nvmm_x86_svm.c revision 1.70 1 /* $NetBSD: nvmm_x86_svm.c,v 1.70 2020/08/20 11:09:56 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.70 2020/08/20 11:09:56 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 static inline void
60 svm_clgi(void)
61 {
62 asm volatile ("clgi" ::: "memory");
63 }
64
65 static inline void
66 svm_stgi(void)
67 {
68 asm volatile ("stgi" ::: "memory");
69 }
70
71 #define MSR_VM_HSAVE_PA 0xC0010117
72
73 /* -------------------------------------------------------------------------- */
74
75 #define VMCB_EXITCODE_CR0_READ 0x0000
76 #define VMCB_EXITCODE_CR1_READ 0x0001
77 #define VMCB_EXITCODE_CR2_READ 0x0002
78 #define VMCB_EXITCODE_CR3_READ 0x0003
79 #define VMCB_EXITCODE_CR4_READ 0x0004
80 #define VMCB_EXITCODE_CR5_READ 0x0005
81 #define VMCB_EXITCODE_CR6_READ 0x0006
82 #define VMCB_EXITCODE_CR7_READ 0x0007
83 #define VMCB_EXITCODE_CR8_READ 0x0008
84 #define VMCB_EXITCODE_CR9_READ 0x0009
85 #define VMCB_EXITCODE_CR10_READ 0x000A
86 #define VMCB_EXITCODE_CR11_READ 0x000B
87 #define VMCB_EXITCODE_CR12_READ 0x000C
88 #define VMCB_EXITCODE_CR13_READ 0x000D
89 #define VMCB_EXITCODE_CR14_READ 0x000E
90 #define VMCB_EXITCODE_CR15_READ 0x000F
91 #define VMCB_EXITCODE_CR0_WRITE 0x0010
92 #define VMCB_EXITCODE_CR1_WRITE 0x0011
93 #define VMCB_EXITCODE_CR2_WRITE 0x0012
94 #define VMCB_EXITCODE_CR3_WRITE 0x0013
95 #define VMCB_EXITCODE_CR4_WRITE 0x0014
96 #define VMCB_EXITCODE_CR5_WRITE 0x0015
97 #define VMCB_EXITCODE_CR6_WRITE 0x0016
98 #define VMCB_EXITCODE_CR7_WRITE 0x0017
99 #define VMCB_EXITCODE_CR8_WRITE 0x0018
100 #define VMCB_EXITCODE_CR9_WRITE 0x0019
101 #define VMCB_EXITCODE_CR10_WRITE 0x001A
102 #define VMCB_EXITCODE_CR11_WRITE 0x001B
103 #define VMCB_EXITCODE_CR12_WRITE 0x001C
104 #define VMCB_EXITCODE_CR13_WRITE 0x001D
105 #define VMCB_EXITCODE_CR14_WRITE 0x001E
106 #define VMCB_EXITCODE_CR15_WRITE 0x001F
107 #define VMCB_EXITCODE_DR0_READ 0x0020
108 #define VMCB_EXITCODE_DR1_READ 0x0021
109 #define VMCB_EXITCODE_DR2_READ 0x0022
110 #define VMCB_EXITCODE_DR3_READ 0x0023
111 #define VMCB_EXITCODE_DR4_READ 0x0024
112 #define VMCB_EXITCODE_DR5_READ 0x0025
113 #define VMCB_EXITCODE_DR6_READ 0x0026
114 #define VMCB_EXITCODE_DR7_READ 0x0027
115 #define VMCB_EXITCODE_DR8_READ 0x0028
116 #define VMCB_EXITCODE_DR9_READ 0x0029
117 #define VMCB_EXITCODE_DR10_READ 0x002A
118 #define VMCB_EXITCODE_DR11_READ 0x002B
119 #define VMCB_EXITCODE_DR12_READ 0x002C
120 #define VMCB_EXITCODE_DR13_READ 0x002D
121 #define VMCB_EXITCODE_DR14_READ 0x002E
122 #define VMCB_EXITCODE_DR15_READ 0x002F
123 #define VMCB_EXITCODE_DR0_WRITE 0x0030
124 #define VMCB_EXITCODE_DR1_WRITE 0x0031
125 #define VMCB_EXITCODE_DR2_WRITE 0x0032
126 #define VMCB_EXITCODE_DR3_WRITE 0x0033
127 #define VMCB_EXITCODE_DR4_WRITE 0x0034
128 #define VMCB_EXITCODE_DR5_WRITE 0x0035
129 #define VMCB_EXITCODE_DR6_WRITE 0x0036
130 #define VMCB_EXITCODE_DR7_WRITE 0x0037
131 #define VMCB_EXITCODE_DR8_WRITE 0x0038
132 #define VMCB_EXITCODE_DR9_WRITE 0x0039
133 #define VMCB_EXITCODE_DR10_WRITE 0x003A
134 #define VMCB_EXITCODE_DR11_WRITE 0x003B
135 #define VMCB_EXITCODE_DR12_WRITE 0x003C
136 #define VMCB_EXITCODE_DR13_WRITE 0x003D
137 #define VMCB_EXITCODE_DR14_WRITE 0x003E
138 #define VMCB_EXITCODE_DR15_WRITE 0x003F
139 #define VMCB_EXITCODE_EXCP0 0x0040
140 #define VMCB_EXITCODE_EXCP1 0x0041
141 #define VMCB_EXITCODE_EXCP2 0x0042
142 #define VMCB_EXITCODE_EXCP3 0x0043
143 #define VMCB_EXITCODE_EXCP4 0x0044
144 #define VMCB_EXITCODE_EXCP5 0x0045
145 #define VMCB_EXITCODE_EXCP6 0x0046
146 #define VMCB_EXITCODE_EXCP7 0x0047
147 #define VMCB_EXITCODE_EXCP8 0x0048
148 #define VMCB_EXITCODE_EXCP9 0x0049
149 #define VMCB_EXITCODE_EXCP10 0x004A
150 #define VMCB_EXITCODE_EXCP11 0x004B
151 #define VMCB_EXITCODE_EXCP12 0x004C
152 #define VMCB_EXITCODE_EXCP13 0x004D
153 #define VMCB_EXITCODE_EXCP14 0x004E
154 #define VMCB_EXITCODE_EXCP15 0x004F
155 #define VMCB_EXITCODE_EXCP16 0x0050
156 #define VMCB_EXITCODE_EXCP17 0x0051
157 #define VMCB_EXITCODE_EXCP18 0x0052
158 #define VMCB_EXITCODE_EXCP19 0x0053
159 #define VMCB_EXITCODE_EXCP20 0x0054
160 #define VMCB_EXITCODE_EXCP21 0x0055
161 #define VMCB_EXITCODE_EXCP22 0x0056
162 #define VMCB_EXITCODE_EXCP23 0x0057
163 #define VMCB_EXITCODE_EXCP24 0x0058
164 #define VMCB_EXITCODE_EXCP25 0x0059
165 #define VMCB_EXITCODE_EXCP26 0x005A
166 #define VMCB_EXITCODE_EXCP27 0x005B
167 #define VMCB_EXITCODE_EXCP28 0x005C
168 #define VMCB_EXITCODE_EXCP29 0x005D
169 #define VMCB_EXITCODE_EXCP30 0x005E
170 #define VMCB_EXITCODE_EXCP31 0x005F
171 #define VMCB_EXITCODE_INTR 0x0060
172 #define VMCB_EXITCODE_NMI 0x0061
173 #define VMCB_EXITCODE_SMI 0x0062
174 #define VMCB_EXITCODE_INIT 0x0063
175 #define VMCB_EXITCODE_VINTR 0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
177 #define VMCB_EXITCODE_IDTR_READ 0x0066
178 #define VMCB_EXITCODE_GDTR_READ 0x0067
179 #define VMCB_EXITCODE_LDTR_READ 0x0068
180 #define VMCB_EXITCODE_TR_READ 0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
184 #define VMCB_EXITCODE_TR_WRITE 0x006D
185 #define VMCB_EXITCODE_RDTSC 0x006E
186 #define VMCB_EXITCODE_RDPMC 0x006F
187 #define VMCB_EXITCODE_PUSHF 0x0070
188 #define VMCB_EXITCODE_POPF 0x0071
189 #define VMCB_EXITCODE_CPUID 0x0072
190 #define VMCB_EXITCODE_RSM 0x0073
191 #define VMCB_EXITCODE_IRET 0x0074
192 #define VMCB_EXITCODE_SWINT 0x0075
193 #define VMCB_EXITCODE_INVD 0x0076
194 #define VMCB_EXITCODE_PAUSE 0x0077
195 #define VMCB_EXITCODE_HLT 0x0078
196 #define VMCB_EXITCODE_INVLPG 0x0079
197 #define VMCB_EXITCODE_INVLPGA 0x007A
198 #define VMCB_EXITCODE_IOIO 0x007B
199 #define VMCB_EXITCODE_MSR 0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
202 #define VMCB_EXITCODE_SHUTDOWN 0x007F
203 #define VMCB_EXITCODE_VMRUN 0x0080
204 #define VMCB_EXITCODE_VMMCALL 0x0081
205 #define VMCB_EXITCODE_VMLOAD 0x0082
206 #define VMCB_EXITCODE_VMSAVE 0x0083
207 #define VMCB_EXITCODE_STGI 0x0084
208 #define VMCB_EXITCODE_CLGI 0x0085
209 #define VMCB_EXITCODE_SKINIT 0x0086
210 #define VMCB_EXITCODE_RDTSCP 0x0087
211 #define VMCB_EXITCODE_ICEBP 0x0088
212 #define VMCB_EXITCODE_WBINVD 0x0089
213 #define VMCB_EXITCODE_MONITOR 0x008A
214 #define VMCB_EXITCODE_MWAIT 0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
216 #define VMCB_EXITCODE_XSETBV 0x008D
217 #define VMCB_EXITCODE_RDPRU 0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
235 #define VMCB_EXITCODE_INVLPGB 0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
237 #define VMCB_EXITCODE_INVPCID 0x00A2
238 #define VMCB_EXITCODE_MCOMMIT 0x00A3
239 #define VMCB_EXITCODE_TLBSYNC 0x00A4
240 #define VMCB_EXITCODE_NPF 0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
243 #define VMCB_EXITCODE_VMGEXIT 0x0403
244 #define VMCB_EXITCODE_BUSY -2ULL
245 #define VMCB_EXITCODE_INVALID -1ULL
246
247 /* -------------------------------------------------------------------------- */
248
249 struct vmcb_ctrl {
250 uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
253
254 uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
257
258 uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
260
261 uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
294
295 uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
313
314 uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
320
321 uint8_t rsvd1[36];
322 uint16_t pause_filt_thresh;
323 uint16_t pause_filt_cnt;
324 uint64_t iopm_base_pa;
325 uint64_t msrpm_base_pa;
326 uint64_t tsc_offset;
327 uint32_t guest_asid;
328
329 uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
333
334 uint64_t v;
335 #define VMCB_CTRL_V_TPR __BITS(3,0)
336 #define VMCB_CTRL_V_IRQ __BIT(8)
337 #define VMCB_CTRL_V_VGIF __BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
344
345 uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
347 #define VMCB_CTRL_INTR_MASK __BIT(1)
348
349 uint64_t exitcode;
350 uint64_t exitinfo1;
351 uint64_t exitinfo2;
352
353 uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
359
360 uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP __BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
366
367 uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
369
370 uint64_t ghcb;
371
372 uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
378
379 uint64_t n_cr3;
380
381 uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
384
385 uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
398
399 uint32_t rsvd2;
400 uint64_t nrip;
401 uint8_t inst_len;
402 uint8_t inst_bytes[15];
403 uint64_t avic_abpp;
404 uint64_t rsvd3;
405 uint64_t avic_ltp;
406
407 uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
410
411 uint64_t rsvd4;
412 uint64_t vmsa_ptr;
413
414 uint8_t pad[752];
415 } __packed;
416
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418
419 struct vmcb_segment {
420 uint16_t selector;
421 uint16_t attrib; /* hidden */
422 uint32_t limit; /* hidden */
423 uint64_t base; /* hidden */
424 } __packed;
425
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427
428 struct vmcb_state {
429 struct vmcb_segment es;
430 struct vmcb_segment cs;
431 struct vmcb_segment ss;
432 struct vmcb_segment ds;
433 struct vmcb_segment fs;
434 struct vmcb_segment gs;
435 struct vmcb_segment gdt;
436 struct vmcb_segment ldt;
437 struct vmcb_segment idt;
438 struct vmcb_segment tr;
439 uint8_t rsvd1[43];
440 uint8_t cpl;
441 uint8_t rsvd2[4];
442 uint64_t efer;
443 uint8_t rsvd3[112];
444 uint64_t cr4;
445 uint64_t cr3;
446 uint64_t cr0;
447 uint64_t dr7;
448 uint64_t dr6;
449 uint64_t rflags;
450 uint64_t rip;
451 uint8_t rsvd4[88];
452 uint64_t rsp;
453 uint8_t rsvd5[24];
454 uint64_t rax;
455 uint64_t star;
456 uint64_t lstar;
457 uint64_t cstar;
458 uint64_t sfmask;
459 uint64_t kernelgsbase;
460 uint64_t sysenter_cs;
461 uint64_t sysenter_esp;
462 uint64_t sysenter_eip;
463 uint64_t cr2;
464 uint8_t rsvd6[32];
465 uint64_t g_pat;
466 uint64_t dbgctl;
467 uint64_t br_from;
468 uint64_t br_to;
469 uint64_t int_from;
470 uint64_t int_to;
471 uint8_t pad[2408];
472 } __packed;
473
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475
476 struct vmcb {
477 struct vmcb_ctrl ctrl;
478 struct vmcb_state state;
479 } __packed;
480
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483
484 /* -------------------------------------------------------------------------- */
485
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488
489 struct svm_hsave {
490 paddr_t pa;
491 };
492
493 static struct svm_hsave hsave[MAXCPUS];
494
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501
502 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504
505 #define SVM_NCPUIDS 32
506
507 #define VMCB_NPAGES 1
508
509 #define MSRBM_NPAGES 2
510 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
511
512 #define IOBM_NPAGES 3
513 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
514
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518
519 #define EFER_TLB_FLUSH \
520 (EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525
526 /* -------------------------------------------------------------------------- */
527
528 struct svm_machdata {
529 volatile uint64_t mach_htlb_gen;
530 };
531
532 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
533 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
534 sizeof(struct nvmm_vcpu_conf_cpuid),
535 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
536 sizeof(struct nvmm_vcpu_conf_tpr)
537 };
538
539 struct svm_cpudata {
540 /* General */
541 bool shared_asid;
542 bool gtlb_want_flush;
543 bool gtsc_want_update;
544 uint64_t vcpu_htlb_gen;
545
546 /* VMCB */
547 struct vmcb *vmcb;
548 paddr_t vmcb_pa;
549
550 /* I/O bitmap */
551 uint8_t *iobm;
552 paddr_t iobm_pa;
553
554 /* MSR bitmap */
555 uint8_t *msrbm;
556 paddr_t msrbm_pa;
557
558 /* Host state */
559 uint64_t hxcr0;
560 uint64_t star;
561 uint64_t lstar;
562 uint64_t cstar;
563 uint64_t sfmask;
564 uint64_t fsbase;
565 uint64_t kernelgsbase;
566
567 /* Intr state */
568 bool int_window_exit;
569 bool nmi_window_exit;
570 bool evt_pending;
571
572 /* Guest state */
573 uint64_t gxcr0;
574 uint64_t gprs[NVMM_X64_NGPR];
575 uint64_t drs[NVMM_X64_NDR];
576 uint64_t gtsc;
577 struct xsave_header gfpu __aligned(64);
578
579 /* VCPU configuration. */
580 bool cpuidpresent[SVM_NCPUIDS];
581 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
582 };
583
584 static void
585 svm_vmcb_cache_default(struct vmcb *vmcb)
586 {
587 vmcb->ctrl.vmcb_clean =
588 VMCB_CTRL_VMCB_CLEAN_I |
589 VMCB_CTRL_VMCB_CLEAN_IOPM |
590 VMCB_CTRL_VMCB_CLEAN_ASID |
591 VMCB_CTRL_VMCB_CLEAN_TPR |
592 VMCB_CTRL_VMCB_CLEAN_NP |
593 VMCB_CTRL_VMCB_CLEAN_CR |
594 VMCB_CTRL_VMCB_CLEAN_DR |
595 VMCB_CTRL_VMCB_CLEAN_DT |
596 VMCB_CTRL_VMCB_CLEAN_SEG |
597 VMCB_CTRL_VMCB_CLEAN_CR2 |
598 VMCB_CTRL_VMCB_CLEAN_LBR |
599 VMCB_CTRL_VMCB_CLEAN_AVIC;
600 }
601
602 static void
603 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
604 {
605 if (flags & NVMM_X64_STATE_SEGS) {
606 vmcb->ctrl.vmcb_clean &=
607 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
608 }
609 if (flags & NVMM_X64_STATE_CRS) {
610 vmcb->ctrl.vmcb_clean &=
611 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
612 VMCB_CTRL_VMCB_CLEAN_TPR);
613 }
614 if (flags & NVMM_X64_STATE_DRS) {
615 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
616 }
617 if (flags & NVMM_X64_STATE_MSRS) {
618 /* CR for EFER, NP for PAT. */
619 vmcb->ctrl.vmcb_clean &=
620 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
621 }
622 }
623
624 static inline void
625 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
626 {
627 vmcb->ctrl.vmcb_clean &= ~flags;
628 }
629
630 static inline void
631 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
632 {
633 vmcb->ctrl.vmcb_clean = 0;
634 }
635
636 #define SVM_EVENT_TYPE_HW_INT 0
637 #define SVM_EVENT_TYPE_NMI 2
638 #define SVM_EVENT_TYPE_EXC 3
639 #define SVM_EVENT_TYPE_SW_INT 4
640
641 static void
642 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
643 {
644 struct svm_cpudata *cpudata = vcpu->cpudata;
645 struct vmcb *vmcb = cpudata->vmcb;
646
647 if (nmi) {
648 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
649 cpudata->nmi_window_exit = true;
650 } else {
651 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
652 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
653 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
654 cpudata->int_window_exit = true;
655 }
656
657 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
658 }
659
660 static void
661 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
662 {
663 struct svm_cpudata *cpudata = vcpu->cpudata;
664 struct vmcb *vmcb = cpudata->vmcb;
665
666 if (nmi) {
667 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
668 cpudata->nmi_window_exit = false;
669 } else {
670 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
671 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
672 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
673 cpudata->int_window_exit = false;
674 }
675
676 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
677 }
678
679 static inline int
680 svm_event_has_error(uint8_t vector)
681 {
682 switch (vector) {
683 case 8: /* #DF */
684 case 10: /* #TS */
685 case 11: /* #NP */
686 case 12: /* #SS */
687 case 13: /* #GP */
688 case 14: /* #PF */
689 case 17: /* #AC */
690 case 30: /* #SX */
691 return 1;
692 default:
693 return 0;
694 }
695 }
696
697 static int
698 svm_vcpu_inject(struct nvmm_cpu *vcpu)
699 {
700 struct nvmm_comm_page *comm = vcpu->comm;
701 struct svm_cpudata *cpudata = vcpu->cpudata;
702 struct vmcb *vmcb = cpudata->vmcb;
703 u_int evtype;
704 uint8_t vector;
705 uint64_t error;
706 int type = 0, err = 0;
707
708 evtype = comm->event.type;
709 vector = comm->event.vector;
710 error = comm->event.u.excp.error;
711 __insn_barrier();
712
713 switch (evtype) {
714 case NVMM_VCPU_EVENT_EXCP:
715 type = SVM_EVENT_TYPE_EXC;
716 if (vector == 2 || vector >= 32)
717 return EINVAL;
718 if (vector == 3 || vector == 0)
719 return EINVAL;
720 err = svm_event_has_error(vector);
721 break;
722 case NVMM_VCPU_EVENT_INTR:
723 type = SVM_EVENT_TYPE_HW_INT;
724 if (vector == 2) {
725 type = SVM_EVENT_TYPE_NMI;
726 svm_event_waitexit_enable(vcpu, true);
727 }
728 err = 0;
729 break;
730 default:
731 return EINVAL;
732 }
733
734 vmcb->ctrl.eventinj =
735 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
736 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
737 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
738 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
739 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
740
741 cpudata->evt_pending = true;
742
743 return 0;
744 }
745
746 static void
747 svm_inject_ud(struct nvmm_cpu *vcpu)
748 {
749 struct nvmm_comm_page *comm = vcpu->comm;
750 int ret __diagused;
751
752 comm->event.type = NVMM_VCPU_EVENT_EXCP;
753 comm->event.vector = 6;
754 comm->event.u.excp.error = 0;
755
756 ret = svm_vcpu_inject(vcpu);
757 KASSERT(ret == 0);
758 }
759
760 static void
761 svm_inject_gp(struct nvmm_cpu *vcpu)
762 {
763 struct nvmm_comm_page *comm = vcpu->comm;
764 int ret __diagused;
765
766 comm->event.type = NVMM_VCPU_EVENT_EXCP;
767 comm->event.vector = 13;
768 comm->event.u.excp.error = 0;
769
770 ret = svm_vcpu_inject(vcpu);
771 KASSERT(ret == 0);
772 }
773
774 static inline int
775 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
776 {
777 if (__predict_true(!vcpu->comm->event_commit)) {
778 return 0;
779 }
780 vcpu->comm->event_commit = false;
781 return svm_vcpu_inject(vcpu);
782 }
783
784 static inline void
785 svm_inkernel_advance(struct vmcb *vmcb)
786 {
787 /*
788 * Maybe we should also apply single-stepping and debug exceptions.
789 * Matters for guest-ring3, because it can execute 'cpuid' under a
790 * debugger.
791 */
792 vmcb->state.rip = vmcb->ctrl.nrip;
793 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
794 }
795
796 #define SVM_CPUID_MAX_BASIC 0xD
797 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
798 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
799 static uint32_t svm_cpuid_max_basic __read_mostly;
800 static uint32_t svm_cpuid_max_extended __read_mostly;
801
802 static void
803 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
804 {
805 u_int descs[4];
806
807 x86_cpuid2(eax, ecx, descs);
808 cpudata->vmcb->state.rax = descs[0];
809 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
810 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
811 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
812 }
813
814 static void
815 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
816 {
817 struct svm_cpudata *cpudata = vcpu->cpudata;
818 uint64_t cr4;
819
820 if (eax < 0x40000000) {
821 if (__predict_false(eax > svm_cpuid_max_basic)) {
822 eax = svm_cpuid_max_basic;
823 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
824 }
825 } else if (eax < 0x80000000) {
826 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
827 eax = svm_cpuid_max_basic;
828 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
829 }
830 } else {
831 if (__predict_false(eax > svm_cpuid_max_extended)) {
832 eax = svm_cpuid_max_basic;
833 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
834 }
835 }
836
837 switch (eax) {
838 case 0x00000000:
839 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
840 break;
841 case 0x00000001:
842 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
843
844 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
845 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
846 CPUID_LOCAL_APIC_ID);
847
848 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
849 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
850
851 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
852
853 /* CPUID2_OSXSAVE depends on CR4. */
854 cr4 = cpudata->vmcb->state.cr4;
855 if (!(cr4 & CR4_OSXSAVE)) {
856 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
857 }
858 break;
859 case 0x00000002: /* Empty */
860 case 0x00000003: /* Empty */
861 case 0x00000004: /* Empty */
862 case 0x00000005: /* Monitor/MWait */
863 case 0x00000006: /* Power Management Related Features */
864 cpudata->vmcb->state.rax = 0;
865 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
866 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
867 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
868 break;
869 case 0x00000007: /* Structured Extended Features */
870 switch (ecx) {
871 case 0:
872 cpudata->vmcb->state.rax = 0;
873 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
874 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
875 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
876 break;
877 default:
878 cpudata->vmcb->state.rax = 0;
879 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
880 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
881 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
882 break;
883 }
884 break;
885 case 0x00000008: /* Empty */
886 case 0x00000009: /* Empty */
887 case 0x0000000A: /* Empty */
888 case 0x0000000B: /* Empty */
889 case 0x0000000C: /* Empty */
890 cpudata->vmcb->state.rax = 0;
891 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
892 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
893 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
894 break;
895 case 0x0000000D: /* Processor Extended State Enumeration */
896 if (svm_xcr0_mask == 0) {
897 break;
898 }
899 switch (ecx) {
900 case 0:
901 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
902 if (cpudata->gxcr0 & XCR0_SSE) {
903 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
904 } else {
905 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
906 }
907 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
908 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
909 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
910 break;
911 case 1:
912 cpudata->vmcb->state.rax &=
913 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
914 CPUID_PES1_XGETBV);
915 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
916 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
917 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
918 break;
919 default:
920 cpudata->vmcb->state.rax = 0;
921 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
922 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
923 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
924 break;
925 }
926 break;
927
928 case 0x40000000: /* Hypervisor Information */
929 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
930 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
931 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
932 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
933 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
934 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
935 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
936 break;
937
938 case 0x80000000:
939 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
940 break;
941 case 0x80000001:
942 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
943 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
944 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
945 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
946 break;
947 case 0x80000002: /* Extended Processor Name String */
948 case 0x80000003: /* Extended Processor Name String */
949 case 0x80000004: /* Extended Processor Name String */
950 case 0x80000005: /* L1 Cache and TLB Information */
951 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
952 break;
953 case 0x80000007: /* Processor Power Management and RAS Capabilities */
954 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
955 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
956 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
957 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
958 break;
959 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
960 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
961 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
962 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
963 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
964 break;
965 case 0x80000009: /* Empty */
966 case 0x8000000A: /* SVM Features */
967 case 0x8000000B: /* Empty */
968 case 0x8000000C: /* Empty */
969 case 0x8000000D: /* Empty */
970 case 0x8000000E: /* Empty */
971 case 0x8000000F: /* Empty */
972 case 0x80000010: /* Empty */
973 case 0x80000011: /* Empty */
974 case 0x80000012: /* Empty */
975 case 0x80000013: /* Empty */
976 case 0x80000014: /* Empty */
977 case 0x80000015: /* Empty */
978 case 0x80000016: /* Empty */
979 case 0x80000017: /* Empty */
980 case 0x80000018: /* Empty */
981 cpudata->vmcb->state.rax = 0;
982 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
983 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
984 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
985 break;
986 case 0x80000019: /* TLB Characteristics for 1GB pages */
987 case 0x8000001A: /* Instruction Optimizations */
988 break;
989 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
990 case 0x8000001C: /* Lightweight Profiling Capabilities */
991 cpudata->vmcb->state.rax = 0;
992 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
993 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
994 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
995 break;
996 case 0x8000001D: /* Cache Topology Information */
997 case 0x8000001E: /* Processor Topology Information */
998 break; /* TODO? */
999 case 0x8000001F: /* Encrypted Memory Capabilities */
1000 cpudata->vmcb->state.rax = 0;
1001 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1002 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1003 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1004 break;
1005
1006 default:
1007 break;
1008 }
1009 }
1010
1011 static void
1012 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1013 {
1014 exit->u.insn.npc = vmcb->ctrl.nrip;
1015 exit->reason = reason;
1016 }
1017
1018 static void
1019 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1020 struct nvmm_vcpu_exit *exit)
1021 {
1022 struct svm_cpudata *cpudata = vcpu->cpudata;
1023 struct nvmm_vcpu_conf_cpuid *cpuid;
1024 uint64_t eax, ecx;
1025 u_int descs[4];
1026 size_t i;
1027
1028 eax = cpudata->vmcb->state.rax;
1029 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1030 x86_cpuid2(eax, ecx, descs);
1031
1032 cpudata->vmcb->state.rax = descs[0];
1033 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1034 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1035 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1036
1037 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1038
1039 for (i = 0; i < SVM_NCPUIDS; i++) {
1040 if (!cpudata->cpuidpresent[i]) {
1041 continue;
1042 }
1043 cpuid = &cpudata->cpuid[i];
1044 if (cpuid->leaf != eax) {
1045 continue;
1046 }
1047
1048 if (cpuid->exit) {
1049 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1050 return;
1051 }
1052 KASSERT(cpuid->mask);
1053
1054 /* del */
1055 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1056 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1057 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1058 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1059
1060 /* set */
1061 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1062 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1063 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1064 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1065
1066 break;
1067 }
1068
1069 svm_inkernel_advance(cpudata->vmcb);
1070 exit->reason = NVMM_VCPU_EXIT_NONE;
1071 }
1072
1073 static void
1074 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1075 struct nvmm_vcpu_exit *exit)
1076 {
1077 struct svm_cpudata *cpudata = vcpu->cpudata;
1078 struct vmcb *vmcb = cpudata->vmcb;
1079
1080 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1081 svm_event_waitexit_disable(vcpu, false);
1082 }
1083
1084 svm_inkernel_advance(cpudata->vmcb);
1085 exit->reason = NVMM_VCPU_EXIT_HALTED;
1086 }
1087
1088 #define SVM_EXIT_IO_PORT __BITS(31,16)
1089 #define SVM_EXIT_IO_SEG __BITS(12,10)
1090 #define SVM_EXIT_IO_A64 __BIT(9)
1091 #define SVM_EXIT_IO_A32 __BIT(8)
1092 #define SVM_EXIT_IO_A16 __BIT(7)
1093 #define SVM_EXIT_IO_SZ32 __BIT(6)
1094 #define SVM_EXIT_IO_SZ16 __BIT(5)
1095 #define SVM_EXIT_IO_SZ8 __BIT(4)
1096 #define SVM_EXIT_IO_REP __BIT(3)
1097 #define SVM_EXIT_IO_STR __BIT(2)
1098 #define SVM_EXIT_IO_IN __BIT(0)
1099
1100 static void
1101 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1102 struct nvmm_vcpu_exit *exit)
1103 {
1104 struct svm_cpudata *cpudata = vcpu->cpudata;
1105 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1106 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1107
1108 exit->reason = NVMM_VCPU_EXIT_IO;
1109
1110 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1111 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1112
1113 if (svm_decode_assist) {
1114 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1115 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1116 } else {
1117 exit->u.io.seg = -1;
1118 }
1119
1120 if (info & SVM_EXIT_IO_A64) {
1121 exit->u.io.address_size = 8;
1122 } else if (info & SVM_EXIT_IO_A32) {
1123 exit->u.io.address_size = 4;
1124 } else if (info & SVM_EXIT_IO_A16) {
1125 exit->u.io.address_size = 2;
1126 }
1127
1128 if (info & SVM_EXIT_IO_SZ32) {
1129 exit->u.io.operand_size = 4;
1130 } else if (info & SVM_EXIT_IO_SZ16) {
1131 exit->u.io.operand_size = 2;
1132 } else if (info & SVM_EXIT_IO_SZ8) {
1133 exit->u.io.operand_size = 1;
1134 }
1135
1136 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1137 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1138 exit->u.io.npc = nextpc;
1139
1140 svm_vcpu_state_provide(vcpu,
1141 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1142 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1143 }
1144
1145 static const uint64_t msr_ignore_list[] = {
1146 0xc0010055, /* MSR_CMPHALT */
1147 MSR_DE_CFG,
1148 MSR_IC_CFG,
1149 MSR_UCODE_AMD_PATCHLEVEL
1150 };
1151
1152 static bool
1153 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1154 struct nvmm_vcpu_exit *exit)
1155 {
1156 struct svm_cpudata *cpudata = vcpu->cpudata;
1157 struct vmcb *vmcb = cpudata->vmcb;
1158 uint64_t val;
1159 size_t i;
1160
1161 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1162 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1163 val = NB_CFG_INITAPICCPUIDLO;
1164 vmcb->state.rax = (val & 0xFFFFFFFF);
1165 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1166 goto handled;
1167 }
1168 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1169 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1170 continue;
1171 val = 0;
1172 vmcb->state.rax = (val & 0xFFFFFFFF);
1173 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1174 goto handled;
1175 }
1176 } else {
1177 if (exit->u.wrmsr.msr == MSR_EFER) {
1178 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1179 goto error;
1180 }
1181 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1182 EFER_TLB_FLUSH) {
1183 cpudata->gtlb_want_flush = true;
1184 }
1185 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1186 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1187 goto handled;
1188 }
1189 if (exit->u.wrmsr.msr == MSR_TSC) {
1190 cpudata->gtsc = exit->u.wrmsr.val;
1191 cpudata->gtsc_want_update = true;
1192 goto handled;
1193 }
1194 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1195 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1196 continue;
1197 goto handled;
1198 }
1199 }
1200
1201 return false;
1202
1203 handled:
1204 svm_inkernel_advance(cpudata->vmcb);
1205 return true;
1206
1207 error:
1208 svm_inject_gp(vcpu);
1209 return true;
1210 }
1211
1212 static inline void
1213 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1214 struct nvmm_vcpu_exit *exit)
1215 {
1216 struct svm_cpudata *cpudata = vcpu->cpudata;
1217
1218 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1219 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1220 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1221
1222 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1223 exit->reason = NVMM_VCPU_EXIT_NONE;
1224 return;
1225 }
1226
1227 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1228 }
1229
1230 static inline void
1231 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1232 struct nvmm_vcpu_exit *exit)
1233 {
1234 struct svm_cpudata *cpudata = vcpu->cpudata;
1235 uint64_t rdx, rax;
1236
1237 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1238 rax = cpudata->vmcb->state.rax;
1239
1240 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1241 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1242 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1243 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1244
1245 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1246 exit->reason = NVMM_VCPU_EXIT_NONE;
1247 return;
1248 }
1249
1250 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1251 }
1252
1253 static void
1254 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1255 struct nvmm_vcpu_exit *exit)
1256 {
1257 struct svm_cpudata *cpudata = vcpu->cpudata;
1258 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1259
1260 if (info == 0) {
1261 svm_exit_rdmsr(mach, vcpu, exit);
1262 } else {
1263 svm_exit_wrmsr(mach, vcpu, exit);
1264 }
1265 }
1266
1267 static void
1268 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1269 struct nvmm_vcpu_exit *exit)
1270 {
1271 struct svm_cpudata *cpudata = vcpu->cpudata;
1272 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1273
1274 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1275 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1276 exit->u.mem.prot = PROT_WRITE;
1277 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_X)
1278 exit->u.mem.prot = PROT_EXEC;
1279 else
1280 exit->u.mem.prot = PROT_READ;
1281 exit->u.mem.gpa = gpa;
1282 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1283 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1284 sizeof(exit->u.mem.inst_bytes));
1285
1286 svm_vcpu_state_provide(vcpu,
1287 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1288 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1289 }
1290
1291 static void
1292 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1293 struct nvmm_vcpu_exit *exit)
1294 {
1295 struct svm_cpudata *cpudata = vcpu->cpudata;
1296 struct vmcb *vmcb = cpudata->vmcb;
1297 uint64_t val;
1298
1299 exit->reason = NVMM_VCPU_EXIT_NONE;
1300
1301 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1302 (vmcb->state.rax & 0xFFFFFFFF);
1303
1304 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1305 goto error;
1306 } else if (__predict_false(vmcb->state.cpl != 0)) {
1307 goto error;
1308 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1309 goto error;
1310 } else if (__predict_false((val & XCR0_X87) == 0)) {
1311 goto error;
1312 }
1313
1314 cpudata->gxcr0 = val;
1315 if (svm_xcr0_mask != 0) {
1316 wrxcr(0, cpudata->gxcr0);
1317 }
1318
1319 svm_inkernel_advance(cpudata->vmcb);
1320 return;
1321
1322 error:
1323 svm_inject_gp(vcpu);
1324 }
1325
1326 static void
1327 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1328 {
1329 exit->u.inv.hwcode = code;
1330 exit->reason = NVMM_VCPU_EXIT_INVALID;
1331 }
1332
1333 /* -------------------------------------------------------------------------- */
1334
1335 static void
1336 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1337 {
1338 struct svm_cpudata *cpudata = vcpu->cpudata;
1339
1340 fpu_kern_enter();
1341 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask);
1342
1343 if (svm_xcr0_mask != 0) {
1344 cpudata->hxcr0 = rdxcr(0);
1345 wrxcr(0, cpudata->gxcr0);
1346 }
1347 }
1348
1349 static void
1350 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1351 {
1352 struct svm_cpudata *cpudata = vcpu->cpudata;
1353
1354 if (svm_xcr0_mask != 0) {
1355 cpudata->gxcr0 = rdxcr(0);
1356 wrxcr(0, cpudata->hxcr0);
1357 }
1358
1359 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask);
1360 fpu_kern_leave();
1361 }
1362
1363 static void
1364 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1365 {
1366 struct svm_cpudata *cpudata = vcpu->cpudata;
1367
1368 x86_dbregs_save(curlwp);
1369
1370 ldr7(0);
1371
1372 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1373 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1374 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1375 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1376 }
1377
1378 static void
1379 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1380 {
1381 struct svm_cpudata *cpudata = vcpu->cpudata;
1382
1383 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1384 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1385 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1386 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1387
1388 x86_dbregs_restore(curlwp);
1389 }
1390
1391 static void
1392 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1393 {
1394 struct svm_cpudata *cpudata = vcpu->cpudata;
1395
1396 cpudata->fsbase = rdmsr(MSR_FSBASE);
1397 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1398 }
1399
1400 static void
1401 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1402 {
1403 struct svm_cpudata *cpudata = vcpu->cpudata;
1404
1405 wrmsr(MSR_STAR, cpudata->star);
1406 wrmsr(MSR_LSTAR, cpudata->lstar);
1407 wrmsr(MSR_CSTAR, cpudata->cstar);
1408 wrmsr(MSR_SFMASK, cpudata->sfmask);
1409 wrmsr(MSR_FSBASE, cpudata->fsbase);
1410 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1411 }
1412
1413 /* -------------------------------------------------------------------------- */
1414
1415 static inline void
1416 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1417 {
1418 struct svm_cpudata *cpudata = vcpu->cpudata;
1419
1420 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1421 cpudata->gtlb_want_flush = true;
1422 }
1423 }
1424
1425 static inline void
1426 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1427 {
1428 /*
1429 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1430 * executing on this hCPU and the hTLB already got flushed, or it
1431 * was executing on another hCPU in which case the catchup is done
1432 * in svm_gtlb_catchup().
1433 */
1434 }
1435
1436 static inline uint64_t
1437 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1438 {
1439 struct vmcb *vmcb = cpudata->vmcb;
1440 uint64_t machgen;
1441
1442 machgen = machdata->mach_htlb_gen;
1443 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1444 return machgen;
1445 }
1446
1447 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1448 return machgen;
1449 }
1450
1451 static inline void
1452 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1453 {
1454 struct vmcb *vmcb = cpudata->vmcb;
1455
1456 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1457 cpudata->vcpu_htlb_gen = machgen;
1458 }
1459 }
1460
1461 static inline void
1462 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1463 {
1464 cpudata->evt_pending = false;
1465
1466 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1467 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1468 cpudata->evt_pending = true;
1469 }
1470 }
1471
1472 static int
1473 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1474 struct nvmm_vcpu_exit *exit)
1475 {
1476 struct nvmm_comm_page *comm = vcpu->comm;
1477 struct svm_machdata *machdata = mach->machdata;
1478 struct svm_cpudata *cpudata = vcpu->cpudata;
1479 struct vmcb *vmcb = cpudata->vmcb;
1480 uint64_t machgen;
1481 int hcpu;
1482
1483 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1484 return EINVAL;
1485 }
1486 svm_vcpu_state_commit(vcpu);
1487 comm->state_cached = 0;
1488
1489 kpreempt_disable();
1490 hcpu = cpu_number();
1491
1492 svm_gtlb_catchup(vcpu, hcpu);
1493 svm_htlb_catchup(vcpu, hcpu);
1494
1495 if (vcpu->hcpu_last != hcpu) {
1496 svm_vmcb_cache_flush_all(vmcb);
1497 cpudata->gtsc_want_update = true;
1498 }
1499
1500 svm_vcpu_guest_dbregs_enter(vcpu);
1501 svm_vcpu_guest_misc_enter(vcpu);
1502 svm_vcpu_guest_fpu_enter(vcpu);
1503
1504 while (1) {
1505 if (cpudata->gtlb_want_flush) {
1506 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1507 } else {
1508 vmcb->ctrl.tlb_ctrl = 0;
1509 }
1510
1511 if (__predict_false(cpudata->gtsc_want_update)) {
1512 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1513 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1514 }
1515
1516 svm_clgi();
1517 machgen = svm_htlb_flush(machdata, cpudata);
1518 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1519 svm_htlb_flush_ack(cpudata, machgen);
1520 svm_stgi();
1521
1522 svm_vmcb_cache_default(vmcb);
1523
1524 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1525 cpudata->gtlb_want_flush = false;
1526 cpudata->gtsc_want_update = false;
1527 vcpu->hcpu_last = hcpu;
1528 }
1529 svm_exit_evt(cpudata, vmcb);
1530
1531 switch (vmcb->ctrl.exitcode) {
1532 case VMCB_EXITCODE_INTR:
1533 case VMCB_EXITCODE_NMI:
1534 exit->reason = NVMM_VCPU_EXIT_NONE;
1535 break;
1536 case VMCB_EXITCODE_VINTR:
1537 svm_event_waitexit_disable(vcpu, false);
1538 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1539 break;
1540 case VMCB_EXITCODE_IRET:
1541 svm_event_waitexit_disable(vcpu, true);
1542 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1543 break;
1544 case VMCB_EXITCODE_CPUID:
1545 svm_exit_cpuid(mach, vcpu, exit);
1546 break;
1547 case VMCB_EXITCODE_HLT:
1548 svm_exit_hlt(mach, vcpu, exit);
1549 break;
1550 case VMCB_EXITCODE_IOIO:
1551 svm_exit_io(mach, vcpu, exit);
1552 break;
1553 case VMCB_EXITCODE_MSR:
1554 svm_exit_msr(mach, vcpu, exit);
1555 break;
1556 case VMCB_EXITCODE_SHUTDOWN:
1557 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1558 break;
1559 case VMCB_EXITCODE_RDPMC:
1560 case VMCB_EXITCODE_RSM:
1561 case VMCB_EXITCODE_INVLPGA:
1562 case VMCB_EXITCODE_VMRUN:
1563 case VMCB_EXITCODE_VMMCALL:
1564 case VMCB_EXITCODE_VMLOAD:
1565 case VMCB_EXITCODE_VMSAVE:
1566 case VMCB_EXITCODE_STGI:
1567 case VMCB_EXITCODE_CLGI:
1568 case VMCB_EXITCODE_SKINIT:
1569 case VMCB_EXITCODE_RDTSCP:
1570 case VMCB_EXITCODE_RDPRU:
1571 case VMCB_EXITCODE_INVLPGB:
1572 case VMCB_EXITCODE_INVPCID:
1573 case VMCB_EXITCODE_MCOMMIT:
1574 case VMCB_EXITCODE_TLBSYNC:
1575 svm_inject_ud(vcpu);
1576 exit->reason = NVMM_VCPU_EXIT_NONE;
1577 break;
1578 case VMCB_EXITCODE_MONITOR:
1579 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1580 break;
1581 case VMCB_EXITCODE_MWAIT:
1582 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1583 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1584 break;
1585 case VMCB_EXITCODE_XSETBV:
1586 svm_exit_xsetbv(mach, vcpu, exit);
1587 break;
1588 case VMCB_EXITCODE_NPF:
1589 svm_exit_npf(mach, vcpu, exit);
1590 break;
1591 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1592 default:
1593 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1594 break;
1595 }
1596
1597 /* If no reason to return to userland, keep rolling. */
1598 if (nvmm_return_needed()) {
1599 break;
1600 }
1601 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1602 break;
1603 }
1604 }
1605
1606 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1607
1608 svm_vcpu_guest_fpu_leave(vcpu);
1609 svm_vcpu_guest_misc_leave(vcpu);
1610 svm_vcpu_guest_dbregs_leave(vcpu);
1611
1612 kpreempt_enable();
1613
1614 exit->exitstate.rflags = vmcb->state.rflags;
1615 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1616 exit->exitstate.int_shadow =
1617 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1618 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1619 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1620 exit->exitstate.evt_pending = cpudata->evt_pending;
1621
1622 return 0;
1623 }
1624
1625 /* -------------------------------------------------------------------------- */
1626
1627 static int
1628 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1629 {
1630 struct pglist pglist;
1631 paddr_t _pa;
1632 vaddr_t _va;
1633 size_t i;
1634 int ret;
1635
1636 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1637 &pglist, 1, 0);
1638 if (ret != 0)
1639 return ENOMEM;
1640 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1641 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1642 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1643 if (_va == 0)
1644 goto error;
1645
1646 for (i = 0; i < npages; i++) {
1647 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1648 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1649 }
1650 pmap_update(pmap_kernel());
1651
1652 memset((void *)_va, 0, npages * PAGE_SIZE);
1653
1654 *pa = _pa;
1655 *va = _va;
1656 return 0;
1657
1658 error:
1659 for (i = 0; i < npages; i++) {
1660 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1661 }
1662 return ENOMEM;
1663 }
1664
1665 static void
1666 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1667 {
1668 size_t i;
1669
1670 pmap_kremove(va, npages * PAGE_SIZE);
1671 pmap_update(pmap_kernel());
1672 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1673 for (i = 0; i < npages; i++) {
1674 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1675 }
1676 }
1677
1678 /* -------------------------------------------------------------------------- */
1679
1680 #define SVM_MSRBM_READ __BIT(0)
1681 #define SVM_MSRBM_WRITE __BIT(1)
1682
1683 static void
1684 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1685 {
1686 uint64_t byte;
1687 uint8_t bitoff;
1688
1689 if (msr < 0x00002000) {
1690 /* Range 1 */
1691 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1692 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1693 /* Range 2 */
1694 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1695 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1696 /* Range 3 */
1697 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1698 } else {
1699 panic("%s: wrong range", __func__);
1700 }
1701
1702 bitoff = (msr & 0x3) << 1;
1703
1704 if (read) {
1705 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1706 }
1707 if (write) {
1708 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1709 }
1710 }
1711
1712 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1713 #define SVM_SEG_ATTRIB_S __BIT(4)
1714 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1715 #define SVM_SEG_ATTRIB_P __BIT(7)
1716 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1717 #define SVM_SEG_ATTRIB_L __BIT(9)
1718 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1719 #define SVM_SEG_ATTRIB_G __BIT(11)
1720
1721 static void
1722 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1723 struct vmcb_segment *vseg)
1724 {
1725 vseg->selector = seg->selector;
1726 vseg->attrib =
1727 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1728 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1729 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1730 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1731 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1732 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1733 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1734 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1735 vseg->limit = seg->limit;
1736 vseg->base = seg->base;
1737 }
1738
1739 static void
1740 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1741 {
1742 seg->selector = vseg->selector;
1743 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1744 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1745 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1746 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1747 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1748 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1749 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1750 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1751 seg->limit = vseg->limit;
1752 seg->base = vseg->base;
1753 }
1754
1755 static inline bool
1756 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1757 uint64_t flags)
1758 {
1759 if (flags & NVMM_X64_STATE_CRS) {
1760 if ((vmcb->state.cr0 ^
1761 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1762 return true;
1763 }
1764 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1765 return true;
1766 }
1767 if ((vmcb->state.cr4 ^
1768 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1769 return true;
1770 }
1771 }
1772
1773 if (flags & NVMM_X64_STATE_MSRS) {
1774 if ((vmcb->state.efer ^
1775 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1776 return true;
1777 }
1778 }
1779
1780 return false;
1781 }
1782
1783 static void
1784 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1785 {
1786 struct nvmm_comm_page *comm = vcpu->comm;
1787 const struct nvmm_x64_state *state = &comm->state;
1788 struct svm_cpudata *cpudata = vcpu->cpudata;
1789 struct vmcb *vmcb = cpudata->vmcb;
1790 struct fxsave *fpustate;
1791 uint64_t flags;
1792
1793 flags = comm->state_wanted;
1794
1795 if (svm_state_tlb_flush(vmcb, state, flags)) {
1796 cpudata->gtlb_want_flush = true;
1797 }
1798
1799 if (flags & NVMM_X64_STATE_SEGS) {
1800 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1801 &vmcb->state.cs);
1802 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1803 &vmcb->state.ds);
1804 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1805 &vmcb->state.es);
1806 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1807 &vmcb->state.fs);
1808 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1809 &vmcb->state.gs);
1810 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1811 &vmcb->state.ss);
1812 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1813 &vmcb->state.gdt);
1814 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1815 &vmcb->state.idt);
1816 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1817 &vmcb->state.ldt);
1818 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1819 &vmcb->state.tr);
1820
1821 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1822 }
1823
1824 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1825 if (flags & NVMM_X64_STATE_GPRS) {
1826 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1827
1828 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1829 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1830 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1831 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1832 }
1833
1834 if (flags & NVMM_X64_STATE_CRS) {
1835 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1836 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1837 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1838 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1839
1840 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1841 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1842 VMCB_CTRL_V_TPR);
1843
1844 if (svm_xcr0_mask != 0) {
1845 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1846 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1847 cpudata->gxcr0 &= svm_xcr0_mask;
1848 cpudata->gxcr0 |= XCR0_X87;
1849 }
1850 }
1851
1852 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1853 if (flags & NVMM_X64_STATE_DRS) {
1854 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1855
1856 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1857 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1858 }
1859
1860 if (flags & NVMM_X64_STATE_MSRS) {
1861 /*
1862 * EFER_SVME is mandatory.
1863 */
1864 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1865 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1866 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1867 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1868 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1869 vmcb->state.kernelgsbase =
1870 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1871 vmcb->state.sysenter_cs =
1872 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1873 vmcb->state.sysenter_esp =
1874 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1875 vmcb->state.sysenter_eip =
1876 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1877 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1878
1879 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1880 cpudata->gtsc_want_update = true;
1881 }
1882
1883 if (flags & NVMM_X64_STATE_INTR) {
1884 if (state->intr.int_shadow) {
1885 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1886 } else {
1887 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1888 }
1889
1890 if (state->intr.int_window_exiting) {
1891 svm_event_waitexit_enable(vcpu, false);
1892 } else {
1893 svm_event_waitexit_disable(vcpu, false);
1894 }
1895
1896 if (state->intr.nmi_window_exiting) {
1897 svm_event_waitexit_enable(vcpu, true);
1898 } else {
1899 svm_event_waitexit_disable(vcpu, true);
1900 }
1901 }
1902
1903 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1904 if (flags & NVMM_X64_STATE_FPU) {
1905 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1906 sizeof(state->fpu));
1907
1908 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1909 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1910 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1911
1912 if (svm_xcr0_mask != 0) {
1913 /* Reset XSTATE_BV, to force a reload. */
1914 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1915 }
1916 }
1917
1918 svm_vmcb_cache_update(vmcb, flags);
1919
1920 comm->state_wanted = 0;
1921 comm->state_cached |= flags;
1922 }
1923
1924 static void
1925 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1926 {
1927 struct nvmm_comm_page *comm = vcpu->comm;
1928 struct nvmm_x64_state *state = &comm->state;
1929 struct svm_cpudata *cpudata = vcpu->cpudata;
1930 struct vmcb *vmcb = cpudata->vmcb;
1931 uint64_t flags;
1932
1933 flags = comm->state_wanted;
1934
1935 if (flags & NVMM_X64_STATE_SEGS) {
1936 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1937 &vmcb->state.cs);
1938 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1939 &vmcb->state.ds);
1940 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1941 &vmcb->state.es);
1942 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1943 &vmcb->state.fs);
1944 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1945 &vmcb->state.gs);
1946 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1947 &vmcb->state.ss);
1948 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1949 &vmcb->state.gdt);
1950 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1951 &vmcb->state.idt);
1952 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1953 &vmcb->state.ldt);
1954 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1955 &vmcb->state.tr);
1956
1957 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1958 }
1959
1960 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1961 if (flags & NVMM_X64_STATE_GPRS) {
1962 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1963
1964 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1965 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1966 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1967 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1968 }
1969
1970 if (flags & NVMM_X64_STATE_CRS) {
1971 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1972 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1973 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1974 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1975 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1976 VMCB_CTRL_V_TPR);
1977 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1978 }
1979
1980 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1981 if (flags & NVMM_X64_STATE_DRS) {
1982 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
1983
1984 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
1985 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
1986 }
1987
1988 if (flags & NVMM_X64_STATE_MSRS) {
1989 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
1990 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
1991 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
1992 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
1993 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
1994 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
1995 vmcb->state.kernelgsbase;
1996 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
1997 vmcb->state.sysenter_cs;
1998 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
1999 vmcb->state.sysenter_esp;
2000 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2001 vmcb->state.sysenter_eip;
2002 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2003 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2004
2005 /* Hide SVME. */
2006 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2007 }
2008
2009 if (flags & NVMM_X64_STATE_INTR) {
2010 state->intr.int_shadow =
2011 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2012 state->intr.int_window_exiting = cpudata->int_window_exit;
2013 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2014 state->intr.evt_pending = cpudata->evt_pending;
2015 }
2016
2017 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2018 if (flags & NVMM_X64_STATE_FPU) {
2019 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2020 sizeof(state->fpu));
2021 }
2022
2023 comm->state_wanted = 0;
2024 comm->state_cached |= flags;
2025 }
2026
2027 static void
2028 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2029 {
2030 vcpu->comm->state_wanted = flags;
2031 svm_vcpu_getstate(vcpu);
2032 }
2033
2034 static void
2035 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2036 {
2037 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2038 vcpu->comm->state_commit = 0;
2039 svm_vcpu_setstate(vcpu);
2040 }
2041
2042 /* -------------------------------------------------------------------------- */
2043
2044 static void
2045 svm_asid_alloc(struct nvmm_cpu *vcpu)
2046 {
2047 struct svm_cpudata *cpudata = vcpu->cpudata;
2048 struct vmcb *vmcb = cpudata->vmcb;
2049 size_t i, oct, bit;
2050
2051 mutex_enter(&svm_asidlock);
2052
2053 for (i = 0; i < svm_maxasid; i++) {
2054 oct = i / 8;
2055 bit = i % 8;
2056
2057 if (svm_asidmap[oct] & __BIT(bit)) {
2058 continue;
2059 }
2060
2061 svm_asidmap[oct] |= __BIT(bit);
2062 vmcb->ctrl.guest_asid = i;
2063 mutex_exit(&svm_asidlock);
2064 return;
2065 }
2066
2067 /*
2068 * No free ASID. Use the last one, which is shared and requires
2069 * special TLB handling.
2070 */
2071 cpudata->shared_asid = true;
2072 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2073 mutex_exit(&svm_asidlock);
2074 }
2075
2076 static void
2077 svm_asid_free(struct nvmm_cpu *vcpu)
2078 {
2079 struct svm_cpudata *cpudata = vcpu->cpudata;
2080 struct vmcb *vmcb = cpudata->vmcb;
2081 size_t oct, bit;
2082
2083 if (cpudata->shared_asid) {
2084 return;
2085 }
2086
2087 oct = vmcb->ctrl.guest_asid / 8;
2088 bit = vmcb->ctrl.guest_asid % 8;
2089
2090 mutex_enter(&svm_asidlock);
2091 svm_asidmap[oct] &= ~__BIT(bit);
2092 mutex_exit(&svm_asidlock);
2093 }
2094
2095 static void
2096 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2097 {
2098 struct svm_cpudata *cpudata = vcpu->cpudata;
2099 struct vmcb *vmcb = cpudata->vmcb;
2100
2101 /* Allow reads/writes of Control Registers. */
2102 vmcb->ctrl.intercept_cr = 0;
2103
2104 /* Allow reads/writes of Debug Registers. */
2105 vmcb->ctrl.intercept_dr = 0;
2106
2107 /* Allow exceptions 0 to 31. */
2108 vmcb->ctrl.intercept_vec = 0;
2109
2110 /*
2111 * Allow:
2112 * - SMI [smm interrupts]
2113 * - VINTR [virtual interrupts]
2114 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2115 * - RIDTR [reads of IDTR]
2116 * - RGDTR [reads of GDTR]
2117 * - RLDTR [reads of LDTR]
2118 * - RTR [reads of TR]
2119 * - WIDTR [writes of IDTR]
2120 * - WGDTR [writes of GDTR]
2121 * - WLDTR [writes of LDTR]
2122 * - WTR [writes of TR]
2123 * - RDTSC [rdtsc instruction]
2124 * - PUSHF [pushf instruction]
2125 * - POPF [popf instruction]
2126 * - IRET [iret instruction]
2127 * - INTN [int $n instructions]
2128 * - INVD [invd instruction]
2129 * - PAUSE [pause instruction]
2130 * - INVLPG [invplg instruction]
2131 * - TASKSW [task switches]
2132 *
2133 * Intercept the rest below.
2134 */
2135 vmcb->ctrl.intercept_misc1 =
2136 VMCB_CTRL_INTERCEPT_INTR |
2137 VMCB_CTRL_INTERCEPT_NMI |
2138 VMCB_CTRL_INTERCEPT_INIT |
2139 VMCB_CTRL_INTERCEPT_RDPMC |
2140 VMCB_CTRL_INTERCEPT_CPUID |
2141 VMCB_CTRL_INTERCEPT_RSM |
2142 VMCB_CTRL_INTERCEPT_HLT |
2143 VMCB_CTRL_INTERCEPT_INVLPGA |
2144 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2145 VMCB_CTRL_INTERCEPT_MSR_PROT |
2146 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2147 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2148
2149 /*
2150 * Allow:
2151 * - ICEBP [icebp instruction]
2152 * - WBINVD [wbinvd instruction]
2153 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2154 *
2155 * Intercept the rest below.
2156 */
2157 vmcb->ctrl.intercept_misc2 =
2158 VMCB_CTRL_INTERCEPT_VMRUN |
2159 VMCB_CTRL_INTERCEPT_VMMCALL |
2160 VMCB_CTRL_INTERCEPT_VMLOAD |
2161 VMCB_CTRL_INTERCEPT_VMSAVE |
2162 VMCB_CTRL_INTERCEPT_STGI |
2163 VMCB_CTRL_INTERCEPT_CLGI |
2164 VMCB_CTRL_INTERCEPT_SKINIT |
2165 VMCB_CTRL_INTERCEPT_RDTSCP |
2166 VMCB_CTRL_INTERCEPT_MONITOR |
2167 VMCB_CTRL_INTERCEPT_MWAIT |
2168 VMCB_CTRL_INTERCEPT_XSETBV |
2169 VMCB_CTRL_INTERCEPT_RDPRU;
2170
2171 /*
2172 * Intercept everything.
2173 */
2174 vmcb->ctrl.intercept_misc3 =
2175 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2176 VMCB_CTRL_INTERCEPT_PCID |
2177 VMCB_CTRL_INTERCEPT_MCOMMIT |
2178 VMCB_CTRL_INTERCEPT_TLBSYNC;
2179
2180 /* Intercept all I/O accesses. */
2181 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2182 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2183
2184 /* Allow direct access to certain MSRs. */
2185 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2186 svm_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, false);
2187 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2188 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2189 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2190 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2191 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2192 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2193 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2194 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2195 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2196 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2197 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2198 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2199 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2200
2201 /* Generate ASID. */
2202 svm_asid_alloc(vcpu);
2203
2204 /* Virtual TPR. */
2205 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2206
2207 /* Enable Nested Paging. */
2208 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2209 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2210
2211 /* Init XSAVE header. */
2212 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2213 cpudata->gfpu.xsh_xcomp_bv = 0;
2214
2215 /* These MSRs are static. */
2216 cpudata->star = rdmsr(MSR_STAR);
2217 cpudata->lstar = rdmsr(MSR_LSTAR);
2218 cpudata->cstar = rdmsr(MSR_CSTAR);
2219 cpudata->sfmask = rdmsr(MSR_SFMASK);
2220
2221 /* Install the RESET state. */
2222 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2223 sizeof(nvmm_x86_reset_state));
2224 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2225 vcpu->comm->state_cached = 0;
2226 svm_vcpu_setstate(vcpu);
2227 }
2228
2229 static int
2230 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2231 {
2232 struct svm_cpudata *cpudata;
2233 int error;
2234
2235 /* Allocate the SVM cpudata. */
2236 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2237 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2238 UVM_KMF_WIRED|UVM_KMF_ZERO);
2239 vcpu->cpudata = cpudata;
2240
2241 /* VMCB */
2242 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2243 VMCB_NPAGES);
2244 if (error)
2245 goto error;
2246
2247 /* I/O Bitmap */
2248 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2249 IOBM_NPAGES);
2250 if (error)
2251 goto error;
2252
2253 /* MSR Bitmap */
2254 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2255 MSRBM_NPAGES);
2256 if (error)
2257 goto error;
2258
2259 /* Init the VCPU info. */
2260 svm_vcpu_init(mach, vcpu);
2261
2262 return 0;
2263
2264 error:
2265 if (cpudata->vmcb_pa) {
2266 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2267 VMCB_NPAGES);
2268 }
2269 if (cpudata->iobm_pa) {
2270 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2271 IOBM_NPAGES);
2272 }
2273 if (cpudata->msrbm_pa) {
2274 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2275 MSRBM_NPAGES);
2276 }
2277 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2278 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2279 return error;
2280 }
2281
2282 static void
2283 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2284 {
2285 struct svm_cpudata *cpudata = vcpu->cpudata;
2286
2287 svm_asid_free(vcpu);
2288
2289 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2290 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2291 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2292
2293 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2294 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2295 }
2296
2297 /* -------------------------------------------------------------------------- */
2298
2299 static int
2300 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2301 {
2302 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2303 size_t i;
2304
2305 if (__predict_false(cpuid->mask && cpuid->exit)) {
2306 return EINVAL;
2307 }
2308 if (__predict_false(cpuid->mask &&
2309 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2310 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2311 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2312 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2313 return EINVAL;
2314 }
2315
2316 /* If unset, delete, to restore the default behavior. */
2317 if (!cpuid->mask && !cpuid->exit) {
2318 for (i = 0; i < SVM_NCPUIDS; i++) {
2319 if (!cpudata->cpuidpresent[i]) {
2320 continue;
2321 }
2322 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2323 cpudata->cpuidpresent[i] = false;
2324 }
2325 }
2326 return 0;
2327 }
2328
2329 /* If already here, replace. */
2330 for (i = 0; i < SVM_NCPUIDS; i++) {
2331 if (!cpudata->cpuidpresent[i]) {
2332 continue;
2333 }
2334 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2335 memcpy(&cpudata->cpuid[i], cpuid,
2336 sizeof(struct nvmm_vcpu_conf_cpuid));
2337 return 0;
2338 }
2339 }
2340
2341 /* Not here, insert. */
2342 for (i = 0; i < SVM_NCPUIDS; i++) {
2343 if (!cpudata->cpuidpresent[i]) {
2344 cpudata->cpuidpresent[i] = true;
2345 memcpy(&cpudata->cpuid[i], cpuid,
2346 sizeof(struct nvmm_vcpu_conf_cpuid));
2347 return 0;
2348 }
2349 }
2350
2351 return ENOBUFS;
2352 }
2353
2354 static int
2355 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2356 {
2357 struct svm_cpudata *cpudata = vcpu->cpudata;
2358
2359 switch (op) {
2360 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2361 return svm_vcpu_configure_cpuid(cpudata, data);
2362 default:
2363 return EINVAL;
2364 }
2365 }
2366
2367 /* -------------------------------------------------------------------------- */
2368
2369 static void
2370 svm_tlb_flush(struct pmap *pm)
2371 {
2372 struct nvmm_machine *mach = pm->pm_data;
2373 struct svm_machdata *machdata = mach->machdata;
2374
2375 atomic_inc_64(&machdata->mach_htlb_gen);
2376
2377 /* Generates IPIs, which cause #VMEXITs. */
2378 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2379 }
2380
2381 static void
2382 svm_machine_create(struct nvmm_machine *mach)
2383 {
2384 struct svm_machdata *machdata;
2385
2386 /* Fill in pmap info. */
2387 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2388 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2389
2390 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2391 mach->machdata = machdata;
2392
2393 /* Start with an hTLB flush everywhere. */
2394 machdata->mach_htlb_gen = 1;
2395 }
2396
2397 static void
2398 svm_machine_destroy(struct nvmm_machine *mach)
2399 {
2400 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2401 }
2402
2403 static int
2404 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2405 {
2406 panic("%s: impossible", __func__);
2407 }
2408
2409 /* -------------------------------------------------------------------------- */
2410
2411 static bool
2412 svm_ident(void)
2413 {
2414 u_int descs[4];
2415 uint64_t msr;
2416
2417 if (cpu_vendor != CPUVENDOR_AMD) {
2418 return false;
2419 }
2420 if (!(cpu_feature[3] & CPUID_SVM)) {
2421 printf("NVMM: SVM not supported\n");
2422 return false;
2423 }
2424
2425 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2426 printf("NVMM: CPUID leaf not available\n");
2427 return false;
2428 }
2429 x86_cpuid(0x8000000a, descs);
2430
2431 /* Want Nested Paging. */
2432 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2433 printf("NVMM: SVM-NP not supported\n");
2434 return false;
2435 }
2436
2437 /* Want nRIP. */
2438 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2439 printf("NVMM: SVM-NRIPS not supported\n");
2440 return false;
2441 }
2442
2443 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2444
2445 msr = rdmsr(MSR_VMCR);
2446 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2447 printf("NVMM: SVM disabled in BIOS\n");
2448 return false;
2449 }
2450
2451 return true;
2452 }
2453
2454 static void
2455 svm_init_asid(uint32_t maxasid)
2456 {
2457 size_t i, j, allocsz;
2458
2459 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2460
2461 /* Arbitrarily limit. */
2462 maxasid = uimin(maxasid, 8192);
2463
2464 svm_maxasid = maxasid;
2465 allocsz = roundup(maxasid, 8) / 8;
2466 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2467
2468 /* ASID 0 is reserved for the host. */
2469 svm_asidmap[0] |= __BIT(0);
2470
2471 /* ASID n-1 is special, we share it. */
2472 i = (maxasid - 1) / 8;
2473 j = (maxasid - 1) % 8;
2474 svm_asidmap[i] |= __BIT(j);
2475 }
2476
2477 static void
2478 svm_change_cpu(void *arg1, void *arg2)
2479 {
2480 bool enable = arg1 != NULL;
2481 uint64_t msr;
2482
2483 msr = rdmsr(MSR_VMCR);
2484 if (msr & VMCR_SVMED) {
2485 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2486 }
2487
2488 if (!enable) {
2489 wrmsr(MSR_VM_HSAVE_PA, 0);
2490 }
2491
2492 msr = rdmsr(MSR_EFER);
2493 if (enable) {
2494 msr |= EFER_SVME;
2495 } else {
2496 msr &= ~EFER_SVME;
2497 }
2498 wrmsr(MSR_EFER, msr);
2499
2500 if (enable) {
2501 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2502 }
2503 }
2504
2505 static void
2506 svm_init(void)
2507 {
2508 CPU_INFO_ITERATOR cii;
2509 struct cpu_info *ci;
2510 struct vm_page *pg;
2511 u_int descs[4];
2512 uint64_t xc;
2513
2514 x86_cpuid(0x8000000a, descs);
2515
2516 /* The guest TLB flush command. */
2517 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2518 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2519 } else {
2520 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2521 }
2522
2523 /* Init the ASID. */
2524 svm_init_asid(descs[1]);
2525
2526 /* Init the XCR0 mask. */
2527 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2528
2529 /* Init the max basic CPUID leaf. */
2530 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2531
2532 /* Init the max extended CPUID leaf. */
2533 x86_cpuid(0x80000000, descs);
2534 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2535
2536 memset(hsave, 0, sizeof(hsave));
2537 for (CPU_INFO_FOREACH(cii, ci)) {
2538 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2539 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2540 }
2541
2542 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2543 xc_wait(xc);
2544 }
2545
2546 static void
2547 svm_fini_asid(void)
2548 {
2549 size_t allocsz;
2550
2551 allocsz = roundup(svm_maxasid, 8) / 8;
2552 kmem_free(svm_asidmap, allocsz);
2553
2554 mutex_destroy(&svm_asidlock);
2555 }
2556
2557 static void
2558 svm_fini(void)
2559 {
2560 uint64_t xc;
2561 size_t i;
2562
2563 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2564 xc_wait(xc);
2565
2566 for (i = 0; i < MAXCPUS; i++) {
2567 if (hsave[i].pa != 0)
2568 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2569 }
2570
2571 svm_fini_asid();
2572 }
2573
2574 static void
2575 svm_capability(struct nvmm_capability *cap)
2576 {
2577 cap->arch.mach_conf_support = 0;
2578 cap->arch.vcpu_conf_support =
2579 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2580 cap->arch.xcr0_mask = svm_xcr0_mask;
2581 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2582 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2583 }
2584
2585 const struct nvmm_impl nvmm_x86_svm = {
2586 .name = "x86-svm",
2587 .ident = svm_ident,
2588 .init = svm_init,
2589 .fini = svm_fini,
2590 .capability = svm_capability,
2591 .mach_conf_max = NVMM_X86_MACH_NCONF,
2592 .mach_conf_sizes = NULL,
2593 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2594 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2595 .state_size = sizeof(struct nvmm_x64_state),
2596 .machine_create = svm_machine_create,
2597 .machine_destroy = svm_machine_destroy,
2598 .machine_configure = svm_machine_configure,
2599 .vcpu_create = svm_vcpu_create,
2600 .vcpu_destroy = svm_vcpu_destroy,
2601 .vcpu_configure = svm_vcpu_configure,
2602 .vcpu_setstate = svm_vcpu_setstate,
2603 .vcpu_getstate = svm_vcpu_getstate,
2604 .vcpu_inject = svm_vcpu_inject,
2605 .vcpu_run = svm_vcpu_run
2606 };
2607