* Want Nested Paging. */
   2324 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2325 		printf("NVMM: SVM-NP not supported\n");
   2326 		return false;
   2327 	}
   2328 
   2329 	/* Want nRIP. */
   2330 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2331 		printf("NVMM: SVM-NRIPS not supported\n");
   2332 		return false;
   2333 	}
   2334 
   2335 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2336 
   2337 	msr = rdmsr(MSR_VMCR);
   2338 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2339 		printf("NVMM: SVM disabled in BIOS\n");
   2340 		return false;
   2341 	}
   2342 
   2343 	return true;
   2344 }
   2345 
   2346 static void
   2347 svm_init_asid(uint32_t maxasid)
   2348 {
   2349 	size_t i, j, allocsz;
   2350 
   2351 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2352 
   2353 	/* Arbitrarily limit. */
   2354 	maxasid = uimin(maxasid, 8192);
   2355 
   2356 	svm_maxasid = maxasid;
   2357 	allocsz = roundup(maxasid, 8) / 8;
   2358 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2359 
   2360 	/* ASID 0 is reserved for the host. */
   2361 	svm_asidmap[0] |= __BIT(0);
   2362 
   2363 	/* ASID n-1 is special, we share it. */
   2364 	i = (maxasid - 1) / 8;
   2365 	j = (maxasid - 1) % 8;
   2366 	svm_asidmap[i] |= __BIT(j);
   2367 }
   2368 
   2369 static void
   2370 svm_change_cpu(void *arg1, void *arg2)
   2371 {
   2372 	bool enable = arg1 != NULL;
   2373 	uint64_t msr;
   2374 
   2375 	msr = rdmsr(MSR_VMCR);
   2376 	if (msr & VMCR_SVMED) {
   2377 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2378 	}
   2379 
   2380 	if (!enable) {
   2381 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2382 	}
   2383 
   2384 	msr = rdmsr(MSR_EFER);
   2385 	if (enable) {
   2386 		msr |= EFER_SVME;
   2387 	} else {
   2388 		msr &= ~EFER_SVME;
   2389 	}
   2390 	wrmsr(MSR_EFER, msr);
   2391 
   2392 	if (enable) {
   2393 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2394 	}
   2395 }
   2396 
   2397 static void
   2398 svm_init(void)
   2399 {
   2400 	CPU_INFO_ITERATOR cii;
   2401 	struct cpu_info *ci;
   2402 	struct vm_page *pg;
   2403 	u_int descs[4];
   2404 	uint64_t xc;
   2405 
   2406 	x86_cpuid(0x8000000a, descs);
   2407 
   2408 	/* The guest TLB flush command. */
   2409 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2410 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2411 	} else {
   2412 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2413 	}
   2414 
   2415 	/* Init the ASID. */
   2416 	svm_init_asid(descs[1]);
   2417 
   2418 	/* Init the XCR0 mask. */
   2419 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2420 
   2421 	memset(hsave, 0, sizeof(hsave));
   2422 	for (CPU_INFO_FOREACH(cii, ci)) {
   2423 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2424 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2425 	}
   2426 
   2427 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2428 	xc_wait(xc);
   2429 }
   2430 
   2431 static void
   2432 svm_fini_asid(void)
   2433 {
   2434 	size_t allocsz;
   2435 
   2436 	allocsz = roundup(svm_maxasid, 8) / 8;
   2437 	kmem_free(svm_asidmap, allocsz);
   2438 
   2439 	mutex_destroy(&svm_asidlock);
   2440 }
   2441 
   2442 static void
   2443 svm_fini(void)
   2444 {
   2445 	uint64_t xc;
   2446 	size_t i;
   2447 
   2448 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2449 	xc_wait(xc);
   2450 
   2451 	for (i = 0; i < MAXCPUS; i++) {
   2452 		if (hsave[i].pa != 0)
   2453 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2454 	}
   2455 
   2456 	svm_fini_asid();
   2457 }
   2458 
   2459 static void
   2460 svm_capability(struct nvmm_capability *cap)
   2461 {
   2462 	cap->arch.mach_conf_support = 0;
   2463 	cap->arch.vcpu_conf_support =
   2464 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID;
   2465 	cap->arch.xcr0_mask = svm_xcr0_mask;
   2466 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
   2467 	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
   2468 }
   2469 
   2470 const struct nvmm_impl nvmm_x86_svm = {
   2471 	.name = "x86-svm",
   2472 	.ident = svm_ident,
   2473 	.init = svm_init,
   2474 	.fini = svm_fini,
   2475 	.capability = svm_capability,
   2476 	.mach_conf_max = NVMM_X86_MACH_NCONF,
   2477 	.mach_conf_sizes = NULL,
   2478 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
   2479 	.vcpu_conf_sizes = svm_vcpu_conf_sizes,
   2480 	.state_size = sizeof(struct nvmm_x64_state),
   2481 	.machine_create = svm_machine_create,
   2482 	.machine_destroy = svm_machine_destroy,
   2483 	.machine_configure = svm_machine_configure,
   2484 	.vcpu_create = svm_vcpu_create,
   2485 	.vcpu_destroy = svm_vcpu_destroy,
   2486 	.vcpu_configure = svm_vcpu_configure,
   2487 	.vcpu_setstate = svm_vcpu_setstate,
   2488 	.vcpu_getstate = svm_vcpu_getstate,
   2489 	.vcpu_inject = svm_vcpu_inject,
   2490 	.vcpu_run = svm_vcpu_run
   2491 };
   2492