nvmm_x86_svm.c revision 1.69 1 /* $NetBSD: nvmm_x86_svm.c,v 1.69 2020/08/18 17:08:05 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.69 2020/08/18 17:08:05 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 static inline void
60 svm_clgi(void)
61 {
62 asm volatile ("clgi" ::: "memory");
63 }
64
65 static inline void
66 svm_stgi(void)
67 {
68 asm volatile ("stgi" ::: "memory");
69 }
70
71 #define MSR_VM_HSAVE_PA 0xC0010117
72
73 /* -------------------------------------------------------------------------- */
74
75 #define VMCB_EXITCODE_CR0_READ 0x0000
76 #define VMCB_EXITCODE_CR1_READ 0x0001
77 #define VMCB_EXITCODE_CR2_READ 0x0002
78 #define VMCB_EXITCODE_CR3_READ 0x0003
79 #define VMCB_EXITCODE_CR4_READ 0x0004
80 #define VMCB_EXITCODE_CR5_READ 0x0005
81 #define VMCB_EXITCODE_CR6_READ 0x0006
82 #define VMCB_EXITCODE_CR7_READ 0x0007
83 #define VMCB_EXITCODE_CR8_READ 0x0008
84 #define VMCB_EXITCODE_CR9_READ 0x0009
85 #define VMCB_EXITCODE_CR10_READ 0x000A
86 #define VMCB_EXITCODE_CR11_READ 0x000B
87 #define VMCB_EXITCODE_CR12_READ 0x000C
88 #define VMCB_EXITCODE_CR13_READ 0x000D
89 #define VMCB_EXITCODE_CR14_READ 0x000E
90 #define VMCB_EXITCODE_CR15_READ 0x000F
91 #define VMCB_EXITCODE_CR0_WRITE 0x0010
92 #define VMCB_EXITCODE_CR1_WRITE 0x0011
93 #define VMCB_EXITCODE_CR2_WRITE 0x0012
94 #define VMCB_EXITCODE_CR3_WRITE 0x0013
95 #define VMCB_EXITCODE_CR4_WRITE 0x0014
96 #define VMCB_EXITCODE_CR5_WRITE 0x0015
97 #define VMCB_EXITCODE_CR6_WRITE 0x0016
98 #define VMCB_EXITCODE_CR7_WRITE 0x0017
99 #define VMCB_EXITCODE_CR8_WRITE 0x0018
100 #define VMCB_EXITCODE_CR9_WRITE 0x0019
101 #define VMCB_EXITCODE_CR10_WRITE 0x001A
102 #define VMCB_EXITCODE_CR11_WRITE 0x001B
103 #define VMCB_EXITCODE_CR12_WRITE 0x001C
104 #define VMCB_EXITCODE_CR13_WRITE 0x001D
105 #define VMCB_EXITCODE_CR14_WRITE 0x001E
106 #define VMCB_EXITCODE_CR15_WRITE 0x001F
107 #define VMCB_EXITCODE_DR0_READ 0x0020
108 #define VMCB_EXITCODE_DR1_READ 0x0021
109 #define VMCB_EXITCODE_DR2_READ 0x0022
110 #define VMCB_EXITCODE_DR3_READ 0x0023
111 #define VMCB_EXITCODE_DR4_READ 0x0024
112 #define VMCB_EXITCODE_DR5_READ 0x0025
113 #define VMCB_EXITCODE_DR6_READ 0x0026
114 #define VMCB_EXITCODE_DR7_READ 0x0027
115 #define VMCB_EXITCODE_DR8_READ 0x0028
116 #define VMCB_EXITCODE_DR9_READ 0x0029
117 #define VMCB_EXITCODE_DR10_READ 0x002A
118 #define VMCB_EXITCODE_DR11_READ 0x002B
119 #define VMCB_EXITCODE_DR12_READ 0x002C
120 #define VMCB_EXITCODE_DR13_READ 0x002D
121 #define VMCB_EXITCODE_DR14_READ 0x002E
122 #define VMCB_EXITCODE_DR15_READ 0x002F
123 #define VMCB_EXITCODE_DR0_WRITE 0x0030
124 #define VMCB_EXITCODE_DR1_WRITE 0x0031
125 #define VMCB_EXITCODE_DR2_WRITE 0x0032
126 #define VMCB_EXITCODE_DR3_WRITE 0x0033
127 #define VMCB_EXITCODE_DR4_WRITE 0x0034
128 #define VMCB_EXITCODE_DR5_WRITE 0x0035
129 #define VMCB_EXITCODE_DR6_WRITE 0x0036
130 #define VMCB_EXITCODE_DR7_WRITE 0x0037
131 #define VMCB_EXITCODE_DR8_WRITE 0x0038
132 #define VMCB_EXITCODE_DR9_WRITE 0x0039
133 #define VMCB_EXITCODE_DR10_WRITE 0x003A
134 #define VMCB_EXITCODE_DR11_WRITE 0x003B
135 #define VMCB_EXITCODE_DR12_WRITE 0x003C
136 #define VMCB_EXITCODE_DR13_WRITE 0x003D
137 #define VMCB_EXITCODE_DR14_WRITE 0x003E
138 #define VMCB_EXITCODE_DR15_WRITE 0x003F
139 #define VMCB_EXITCODE_EXCP0 0x0040
140 #define VMCB_EXITCODE_EXCP1 0x0041
141 #define VMCB_EXITCODE_EXCP2 0x0042
142 #define VMCB_EXITCODE_EXCP3 0x0043
143 #define VMCB_EXITCODE_EXCP4 0x0044
144 #define VMCB_EXITCODE_EXCP5 0x0045
145 #define VMCB_EXITCODE_EXCP6 0x0046
146 #define VMCB_EXITCODE_EXCP7 0x0047
147 #define VMCB_EXITCODE_EXCP8 0x0048
148 #define VMCB_EXITCODE_EXCP9 0x0049
149 #define VMCB_EXITCODE_EXCP10 0x004A
150 #define VMCB_EXITCODE_EXCP11 0x004B
151 #define VMCB_EXITCODE_EXCP12 0x004C
152 #define VMCB_EXITCODE_EXCP13 0x004D
153 #define VMCB_EXITCODE_EXCP14 0x004E
154 #define VMCB_EXITCODE_EXCP15 0x004F
155 #define VMCB_EXITCODE_EXCP16 0x0050
156 #define VMCB_EXITCODE_EXCP17 0x0051
157 #define VMCB_EXITCODE_EXCP18 0x0052
158 #define VMCB_EXITCODE_EXCP19 0x0053
159 #define VMCB_EXITCODE_EXCP20 0x0054
160 #define VMCB_EXITCODE_EXCP21 0x0055
161 #define VMCB_EXITCODE_EXCP22 0x0056
162 #define VMCB_EXITCODE_EXCP23 0x0057
163 #define VMCB_EXITCODE_EXCP24 0x0058
164 #define VMCB_EXITCODE_EXCP25 0x0059
165 #define VMCB_EXITCODE_EXCP26 0x005A
166 #define VMCB_EXITCODE_EXCP27 0x005B
167 #define VMCB_EXITCODE_EXCP28 0x005C
168 #define VMCB_EXITCODE_EXCP29 0x005D
169 #define VMCB_EXITCODE_EXCP30 0x005E
170 #define VMCB_EXITCODE_EXCP31 0x005F
171 #define VMCB_EXITCODE_INTR 0x0060
172 #define VMCB_EXITCODE_NMI 0x0061
173 #define VMCB_EXITCODE_SMI 0x0062
174 #define VMCB_EXITCODE_INIT 0x0063
175 #define VMCB_EXITCODE_VINTR 0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
177 #define VMCB_EXITCODE_IDTR_READ 0x0066
178 #define VMCB_EXITCODE_GDTR_READ 0x0067
179 #define VMCB_EXITCODE_LDTR_READ 0x0068
180 #define VMCB_EXITCODE_TR_READ 0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
184 #define VMCB_EXITCODE_TR_WRITE 0x006D
185 #define VMCB_EXITCODE_RDTSC 0x006E
186 #define VMCB_EXITCODE_RDPMC 0x006F
187 #define VMCB_EXITCODE_PUSHF 0x0070
188 #define VMCB_EXITCODE_POPF 0x0071
189 #define VMCB_EXITCODE_CPUID 0x0072
190 #define VMCB_EXITCODE_RSM 0x0073
191 #define VMCB_EXITCODE_IRET 0x0074
192 #define VMCB_EXITCODE_SWINT 0x0075
193 #define VMCB_EXITCODE_INVD 0x0076
194 #define VMCB_EXITCODE_PAUSE 0x0077
195 #define VMCB_EXITCODE_HLT 0x0078
196 #define VMCB_EXITCODE_INVLPG 0x0079
197 #define VMCB_EXITCODE_INVLPGA 0x007A
198 #define VMCB_EXITCODE_IOIO 0x007B
199 #define VMCB_EXITCODE_MSR 0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
202 #define VMCB_EXITCODE_SHUTDOWN 0x007F
203 #define VMCB_EXITCODE_VMRUN 0x0080
204 #define VMCB_EXITCODE_VMMCALL 0x0081
205 #define VMCB_EXITCODE_VMLOAD 0x0082
206 #define VMCB_EXITCODE_VMSAVE 0x0083
207 #define VMCB_EXITCODE_STGI 0x0084
208 #define VMCB_EXITCODE_CLGI 0x0085
209 #define VMCB_EXITCODE_SKINIT 0x0086
210 #define VMCB_EXITCODE_RDTSCP 0x0087
211 #define VMCB_EXITCODE_ICEBP 0x0088
212 #define VMCB_EXITCODE_WBINVD 0x0089
213 #define VMCB_EXITCODE_MONITOR 0x008A
214 #define VMCB_EXITCODE_MWAIT 0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
216 #define VMCB_EXITCODE_XSETBV 0x008D
217 #define VMCB_EXITCODE_RDPRU 0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
235 #define VMCB_EXITCODE_INVLPGB 0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
237 #define VMCB_EXITCODE_INVPCID 0x00A2
238 #define VMCB_EXITCODE_MCOMMIT 0x00A3
239 #define VMCB_EXITCODE_TLBSYNC 0x00A4
240 #define VMCB_EXITCODE_NPF 0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
243 #define VMCB_EXITCODE_VMGEXIT 0x0403
244 #define VMCB_EXITCODE_BUSY -2ULL
245 #define VMCB_EXITCODE_INVALID -1ULL
246
247 /* -------------------------------------------------------------------------- */
248
249 struct vmcb_ctrl {
250 uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
253
254 uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
257
258 uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
260
261 uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
294
295 uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
313
314 uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
320
321 uint8_t rsvd1[36];
322 uint16_t pause_filt_thresh;
323 uint16_t pause_filt_cnt;
324 uint64_t iopm_base_pa;
325 uint64_t msrpm_base_pa;
326 uint64_t tsc_offset;
327 uint32_t guest_asid;
328
329 uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
333
334 uint64_t v;
335 #define VMCB_CTRL_V_TPR __BITS(3,0)
336 #define VMCB_CTRL_V_IRQ __BIT(8)
337 #define VMCB_CTRL_V_VGIF __BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
344
345 uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
347 #define VMCB_CTRL_INTR_MASK __BIT(1)
348
349 uint64_t exitcode;
350 uint64_t exitinfo1;
351 uint64_t exitinfo2;
352
353 uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
359
360 uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP __BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
366
367 uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
369
370 uint64_t ghcb;
371
372 uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
378
379 uint64_t n_cr3;
380
381 uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
384
385 uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
398
399 uint32_t rsvd2;
400 uint64_t nrip;
401 uint8_t inst_len;
402 uint8_t inst_bytes[15];
403 uint64_t avic_abpp;
404 uint64_t rsvd3;
405 uint64_t avic_ltp;
406
407 uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
410
411 uint64_t rsvd4;
412 uint64_t vmsa_ptr;
413
414 uint8_t pad[752];
415 } __packed;
416
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418
419 struct vmcb_segment {
420 uint16_t selector;
421 uint16_t attrib; /* hidden */
422 uint32_t limit; /* hidden */
423 uint64_t base; /* hidden */
424 } __packed;
425
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427
428 struct vmcb_state {
429 struct vmcb_segment es;
430 struct vmcb_segment cs;
431 struct vmcb_segment ss;
432 struct vmcb_segment ds;
433 struct vmcb_segment fs;
434 struct vmcb_segment gs;
435 struct vmcb_segment gdt;
436 struct vmcb_segment ldt;
437 struct vmcb_segment idt;
438 struct vmcb_segment tr;
439 uint8_t rsvd1[43];
440 uint8_t cpl;
441 uint8_t rsvd2[4];
442 uint64_t efer;
443 uint8_t rsvd3[112];
444 uint64_t cr4;
445 uint64_t cr3;
446 uint64_t cr0;
447 uint64_t dr7;
448 uint64_t dr6;
449 uint64_t rflags;
450 uint64_t rip;
451 uint8_t rsvd4[88];
452 uint64_t rsp;
453 uint8_t rsvd5[24];
454 uint64_t rax;
455 uint64_t star;
456 uint64_t lstar;
457 uint64_t cstar;
458 uint64_t sfmask;
459 uint64_t kernelgsbase;
460 uint64_t sysenter_cs;
461 uint64_t sysenter_esp;
462 uint64_t sysenter_eip;
463 uint64_t cr2;
464 uint8_t rsvd6[32];
465 uint64_t g_pat;
466 uint64_t dbgctl;
467 uint64_t br_from;
468 uint64_t br_to;
469 uint64_t int_from;
470 uint64_t int_to;
471 uint8_t pad[2408];
472 } __packed;
473
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475
476 struct vmcb {
477 struct vmcb_ctrl ctrl;
478 struct vmcb_state state;
479 } __packed;
480
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483
484 /* -------------------------------------------------------------------------- */
485
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488
489 struct svm_hsave {
490 paddr_t pa;
491 };
492
493 static struct svm_hsave hsave[MAXCPUS];
494
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501
502 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504
505 #define SVM_NCPUIDS 32
506
507 #define VMCB_NPAGES 1
508
509 #define MSRBM_NPAGES 2
510 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
511
512 #define IOBM_NPAGES 3
513 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
514
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518
519 #define EFER_TLB_FLUSH \
520 (EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525
526 /* -------------------------------------------------------------------------- */
527
528 struct svm_machdata {
529 volatile uint64_t mach_htlb_gen;
530 };
531
532 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
533 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
534 sizeof(struct nvmm_vcpu_conf_cpuid),
535 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
536 sizeof(struct nvmm_vcpu_conf_tpr)
537 };
538
539 struct svm_cpudata {
540 /* General */
541 bool shared_asid;
542 bool gtlb_want_flush;
543 bool gtsc_want_update;
544 uint64_t vcpu_htlb_gen;
545
546 /* VMCB */
547 struct vmcb *vmcb;
548 paddr_t vmcb_pa;
549
550 /* I/O bitmap */
551 uint8_t *iobm;
552 paddr_t iobm_pa;
553
554 /* MSR bitmap */
555 uint8_t *msrbm;
556 paddr_t msrbm_pa;
557
558 /* Host state */
559 uint64_t hxcr0;
560 uint64_t star;
561 uint64_t lstar;
562 uint64_t cstar;
563 uint64_t sfmask;
564 uint64_t fsbase;
565 uint64_t kernelgsbase;
566
567 /* Intr state */
568 bool int_window_exit;
569 bool nmi_window_exit;
570 bool evt_pending;
571
572 /* Guest state */
573 uint64_t gxcr0;
574 uint64_t gprs[NVMM_X64_NGPR];
575 uint64_t drs[NVMM_X64_NDR];
576 uint64_t gtsc;
577 struct xsave_header gfpu __aligned(64);
578
579 /* VCPU configuration. */
580 bool cpuidpresent[SVM_NCPUIDS];
581 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
582 };
583
584 static void
585 svm_vmcb_cache_default(struct vmcb *vmcb)
586 {
587 vmcb->ctrl.vmcb_clean =
588 VMCB_CTRL_VMCB_CLEAN_I |
589 VMCB_CTRL_VMCB_CLEAN_IOPM |
590 VMCB_CTRL_VMCB_CLEAN_ASID |
591 VMCB_CTRL_VMCB_CLEAN_TPR |
592 VMCB_CTRL_VMCB_CLEAN_NP |
593 VMCB_CTRL_VMCB_CLEAN_CR |
594 VMCB_CTRL_VMCB_CLEAN_DR |
595 VMCB_CTRL_VMCB_CLEAN_DT |
596 VMCB_CTRL_VMCB_CLEAN_SEG |
597 VMCB_CTRL_VMCB_CLEAN_CR2 |
598 VMCB_CTRL_VMCB_CLEAN_LBR |
599 VMCB_CTRL_VMCB_CLEAN_AVIC;
600 }
601
602 static void
603 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
604 {
605 if (flags & NVMM_X64_STATE_SEGS) {
606 vmcb->ctrl.vmcb_clean &=
607 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
608 }
609 if (flags & NVMM_X64_STATE_CRS) {
610 vmcb->ctrl.vmcb_clean &=
611 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
612 VMCB_CTRL_VMCB_CLEAN_TPR);
613 }
614 if (flags & NVMM_X64_STATE_DRS) {
615 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
616 }
617 if (flags & NVMM_X64_STATE_MSRS) {
618 /* CR for EFER, NP for PAT. */
619 vmcb->ctrl.vmcb_clean &=
620 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
621 }
622 }
623
624 static inline void
625 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
626 {
627 vmcb->ctrl.vmcb_clean &= ~flags;
628 }
629
630 static inline void
631 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
632 {
633 vmcb->ctrl.vmcb_clean = 0;
634 }
635
636 #define SVM_EVENT_TYPE_HW_INT 0
637 #define SVM_EVENT_TYPE_NMI 2
638 #define SVM_EVENT_TYPE_EXC 3
639 #define SVM_EVENT_TYPE_SW_INT 4
640
641 static void
642 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
643 {
644 struct svm_cpudata *cpudata = vcpu->cpudata;
645 struct vmcb *vmcb = cpudata->vmcb;
646
647 if (nmi) {
648 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
649 cpudata->nmi_window_exit = true;
650 } else {
651 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
652 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
653 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
654 cpudata->int_window_exit = true;
655 }
656
657 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
658 }
659
660 static void
661 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
662 {
663 struct svm_cpudata *cpudata = vcpu->cpudata;
664 struct vmcb *vmcb = cpudata->vmcb;
665
666 if (nmi) {
667 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
668 cpudata->nmi_window_exit = false;
669 } else {
670 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
671 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
672 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
673 cpudata->int_window_exit = false;
674 }
675
676 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
677 }
678
679 static inline int
680 svm_event_has_error(uint8_t vector)
681 {
682 switch (vector) {
683 case 8: /* #DF */
684 case 10: /* #TS */
685 case 11: /* #NP */
686 case 12: /* #SS */
687 case 13: /* #GP */
688 case 14: /* #PF */
689 case 17: /* #AC */
690 case 30: /* #SX */
691 return 1;
692 default:
693 return 0;
694 }
695 }
696
697 static int
698 svm_vcpu_inject(struct nvmm_cpu *vcpu)
699 {
700 struct nvmm_comm_page *comm = vcpu->comm;
701 struct svm_cpudata *cpudata = vcpu->cpudata;
702 struct vmcb *vmcb = cpudata->vmcb;
703 u_int evtype;
704 uint8_t vector;
705 uint64_t error;
706 int type = 0, err = 0;
707
708 evtype = comm->event.type;
709 vector = comm->event.vector;
710 error = comm->event.u.excp.error;
711 __insn_barrier();
712
713 switch (evtype) {
714 case NVMM_VCPU_EVENT_EXCP:
715 type = SVM_EVENT_TYPE_EXC;
716 if (vector == 2 || vector >= 32)
717 return EINVAL;
718 if (vector == 3 || vector == 0)
719 return EINVAL;
720 err = svm_event_has_error(vector);
721 break;
722 case NVMM_VCPU_EVENT_INTR:
723 type = SVM_EVENT_TYPE_HW_INT;
724 if (vector == 2) {
725 type = SVM_EVENT_TYPE_NMI;
726 svm_event_waitexit_enable(vcpu, true);
727 }
728 err = 0;
729 break;
730 default:
731 return EINVAL;
732 }
733
734 vmcb->ctrl.eventinj =
735 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
736 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
737 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
738 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
739 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
740
741 cpudata->evt_pending = true;
742
743 return 0;
744 }
745
746 static void
747 svm_inject_ud(struct nvmm_cpu *vcpu)
748 {
749 struct nvmm_comm_page *comm = vcpu->comm;
750 int ret __diagused;
751
752 comm->event.type = NVMM_VCPU_EVENT_EXCP;
753 comm->event.vector = 6;
754 comm->event.u.excp.error = 0;
755
756 ret = svm_vcpu_inject(vcpu);
757 KASSERT(ret == 0);
758 }
759
760 static void
761 svm_inject_gp(struct nvmm_cpu *vcpu)
762 {
763 struct nvmm_comm_page *comm = vcpu->comm;
764 int ret __diagused;
765
766 comm->event.type = NVMM_VCPU_EVENT_EXCP;
767 comm->event.vector = 13;
768 comm->event.u.excp.error = 0;
769
770 ret = svm_vcpu_inject(vcpu);
771 KASSERT(ret == 0);
772 }
773
774 static inline int
775 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
776 {
777 if (__predict_true(!vcpu->comm->event_commit)) {
778 return 0;
779 }
780 vcpu->comm->event_commit = false;
781 return svm_vcpu_inject(vcpu);
782 }
783
784 static inline void
785 svm_inkernel_advance(struct vmcb *vmcb)
786 {
787 /*
788 * Maybe we should also apply single-stepping and debug exceptions.
789 * Matters for guest-ring3, because it can execute 'cpuid' under a
790 * debugger.
791 */
792 vmcb->state.rip = vmcb->ctrl.nrip;
793 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
794 }
795
796 #define SVM_CPUID_MAX_BASIC 0xD
797 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
798 static uint32_t svm_cpuid_max_basic __read_mostly;
799
800 static void
801 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
802 {
803 u_int descs[4];
804
805 x86_cpuid2(eax, ecx, descs);
806 cpudata->vmcb->state.rax = descs[0];
807 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
808 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
809 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
810 }
811
812 static void
813 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
814 {
815 struct svm_cpudata *cpudata = vcpu->cpudata;
816 uint64_t cr4;
817
818 if (eax < 0x40000000) {
819 if (__predict_false(eax > svm_cpuid_max_basic)) {
820 eax = svm_cpuid_max_basic;
821 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
822 }
823 } else if (eax < 0x80000000) {
824 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
825 eax = svm_cpuid_max_basic;
826 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
827 }
828 }
829
830 switch (eax) {
831 case 0x00000000:
832 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
833 break;
834 case 0x00000001:
835 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
836
837 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
838 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
839 CPUID_LOCAL_APIC_ID);
840
841 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
842 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
843
844 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
845
846 /* CPUID2_OSXSAVE depends on CR4. */
847 cr4 = cpudata->vmcb->state.cr4;
848 if (!(cr4 & CR4_OSXSAVE)) {
849 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
850 }
851 break;
852 case 0x00000002: /* Empty */
853 case 0x00000003: /* Empty */
854 case 0x00000004: /* Empty */
855 case 0x00000005: /* Monitor/MWait */
856 case 0x00000006: /* Power Management Related Features */
857 cpudata->vmcb->state.rax = 0;
858 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
859 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
860 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
861 break;
862 case 0x00000007: /* Structured Extended Features */
863 switch (ecx) {
864 case 0:
865 cpudata->vmcb->state.rax = 0;
866 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
867 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
868 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
869 break;
870 default:
871 cpudata->vmcb->state.rax = 0;
872 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
873 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
874 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
875 break;
876 }
877 break;
878 case 0x00000008: /* Empty */
879 case 0x00000009: /* Empty */
880 case 0x0000000A: /* Empty */
881 case 0x0000000B: /* Empty */
882 case 0x0000000C: /* Empty */
883 cpudata->vmcb->state.rax = 0;
884 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
885 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
886 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
887 break;
888 case 0x0000000D: /* Processor Extended State Enumeration */
889 if (svm_xcr0_mask == 0) {
890 break;
891 }
892 switch (ecx) {
893 case 0:
894 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
895 if (cpudata->gxcr0 & XCR0_SSE) {
896 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
897 } else {
898 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
899 }
900 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
901 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
902 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
903 break;
904 case 1:
905 cpudata->vmcb->state.rax &=
906 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
907 CPUID_PES1_XGETBV);
908 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
909 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
910 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
911 break;
912 default:
913 cpudata->vmcb->state.rax = 0;
914 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
915 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
916 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
917 break;
918 }
919 break;
920
921 case 0x40000000: /* Hypervisor Information */
922 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
923 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
924 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
925 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
926 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
927 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
928 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
929 break;
930
931 case 0x80000001:
932 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
933 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
934 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
935 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
936 break;
937 default:
938 break;
939 }
940 }
941
942 static void
943 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
944 {
945 exit->u.insn.npc = vmcb->ctrl.nrip;
946 exit->reason = reason;
947 }
948
949 static void
950 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
951 struct nvmm_vcpu_exit *exit)
952 {
953 struct svm_cpudata *cpudata = vcpu->cpudata;
954 struct nvmm_vcpu_conf_cpuid *cpuid;
955 uint64_t eax, ecx;
956 u_int descs[4];
957 size_t i;
958
959 eax = cpudata->vmcb->state.rax;
960 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
961 x86_cpuid2(eax, ecx, descs);
962
963 cpudata->vmcb->state.rax = descs[0];
964 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
965 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
966 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
967
968 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
969
970 for (i = 0; i < SVM_NCPUIDS; i++) {
971 if (!cpudata->cpuidpresent[i]) {
972 continue;
973 }
974 cpuid = &cpudata->cpuid[i];
975 if (cpuid->leaf != eax) {
976 continue;
977 }
978
979 if (cpuid->exit) {
980 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
981 return;
982 }
983 KASSERT(cpuid->mask);
984
985 /* del */
986 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
987 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
988 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
989 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
990
991 /* set */
992 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
993 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
994 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
995 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
996
997 break;
998 }
999
1000 svm_inkernel_advance(cpudata->vmcb);
1001 exit->reason = NVMM_VCPU_EXIT_NONE;
1002 }
1003
1004 static void
1005 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1006 struct nvmm_vcpu_exit *exit)
1007 {
1008 struct svm_cpudata *cpudata = vcpu->cpudata;
1009 struct vmcb *vmcb = cpudata->vmcb;
1010
1011 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1012 svm_event_waitexit_disable(vcpu, false);
1013 }
1014
1015 svm_inkernel_advance(cpudata->vmcb);
1016 exit->reason = NVMM_VCPU_EXIT_HALTED;
1017 }
1018
1019 #define SVM_EXIT_IO_PORT __BITS(31,16)
1020 #define SVM_EXIT_IO_SEG __BITS(12,10)
1021 #define SVM_EXIT_IO_A64 __BIT(9)
1022 #define SVM_EXIT_IO_A32 __BIT(8)
1023 #define SVM_EXIT_IO_A16 __BIT(7)
1024 #define SVM_EXIT_IO_SZ32 __BIT(6)
1025 #define SVM_EXIT_IO_SZ16 __BIT(5)
1026 #define SVM_EXIT_IO_SZ8 __BIT(4)
1027 #define SVM_EXIT_IO_REP __BIT(3)
1028 #define SVM_EXIT_IO_STR __BIT(2)
1029 #define SVM_EXIT_IO_IN __BIT(0)
1030
1031 static void
1032 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1033 struct nvmm_vcpu_exit *exit)
1034 {
1035 struct svm_cpudata *cpudata = vcpu->cpudata;
1036 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1037 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1038
1039 exit->reason = NVMM_VCPU_EXIT_IO;
1040
1041 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1042 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1043
1044 if (svm_decode_assist) {
1045 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1046 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1047 } else {
1048 exit->u.io.seg = -1;
1049 }
1050
1051 if (info & SVM_EXIT_IO_A64) {
1052 exit->u.io.address_size = 8;
1053 } else if (info & SVM_EXIT_IO_A32) {
1054 exit->u.io.address_size = 4;
1055 } else if (info & SVM_EXIT_IO_A16) {
1056 exit->u.io.address_size = 2;
1057 }
1058
1059 if (info & SVM_EXIT_IO_SZ32) {
1060 exit->u.io.operand_size = 4;
1061 } else if (info & SVM_EXIT_IO_SZ16) {
1062 exit->u.io.operand_size = 2;
1063 } else if (info & SVM_EXIT_IO_SZ8) {
1064 exit->u.io.operand_size = 1;
1065 }
1066
1067 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1068 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1069 exit->u.io.npc = nextpc;
1070
1071 svm_vcpu_state_provide(vcpu,
1072 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1073 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1074 }
1075
1076 static const uint64_t msr_ignore_list[] = {
1077 0xc0010055, /* MSR_CMPHALT */
1078 MSR_DE_CFG,
1079 MSR_IC_CFG,
1080 MSR_UCODE_AMD_PATCHLEVEL
1081 };
1082
1083 static bool
1084 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1085 struct nvmm_vcpu_exit *exit)
1086 {
1087 struct svm_cpudata *cpudata = vcpu->cpudata;
1088 struct vmcb *vmcb = cpudata->vmcb;
1089 uint64_t val;
1090 size_t i;
1091
1092 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1093 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1094 val = NB_CFG_INITAPICCPUIDLO;
1095 vmcb->state.rax = (val & 0xFFFFFFFF);
1096 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1097 goto handled;
1098 }
1099 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1100 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1101 continue;
1102 val = 0;
1103 vmcb->state.rax = (val & 0xFFFFFFFF);
1104 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1105 goto handled;
1106 }
1107 } else {
1108 if (exit->u.wrmsr.msr == MSR_EFER) {
1109 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1110 goto error;
1111 }
1112 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1113 EFER_TLB_FLUSH) {
1114 cpudata->gtlb_want_flush = true;
1115 }
1116 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1117 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1118 goto handled;
1119 }
1120 if (exit->u.wrmsr.msr == MSR_TSC) {
1121 cpudata->gtsc = exit->u.wrmsr.val;
1122 cpudata->gtsc_want_update = true;
1123 goto handled;
1124 }
1125 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1126 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1127 continue;
1128 goto handled;
1129 }
1130 }
1131
1132 return false;
1133
1134 handled:
1135 svm_inkernel_advance(cpudata->vmcb);
1136 return true;
1137
1138 error:
1139 svm_inject_gp(vcpu);
1140 return true;
1141 }
1142
1143 static inline void
1144 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1145 struct nvmm_vcpu_exit *exit)
1146 {
1147 struct svm_cpudata *cpudata = vcpu->cpudata;
1148
1149 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1150 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1151 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1152
1153 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1154 exit->reason = NVMM_VCPU_EXIT_NONE;
1155 return;
1156 }
1157
1158 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1159 }
1160
1161 static inline void
1162 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1163 struct nvmm_vcpu_exit *exit)
1164 {
1165 struct svm_cpudata *cpudata = vcpu->cpudata;
1166 uint64_t rdx, rax;
1167
1168 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1169 rax = cpudata->vmcb->state.rax;
1170
1171 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1172 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1173 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1174 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1175
1176 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1177 exit->reason = NVMM_VCPU_EXIT_NONE;
1178 return;
1179 }
1180
1181 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1182 }
1183
1184 static void
1185 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1186 struct nvmm_vcpu_exit *exit)
1187 {
1188 struct svm_cpudata *cpudata = vcpu->cpudata;
1189 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1190
1191 if (info == 0) {
1192 svm_exit_rdmsr(mach, vcpu, exit);
1193 } else {
1194 svm_exit_wrmsr(mach, vcpu, exit);
1195 }
1196 }
1197
1198 static void
1199 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1200 struct nvmm_vcpu_exit *exit)
1201 {
1202 struct svm_cpudata *cpudata = vcpu->cpudata;
1203 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1204
1205 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1206 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1207 exit->u.mem.prot = PROT_WRITE;
1208 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1209 exit->u.mem.prot = PROT_EXEC;
1210 else
1211 exit->u.mem.prot = PROT_READ;
1212 exit->u.mem.gpa = gpa;
1213 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1214 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1215 sizeof(exit->u.mem.inst_bytes));
1216
1217 svm_vcpu_state_provide(vcpu,
1218 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1219 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1220 }
1221
1222 static void
1223 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1224 struct nvmm_vcpu_exit *exit)
1225 {
1226 struct svm_cpudata *cpudata = vcpu->cpudata;
1227 struct vmcb *vmcb = cpudata->vmcb;
1228 uint64_t val;
1229
1230 exit->reason = NVMM_VCPU_EXIT_NONE;
1231
1232 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1233 (vmcb->state.rax & 0xFFFFFFFF);
1234
1235 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1236 goto error;
1237 } else if (__predict_false(vmcb->state.cpl != 0)) {
1238 goto error;
1239 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1240 goto error;
1241 } else if (__predict_false((val & XCR0_X87) == 0)) {
1242 goto error;
1243 }
1244
1245 cpudata->gxcr0 = val;
1246 if (svm_xcr0_mask != 0) {
1247 wrxcr(0, cpudata->gxcr0);
1248 }
1249
1250 svm_inkernel_advance(cpudata->vmcb);
1251 return;
1252
1253 error:
1254 svm_inject_gp(vcpu);
1255 }
1256
1257 static void
1258 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1259 {
1260 exit->u.inv.hwcode = code;
1261 exit->reason = NVMM_VCPU_EXIT_INVALID;
1262 }
1263
1264 /* -------------------------------------------------------------------------- */
1265
1266 static void
1267 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1268 {
1269 struct svm_cpudata *cpudata = vcpu->cpudata;
1270
1271 fpu_kern_enter();
1272 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1273
1274 if (svm_xcr0_mask != 0) {
1275 cpudata->hxcr0 = rdxcr(0);
1276 wrxcr(0, cpudata->gxcr0);
1277 }
1278 }
1279
1280 static void
1281 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1282 {
1283 struct svm_cpudata *cpudata = vcpu->cpudata;
1284
1285 if (svm_xcr0_mask != 0) {
1286 cpudata->gxcr0 = rdxcr(0);
1287 wrxcr(0, cpudata->hxcr0);
1288 }
1289
1290 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1291 fpu_kern_leave();
1292 }
1293
1294 static void
1295 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1296 {
1297 struct svm_cpudata *cpudata = vcpu->cpudata;
1298
1299 x86_dbregs_save(curlwp);
1300
1301 ldr7(0);
1302
1303 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1304 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1305 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1306 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1307 }
1308
1309 static void
1310 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1311 {
1312 struct svm_cpudata *cpudata = vcpu->cpudata;
1313
1314 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1315 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1316 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1317 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1318
1319 x86_dbregs_restore(curlwp);
1320 }
1321
1322 static void
1323 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1324 {
1325 struct svm_cpudata *cpudata = vcpu->cpudata;
1326
1327 cpudata->fsbase = rdmsr(MSR_FSBASE);
1328 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1329 }
1330
1331 static void
1332 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1333 {
1334 struct svm_cpudata *cpudata = vcpu->cpudata;
1335
1336 wrmsr(MSR_STAR, cpudata->star);
1337 wrmsr(MSR_LSTAR, cpudata->lstar);
1338 wrmsr(MSR_CSTAR, cpudata->cstar);
1339 wrmsr(MSR_SFMASK, cpudata->sfmask);
1340 wrmsr(MSR_FSBASE, cpudata->fsbase);
1341 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1342 }
1343
1344 /* -------------------------------------------------------------------------- */
1345
1346 static inline void
1347 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1348 {
1349 struct svm_cpudata *cpudata = vcpu->cpudata;
1350
1351 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1352 cpudata->gtlb_want_flush = true;
1353 }
1354 }
1355
1356 static inline void
1357 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1358 {
1359 /*
1360 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1361 * executing on this hCPU and the hTLB already got flushed, or it
1362 * was executing on another hCPU in which case the catchup is done
1363 * in svm_gtlb_catchup().
1364 */
1365 }
1366
1367 static inline uint64_t
1368 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1369 {
1370 struct vmcb *vmcb = cpudata->vmcb;
1371 uint64_t machgen;
1372
1373 machgen = machdata->mach_htlb_gen;
1374 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1375 return machgen;
1376 }
1377
1378 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1379 return machgen;
1380 }
1381
1382 static inline void
1383 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1384 {
1385 struct vmcb *vmcb = cpudata->vmcb;
1386
1387 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1388 cpudata->vcpu_htlb_gen = machgen;
1389 }
1390 }
1391
1392 static inline void
1393 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1394 {
1395 cpudata->evt_pending = false;
1396
1397 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1398 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1399 cpudata->evt_pending = true;
1400 }
1401 }
1402
1403 static int
1404 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1405 struct nvmm_vcpu_exit *exit)
1406 {
1407 struct nvmm_comm_page *comm = vcpu->comm;
1408 struct svm_machdata *machdata = mach->machdata;
1409 struct svm_cpudata *cpudata = vcpu->cpudata;
1410 struct vmcb *vmcb = cpudata->vmcb;
1411 uint64_t machgen;
1412 int hcpu;
1413
1414 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1415 return EINVAL;
1416 }
1417 svm_vcpu_state_commit(vcpu);
1418 comm->state_cached = 0;
1419
1420 kpreempt_disable();
1421 hcpu = cpu_number();
1422
1423 svm_gtlb_catchup(vcpu, hcpu);
1424 svm_htlb_catchup(vcpu, hcpu);
1425
1426 if (vcpu->hcpu_last != hcpu) {
1427 svm_vmcb_cache_flush_all(vmcb);
1428 cpudata->gtsc_want_update = true;
1429 }
1430
1431 svm_vcpu_guest_dbregs_enter(vcpu);
1432 svm_vcpu_guest_misc_enter(vcpu);
1433 svm_vcpu_guest_fpu_enter(vcpu);
1434
1435 while (1) {
1436 if (cpudata->gtlb_want_flush) {
1437 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1438 } else {
1439 vmcb->ctrl.tlb_ctrl = 0;
1440 }
1441
1442 if (__predict_false(cpudata->gtsc_want_update)) {
1443 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1444 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1445 }
1446
1447 svm_clgi();
1448 machgen = svm_htlb_flush(machdata, cpudata);
1449 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1450 svm_htlb_flush_ack(cpudata, machgen);
1451 svm_stgi();
1452
1453 svm_vmcb_cache_default(vmcb);
1454
1455 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1456 cpudata->gtlb_want_flush = false;
1457 cpudata->gtsc_want_update = false;
1458 vcpu->hcpu_last = hcpu;
1459 }
1460 svm_exit_evt(cpudata, vmcb);
1461
1462 switch (vmcb->ctrl.exitcode) {
1463 case VMCB_EXITCODE_INTR:
1464 case VMCB_EXITCODE_NMI:
1465 exit->reason = NVMM_VCPU_EXIT_NONE;
1466 break;
1467 case VMCB_EXITCODE_VINTR:
1468 svm_event_waitexit_disable(vcpu, false);
1469 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1470 break;
1471 case VMCB_EXITCODE_IRET:
1472 svm_event_waitexit_disable(vcpu, true);
1473 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1474 break;
1475 case VMCB_EXITCODE_CPUID:
1476 svm_exit_cpuid(mach, vcpu, exit);
1477 break;
1478 case VMCB_EXITCODE_HLT:
1479 svm_exit_hlt(mach, vcpu, exit);
1480 break;
1481 case VMCB_EXITCODE_IOIO:
1482 svm_exit_io(mach, vcpu, exit);
1483 break;
1484 case VMCB_EXITCODE_MSR:
1485 svm_exit_msr(mach, vcpu, exit);
1486 break;
1487 case VMCB_EXITCODE_SHUTDOWN:
1488 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1489 break;
1490 case VMCB_EXITCODE_RDPMC:
1491 case VMCB_EXITCODE_RSM:
1492 case VMCB_EXITCODE_INVLPGA:
1493 case VMCB_EXITCODE_VMRUN:
1494 case VMCB_EXITCODE_VMMCALL:
1495 case VMCB_EXITCODE_VMLOAD:
1496 case VMCB_EXITCODE_VMSAVE:
1497 case VMCB_EXITCODE_STGI:
1498 case VMCB_EXITCODE_CLGI:
1499 case VMCB_EXITCODE_SKINIT:
1500 case VMCB_EXITCODE_RDTSCP:
1501 case VMCB_EXITCODE_RDPRU:
1502 case VMCB_EXITCODE_INVLPGB:
1503 case VMCB_EXITCODE_INVPCID:
1504 case VMCB_EXITCODE_MCOMMIT:
1505 case VMCB_EXITCODE_TLBSYNC:
1506 svm_inject_ud(vcpu);
1507 exit->reason = NVMM_VCPU_EXIT_NONE;
1508 break;
1509 case VMCB_EXITCODE_MONITOR:
1510 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1511 break;
1512 case VMCB_EXITCODE_MWAIT:
1513 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1514 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1515 break;
1516 case VMCB_EXITCODE_XSETBV:
1517 svm_exit_xsetbv(mach, vcpu, exit);
1518 break;
1519 case VMCB_EXITCODE_NPF:
1520 svm_exit_npf(mach, vcpu, exit);
1521 break;
1522 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1523 default:
1524 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1525 break;
1526 }
1527
1528 /* If no reason to return to userland, keep rolling. */
1529 if (nvmm_return_needed()) {
1530 break;
1531 }
1532 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1533 break;
1534 }
1535 }
1536
1537 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1538
1539 svm_vcpu_guest_fpu_leave(vcpu);
1540 svm_vcpu_guest_misc_leave(vcpu);
1541 svm_vcpu_guest_dbregs_leave(vcpu);
1542
1543 kpreempt_enable();
1544
1545 exit->exitstate.rflags = vmcb->state.rflags;
1546 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1547 exit->exitstate.int_shadow =
1548 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1549 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1550 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1551 exit->exitstate.evt_pending = cpudata->evt_pending;
1552
1553 return 0;
1554 }
1555
1556 /* -------------------------------------------------------------------------- */
1557
1558 static int
1559 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1560 {
1561 struct pglist pglist;
1562 paddr_t _pa;
1563 vaddr_t _va;
1564 size_t i;
1565 int ret;
1566
1567 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1568 &pglist, 1, 0);
1569 if (ret != 0)
1570 return ENOMEM;
1571 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1572 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1573 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1574 if (_va == 0)
1575 goto error;
1576
1577 for (i = 0; i < npages; i++) {
1578 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1579 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1580 }
1581 pmap_update(pmap_kernel());
1582
1583 memset((void *)_va, 0, npages * PAGE_SIZE);
1584
1585 *pa = _pa;
1586 *va = _va;
1587 return 0;
1588
1589 error:
1590 for (i = 0; i < npages; i++) {
1591 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1592 }
1593 return ENOMEM;
1594 }
1595
1596 static void
1597 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1598 {
1599 size_t i;
1600
1601 pmap_kremove(va, npages * PAGE_SIZE);
1602 pmap_update(pmap_kernel());
1603 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1604 for (i = 0; i < npages; i++) {
1605 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1606 }
1607 }
1608
1609 /* -------------------------------------------------------------------------- */
1610
1611 #define SVM_MSRBM_READ __BIT(0)
1612 #define SVM_MSRBM_WRITE __BIT(1)
1613
1614 static void
1615 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1616 {
1617 uint64_t byte;
1618 uint8_t bitoff;
1619
1620 if (msr < 0x00002000) {
1621 /* Range 1 */
1622 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1623 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1624 /* Range 2 */
1625 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1626 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1627 /* Range 3 */
1628 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1629 } else {
1630 panic("%s: wrong range", __func__);
1631 }
1632
1633 bitoff = (msr & 0x3) << 1;
1634
1635 if (read) {
1636 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1637 }
1638 if (write) {
1639 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1640 }
1641 }
1642
1643 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1644 #define SVM_SEG_ATTRIB_S __BIT(4)
1645 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1646 #define SVM_SEG_ATTRIB_P __BIT(7)
1647 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1648 #define SVM_SEG_ATTRIB_L __BIT(9)
1649 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1650 #define SVM_SEG_ATTRIB_G __BIT(11)
1651
1652 static void
1653 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1654 struct vmcb_segment *vseg)
1655 {
1656 vseg->selector = seg->selector;
1657 vseg->attrib =
1658 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1659 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1660 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1661 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1662 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1663 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1664 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1665 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1666 vseg->limit = seg->limit;
1667 vseg->base = seg->base;
1668 }
1669
1670 static void
1671 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1672 {
1673 seg->selector = vseg->selector;
1674 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1675 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1676 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1677 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1678 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1679 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1680 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1681 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1682 seg->limit = vseg->limit;
1683 seg->base = vseg->base;
1684 }
1685
1686 static inline bool
1687 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1688 uint64_t flags)
1689 {
1690 if (flags & NVMM_X64_STATE_CRS) {
1691 if ((vmcb->state.cr0 ^
1692 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1693 return true;
1694 }
1695 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1696 return true;
1697 }
1698 if ((vmcb->state.cr4 ^
1699 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1700 return true;
1701 }
1702 }
1703
1704 if (flags & NVMM_X64_STATE_MSRS) {
1705 if ((vmcb->state.efer ^
1706 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1707 return true;
1708 }
1709 }
1710
1711 return false;
1712 }
1713
1714 static void
1715 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1716 {
1717 struct nvmm_comm_page *comm = vcpu->comm;
1718 const struct nvmm_x64_state *state = &comm->state;
1719 struct svm_cpudata *cpudata = vcpu->cpudata;
1720 struct vmcb *vmcb = cpudata->vmcb;
1721 struct fxsave *fpustate;
1722 uint64_t flags;
1723
1724 flags = comm->state_wanted;
1725
1726 if (svm_state_tlb_flush(vmcb, state, flags)) {
1727 cpudata->gtlb_want_flush = true;
1728 }
1729
1730 if (flags & NVMM_X64_STATE_SEGS) {
1731 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1732 &vmcb->state.cs);
1733 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1734 &vmcb->state.ds);
1735 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1736 &vmcb->state.es);
1737 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1738 &vmcb->state.fs);
1739 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1740 &vmcb->state.gs);
1741 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1742 &vmcb->state.ss);
1743 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1744 &vmcb->state.gdt);
1745 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1746 &vmcb->state.idt);
1747 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1748 &vmcb->state.ldt);
1749 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1750 &vmcb->state.tr);
1751
1752 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1753 }
1754
1755 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1756 if (flags & NVMM_X64_STATE_GPRS) {
1757 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1758
1759 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1760 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1761 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1762 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1763 }
1764
1765 if (flags & NVMM_X64_STATE_CRS) {
1766 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1767 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1768 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1769 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1770
1771 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1772 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1773 VMCB_CTRL_V_TPR);
1774
1775 if (svm_xcr0_mask != 0) {
1776 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1777 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1778 cpudata->gxcr0 &= svm_xcr0_mask;
1779 cpudata->gxcr0 |= XCR0_X87;
1780 }
1781 }
1782
1783 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1784 if (flags & NVMM_X64_STATE_DRS) {
1785 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1786
1787 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1788 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1789 }
1790
1791 if (flags & NVMM_X64_STATE_MSRS) {
1792 /*
1793 * EFER_SVME is mandatory.
1794 */
1795 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1796 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1797 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1798 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1799 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1800 vmcb->state.kernelgsbase =
1801 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1802 vmcb->state.sysenter_cs =
1803 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1804 vmcb->state.sysenter_esp =
1805 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1806 vmcb->state.sysenter_eip =
1807 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1808 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1809
1810 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1811 cpudata->gtsc_want_update = true;
1812 }
1813
1814 if (flags & NVMM_X64_STATE_INTR) {
1815 if (state->intr.int_shadow) {
1816 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1817 } else {
1818 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1819 }
1820
1821 if (state->intr.int_window_exiting) {
1822 svm_event_waitexit_enable(vcpu, false);
1823 } else {
1824 svm_event_waitexit_disable(vcpu, false);
1825 }
1826
1827 if (state->intr.nmi_window_exiting) {
1828 svm_event_waitexit_enable(vcpu, true);
1829 } else {
1830 svm_event_waitexit_disable(vcpu, true);
1831 }
1832 }
1833
1834 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1835 if (flags & NVMM_X64_STATE_FPU) {
1836 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1837 sizeof(state->fpu));
1838
1839 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1840 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1841 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1842
1843 if (svm_xcr0_mask != 0) {
1844 /* Reset XSTATE_BV, to force a reload. */
1845 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1846 }
1847 }
1848
1849 svm_vmcb_cache_update(vmcb, flags);
1850
1851 comm->state_wanted = 0;
1852 comm->state_cached |= flags;
1853 }
1854
1855 static void
1856 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1857 {
1858 struct nvmm_comm_page *comm = vcpu->comm;
1859 struct nvmm_x64_state *state = &comm->state;
1860 struct svm_cpudata *cpudata = vcpu->cpudata;
1861 struct vmcb *vmcb = cpudata->vmcb;
1862 uint64_t flags;
1863
1864 flags = comm->state_wanted;
1865
1866 if (flags & NVMM_X64_STATE_SEGS) {
1867 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1868 &vmcb->state.cs);
1869 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1870 &vmcb->state.ds);
1871 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1872 &vmcb->state.es);
1873 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1874 &vmcb->state.fs);
1875 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1876 &vmcb->state.gs);
1877 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1878 &vmcb->state.ss);
1879 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1880 &vmcb->state.gdt);
1881 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1882 &vmcb->state.idt);
1883 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1884 &vmcb->state.ldt);
1885 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1886 &vmcb->state.tr);
1887
1888 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1889 }
1890
1891 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1892 if (flags & NVMM_X64_STATE_GPRS) {
1893 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1894
1895 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1896 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1897 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1898 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1899 }
1900
1901 if (flags & NVMM_X64_STATE_CRS) {
1902 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1903 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1904 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1905 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1906 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1907 VMCB_CTRL_V_TPR);
1908 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1909 }
1910
1911 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1912 if (flags & NVMM_X64_STATE_DRS) {
1913 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1914
1915 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1916 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1917 }
1918
1919 if (flags & NVMM_X64_STATE_MSRS) {
1920 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1921 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1922 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1923 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1924 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1925 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1926 vmcb->state.kernelgsbase;
1927 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1928 vmcb->state.sysenter_cs;
1929 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1930 vmcb->state.sysenter_esp;
1931 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
1932 vmcb->state.sysenter_eip;
1933 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
1934 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
1935
1936 /* Hide SVME. */
1937 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
1938 }
1939
1940 if (flags & NVMM_X64_STATE_INTR) {
1941 state->intr.int_shadow =
1942 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
1943 state->intr.int_window_exiting = cpudata->int_window_exit;
1944 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
1945 state->intr.evt_pending = cpudata->evt_pending;
1946 }
1947
1948 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1949 if (flags & NVMM_X64_STATE_FPU) {
1950 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
1951 sizeof(state->fpu));
1952 }
1953
1954 comm->state_wanted = 0;
1955 comm->state_cached |= flags;
1956 }
1957
1958 static void
1959 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
1960 {
1961 vcpu->comm->state_wanted = flags;
1962 svm_vcpu_getstate(vcpu);
1963 }
1964
1965 static void
1966 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
1967 {
1968 vcpu->comm->state_wanted = vcpu->comm->state_commit;
1969 vcpu->comm->state_commit = 0;
1970 svm_vcpu_setstate(vcpu);
1971 }
1972
1973 /* -------------------------------------------------------------------------- */
1974
1975 static void
1976 svm_asid_alloc(struct nvmm_cpu *vcpu)
1977 {
1978 struct svm_cpudata *cpudata = vcpu->cpudata;
1979 struct vmcb *vmcb = cpudata->vmcb;
1980 size_t i, oct, bit;
1981
1982 mutex_enter(&svm_asidlock);
1983
1984 for (i = 0; i < svm_maxasid; i++) {
1985 oct = i / 8;
1986 bit = i % 8;
1987
1988 if (svm_asidmap[oct] & __BIT(bit)) {
1989 continue;
1990 }
1991
1992 svm_asidmap[oct] |= __BIT(bit);
1993 vmcb->ctrl.guest_asid = i;
1994 mutex_exit(&svm_asidlock);
1995 return;
1996 }
1997
1998 /*
1999 * No free ASID. Use the last one, which is shared and requires
2000 * special TLB handling.
2001 */
2002 cpudata->shared_asid = true;
2003 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2004 mutex_exit(&svm_asidlock);
2005 }
2006
2007 static void
2008 svm_asid_free(struct nvmm_cpu *vcpu)
2009 {
2010 struct svm_cpudata *cpudata = vcpu->cpudata;
2011 struct vmcb *vmcb = cpudata->vmcb;
2012 size_t oct, bit;
2013
2014 if (cpudata->shared_asid) {
2015 return;
2016 }
2017
2018 oct = vmcb->ctrl.guest_asid / 8;
2019 bit = vmcb->ctrl.guest_asid % 8;
2020
2021 mutex_enter(&svm_asidlock);
2022 svm_asidmap[oct] &= ~__BIT(bit);
2023 mutex_exit(&svm_asidlock);
2024 }
2025
2026 static void
2027 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2028 {
2029 struct svm_cpudata *cpudata = vcpu->cpudata;
2030 struct vmcb *vmcb = cpudata->vmcb;
2031
2032 /* Allow reads/writes of Control Registers. */
2033 vmcb->ctrl.intercept_cr = 0;
2034
2035 /* Allow reads/writes of Debug Registers. */
2036 vmcb->ctrl.intercept_dr = 0;
2037
2038 /* Allow exceptions 0 to 31. */
2039 vmcb->ctrl.intercept_vec = 0;
2040
2041 /*
2042 * Allow:
2043 * - SMI [smm interrupts]
2044 * - VINTR [virtual interrupts]
2045 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2046 * - RIDTR [reads of IDTR]
2047 * - RGDTR [reads of GDTR]
2048 * - RLDTR [reads of LDTR]
2049 * - RTR [reads of TR]
2050 * - WIDTR [writes of IDTR]
2051 * - WGDTR [writes of GDTR]
2052 * - WLDTR [writes of LDTR]
2053 * - WTR [writes of TR]
2054 * - RDTSC [rdtsc instruction]
2055 * - PUSHF [pushf instruction]
2056 * - POPF [popf instruction]
2057 * - IRET [iret instruction]
2058 * - INTN [int $n instructions]
2059 * - INVD [invd instruction]
2060 * - PAUSE [pause instruction]
2061 * - INVLPG [invplg instruction]
2062 * - TASKSW [task switches]
2063 *
2064 * Intercept the rest below.
2065 */
2066 vmcb->ctrl.intercept_misc1 =
2067 VMCB_CTRL_INTERCEPT_INTR |
2068 VMCB_CTRL_INTERCEPT_NMI |
2069 VMCB_CTRL_INTERCEPT_INIT |
2070 VMCB_CTRL_INTERCEPT_RDPMC |
2071 VMCB_CTRL_INTERCEPT_CPUID |
2072 VMCB_CTRL_INTERCEPT_RSM |
2073 VMCB_CTRL_INTERCEPT_HLT |
2074 VMCB_CTRL_INTERCEPT_INVLPGA |
2075 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2076 VMCB_CTRL_INTERCEPT_MSR_PROT |
2077 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2078 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2079
2080 /*
2081 * Allow:
2082 * - ICEBP [icebp instruction]
2083 * - WBINVD [wbinvd instruction]
2084 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2085 *
2086 * Intercept the rest below.
2087 */
2088 vmcb->ctrl.intercept_misc2 =
2089 VMCB_CTRL_INTERCEPT_VMRUN |
2090 VMCB_CTRL_INTERCEPT_VMMCALL |
2091 VMCB_CTRL_INTERCEPT_VMLOAD |
2092 VMCB_CTRL_INTERCEPT_VMSAVE |
2093 VMCB_CTRL_INTERCEPT_STGI |
2094 VMCB_CTRL_INTERCEPT_CLGI |
2095 VMCB_CTRL_INTERCEPT_SKINIT |
2096 VMCB_CTRL_INTERCEPT_RDTSCP |
2097 VMCB_CTRL_INTERCEPT_MONITOR |
2098 VMCB_CTRL_INTERCEPT_MWAIT |
2099 VMCB_CTRL_INTERCEPT_XSETBV |
2100 VMCB_CTRL_INTERCEPT_RDPRU;
2101
2102 /*
2103 * Intercept everything.
2104 */
2105 vmcb->ctrl.intercept_misc3 =
2106 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2107 VMCB_CTRL_INTERCEPT_PCID |
2108 VMCB_CTRL_INTERCEPT_MCOMMIT |
2109 VMCB_CTRL_INTERCEPT_TLBSYNC;
2110
2111 /* Intercept all I/O accesses. */
2112 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2113 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2114
2115 /* Allow direct access to certain MSRs. */
2116 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2117 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2118 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2119 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2120 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2121 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2122 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2123 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2124 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2125 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2126 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2127 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2128 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2129 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2130 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2131
2132 /* Generate ASID. */
2133 svm_asid_alloc(vcpu);
2134
2135 /* Virtual TPR. */
2136 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2137
2138 /* Enable Nested Paging. */
2139 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2140 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2141
2142 /* Init XSAVE header. */
2143 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2144 cpudata->gfpu.xsh_xcomp_bv = 0;
2145
2146 /* These MSRs are static. */
2147 cpudata->star = rdmsr(MSR_STAR);
2148 cpudata->lstar = rdmsr(MSR_LSTAR);
2149 cpudata->cstar = rdmsr(MSR_CSTAR);
2150 cpudata->sfmask = rdmsr(MSR_SFMASK);
2151
2152 /* Install the RESET state. */
2153 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2154 sizeof(nvmm_x86_reset_state));
2155 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2156 vcpu->comm->state_cached = 0;
2157 svm_vcpu_setstate(vcpu);
2158 }
2159
2160 static int
2161 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2162 {
2163 struct svm_cpudata *cpudata;
2164 int error;
2165
2166 /* Allocate the SVM cpudata. */
2167 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2168 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2169 UVM_KMF_WIRED|UVM_KMF_ZERO);
2170 vcpu->cpudata = cpudata;
2171
2172 /* VMCB */
2173 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2174 VMCB_NPAGES);
2175 if (error)
2176 goto error;
2177
2178 /* I/O Bitmap */
2179 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2180 IOBM_NPAGES);
2181 if (error)
2182 goto error;
2183
2184 /* MSR Bitmap */
2185 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2186 MSRBM_NPAGES);
2187 if (error)
2188 goto error;
2189
2190 /* Init the VCPU info. */
2191 svm_vcpu_init(mach, vcpu);
2192
2193 return 0;
2194
2195 error:
2196 if (cpudata->vmcb_pa) {
2197 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2198 VMCB_NPAGES);
2199 }
2200 if (cpudata->iobm_pa) {
2201 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2202 IOBM_NPAGES);
2203 }
2204 if (cpudata->msrbm_pa) {
2205 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2206 MSRBM_NPAGES);
2207 }
2208 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2209 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2210 return error;
2211 }
2212
2213 static void
2214 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2215 {
2216 struct svm_cpudata *cpudata = vcpu->cpudata;
2217
2218 svm_asid_free(vcpu);
2219
2220 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2221 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2222 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2223
2224 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2225 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2226 }
2227
2228 /* -------------------------------------------------------------------------- */
2229
2230 static int
2231 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2232 {
2233 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2234 size_t i;
2235
2236 if (__predict_false(cpuid->mask && cpuid->exit)) {
2237 return EINVAL;
2238 }
2239 if (__predict_false(cpuid->mask &&
2240 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2241 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2242 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2243 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2244 return EINVAL;
2245 }
2246
2247 /* If unset, delete, to restore the default behavior. */
2248 if (!cpuid->mask && !cpuid->exit) {
2249 for (i = 0; i < SVM_NCPUIDS; i++) {
2250 if (!cpudata->cpuidpresent[i]) {
2251 continue;
2252 }
2253 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2254 cpudata->cpuidpresent[i] = false;
2255 }
2256 }
2257 return 0;
2258 }
2259
2260 /* If already here, replace. */
2261 for (i = 0; i < SVM_NCPUIDS; i++) {
2262 if (!cpudata->cpuidpresent[i]) {
2263 continue;
2264 }
2265 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2266 memcpy(&cpudata->cpuid[i], cpuid,
2267 sizeof(struct nvmm_vcpu_conf_cpuid));
2268 return 0;
2269 }
2270 }
2271
2272 /* Not here, insert. */
2273 for (i = 0; i < SVM_NCPUIDS; i++) {
2274 if (!cpudata->cpuidpresent[i]) {
2275 cpudata->cpuidpresent[i] = true;
2276 memcpy(&cpudata->cpuid[i], cpuid,
2277 sizeof(struct nvmm_vcpu_conf_cpuid));
2278 return 0;
2279 }
2280 }
2281
2282 return ENOBUFS;
2283 }
2284
2285 static int
2286 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2287 {
2288 struct svm_cpudata *cpudata = vcpu->cpudata;
2289
2290 switch (op) {
2291 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2292 return svm_vcpu_configure_cpuid(cpudata, data);
2293 default:
2294 return EINVAL;
2295 }
2296 }
2297
2298 /* -------------------------------------------------------------------------- */
2299
2300 static void
2301 svm_tlb_flush(struct pmap *pm)
2302 {
2303 struct nvmm_machine *mach = pm->pm_data;
2304 struct svm_machdata *machdata = mach->machdata;
2305
2306 atomic_inc_64(&machdata->mach_htlb_gen);
2307
2308 /* Generates IPIs, which cause #VMEXITs. */
2309 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2310 }
2311
2312 static void
2313 svm_machine_create(struct nvmm_machine *mach)
2314 {
2315 struct svm_machdata *machdata;
2316
2317 /* Fill in pmap info. */
2318 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2319 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2320
2321 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2322 mach->machdata = machdata;
2323
2324 /* Start with an hTLB flush everywhere. */
2325 machdata->mach_htlb_gen = 1;
2326 }
2327
2328 static void
2329 svm_machine_destroy(struct nvmm_machine *mach)
2330 {
2331 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2332 }
2333
2334 static int
2335 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2336 {
2337 panic("%s: impossible", __func__);
2338 }
2339
2340 /* -------------------------------------------------------------------------- */
2341
2342 static bool
2343 svm_ident(void)
2344 {
2345 u_int descs[4];
2346 uint64_t msr;
2347
2348 if (cpu_vendor != CPUVENDOR_AMD) {
2349 return false;
2350 }
2351 if (!(cpu_feature[3] & CPUID_SVM)) {
2352 printf("NVMM: SVM not supported\n");
2353 return false;
2354 }
2355
2356 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2357 printf("NVMM: CPUID leaf not available\n");
2358 return false;
2359 }
2360 x86_cpuid(0x8000000a, descs);
2361
2362 /* Want Nested Paging. */
2363 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2364 printf("NVMM: SVM-NP not supported\n");
2365 return false;
2366 }
2367
2368 /* Want nRIP. */
2369 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2370 printf("NVMM: SVM-NRIPS not supported\n");
2371 return false;
2372 }
2373
2374 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2375
2376 msr = rdmsr(MSR_VMCR);
2377 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2378 printf("NVMM: SVM disabled in BIOS\n");
2379 return false;
2380 }
2381
2382 return true;
2383 }
2384
2385 static void
2386 svm_init_asid(uint32_t maxasid)
2387 {
2388 size_t i, j, allocsz;
2389
2390 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2391
2392 /* Arbitrarily limit. */
2393 maxasid = uimin(maxasid, 8192);
2394
2395 svm_maxasid = maxasid;
2396 allocsz = roundup(maxasid, 8) / 8;
2397 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2398
2399 /* ASID 0 is reserved for the host. */
2400 svm_asidmap[0] |= __BIT(0);
2401
2402 /* ASID n-1 is special, we share it. */
2403 i = (maxasid - 1) / 8;
2404 j = (maxasid - 1) % 8;
2405 svm_asidmap[i] |= __BIT(j);
2406 }
2407
2408 static void
2409 svm_change_cpu(void *arg1, void *arg2)
2410 {
2411 bool enable = arg1 != NULL;
2412 uint64_t msr;
2413
2414 msr = rdmsr(MSR_VMCR);
2415 if (msr & VMCR_SVMED) {
2416 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2417 }
2418
2419 if (!enable) {
2420 wrmsr(MSR_VM_HSAVE_PA, 0);
2421 }
2422
2423 msr = rdmsr(MSR_EFER);
2424 if (enable) {
2425 msr |= EFER_SVME;
2426 } else {
2427 msr &= ~EFER_SVME;
2428 }
2429 wrmsr(MSR_EFER, msr);
2430
2431 if (enable) {
2432 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2433 }
2434 }
2435
2436 static void
2437 svm_init(void)
2438 {
2439 CPU_INFO_ITERATOR cii;
2440 struct cpu_info *ci;
2441 struct vm_page *pg;
2442 u_int descs[4];
2443 uint64_t xc;
2444
2445 x86_cpuid(0x8000000a, descs);
2446
2447 /* The guest TLB flush command. */
2448 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2449 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2450 } else {
2451 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2452 }
2453
2454 /* Init the ASID. */
2455 svm_init_asid(descs[1]);
2456
2457 /* Init the XCR0 mask. */
2458 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2459
2460 /* Init the max basic CPUID leaf. */
2461 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2462
2463 memset(hsave, 0, sizeof(hsave));
2464 for (CPU_INFO_FOREACH(cii, ci)) {
2465 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2466 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2467 }
2468
2469 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2470 xc_wait(xc);
2471 }
2472
2473 static void
2474 svm_fini_asid(void)
2475 {
2476 size_t allocsz;
2477
2478 allocsz = roundup(svm_maxasid, 8) / 8;
2479 kmem_free(svm_asidmap, allocsz);
2480
2481 mutex_destroy(&svm_asidlock);
2482 }
2483
2484 static void
2485 svm_fini(void)
2486 {
2487 uint64_t xc;
2488 size_t i;
2489
2490 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2491 xc_wait(xc);
2492
2493 for (i = 0; i < MAXCPUS; i++) {
2494 if (hsave[i].pa != 0)
2495 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2496 }
2497
2498 svm_fini_asid();
2499 }
2500
2501 static void
2502 svm_capability(struct nvmm_capability *cap)
2503 {
2504 cap->arch.mach_conf_support = 0;
2505 cap->arch.vcpu_conf_support =
2506 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2507 cap->arch.xcr0_mask = svm_xcr0_mask;
2508 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2509 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2510 }
2511
2512 const struct nvmm_impl nvmm_x86_svm = {
2513 .name = "x86-svm",
2514 .ident = svm_ident,
2515 .init = svm_init,
2516 .fini = svm_fini,
2517 .capability = svm_capability,
2518 .mach_conf_max = NVMM_X86_MACH_NCONF,
2519 .mach_conf_sizes = NULL,
2520 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2521 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2522 .state_size = sizeof(struct nvmm_x64_state),
2523 .machine_create = svm_machine_create,
2524 .machine_destroy = svm_machine_destroy,
2525 .machine_configure = svm_machine_configure,
2526 .vcpu_create = svm_vcpu_create,
2527 .vcpu_destroy = svm_vcpu_destroy,
2528 .vcpu_configure = svm_vcpu_configure,
2529 .vcpu_setstate = svm_vcpu_setstate,
2530 .vcpu_getstate = svm_vcpu_getstate,
2531 .vcpu_inject = svm_vcpu_inject,
2532 .vcpu_run = svm_vcpu_run
2533 };
2534