nvmm_x86_svm.c revision 1.84 1 /* $NetBSD: nvmm_x86_svm.c,v 1.84 2022/08/20 23:48:51 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.84 2022/08/20 23:48:51 riastradh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/dbregs.h>
48 #include <x86/cpu_counter.h>
49
50 #include <machine/cpuvar.h>
51 #include <machine/pmap_private.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 static inline void
60 svm_clgi(void)
61 {
62 asm volatile ("clgi" ::: "memory");
63 }
64
65 static inline void
66 svm_stgi(void)
67 {
68 asm volatile ("stgi" ::: "memory");
69 }
70
71 #define MSR_VM_HSAVE_PA 0xC0010117
72
73 /* -------------------------------------------------------------------------- */
74
75 #define VMCB_EXITCODE_CR0_READ 0x0000
76 #define VMCB_EXITCODE_CR1_READ 0x0001
77 #define VMCB_EXITCODE_CR2_READ 0x0002
78 #define VMCB_EXITCODE_CR3_READ 0x0003
79 #define VMCB_EXITCODE_CR4_READ 0x0004
80 #define VMCB_EXITCODE_CR5_READ 0x0005
81 #define VMCB_EXITCODE_CR6_READ 0x0006
82 #define VMCB_EXITCODE_CR7_READ 0x0007
83 #define VMCB_EXITCODE_CR8_READ 0x0008
84 #define VMCB_EXITCODE_CR9_READ 0x0009
85 #define VMCB_EXITCODE_CR10_READ 0x000A
86 #define VMCB_EXITCODE_CR11_READ 0x000B
87 #define VMCB_EXITCODE_CR12_READ 0x000C
88 #define VMCB_EXITCODE_CR13_READ 0x000D
89 #define VMCB_EXITCODE_CR14_READ 0x000E
90 #define VMCB_EXITCODE_CR15_READ 0x000F
91 #define VMCB_EXITCODE_CR0_WRITE 0x0010
92 #define VMCB_EXITCODE_CR1_WRITE 0x0011
93 #define VMCB_EXITCODE_CR2_WRITE 0x0012
94 #define VMCB_EXITCODE_CR3_WRITE 0x0013
95 #define VMCB_EXITCODE_CR4_WRITE 0x0014
96 #define VMCB_EXITCODE_CR5_WRITE 0x0015
97 #define VMCB_EXITCODE_CR6_WRITE 0x0016
98 #define VMCB_EXITCODE_CR7_WRITE 0x0017
99 #define VMCB_EXITCODE_CR8_WRITE 0x0018
100 #define VMCB_EXITCODE_CR9_WRITE 0x0019
101 #define VMCB_EXITCODE_CR10_WRITE 0x001A
102 #define VMCB_EXITCODE_CR11_WRITE 0x001B
103 #define VMCB_EXITCODE_CR12_WRITE 0x001C
104 #define VMCB_EXITCODE_CR13_WRITE 0x001D
105 #define VMCB_EXITCODE_CR14_WRITE 0x001E
106 #define VMCB_EXITCODE_CR15_WRITE 0x001F
107 #define VMCB_EXITCODE_DR0_READ 0x0020
108 #define VMCB_EXITCODE_DR1_READ 0x0021
109 #define VMCB_EXITCODE_DR2_READ 0x0022
110 #define VMCB_EXITCODE_DR3_READ 0x0023
111 #define VMCB_EXITCODE_DR4_READ 0x0024
112 #define VMCB_EXITCODE_DR5_READ 0x0025
113 #define VMCB_EXITCODE_DR6_READ 0x0026
114 #define VMCB_EXITCODE_DR7_READ 0x0027
115 #define VMCB_EXITCODE_DR8_READ 0x0028
116 #define VMCB_EXITCODE_DR9_READ 0x0029
117 #define VMCB_EXITCODE_DR10_READ 0x002A
118 #define VMCB_EXITCODE_DR11_READ 0x002B
119 #define VMCB_EXITCODE_DR12_READ 0x002C
120 #define VMCB_EXITCODE_DR13_READ 0x002D
121 #define VMCB_EXITCODE_DR14_READ 0x002E
122 #define VMCB_EXITCODE_DR15_READ 0x002F
123 #define VMCB_EXITCODE_DR0_WRITE 0x0030
124 #define VMCB_EXITCODE_DR1_WRITE 0x0031
125 #define VMCB_EXITCODE_DR2_WRITE 0x0032
126 #define VMCB_EXITCODE_DR3_WRITE 0x0033
127 #define VMCB_EXITCODE_DR4_WRITE 0x0034
128 #define VMCB_EXITCODE_DR5_WRITE 0x0035
129 #define VMCB_EXITCODE_DR6_WRITE 0x0036
130 #define VMCB_EXITCODE_DR7_WRITE 0x0037
131 #define VMCB_EXITCODE_DR8_WRITE 0x0038
132 #define VMCB_EXITCODE_DR9_WRITE 0x0039
133 #define VMCB_EXITCODE_DR10_WRITE 0x003A
134 #define VMCB_EXITCODE_DR11_WRITE 0x003B
135 #define VMCB_EXITCODE_DR12_WRITE 0x003C
136 #define VMCB_EXITCODE_DR13_WRITE 0x003D
137 #define VMCB_EXITCODE_DR14_WRITE 0x003E
138 #define VMCB_EXITCODE_DR15_WRITE 0x003F
139 #define VMCB_EXITCODE_EXCP0 0x0040
140 #define VMCB_EXITCODE_EXCP1 0x0041
141 #define VMCB_EXITCODE_EXCP2 0x0042
142 #define VMCB_EXITCODE_EXCP3 0x0043
143 #define VMCB_EXITCODE_EXCP4 0x0044
144 #define VMCB_EXITCODE_EXCP5 0x0045
145 #define VMCB_EXITCODE_EXCP6 0x0046
146 #define VMCB_EXITCODE_EXCP7 0x0047
147 #define VMCB_EXITCODE_EXCP8 0x0048
148 #define VMCB_EXITCODE_EXCP9 0x0049
149 #define VMCB_EXITCODE_EXCP10 0x004A
150 #define VMCB_EXITCODE_EXCP11 0x004B
151 #define VMCB_EXITCODE_EXCP12 0x004C
152 #define VMCB_EXITCODE_EXCP13 0x004D
153 #define VMCB_EXITCODE_EXCP14 0x004E
154 #define VMCB_EXITCODE_EXCP15 0x004F
155 #define VMCB_EXITCODE_EXCP16 0x0050
156 #define VMCB_EXITCODE_EXCP17 0x0051
157 #define VMCB_EXITCODE_EXCP18 0x0052
158 #define VMCB_EXITCODE_EXCP19 0x0053
159 #define VMCB_EXITCODE_EXCP20 0x0054
160 #define VMCB_EXITCODE_EXCP21 0x0055
161 #define VMCB_EXITCODE_EXCP22 0x0056
162 #define VMCB_EXITCODE_EXCP23 0x0057
163 #define VMCB_EXITCODE_EXCP24 0x0058
164 #define VMCB_EXITCODE_EXCP25 0x0059
165 #define VMCB_EXITCODE_EXCP26 0x005A
166 #define VMCB_EXITCODE_EXCP27 0x005B
167 #define VMCB_EXITCODE_EXCP28 0x005C
168 #define VMCB_EXITCODE_EXCP29 0x005D
169 #define VMCB_EXITCODE_EXCP30 0x005E
170 #define VMCB_EXITCODE_EXCP31 0x005F
171 #define VMCB_EXITCODE_INTR 0x0060
172 #define VMCB_EXITCODE_NMI 0x0061
173 #define VMCB_EXITCODE_SMI 0x0062
174 #define VMCB_EXITCODE_INIT 0x0063
175 #define VMCB_EXITCODE_VINTR 0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
177 #define VMCB_EXITCODE_IDTR_READ 0x0066
178 #define VMCB_EXITCODE_GDTR_READ 0x0067
179 #define VMCB_EXITCODE_LDTR_READ 0x0068
180 #define VMCB_EXITCODE_TR_READ 0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
184 #define VMCB_EXITCODE_TR_WRITE 0x006D
185 #define VMCB_EXITCODE_RDTSC 0x006E
186 #define VMCB_EXITCODE_RDPMC 0x006F
187 #define VMCB_EXITCODE_PUSHF 0x0070
188 #define VMCB_EXITCODE_POPF 0x0071
189 #define VMCB_EXITCODE_CPUID 0x0072
190 #define VMCB_EXITCODE_RSM 0x0073
191 #define VMCB_EXITCODE_IRET 0x0074
192 #define VMCB_EXITCODE_SWINT 0x0075
193 #define VMCB_EXITCODE_INVD 0x0076
194 #define VMCB_EXITCODE_PAUSE 0x0077
195 #define VMCB_EXITCODE_HLT 0x0078
196 #define VMCB_EXITCODE_INVLPG 0x0079
197 #define VMCB_EXITCODE_INVLPGA 0x007A
198 #define VMCB_EXITCODE_IOIO 0x007B
199 #define VMCB_EXITCODE_MSR 0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
202 #define VMCB_EXITCODE_SHUTDOWN 0x007F
203 #define VMCB_EXITCODE_VMRUN 0x0080
204 #define VMCB_EXITCODE_VMMCALL 0x0081
205 #define VMCB_EXITCODE_VMLOAD 0x0082
206 #define VMCB_EXITCODE_VMSAVE 0x0083
207 #define VMCB_EXITCODE_STGI 0x0084
208 #define VMCB_EXITCODE_CLGI 0x0085
209 #define VMCB_EXITCODE_SKINIT 0x0086
210 #define VMCB_EXITCODE_RDTSCP 0x0087
211 #define VMCB_EXITCODE_ICEBP 0x0088
212 #define VMCB_EXITCODE_WBINVD 0x0089
213 #define VMCB_EXITCODE_MONITOR 0x008A
214 #define VMCB_EXITCODE_MWAIT 0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
216 #define VMCB_EXITCODE_XSETBV 0x008D
217 #define VMCB_EXITCODE_RDPRU 0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
235 #define VMCB_EXITCODE_INVLPGB 0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
237 #define VMCB_EXITCODE_INVPCID 0x00A2
238 #define VMCB_EXITCODE_MCOMMIT 0x00A3
239 #define VMCB_EXITCODE_TLBSYNC 0x00A4
240 #define VMCB_EXITCODE_NPF 0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
243 #define VMCB_EXITCODE_VMGEXIT 0x0403
244 #define VMCB_EXITCODE_BUSY -2ULL
245 #define VMCB_EXITCODE_INVALID -1ULL
246
247 /* -------------------------------------------------------------------------- */
248
249 struct vmcb_ctrl {
250 uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
253
254 uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
257
258 uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
260
261 uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
294
295 uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
313
314 uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
320
321 uint8_t rsvd1[36];
322 uint16_t pause_filt_thresh;
323 uint16_t pause_filt_cnt;
324 uint64_t iopm_base_pa;
325 uint64_t msrpm_base_pa;
326 uint64_t tsc_offset;
327 uint32_t guest_asid;
328
329 uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
333
334 uint64_t v;
335 #define VMCB_CTRL_V_TPR __BITS(3,0)
336 #define VMCB_CTRL_V_IRQ __BIT(8)
337 #define VMCB_CTRL_V_VGIF __BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
344
345 uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
347 #define VMCB_CTRL_INTR_MASK __BIT(1)
348
349 uint64_t exitcode;
350 uint64_t exitinfo1;
351 uint64_t exitinfo2;
352
353 uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
359
360 uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP __BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
366
367 uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
369
370 uint64_t ghcb;
371
372 uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
378
379 uint64_t n_cr3;
380
381 uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
384
385 uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
398
399 uint32_t rsvd2;
400 uint64_t nrip;
401 uint8_t inst_len;
402 uint8_t inst_bytes[15];
403 uint64_t avic_abpp;
404 uint64_t rsvd3;
405 uint64_t avic_ltp;
406
407 uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
410
411 uint64_t rsvd4;
412 uint64_t vmsa_ptr;
413
414 uint8_t pad[752];
415 } __packed;
416
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418
419 struct vmcb_segment {
420 uint16_t selector;
421 uint16_t attrib; /* hidden */
422 uint32_t limit; /* hidden */
423 uint64_t base; /* hidden */
424 } __packed;
425
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427
428 struct vmcb_state {
429 struct vmcb_segment es;
430 struct vmcb_segment cs;
431 struct vmcb_segment ss;
432 struct vmcb_segment ds;
433 struct vmcb_segment fs;
434 struct vmcb_segment gs;
435 struct vmcb_segment gdt;
436 struct vmcb_segment ldt;
437 struct vmcb_segment idt;
438 struct vmcb_segment tr;
439 uint8_t rsvd1[43];
440 uint8_t cpl;
441 uint8_t rsvd2[4];
442 uint64_t efer;
443 uint8_t rsvd3[112];
444 uint64_t cr4;
445 uint64_t cr3;
446 uint64_t cr0;
447 uint64_t dr7;
448 uint64_t dr6;
449 uint64_t rflags;
450 uint64_t rip;
451 uint8_t rsvd4[88];
452 uint64_t rsp;
453 uint8_t rsvd5[24];
454 uint64_t rax;
455 uint64_t star;
456 uint64_t lstar;
457 uint64_t cstar;
458 uint64_t sfmask;
459 uint64_t kernelgsbase;
460 uint64_t sysenter_cs;
461 uint64_t sysenter_esp;
462 uint64_t sysenter_eip;
463 uint64_t cr2;
464 uint8_t rsvd6[32];
465 uint64_t g_pat;
466 uint64_t dbgctl;
467 uint64_t br_from;
468 uint64_t br_to;
469 uint64_t int_from;
470 uint64_t int_to;
471 uint8_t pad[2408];
472 } __packed;
473
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475
476 struct vmcb {
477 struct vmcb_ctrl ctrl;
478 struct vmcb_state state;
479 } __packed;
480
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483
484 /* -------------------------------------------------------------------------- */
485
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488
489 struct svm_hsave {
490 paddr_t pa;
491 };
492
493 static struct svm_hsave hsave[MAXCPUS];
494
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501
502 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504
505 #define SVM_NCPUIDS 32
506
507 #define VMCB_NPAGES 1
508
509 #define MSRBM_NPAGES 2
510 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
511
512 #define IOBM_NPAGES 3
513 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
514
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518
519 #define EFER_TLB_FLUSH \
520 (EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525
526 /* -------------------------------------------------------------------------- */
527
528 struct svm_machdata {
529 volatile uint64_t mach_htlb_gen;
530 };
531
532 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
533 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
534 sizeof(struct nvmm_vcpu_conf_cpuid),
535 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
536 sizeof(struct nvmm_vcpu_conf_tpr)
537 };
538
539 struct svm_cpudata {
540 /* General */
541 bool shared_asid;
542 bool gtlb_want_flush;
543 bool gtsc_want_update;
544 uint64_t vcpu_htlb_gen;
545
546 /* VMCB */
547 struct vmcb *vmcb;
548 paddr_t vmcb_pa;
549
550 /* I/O bitmap */
551 uint8_t *iobm;
552 paddr_t iobm_pa;
553
554 /* MSR bitmap */
555 uint8_t *msrbm;
556 paddr_t msrbm_pa;
557
558 /* Host state */
559 uint64_t hxcr0;
560 uint64_t star;
561 uint64_t lstar;
562 uint64_t cstar;
563 uint64_t sfmask;
564 uint64_t fsbase;
565 uint64_t kernelgsbase;
566
567 /* Intr state */
568 bool int_window_exit;
569 bool nmi_window_exit;
570 bool evt_pending;
571
572 /* Guest state */
573 uint64_t gxcr0;
574 uint64_t gprs[NVMM_X64_NGPR];
575 uint64_t drs[NVMM_X64_NDR];
576 uint64_t gtsc;
577 struct xsave_header gfpu __aligned(64);
578
579 /* VCPU configuration. */
580 bool cpuidpresent[SVM_NCPUIDS];
581 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
582 };
583
584 static void
585 svm_vmcb_cache_default(struct vmcb *vmcb)
586 {
587 vmcb->ctrl.vmcb_clean =
588 VMCB_CTRL_VMCB_CLEAN_I |
589 VMCB_CTRL_VMCB_CLEAN_IOPM |
590 VMCB_CTRL_VMCB_CLEAN_ASID |
591 VMCB_CTRL_VMCB_CLEAN_TPR |
592 VMCB_CTRL_VMCB_CLEAN_NP |
593 VMCB_CTRL_VMCB_CLEAN_CR |
594 VMCB_CTRL_VMCB_CLEAN_DR |
595 VMCB_CTRL_VMCB_CLEAN_DT |
596 VMCB_CTRL_VMCB_CLEAN_SEG |
597 VMCB_CTRL_VMCB_CLEAN_CR2 |
598 VMCB_CTRL_VMCB_CLEAN_LBR |
599 VMCB_CTRL_VMCB_CLEAN_AVIC;
600 }
601
602 static void
603 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
604 {
605 if (flags & NVMM_X64_STATE_SEGS) {
606 vmcb->ctrl.vmcb_clean &=
607 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
608 }
609 if (flags & NVMM_X64_STATE_CRS) {
610 vmcb->ctrl.vmcb_clean &=
611 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
612 VMCB_CTRL_VMCB_CLEAN_TPR);
613 }
614 if (flags & NVMM_X64_STATE_DRS) {
615 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
616 }
617 if (flags & NVMM_X64_STATE_MSRS) {
618 /* CR for EFER, NP for PAT. */
619 vmcb->ctrl.vmcb_clean &=
620 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
621 }
622 }
623
624 static inline void
625 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
626 {
627 vmcb->ctrl.vmcb_clean &= ~flags;
628 }
629
630 static inline void
631 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
632 {
633 vmcb->ctrl.vmcb_clean = 0;
634 }
635
636 #define SVM_EVENT_TYPE_HW_INT 0
637 #define SVM_EVENT_TYPE_NMI 2
638 #define SVM_EVENT_TYPE_EXC 3
639 #define SVM_EVENT_TYPE_SW_INT 4
640
641 static void
642 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
643 {
644 struct svm_cpudata *cpudata = vcpu->cpudata;
645 struct vmcb *vmcb = cpudata->vmcb;
646
647 if (nmi) {
648 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
649 cpudata->nmi_window_exit = true;
650 } else {
651 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
652 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
653 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
654 cpudata->int_window_exit = true;
655 }
656
657 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
658 }
659
660 static void
661 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
662 {
663 struct svm_cpudata *cpudata = vcpu->cpudata;
664 struct vmcb *vmcb = cpudata->vmcb;
665
666 if (nmi) {
667 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
668 cpudata->nmi_window_exit = false;
669 } else {
670 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
671 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
672 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
673 cpudata->int_window_exit = false;
674 }
675
676 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
677 }
678
679 static inline bool
680 svm_excp_has_rf(uint8_t vector)
681 {
682 switch (vector) {
683 case 1: /* #DB */
684 case 4: /* #OF */
685 case 8: /* #DF */
686 case 18: /* #MC */
687 return false;
688 default:
689 return true;
690 }
691 }
692
693 static inline int
694 svm_excp_has_error(uint8_t vector)
695 {
696 switch (vector) {
697 case 8: /* #DF */
698 case 10: /* #TS */
699 case 11: /* #NP */
700 case 12: /* #SS */
701 case 13: /* #GP */
702 case 14: /* #PF */
703 case 17: /* #AC */
704 case 30: /* #SX */
705 return 1;
706 default:
707 return 0;
708 }
709 }
710
711 static int
712 svm_vcpu_inject(struct nvmm_cpu *vcpu)
713 {
714 struct nvmm_comm_page *comm = vcpu->comm;
715 struct svm_cpudata *cpudata = vcpu->cpudata;
716 struct vmcb *vmcb = cpudata->vmcb;
717 u_int evtype;
718 uint8_t vector;
719 uint64_t error;
720 int type = 0, err = 0;
721
722 evtype = comm->event.type;
723 vector = comm->event.vector;
724 error = comm->event.u.excp.error;
725 __insn_barrier();
726
727 switch (evtype) {
728 case NVMM_VCPU_EVENT_EXCP:
729 type = SVM_EVENT_TYPE_EXC;
730 if (vector == 2 || vector >= 32)
731 return EINVAL;
732 if (vector == 3 || vector == 0)
733 return EINVAL;
734 if (svm_excp_has_rf(vector)) {
735 vmcb->state.rflags |= PSL_RF;
736 }
737 err = svm_excp_has_error(vector);
738 break;
739 case NVMM_VCPU_EVENT_INTR:
740 type = SVM_EVENT_TYPE_HW_INT;
741 if (vector == 2) {
742 type = SVM_EVENT_TYPE_NMI;
743 svm_event_waitexit_enable(vcpu, true);
744 }
745 err = 0;
746 break;
747 default:
748 return EINVAL;
749 }
750
751 vmcb->ctrl.eventinj =
752 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
753 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
754 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
755 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
756 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
757
758 cpudata->evt_pending = true;
759
760 return 0;
761 }
762
763 static void
764 svm_inject_ud(struct nvmm_cpu *vcpu)
765 {
766 struct nvmm_comm_page *comm = vcpu->comm;
767 int ret __diagused;
768
769 comm->event.type = NVMM_VCPU_EVENT_EXCP;
770 comm->event.vector = 6;
771 comm->event.u.excp.error = 0;
772
773 ret = svm_vcpu_inject(vcpu);
774 KASSERT(ret == 0);
775 }
776
777 static void
778 svm_inject_gp(struct nvmm_cpu *vcpu)
779 {
780 struct nvmm_comm_page *comm = vcpu->comm;
781 int ret __diagused;
782
783 comm->event.type = NVMM_VCPU_EVENT_EXCP;
784 comm->event.vector = 13;
785 comm->event.u.excp.error = 0;
786
787 ret = svm_vcpu_inject(vcpu);
788 KASSERT(ret == 0);
789 }
790
791 static inline int
792 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
793 {
794 if (__predict_true(!vcpu->comm->event_commit)) {
795 return 0;
796 }
797 vcpu->comm->event_commit = false;
798 return svm_vcpu_inject(vcpu);
799 }
800
801 static inline void
802 svm_inkernel_advance(struct vmcb *vmcb)
803 {
804 /*
805 * Maybe we should also apply single-stepping and debug exceptions.
806 * Matters for guest-ring3, because it can execute 'cpuid' under a
807 * debugger.
808 */
809 vmcb->state.rip = vmcb->ctrl.nrip;
810 vmcb->state.rflags &= ~PSL_RF;
811 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
812 }
813
814 #define SVM_CPUID_MAX_BASIC 0xD
815 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
816 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
817 static uint32_t svm_cpuid_max_basic __read_mostly;
818 static uint32_t svm_cpuid_max_extended __read_mostly;
819
820 static void
821 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
822 {
823 u_int descs[4];
824
825 x86_cpuid2(eax, ecx, descs);
826 cpudata->vmcb->state.rax = descs[0];
827 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
828 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
829 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
830 }
831
832 static void
833 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
834 {
835 struct svm_cpudata *cpudata = vcpu->cpudata;
836 uint64_t cr4;
837
838 if (eax < 0x40000000) {
839 if (__predict_false(eax > svm_cpuid_max_basic)) {
840 eax = svm_cpuid_max_basic;
841 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
842 }
843 } else if (eax < 0x80000000) {
844 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
845 eax = svm_cpuid_max_basic;
846 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
847 }
848 } else {
849 if (__predict_false(eax > svm_cpuid_max_extended)) {
850 eax = svm_cpuid_max_basic;
851 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
852 }
853 }
854
855 switch (eax) {
856 case 0x00000000:
857 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
858 break;
859 case 0x00000001:
860 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
861
862 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
863 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
864 CPUID_LOCAL_APIC_ID);
865
866 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
867 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
868
869 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
870
871 /* CPUID2_OSXSAVE depends on CR4. */
872 cr4 = cpudata->vmcb->state.cr4;
873 if (!(cr4 & CR4_OSXSAVE)) {
874 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
875 }
876 break;
877 case 0x00000002: /* Empty */
878 case 0x00000003: /* Empty */
879 case 0x00000004: /* Empty */
880 case 0x00000005: /* Monitor/MWait */
881 case 0x00000006: /* Power Management Related Features */
882 cpudata->vmcb->state.rax = 0;
883 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
884 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
885 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
886 break;
887 case 0x00000007: /* Structured Extended Features */
888 switch (ecx) {
889 case 0:
890 cpudata->vmcb->state.rax = 0;
891 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
892 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
893 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
894 break;
895 default:
896 cpudata->vmcb->state.rax = 0;
897 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
898 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
899 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
900 break;
901 }
902 break;
903 case 0x00000008: /* Empty */
904 case 0x00000009: /* Empty */
905 case 0x0000000A: /* Empty */
906 case 0x0000000B: /* Empty */
907 case 0x0000000C: /* Empty */
908 cpudata->vmcb->state.rax = 0;
909 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
910 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
911 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
912 break;
913 case 0x0000000D: /* Processor Extended State Enumeration */
914 if (svm_xcr0_mask == 0) {
915 break;
916 }
917 switch (ecx) {
918 case 0:
919 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
920 if (cpudata->gxcr0 & XCR0_SSE) {
921 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
922 } else {
923 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
924 }
925 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
926 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
927 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
928 break;
929 case 1:
930 cpudata->vmcb->state.rax &=
931 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
932 CPUID_PES1_XGETBV);
933 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
934 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
935 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
936 break;
937 default:
938 cpudata->vmcb->state.rax = 0;
939 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
940 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
941 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
942 break;
943 }
944 break;
945
946 case 0x40000000: /* Hypervisor Information */
947 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
948 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
949 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
950 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
951 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
952 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
953 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
954 break;
955
956 case 0x80000000:
957 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
958 break;
959 case 0x80000001:
960 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
961 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
962 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
963 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
964 break;
965 case 0x80000002: /* Extended Processor Name String */
966 case 0x80000003: /* Extended Processor Name String */
967 case 0x80000004: /* Extended Processor Name String */
968 case 0x80000005: /* L1 Cache and TLB Information */
969 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
970 break;
971 case 0x80000007: /* Processor Power Management and RAS Capabilities */
972 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
973 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
974 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
975 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
976 break;
977 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
978 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
979 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
980 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
981 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
982 break;
983 case 0x80000009: /* Empty */
984 case 0x8000000A: /* SVM Features */
985 case 0x8000000B: /* Empty */
986 case 0x8000000C: /* Empty */
987 case 0x8000000D: /* Empty */
988 case 0x8000000E: /* Empty */
989 case 0x8000000F: /* Empty */
990 case 0x80000010: /* Empty */
991 case 0x80000011: /* Empty */
992 case 0x80000012: /* Empty */
993 case 0x80000013: /* Empty */
994 case 0x80000014: /* Empty */
995 case 0x80000015: /* Empty */
996 case 0x80000016: /* Empty */
997 case 0x80000017: /* Empty */
998 case 0x80000018: /* Empty */
999 cpudata->vmcb->state.rax = 0;
1000 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1001 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1002 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1003 break;
1004 case 0x80000019: /* TLB Characteristics for 1GB pages */
1005 case 0x8000001A: /* Instruction Optimizations */
1006 break;
1007 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1008 case 0x8000001C: /* Lightweight Profiling Capabilities */
1009 cpudata->vmcb->state.rax = 0;
1010 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1011 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1012 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1013 break;
1014 case 0x8000001D: /* Cache Topology Information */
1015 case 0x8000001E: /* Processor Topology Information */
1016 break; /* TODO? */
1017 case 0x8000001F: /* Encrypted Memory Capabilities */
1018 cpudata->vmcb->state.rax = 0;
1019 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1020 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1021 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1022 break;
1023
1024 default:
1025 break;
1026 }
1027 }
1028
1029 static void
1030 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1031 {
1032 exit->u.insn.npc = vmcb->ctrl.nrip;
1033 exit->reason = reason;
1034 }
1035
1036 static void
1037 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1038 struct nvmm_vcpu_exit *exit)
1039 {
1040 struct svm_cpudata *cpudata = vcpu->cpudata;
1041 struct nvmm_vcpu_conf_cpuid *cpuid;
1042 uint64_t eax, ecx;
1043 size_t i;
1044
1045 eax = cpudata->vmcb->state.rax;
1046 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1047 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1048 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1049
1050 for (i = 0; i < SVM_NCPUIDS; i++) {
1051 if (!cpudata->cpuidpresent[i]) {
1052 continue;
1053 }
1054 cpuid = &cpudata->cpuid[i];
1055 if (cpuid->leaf != eax) {
1056 continue;
1057 }
1058
1059 if (cpuid->exit) {
1060 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1061 return;
1062 }
1063 KASSERT(cpuid->mask);
1064
1065 /* del */
1066 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1067 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1068 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1069 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1070
1071 /* set */
1072 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1073 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1074 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1075 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1076
1077 break;
1078 }
1079
1080 svm_inkernel_advance(cpudata->vmcb);
1081 exit->reason = NVMM_VCPU_EXIT_NONE;
1082 }
1083
1084 static void
1085 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1086 struct nvmm_vcpu_exit *exit)
1087 {
1088 struct svm_cpudata *cpudata = vcpu->cpudata;
1089 struct vmcb *vmcb = cpudata->vmcb;
1090
1091 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1092 svm_event_waitexit_disable(vcpu, false);
1093 }
1094
1095 svm_inkernel_advance(cpudata->vmcb);
1096 exit->reason = NVMM_VCPU_EXIT_HALTED;
1097 }
1098
1099 #define SVM_EXIT_IO_PORT __BITS(31,16)
1100 #define SVM_EXIT_IO_SEG __BITS(12,10)
1101 #define SVM_EXIT_IO_A64 __BIT(9)
1102 #define SVM_EXIT_IO_A32 __BIT(8)
1103 #define SVM_EXIT_IO_A16 __BIT(7)
1104 #define SVM_EXIT_IO_SZ32 __BIT(6)
1105 #define SVM_EXIT_IO_SZ16 __BIT(5)
1106 #define SVM_EXIT_IO_SZ8 __BIT(4)
1107 #define SVM_EXIT_IO_REP __BIT(3)
1108 #define SVM_EXIT_IO_STR __BIT(2)
1109 #define SVM_EXIT_IO_IN __BIT(0)
1110
1111 static void
1112 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1113 struct nvmm_vcpu_exit *exit)
1114 {
1115 struct svm_cpudata *cpudata = vcpu->cpudata;
1116 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1117 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1118
1119 exit->reason = NVMM_VCPU_EXIT_IO;
1120
1121 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1122 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1123
1124 if (svm_decode_assist) {
1125 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1126 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1127 } else {
1128 exit->u.io.seg = -1;
1129 }
1130
1131 if (info & SVM_EXIT_IO_A64) {
1132 exit->u.io.address_size = 8;
1133 } else if (info & SVM_EXIT_IO_A32) {
1134 exit->u.io.address_size = 4;
1135 } else if (info & SVM_EXIT_IO_A16) {
1136 exit->u.io.address_size = 2;
1137 }
1138
1139 if (info & SVM_EXIT_IO_SZ32) {
1140 exit->u.io.operand_size = 4;
1141 } else if (info & SVM_EXIT_IO_SZ16) {
1142 exit->u.io.operand_size = 2;
1143 } else if (info & SVM_EXIT_IO_SZ8) {
1144 exit->u.io.operand_size = 1;
1145 }
1146
1147 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1148 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1149 exit->u.io.npc = nextpc;
1150
1151 svm_vcpu_state_provide(vcpu,
1152 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1153 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1154 }
1155
1156 static const uint64_t msr_ignore_list[] = {
1157 0xc0010055, /* MSR_CMPHALT */
1158 MSR_DE_CFG,
1159 MSR_IC_CFG,
1160 MSR_UCODE_AMD_PATCHLEVEL
1161 };
1162
1163 static bool
1164 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1165 struct nvmm_vcpu_exit *exit)
1166 {
1167 struct svm_cpudata *cpudata = vcpu->cpudata;
1168 struct vmcb *vmcb = cpudata->vmcb;
1169 uint64_t val;
1170 size_t i;
1171
1172 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1173 if (exit->u.rdmsr.msr == MSR_EFER) {
1174 val = vmcb->state.efer & ~EFER_SVME;
1175 vmcb->state.rax = (val & 0xFFFFFFFF);
1176 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1177 goto handled;
1178 }
1179 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1180 val = NB_CFG_INITAPICCPUIDLO;
1181 vmcb->state.rax = (val & 0xFFFFFFFF);
1182 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1183 goto handled;
1184 }
1185 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1186 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1187 continue;
1188 val = 0;
1189 vmcb->state.rax = (val & 0xFFFFFFFF);
1190 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1191 goto handled;
1192 }
1193 } else {
1194 if (exit->u.wrmsr.msr == MSR_EFER) {
1195 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1196 goto error;
1197 }
1198 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1199 EFER_TLB_FLUSH) {
1200 cpudata->gtlb_want_flush = true;
1201 }
1202 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1203 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1204 goto handled;
1205 }
1206 if (exit->u.wrmsr.msr == MSR_TSC) {
1207 cpudata->gtsc = exit->u.wrmsr.val;
1208 cpudata->gtsc_want_update = true;
1209 goto handled;
1210 }
1211 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1212 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1213 continue;
1214 goto handled;
1215 }
1216 }
1217
1218 return false;
1219
1220 handled:
1221 svm_inkernel_advance(cpudata->vmcb);
1222 return true;
1223
1224 error:
1225 svm_inject_gp(vcpu);
1226 return true;
1227 }
1228
1229 static inline void
1230 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1231 struct nvmm_vcpu_exit *exit)
1232 {
1233 struct svm_cpudata *cpudata = vcpu->cpudata;
1234
1235 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1236 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1237 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1238
1239 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1240 exit->reason = NVMM_VCPU_EXIT_NONE;
1241 return;
1242 }
1243
1244 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1245 }
1246
1247 static inline void
1248 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1249 struct nvmm_vcpu_exit *exit)
1250 {
1251 struct svm_cpudata *cpudata = vcpu->cpudata;
1252 uint64_t rdx, rax;
1253
1254 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1255 rax = cpudata->vmcb->state.rax;
1256
1257 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1258 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1259 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1260 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1261
1262 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1263 exit->reason = NVMM_VCPU_EXIT_NONE;
1264 return;
1265 }
1266
1267 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1268 }
1269
1270 static void
1271 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1272 struct nvmm_vcpu_exit *exit)
1273 {
1274 struct svm_cpudata *cpudata = vcpu->cpudata;
1275 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1276
1277 if (info == 0) {
1278 svm_exit_rdmsr(mach, vcpu, exit);
1279 } else {
1280 svm_exit_wrmsr(mach, vcpu, exit);
1281 }
1282 }
1283
1284 static void
1285 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1286 struct nvmm_vcpu_exit *exit)
1287 {
1288 struct svm_cpudata *cpudata = vcpu->cpudata;
1289 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1290
1291 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1292 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1293 exit->u.mem.prot = PROT_WRITE;
1294 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1295 exit->u.mem.prot = PROT_EXEC;
1296 else
1297 exit->u.mem.prot = PROT_READ;
1298 exit->u.mem.gpa = gpa;
1299 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1300 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1301 sizeof(exit->u.mem.inst_bytes));
1302
1303 svm_vcpu_state_provide(vcpu,
1304 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1305 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1306 }
1307
1308 static void
1309 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1310 struct nvmm_vcpu_exit *exit)
1311 {
1312 struct svm_cpudata *cpudata = vcpu->cpudata;
1313 struct vmcb *vmcb = cpudata->vmcb;
1314 uint64_t val;
1315
1316 exit->reason = NVMM_VCPU_EXIT_NONE;
1317
1318 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1319 (vmcb->state.rax & 0xFFFFFFFF);
1320
1321 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1322 goto error;
1323 } else if (__predict_false(vmcb->state.cpl != 0)) {
1324 goto error;
1325 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1326 goto error;
1327 } else if (__predict_false((val & XCR0_X87) == 0)) {
1328 goto error;
1329 }
1330
1331 cpudata->gxcr0 = val;
1332
1333 svm_inkernel_advance(cpudata->vmcb);
1334 return;
1335
1336 error:
1337 svm_inject_gp(vcpu);
1338 }
1339
1340 static void
1341 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1342 {
1343 exit->u.inv.hwcode = code;
1344 exit->reason = NVMM_VCPU_EXIT_INVALID;
1345 }
1346
1347 /* -------------------------------------------------------------------------- */
1348
1349 static void
1350 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1351 {
1352 struct svm_cpudata *cpudata = vcpu->cpudata;
1353
1354 fpu_kern_enter();
1355 /* TODO: should we use *XSAVE64 here? */
1356 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
1357
1358 if (svm_xcr0_mask != 0) {
1359 cpudata->hxcr0 = rdxcr(0);
1360 wrxcr(0, cpudata->gxcr0);
1361 }
1362 }
1363
1364 static void
1365 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1366 {
1367 struct svm_cpudata *cpudata = vcpu->cpudata;
1368
1369 if (svm_xcr0_mask != 0) {
1370 cpudata->gxcr0 = rdxcr(0);
1371 wrxcr(0, cpudata->hxcr0);
1372 }
1373
1374 /* TODO: should we use *XSAVE64 here? */
1375 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
1376 fpu_kern_leave();
1377 }
1378
1379 static void
1380 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1381 {
1382 struct svm_cpudata *cpudata = vcpu->cpudata;
1383
1384 x86_dbregs_save(curlwp);
1385
1386 ldr7(0);
1387
1388 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1389 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1390 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1391 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1392 }
1393
1394 static void
1395 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1396 {
1397 struct svm_cpudata *cpudata = vcpu->cpudata;
1398
1399 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1400 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1401 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1402 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1403
1404 x86_dbregs_restore(curlwp);
1405 }
1406
1407 static void
1408 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1409 {
1410 struct svm_cpudata *cpudata = vcpu->cpudata;
1411
1412 cpudata->fsbase = rdmsr(MSR_FSBASE);
1413 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1414 }
1415
1416 static void
1417 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1418 {
1419 struct svm_cpudata *cpudata = vcpu->cpudata;
1420
1421 wrmsr(MSR_STAR, cpudata->star);
1422 wrmsr(MSR_LSTAR, cpudata->lstar);
1423 wrmsr(MSR_CSTAR, cpudata->cstar);
1424 wrmsr(MSR_SFMASK, cpudata->sfmask);
1425 wrmsr(MSR_FSBASE, cpudata->fsbase);
1426 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1427 }
1428
1429 /* -------------------------------------------------------------------------- */
1430
1431 static inline void
1432 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1433 {
1434 struct svm_cpudata *cpudata = vcpu->cpudata;
1435
1436 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1437 cpudata->gtlb_want_flush = true;
1438 }
1439 }
1440
1441 static inline void
1442 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1443 {
1444 /*
1445 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1446 * executing on this hCPU and the hTLB already got flushed, or it
1447 * was executing on another hCPU in which case the catchup is done
1448 * in svm_gtlb_catchup().
1449 */
1450 }
1451
1452 static inline uint64_t
1453 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1454 {
1455 struct vmcb *vmcb = cpudata->vmcb;
1456 uint64_t machgen;
1457
1458 machgen = machdata->mach_htlb_gen;
1459 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1460 return machgen;
1461 }
1462
1463 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1464 return machgen;
1465 }
1466
1467 static inline void
1468 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1469 {
1470 struct vmcb *vmcb = cpudata->vmcb;
1471
1472 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1473 cpudata->vcpu_htlb_gen = machgen;
1474 }
1475 }
1476
1477 static inline void
1478 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1479 {
1480 cpudata->evt_pending = false;
1481
1482 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1483 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1484 cpudata->evt_pending = true;
1485 }
1486 }
1487
1488 static int
1489 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1490 struct nvmm_vcpu_exit *exit)
1491 {
1492 struct nvmm_comm_page *comm = vcpu->comm;
1493 struct svm_machdata *machdata = mach->machdata;
1494 struct svm_cpudata *cpudata = vcpu->cpudata;
1495 struct vmcb *vmcb = cpudata->vmcb;
1496 uint64_t machgen;
1497 int hcpu;
1498
1499 svm_vcpu_state_commit(vcpu);
1500 comm->state_cached = 0;
1501
1502 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1503 return EINVAL;
1504 }
1505
1506 kpreempt_disable();
1507 hcpu = cpu_number();
1508
1509 svm_gtlb_catchup(vcpu, hcpu);
1510 svm_htlb_catchup(vcpu, hcpu);
1511
1512 if (vcpu->hcpu_last != hcpu) {
1513 svm_vmcb_cache_flush_all(vmcb);
1514 cpudata->gtsc_want_update = true;
1515 }
1516
1517 svm_vcpu_guest_dbregs_enter(vcpu);
1518 svm_vcpu_guest_misc_enter(vcpu);
1519
1520 while (1) {
1521 if (cpudata->gtlb_want_flush) {
1522 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1523 } else {
1524 vmcb->ctrl.tlb_ctrl = 0;
1525 }
1526
1527 if (__predict_false(cpudata->gtsc_want_update)) {
1528 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1529 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1530 }
1531
1532 svm_vcpu_guest_fpu_enter(vcpu);
1533 svm_clgi();
1534 machgen = svm_htlb_flush(machdata, cpudata);
1535 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1536 svm_htlb_flush_ack(cpudata, machgen);
1537 svm_stgi();
1538 svm_vcpu_guest_fpu_leave(vcpu);
1539
1540 svm_vmcb_cache_default(vmcb);
1541
1542 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1543 cpudata->gtlb_want_flush = false;
1544 cpudata->gtsc_want_update = false;
1545 vcpu->hcpu_last = hcpu;
1546 }
1547 svm_exit_evt(cpudata, vmcb);
1548
1549 switch (vmcb->ctrl.exitcode) {
1550 case VMCB_EXITCODE_INTR:
1551 case VMCB_EXITCODE_NMI:
1552 exit->reason = NVMM_VCPU_EXIT_NONE;
1553 break;
1554 case VMCB_EXITCODE_VINTR:
1555 svm_event_waitexit_disable(vcpu, false);
1556 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1557 break;
1558 case VMCB_EXITCODE_IRET:
1559 svm_event_waitexit_disable(vcpu, true);
1560 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1561 break;
1562 case VMCB_EXITCODE_CPUID:
1563 svm_exit_cpuid(mach, vcpu, exit);
1564 break;
1565 case VMCB_EXITCODE_HLT:
1566 svm_exit_hlt(mach, vcpu, exit);
1567 break;
1568 case VMCB_EXITCODE_IOIO:
1569 svm_exit_io(mach, vcpu, exit);
1570 break;
1571 case VMCB_EXITCODE_MSR:
1572 svm_exit_msr(mach, vcpu, exit);
1573 break;
1574 case VMCB_EXITCODE_SHUTDOWN:
1575 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1576 break;
1577 case VMCB_EXITCODE_RDPMC:
1578 case VMCB_EXITCODE_RSM:
1579 case VMCB_EXITCODE_INVLPGA:
1580 case VMCB_EXITCODE_VMRUN:
1581 case VMCB_EXITCODE_VMMCALL:
1582 case VMCB_EXITCODE_VMLOAD:
1583 case VMCB_EXITCODE_VMSAVE:
1584 case VMCB_EXITCODE_STGI:
1585 case VMCB_EXITCODE_CLGI:
1586 case VMCB_EXITCODE_SKINIT:
1587 case VMCB_EXITCODE_RDTSCP:
1588 case VMCB_EXITCODE_RDPRU:
1589 case VMCB_EXITCODE_INVLPGB:
1590 case VMCB_EXITCODE_INVPCID:
1591 case VMCB_EXITCODE_MCOMMIT:
1592 case VMCB_EXITCODE_TLBSYNC:
1593 svm_inject_ud(vcpu);
1594 exit->reason = NVMM_VCPU_EXIT_NONE;
1595 break;
1596 case VMCB_EXITCODE_MONITOR:
1597 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1598 break;
1599 case VMCB_EXITCODE_MWAIT:
1600 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1601 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1602 break;
1603 case VMCB_EXITCODE_XSETBV:
1604 svm_exit_xsetbv(mach, vcpu, exit);
1605 break;
1606 case VMCB_EXITCODE_NPF:
1607 svm_exit_npf(mach, vcpu, exit);
1608 break;
1609 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1610 default:
1611 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1612 break;
1613 }
1614
1615 /* If no reason to return to userland, keep rolling. */
1616 if (nvmm_return_needed(vcpu, exit)) {
1617 break;
1618 }
1619 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1620 break;
1621 }
1622 }
1623
1624 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1625
1626 svm_vcpu_guest_misc_leave(vcpu);
1627 svm_vcpu_guest_dbregs_leave(vcpu);
1628
1629 kpreempt_enable();
1630
1631 exit->exitstate.rflags = vmcb->state.rflags;
1632 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1633 exit->exitstate.int_shadow =
1634 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1635 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1636 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1637 exit->exitstate.evt_pending = cpudata->evt_pending;
1638
1639 return 0;
1640 }
1641
1642 /* -------------------------------------------------------------------------- */
1643
1644 static int
1645 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1646 {
1647 struct pglist pglist;
1648 paddr_t _pa;
1649 vaddr_t _va;
1650 size_t i;
1651 int ret;
1652
1653 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1654 &pglist, 1, 0);
1655 if (ret != 0)
1656 return ENOMEM;
1657 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1658 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1659 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1660 if (_va == 0)
1661 goto error;
1662
1663 for (i = 0; i < npages; i++) {
1664 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1665 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1666 }
1667 pmap_update(pmap_kernel());
1668
1669 memset((void *)_va, 0, npages * PAGE_SIZE);
1670
1671 *pa = _pa;
1672 *va = _va;
1673 return 0;
1674
1675 error:
1676 for (i = 0; i < npages; i++) {
1677 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1678 }
1679 return ENOMEM;
1680 }
1681
1682 static void
1683 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1684 {
1685 size_t i;
1686
1687 pmap_kremove(va, npages * PAGE_SIZE);
1688 pmap_update(pmap_kernel());
1689 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1690 for (i = 0; i < npages; i++) {
1691 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1692 }
1693 }
1694
1695 /* -------------------------------------------------------------------------- */
1696
1697 #define SVM_MSRBM_READ __BIT(0)
1698 #define SVM_MSRBM_WRITE __BIT(1)
1699
1700 static void
1701 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1702 {
1703 uint64_t byte;
1704 uint8_t bitoff;
1705
1706 if (msr < 0x00002000) {
1707 /* Range 1 */
1708 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1709 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1710 /* Range 2 */
1711 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1712 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1713 /* Range 3 */
1714 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1715 } else {
1716 panic("%s: wrong range", __func__);
1717 }
1718
1719 bitoff = (msr & 0x3) << 1;
1720
1721 if (read) {
1722 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1723 }
1724 if (write) {
1725 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1726 }
1727 }
1728
1729 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1730 #define SVM_SEG_ATTRIB_S __BIT(4)
1731 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1732 #define SVM_SEG_ATTRIB_P __BIT(7)
1733 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1734 #define SVM_SEG_ATTRIB_L __BIT(9)
1735 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1736 #define SVM_SEG_ATTRIB_G __BIT(11)
1737
1738 static void
1739 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1740 struct vmcb_segment *vseg)
1741 {
1742 vseg->selector = seg->selector;
1743 vseg->attrib =
1744 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1745 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1746 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1747 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1748 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1749 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1750 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1751 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1752 vseg->limit = seg->limit;
1753 vseg->base = seg->base;
1754 }
1755
1756 static void
1757 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1758 {
1759 seg->selector = vseg->selector;
1760 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1761 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1762 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1763 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1764 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1765 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1766 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1767 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1768 seg->limit = vseg->limit;
1769 seg->base = vseg->base;
1770 }
1771
1772 static inline bool
1773 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1774 uint64_t flags)
1775 {
1776 if (flags & NVMM_X64_STATE_CRS) {
1777 if ((vmcb->state.cr0 ^
1778 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1779 return true;
1780 }
1781 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1782 return true;
1783 }
1784 if ((vmcb->state.cr4 ^
1785 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1786 return true;
1787 }
1788 }
1789
1790 if (flags & NVMM_X64_STATE_MSRS) {
1791 if ((vmcb->state.efer ^
1792 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1793 return true;
1794 }
1795 }
1796
1797 return false;
1798 }
1799
1800 static void
1801 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1802 {
1803 struct nvmm_comm_page *comm = vcpu->comm;
1804 const struct nvmm_x64_state *state = &comm->state;
1805 struct svm_cpudata *cpudata = vcpu->cpudata;
1806 struct vmcb *vmcb = cpudata->vmcb;
1807 struct fxsave *fpustate;
1808 uint64_t flags;
1809
1810 flags = comm->state_wanted;
1811
1812 if (svm_state_tlb_flush(vmcb, state, flags)) {
1813 cpudata->gtlb_want_flush = true;
1814 }
1815
1816 if (flags & NVMM_X64_STATE_SEGS) {
1817 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1818 &vmcb->state.cs);
1819 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1820 &vmcb->state.ds);
1821 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1822 &vmcb->state.es);
1823 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1824 &vmcb->state.fs);
1825 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1826 &vmcb->state.gs);
1827 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1828 &vmcb->state.ss);
1829 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1830 &vmcb->state.gdt);
1831 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1832 &vmcb->state.idt);
1833 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1834 &vmcb->state.ldt);
1835 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1836 &vmcb->state.tr);
1837
1838 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1839 }
1840
1841 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1842 if (flags & NVMM_X64_STATE_GPRS) {
1843 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1844
1845 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1846 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1847 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1848 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1849 }
1850
1851 if (flags & NVMM_X64_STATE_CRS) {
1852 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1853 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1854 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1855 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1856
1857 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1858 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1859 VMCB_CTRL_V_TPR);
1860
1861 if (svm_xcr0_mask != 0) {
1862 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1863 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1864 cpudata->gxcr0 &= svm_xcr0_mask;
1865 cpudata->gxcr0 |= XCR0_X87;
1866 }
1867 }
1868
1869 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1870 if (flags & NVMM_X64_STATE_DRS) {
1871 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1872
1873 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1874 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1875 }
1876
1877 if (flags & NVMM_X64_STATE_MSRS) {
1878 /*
1879 * EFER_SVME is mandatory.
1880 */
1881 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1882 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1883 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1884 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1885 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1886 vmcb->state.kernelgsbase =
1887 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1888 vmcb->state.sysenter_cs =
1889 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1890 vmcb->state.sysenter_esp =
1891 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1892 vmcb->state.sysenter_eip =
1893 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1894 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1895
1896 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1897 cpudata->gtsc_want_update = true;
1898 }
1899
1900 if (flags & NVMM_X64_STATE_INTR) {
1901 if (state->intr.int_shadow) {
1902 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1903 } else {
1904 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1905 }
1906
1907 if (state->intr.int_window_exiting) {
1908 svm_event_waitexit_enable(vcpu, false);
1909 } else {
1910 svm_event_waitexit_disable(vcpu, false);
1911 }
1912
1913 if (state->intr.nmi_window_exiting) {
1914 svm_event_waitexit_enable(vcpu, true);
1915 } else {
1916 svm_event_waitexit_disable(vcpu, true);
1917 }
1918 }
1919
1920 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1921 if (flags & NVMM_X64_STATE_FPU) {
1922 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1923 sizeof(state->fpu));
1924
1925 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1926 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1927 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1928
1929 if (svm_xcr0_mask != 0) {
1930 /* Reset XSTATE_BV, to force a reload. */
1931 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1932 }
1933 }
1934
1935 svm_vmcb_cache_update(vmcb, flags);
1936
1937 comm->state_wanted = 0;
1938 comm->state_cached |= flags;
1939 }
1940
1941 static void
1942 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1943 {
1944 struct nvmm_comm_page *comm = vcpu->comm;
1945 struct nvmm_x64_state *state = &comm->state;
1946 struct svm_cpudata *cpudata = vcpu->cpudata;
1947 struct vmcb *vmcb = cpudata->vmcb;
1948 uint64_t flags;
1949
1950 flags = comm->state_wanted;
1951
1952 if (flags & NVMM_X64_STATE_SEGS) {
1953 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1954 &vmcb->state.cs);
1955 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1956 &vmcb->state.ds);
1957 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1958 &vmcb->state.es);
1959 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1960 &vmcb->state.fs);
1961 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1962 &vmcb->state.gs);
1963 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1964 &vmcb->state.ss);
1965 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1966 &vmcb->state.gdt);
1967 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1968 &vmcb->state.idt);
1969 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1970 &vmcb->state.ldt);
1971 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
1972 &vmcb->state.tr);
1973
1974 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
1975 }
1976
1977 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1978 if (flags & NVMM_X64_STATE_GPRS) {
1979 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
1980
1981 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
1982 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
1983 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
1984 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
1985 }
1986
1987 if (flags & NVMM_X64_STATE_CRS) {
1988 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
1989 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
1990 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
1991 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
1992 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
1993 VMCB_CTRL_V_TPR);
1994 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
1995 }
1996
1997 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1998 if (flags & NVMM_X64_STATE_DRS) {
1999 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2000
2001 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2002 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2003 }
2004
2005 if (flags & NVMM_X64_STATE_MSRS) {
2006 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2007 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2008 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2009 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2010 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2011 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2012 vmcb->state.kernelgsbase;
2013 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2014 vmcb->state.sysenter_cs;
2015 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2016 vmcb->state.sysenter_esp;
2017 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2018 vmcb->state.sysenter_eip;
2019 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2020 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2021
2022 /* Hide SVME. */
2023 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2024 }
2025
2026 if (flags & NVMM_X64_STATE_INTR) {
2027 state->intr.int_shadow =
2028 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2029 state->intr.int_window_exiting = cpudata->int_window_exit;
2030 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2031 state->intr.evt_pending = cpudata->evt_pending;
2032 }
2033
2034 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2035 if (flags & NVMM_X64_STATE_FPU) {
2036 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2037 sizeof(state->fpu));
2038 }
2039
2040 comm->state_wanted = 0;
2041 comm->state_cached |= flags;
2042 }
2043
2044 static void
2045 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2046 {
2047 vcpu->comm->state_wanted = flags;
2048 svm_vcpu_getstate(vcpu);
2049 }
2050
2051 static void
2052 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2053 {
2054 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2055 vcpu->comm->state_commit = 0;
2056 svm_vcpu_setstate(vcpu);
2057 }
2058
2059 /* -------------------------------------------------------------------------- */
2060
2061 static void
2062 svm_asid_alloc(struct nvmm_cpu *vcpu)
2063 {
2064 struct svm_cpudata *cpudata = vcpu->cpudata;
2065 struct vmcb *vmcb = cpudata->vmcb;
2066 size_t i, oct, bit;
2067
2068 mutex_enter(&svm_asidlock);
2069
2070 for (i = 0; i < svm_maxasid; i++) {
2071 oct = i / 8;
2072 bit = i % 8;
2073
2074 if (svm_asidmap[oct] & __BIT(bit)) {
2075 continue;
2076 }
2077
2078 svm_asidmap[oct] |= __BIT(bit);
2079 vmcb->ctrl.guest_asid = i;
2080 mutex_exit(&svm_asidlock);
2081 return;
2082 }
2083
2084 /*
2085 * No free ASID. Use the last one, which is shared and requires
2086 * special TLB handling.
2087 */
2088 cpudata->shared_asid = true;
2089 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2090 mutex_exit(&svm_asidlock);
2091 }
2092
2093 static void
2094 svm_asid_free(struct nvmm_cpu *vcpu)
2095 {
2096 struct svm_cpudata *cpudata = vcpu->cpudata;
2097 struct vmcb *vmcb = cpudata->vmcb;
2098 size_t oct, bit;
2099
2100 if (cpudata->shared_asid) {
2101 return;
2102 }
2103
2104 oct = vmcb->ctrl.guest_asid / 8;
2105 bit = vmcb->ctrl.guest_asid % 8;
2106
2107 mutex_enter(&svm_asidlock);
2108 svm_asidmap[oct] &= ~__BIT(bit);
2109 mutex_exit(&svm_asidlock);
2110 }
2111
2112 static void
2113 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2114 {
2115 struct svm_cpudata *cpudata = vcpu->cpudata;
2116 struct vmcb *vmcb = cpudata->vmcb;
2117
2118 /* Allow reads/writes of Control Registers. */
2119 vmcb->ctrl.intercept_cr = 0;
2120
2121 /* Allow reads/writes of Debug Registers. */
2122 vmcb->ctrl.intercept_dr = 0;
2123
2124 /* Allow exceptions 0 to 31. */
2125 vmcb->ctrl.intercept_vec = 0;
2126
2127 /*
2128 * Allow:
2129 * - SMI [smm interrupts]
2130 * - VINTR [virtual interrupts]
2131 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2132 * - RIDTR [reads of IDTR]
2133 * - RGDTR [reads of GDTR]
2134 * - RLDTR [reads of LDTR]
2135 * - RTR [reads of TR]
2136 * - WIDTR [writes of IDTR]
2137 * - WGDTR [writes of GDTR]
2138 * - WLDTR [writes of LDTR]
2139 * - WTR [writes of TR]
2140 * - RDTSC [rdtsc instruction]
2141 * - PUSHF [pushf instruction]
2142 * - POPF [popf instruction]
2143 * - IRET [iret instruction]
2144 * - INTN [int $n instructions]
2145 * - PAUSE [pause instruction]
2146 * - INVLPG [invplg instruction]
2147 * - TASKSW [task switches]
2148 *
2149 * Intercept the rest below.
2150 */
2151 vmcb->ctrl.intercept_misc1 =
2152 VMCB_CTRL_INTERCEPT_INTR |
2153 VMCB_CTRL_INTERCEPT_NMI |
2154 VMCB_CTRL_INTERCEPT_INIT |
2155 VMCB_CTRL_INTERCEPT_RDPMC |
2156 VMCB_CTRL_INTERCEPT_CPUID |
2157 VMCB_CTRL_INTERCEPT_RSM |
2158 VMCB_CTRL_INTERCEPT_INVD |
2159 VMCB_CTRL_INTERCEPT_HLT |
2160 VMCB_CTRL_INTERCEPT_INVLPGA |
2161 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2162 VMCB_CTRL_INTERCEPT_MSR_PROT |
2163 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2164 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2165
2166 /*
2167 * Allow:
2168 * - ICEBP [icebp instruction]
2169 * - WBINVD [wbinvd instruction]
2170 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2171 *
2172 * Intercept the rest below.
2173 */
2174 vmcb->ctrl.intercept_misc2 =
2175 VMCB_CTRL_INTERCEPT_VMRUN |
2176 VMCB_CTRL_INTERCEPT_VMMCALL |
2177 VMCB_CTRL_INTERCEPT_VMLOAD |
2178 VMCB_CTRL_INTERCEPT_VMSAVE |
2179 VMCB_CTRL_INTERCEPT_STGI |
2180 VMCB_CTRL_INTERCEPT_CLGI |
2181 VMCB_CTRL_INTERCEPT_SKINIT |
2182 VMCB_CTRL_INTERCEPT_RDTSCP |
2183 VMCB_CTRL_INTERCEPT_MONITOR |
2184 VMCB_CTRL_INTERCEPT_MWAIT |
2185 VMCB_CTRL_INTERCEPT_XSETBV |
2186 VMCB_CTRL_INTERCEPT_RDPRU;
2187
2188 /*
2189 * Intercept everything.
2190 */
2191 vmcb->ctrl.intercept_misc3 =
2192 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2193 VMCB_CTRL_INTERCEPT_PCID |
2194 VMCB_CTRL_INTERCEPT_MCOMMIT |
2195 VMCB_CTRL_INTERCEPT_TLBSYNC;
2196
2197 /* Intercept all I/O accesses. */
2198 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2199 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2200
2201 /* Allow direct access to certain MSRs. */
2202 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2203 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2204 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2205 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2206 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2207 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2208 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2209 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2210 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2211 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2212 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2213 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2214 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2215 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2216
2217 /* Generate ASID. */
2218 svm_asid_alloc(vcpu);
2219
2220 /* Virtual TPR. */
2221 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2222
2223 /* Enable Nested Paging. */
2224 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2225 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2226
2227 /* Init XSAVE header. */
2228 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2229 cpudata->gfpu.xsh_xcomp_bv = 0;
2230
2231 /* These MSRs are static. */
2232 cpudata->star = rdmsr(MSR_STAR);
2233 cpudata->lstar = rdmsr(MSR_LSTAR);
2234 cpudata->cstar = rdmsr(MSR_CSTAR);
2235 cpudata->sfmask = rdmsr(MSR_SFMASK);
2236
2237 /* Install the RESET state. */
2238 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2239 sizeof(nvmm_x86_reset_state));
2240 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2241 vcpu->comm->state_cached = 0;
2242 svm_vcpu_setstate(vcpu);
2243 }
2244
2245 static int
2246 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2247 {
2248 struct svm_cpudata *cpudata;
2249 int error;
2250
2251 /* Allocate the SVM cpudata. */
2252 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2253 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2254 UVM_KMF_WIRED|UVM_KMF_ZERO);
2255 vcpu->cpudata = cpudata;
2256
2257 /* VMCB */
2258 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2259 VMCB_NPAGES);
2260 if (error)
2261 goto error;
2262
2263 /* I/O Bitmap */
2264 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2265 IOBM_NPAGES);
2266 if (error)
2267 goto error;
2268
2269 /* MSR Bitmap */
2270 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2271 MSRBM_NPAGES);
2272 if (error)
2273 goto error;
2274
2275 /* Init the VCPU info. */
2276 svm_vcpu_init(mach, vcpu);
2277
2278 return 0;
2279
2280 error:
2281 if (cpudata->vmcb_pa) {
2282 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2283 VMCB_NPAGES);
2284 }
2285 if (cpudata->iobm_pa) {
2286 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2287 IOBM_NPAGES);
2288 }
2289 if (cpudata->msrbm_pa) {
2290 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2291 MSRBM_NPAGES);
2292 }
2293 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2294 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2295 return error;
2296 }
2297
2298 static void
2299 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2300 {
2301 struct svm_cpudata *cpudata = vcpu->cpudata;
2302
2303 svm_asid_free(vcpu);
2304
2305 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2306 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2307 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2308
2309 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2310 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2311 }
2312
2313 /* -------------------------------------------------------------------------- */
2314
2315 static int
2316 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2317 {
2318 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2319 size_t i;
2320
2321 if (__predict_false(cpuid->mask && cpuid->exit)) {
2322 return EINVAL;
2323 }
2324 if (__predict_false(cpuid->mask &&
2325 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2326 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2327 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2328 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2329 return EINVAL;
2330 }
2331
2332 /* If unset, delete, to restore the default behavior. */
2333 if (!cpuid->mask && !cpuid->exit) {
2334 for (i = 0; i < SVM_NCPUIDS; i++) {
2335 if (!cpudata->cpuidpresent[i]) {
2336 continue;
2337 }
2338 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2339 cpudata->cpuidpresent[i] = false;
2340 }
2341 }
2342 return 0;
2343 }
2344
2345 /* If already here, replace. */
2346 for (i = 0; i < SVM_NCPUIDS; i++) {
2347 if (!cpudata->cpuidpresent[i]) {
2348 continue;
2349 }
2350 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2351 memcpy(&cpudata->cpuid[i], cpuid,
2352 sizeof(struct nvmm_vcpu_conf_cpuid));
2353 return 0;
2354 }
2355 }
2356
2357 /* Not here, insert. */
2358 for (i = 0; i < SVM_NCPUIDS; i++) {
2359 if (!cpudata->cpuidpresent[i]) {
2360 cpudata->cpuidpresent[i] = true;
2361 memcpy(&cpudata->cpuid[i], cpuid,
2362 sizeof(struct nvmm_vcpu_conf_cpuid));
2363 return 0;
2364 }
2365 }
2366
2367 return ENOBUFS;
2368 }
2369
2370 static int
2371 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2372 {
2373 struct svm_cpudata *cpudata = vcpu->cpudata;
2374
2375 switch (op) {
2376 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2377 return svm_vcpu_configure_cpuid(cpudata, data);
2378 default:
2379 return EINVAL;
2380 }
2381 }
2382
2383 /* -------------------------------------------------------------------------- */
2384
2385 static void
2386 svm_tlb_flush(struct pmap *pm)
2387 {
2388 struct nvmm_machine *mach = pm->pm_data;
2389 struct svm_machdata *machdata = mach->machdata;
2390
2391 atomic_inc_64(&machdata->mach_htlb_gen);
2392
2393 /* Generates IPIs, which cause #VMEXITs. */
2394 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2395 }
2396
2397 static void
2398 svm_machine_create(struct nvmm_machine *mach)
2399 {
2400 struct svm_machdata *machdata;
2401
2402 /* Fill in pmap info. */
2403 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2404 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2405
2406 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2407 mach->machdata = machdata;
2408
2409 /* Start with an hTLB flush everywhere. */
2410 machdata->mach_htlb_gen = 1;
2411 }
2412
2413 static void
2414 svm_machine_destroy(struct nvmm_machine *mach)
2415 {
2416 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2417 }
2418
2419 static int
2420 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2421 {
2422 panic("%s: impossible", __func__);
2423 }
2424
2425 /* -------------------------------------------------------------------------- */
2426
2427 static bool
2428 svm_ident(void)
2429 {
2430 u_int descs[4];
2431 uint64_t msr;
2432
2433 if (cpu_vendor != CPUVENDOR_AMD) {
2434 return false;
2435 }
2436 if (!(cpu_feature[3] & CPUID_SVM)) {
2437 printf("NVMM: SVM not supported\n");
2438 return false;
2439 }
2440
2441 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2442 printf("NVMM: CPUID leaf not available\n");
2443 return false;
2444 }
2445 x86_cpuid(0x8000000a, descs);
2446
2447 /* Expect revision 1. */
2448 if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2449 printf("NVMM: SVM revision not supported\n");
2450 return false;
2451 }
2452
2453 /* Want Nested Paging. */
2454 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2455 printf("NVMM: SVM-NP not supported\n");
2456 return false;
2457 }
2458
2459 /* Want nRIP. */
2460 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2461 printf("NVMM: SVM-NRIPS not supported\n");
2462 return false;
2463 }
2464
2465 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2466
2467 msr = rdmsr(MSR_VMCR);
2468 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2469 printf("NVMM: SVM disabled in BIOS\n");
2470 return false;
2471 }
2472
2473 return true;
2474 }
2475
2476 static void
2477 svm_init_asid(uint32_t maxasid)
2478 {
2479 size_t i, j, allocsz;
2480
2481 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2482
2483 /* Arbitrarily limit. */
2484 maxasid = uimin(maxasid, 8192);
2485
2486 svm_maxasid = maxasid;
2487 allocsz = roundup(maxasid, 8) / 8;
2488 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2489
2490 /* ASID 0 is reserved for the host. */
2491 svm_asidmap[0] |= __BIT(0);
2492
2493 /* ASID n-1 is special, we share it. */
2494 i = (maxasid - 1) / 8;
2495 j = (maxasid - 1) % 8;
2496 svm_asidmap[i] |= __BIT(j);
2497 }
2498
2499 static void
2500 svm_change_cpu(void *arg1, void *arg2)
2501 {
2502 bool enable = arg1 != NULL;
2503 uint64_t msr;
2504
2505 msr = rdmsr(MSR_VMCR);
2506 if (msr & VMCR_SVMED) {
2507 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2508 }
2509
2510 if (!enable) {
2511 wrmsr(MSR_VM_HSAVE_PA, 0);
2512 }
2513
2514 msr = rdmsr(MSR_EFER);
2515 if (enable) {
2516 msr |= EFER_SVME;
2517 } else {
2518 msr &= ~EFER_SVME;
2519 }
2520 wrmsr(MSR_EFER, msr);
2521
2522 if (enable) {
2523 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2524 }
2525 }
2526
2527 static void
2528 svm_init(void)
2529 {
2530 CPU_INFO_ITERATOR cii;
2531 struct cpu_info *ci;
2532 struct vm_page *pg;
2533 u_int descs[4];
2534 uint64_t xc;
2535
2536 x86_cpuid(0x8000000a, descs);
2537
2538 /* The guest TLB flush command. */
2539 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2540 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2541 } else {
2542 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2543 }
2544
2545 /* Init the ASID. */
2546 svm_init_asid(descs[1]);
2547
2548 /* Init the XCR0 mask. */
2549 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2550
2551 /* Init the max basic CPUID leaf. */
2552 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2553
2554 /* Init the max extended CPUID leaf. */
2555 x86_cpuid(0x80000000, descs);
2556 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2557
2558 memset(hsave, 0, sizeof(hsave));
2559 for (CPU_INFO_FOREACH(cii, ci)) {
2560 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2561 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2562 }
2563
2564 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2565 xc_wait(xc);
2566 }
2567
2568 static void
2569 svm_fini_asid(void)
2570 {
2571 size_t allocsz;
2572
2573 allocsz = roundup(svm_maxasid, 8) / 8;
2574 kmem_free(svm_asidmap, allocsz);
2575
2576 mutex_destroy(&svm_asidlock);
2577 }
2578
2579 static void
2580 svm_fini(void)
2581 {
2582 uint64_t xc;
2583 size_t i;
2584
2585 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2586 xc_wait(xc);
2587
2588 for (i = 0; i < MAXCPUS; i++) {
2589 if (hsave[i].pa != 0)
2590 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2591 }
2592
2593 svm_fini_asid();
2594 }
2595
2596 static void
2597 svm_capability(struct nvmm_capability *cap)
2598 {
2599 cap->arch.mach_conf_support = 0;
2600 cap->arch.vcpu_conf_support =
2601 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2602 cap->arch.xcr0_mask = svm_xcr0_mask;
2603 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2604 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2605 }
2606
2607 const struct nvmm_impl nvmm_x86_svm = {
2608 .name = "x86-svm",
2609 .ident = svm_ident,
2610 .init = svm_init,
2611 .fini = svm_fini,
2612 .capability = svm_capability,
2613 .mach_conf_max = NVMM_X86_MACH_NCONF,
2614 .mach_conf_sizes = NULL,
2615 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2616 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2617 .state_size = sizeof(struct nvmm_x64_state),
2618 .machine_create = svm_machine_create,
2619 .machine_destroy = svm_machine_destroy,
2620 .machine_configure = svm_machine_configure,
2621 .vcpu_create = svm_vcpu_create,
2622 .vcpu_destroy = svm_vcpu_destroy,
2623 .vcpu_configure = svm_vcpu_configure,
2624 .vcpu_setstate = svm_vcpu_setstate,
2625 .vcpu_getstate = svm_vcpu_getstate,
2626 .vcpu_inject = svm_vcpu_inject,
2627 .vcpu_run = svm_vcpu_run
2628 };
2629