nvmm_x86_svm.c revision 1.86 1 /* $NetBSD: nvmm_x86_svm.c,v 1.86 2025/03/09 19:16:47 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.86 2025/03/09 19:16:47 riastradh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/dbregs.h>
48 #include <x86/cpu_counter.h>
49
50 #include <machine/cpuvar.h>
51 #include <machine/pmap_private.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 static inline void
60 svm_clgi(void)
61 {
62 asm volatile ("clgi" ::: "memory");
63 }
64
65 static inline void
66 svm_stgi(void)
67 {
68 asm volatile ("stgi" ::: "memory");
69 }
70
71 #define MSR_VM_HSAVE_PA 0xC0010117
72
73 /* -------------------------------------------------------------------------- */
74
75 #define VMCB_EXITCODE_CR0_READ 0x0000
76 #define VMCB_EXITCODE_CR1_READ 0x0001
77 #define VMCB_EXITCODE_CR2_READ 0x0002
78 #define VMCB_EXITCODE_CR3_READ 0x0003
79 #define VMCB_EXITCODE_CR4_READ 0x0004
80 #define VMCB_EXITCODE_CR5_READ 0x0005
81 #define VMCB_EXITCODE_CR6_READ 0x0006
82 #define VMCB_EXITCODE_CR7_READ 0x0007
83 #define VMCB_EXITCODE_CR8_READ 0x0008
84 #define VMCB_EXITCODE_CR9_READ 0x0009
85 #define VMCB_EXITCODE_CR10_READ 0x000A
86 #define VMCB_EXITCODE_CR11_READ 0x000B
87 #define VMCB_EXITCODE_CR12_READ 0x000C
88 #define VMCB_EXITCODE_CR13_READ 0x000D
89 #define VMCB_EXITCODE_CR14_READ 0x000E
90 #define VMCB_EXITCODE_CR15_READ 0x000F
91 #define VMCB_EXITCODE_CR0_WRITE 0x0010
92 #define VMCB_EXITCODE_CR1_WRITE 0x0011
93 #define VMCB_EXITCODE_CR2_WRITE 0x0012
94 #define VMCB_EXITCODE_CR3_WRITE 0x0013
95 #define VMCB_EXITCODE_CR4_WRITE 0x0014
96 #define VMCB_EXITCODE_CR5_WRITE 0x0015
97 #define VMCB_EXITCODE_CR6_WRITE 0x0016
98 #define VMCB_EXITCODE_CR7_WRITE 0x0017
99 #define VMCB_EXITCODE_CR8_WRITE 0x0018
100 #define VMCB_EXITCODE_CR9_WRITE 0x0019
101 #define VMCB_EXITCODE_CR10_WRITE 0x001A
102 #define VMCB_EXITCODE_CR11_WRITE 0x001B
103 #define VMCB_EXITCODE_CR12_WRITE 0x001C
104 #define VMCB_EXITCODE_CR13_WRITE 0x001D
105 #define VMCB_EXITCODE_CR14_WRITE 0x001E
106 #define VMCB_EXITCODE_CR15_WRITE 0x001F
107 #define VMCB_EXITCODE_DR0_READ 0x0020
108 #define VMCB_EXITCODE_DR1_READ 0x0021
109 #define VMCB_EXITCODE_DR2_READ 0x0022
110 #define VMCB_EXITCODE_DR3_READ 0x0023
111 #define VMCB_EXITCODE_DR4_READ 0x0024
112 #define VMCB_EXITCODE_DR5_READ 0x0025
113 #define VMCB_EXITCODE_DR6_READ 0x0026
114 #define VMCB_EXITCODE_DR7_READ 0x0027
115 #define VMCB_EXITCODE_DR8_READ 0x0028
116 #define VMCB_EXITCODE_DR9_READ 0x0029
117 #define VMCB_EXITCODE_DR10_READ 0x002A
118 #define VMCB_EXITCODE_DR11_READ 0x002B
119 #define VMCB_EXITCODE_DR12_READ 0x002C
120 #define VMCB_EXITCODE_DR13_READ 0x002D
121 #define VMCB_EXITCODE_DR14_READ 0x002E
122 #define VMCB_EXITCODE_DR15_READ 0x002F
123 #define VMCB_EXITCODE_DR0_WRITE 0x0030
124 #define VMCB_EXITCODE_DR1_WRITE 0x0031
125 #define VMCB_EXITCODE_DR2_WRITE 0x0032
126 #define VMCB_EXITCODE_DR3_WRITE 0x0033
127 #define VMCB_EXITCODE_DR4_WRITE 0x0034
128 #define VMCB_EXITCODE_DR5_WRITE 0x0035
129 #define VMCB_EXITCODE_DR6_WRITE 0x0036
130 #define VMCB_EXITCODE_DR7_WRITE 0x0037
131 #define VMCB_EXITCODE_DR8_WRITE 0x0038
132 #define VMCB_EXITCODE_DR9_WRITE 0x0039
133 #define VMCB_EXITCODE_DR10_WRITE 0x003A
134 #define VMCB_EXITCODE_DR11_WRITE 0x003B
135 #define VMCB_EXITCODE_DR12_WRITE 0x003C
136 #define VMCB_EXITCODE_DR13_WRITE 0x003D
137 #define VMCB_EXITCODE_DR14_WRITE 0x003E
138 #define VMCB_EXITCODE_DR15_WRITE 0x003F
139 #define VMCB_EXITCODE_EXCP0 0x0040
140 #define VMCB_EXITCODE_EXCP1 0x0041
141 #define VMCB_EXITCODE_EXCP2 0x0042
142 #define VMCB_EXITCODE_EXCP3 0x0043
143 #define VMCB_EXITCODE_EXCP4 0x0044
144 #define VMCB_EXITCODE_EXCP5 0x0045
145 #define VMCB_EXITCODE_EXCP6 0x0046
146 #define VMCB_EXITCODE_EXCP7 0x0047
147 #define VMCB_EXITCODE_EXCP8 0x0048
148 #define VMCB_EXITCODE_EXCP9 0x0049
149 #define VMCB_EXITCODE_EXCP10 0x004A
150 #define VMCB_EXITCODE_EXCP11 0x004B
151 #define VMCB_EXITCODE_EXCP12 0x004C
152 #define VMCB_EXITCODE_EXCP13 0x004D
153 #define VMCB_EXITCODE_EXCP14 0x004E
154 #define VMCB_EXITCODE_EXCP15 0x004F
155 #define VMCB_EXITCODE_EXCP16 0x0050
156 #define VMCB_EXITCODE_EXCP17 0x0051
157 #define VMCB_EXITCODE_EXCP18 0x0052
158 #define VMCB_EXITCODE_EXCP19 0x0053
159 #define VMCB_EXITCODE_EXCP20 0x0054
160 #define VMCB_EXITCODE_EXCP21 0x0055
161 #define VMCB_EXITCODE_EXCP22 0x0056
162 #define VMCB_EXITCODE_EXCP23 0x0057
163 #define VMCB_EXITCODE_EXCP24 0x0058
164 #define VMCB_EXITCODE_EXCP25 0x0059
165 #define VMCB_EXITCODE_EXCP26 0x005A
166 #define VMCB_EXITCODE_EXCP27 0x005B
167 #define VMCB_EXITCODE_EXCP28 0x005C
168 #define VMCB_EXITCODE_EXCP29 0x005D
169 #define VMCB_EXITCODE_EXCP30 0x005E
170 #define VMCB_EXITCODE_EXCP31 0x005F
171 #define VMCB_EXITCODE_INTR 0x0060
172 #define VMCB_EXITCODE_NMI 0x0061
173 #define VMCB_EXITCODE_SMI 0x0062
174 #define VMCB_EXITCODE_INIT 0x0063
175 #define VMCB_EXITCODE_VINTR 0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
177 #define VMCB_EXITCODE_IDTR_READ 0x0066
178 #define VMCB_EXITCODE_GDTR_READ 0x0067
179 #define VMCB_EXITCODE_LDTR_READ 0x0068
180 #define VMCB_EXITCODE_TR_READ 0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
184 #define VMCB_EXITCODE_TR_WRITE 0x006D
185 #define VMCB_EXITCODE_RDTSC 0x006E
186 #define VMCB_EXITCODE_RDPMC 0x006F
187 #define VMCB_EXITCODE_PUSHF 0x0070
188 #define VMCB_EXITCODE_POPF 0x0071
189 #define VMCB_EXITCODE_CPUID 0x0072
190 #define VMCB_EXITCODE_RSM 0x0073
191 #define VMCB_EXITCODE_IRET 0x0074
192 #define VMCB_EXITCODE_SWINT 0x0075
193 #define VMCB_EXITCODE_INVD 0x0076
194 #define VMCB_EXITCODE_PAUSE 0x0077
195 #define VMCB_EXITCODE_HLT 0x0078
196 #define VMCB_EXITCODE_INVLPG 0x0079
197 #define VMCB_EXITCODE_INVLPGA 0x007A
198 #define VMCB_EXITCODE_IOIO 0x007B
199 #define VMCB_EXITCODE_MSR 0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
202 #define VMCB_EXITCODE_SHUTDOWN 0x007F
203 #define VMCB_EXITCODE_VMRUN 0x0080
204 #define VMCB_EXITCODE_VMMCALL 0x0081
205 #define VMCB_EXITCODE_VMLOAD 0x0082
206 #define VMCB_EXITCODE_VMSAVE 0x0083
207 #define VMCB_EXITCODE_STGI 0x0084
208 #define VMCB_EXITCODE_CLGI 0x0085
209 #define VMCB_EXITCODE_SKINIT 0x0086
210 #define VMCB_EXITCODE_RDTSCP 0x0087
211 #define VMCB_EXITCODE_ICEBP 0x0088
212 #define VMCB_EXITCODE_WBINVD 0x0089
213 #define VMCB_EXITCODE_MONITOR 0x008A
214 #define VMCB_EXITCODE_MWAIT 0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
216 #define VMCB_EXITCODE_XSETBV 0x008D
217 #define VMCB_EXITCODE_RDPRU 0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
235 #define VMCB_EXITCODE_INVLPGB 0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
237 #define VMCB_EXITCODE_INVPCID 0x00A2
238 #define VMCB_EXITCODE_MCOMMIT 0x00A3
239 #define VMCB_EXITCODE_TLBSYNC 0x00A4
240 #define VMCB_EXITCODE_NPF 0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
243 #define VMCB_EXITCODE_VMGEXIT 0x0403
244 #define VMCB_EXITCODE_BUSY -2ULL
245 #define VMCB_EXITCODE_INVALID -1ULL
246
247 /* -------------------------------------------------------------------------- */
248
249 struct vmcb_ctrl {
250 uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
253
254 uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
257
258 uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
260
261 uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
294
295 uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
313
314 uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
320
321 uint8_t rsvd1[36];
322 uint16_t pause_filt_thresh;
323 uint16_t pause_filt_cnt;
324 uint64_t iopm_base_pa;
325 uint64_t msrpm_base_pa;
326 uint64_t tsc_offset;
327 uint32_t guest_asid;
328
329 uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
333
334 uint64_t v;
335 #define VMCB_CTRL_V_TPR __BITS(3,0)
336 #define VMCB_CTRL_V_IRQ __BIT(8)
337 #define VMCB_CTRL_V_VGIF __BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
344
345 uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
347 #define VMCB_CTRL_INTR_MASK __BIT(1)
348
349 uint64_t exitcode;
350 uint64_t exitinfo1;
351 uint64_t exitinfo2;
352
353 uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
359
360 uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP __BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
366
367 uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
369
370 uint64_t ghcb;
371
372 uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
378
379 uint64_t n_cr3;
380
381 uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
384
385 uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
398
399 uint32_t rsvd2;
400 uint64_t nrip;
401 uint8_t inst_len;
402 uint8_t inst_bytes[15];
403 uint64_t avic_abpp;
404 uint64_t rsvd3;
405 uint64_t avic_ltp;
406
407 uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
410
411 uint64_t rsvd4;
412 uint64_t vmsa_ptr;
413
414 uint8_t pad[752];
415 } __packed;
416
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418
419 struct vmcb_segment {
420 uint16_t selector;
421 uint16_t attrib; /* hidden */
422 uint32_t limit; /* hidden */
423 uint64_t base; /* hidden */
424 } __packed;
425
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427
428 struct vmcb_state {
429 struct vmcb_segment es;
430 struct vmcb_segment cs;
431 struct vmcb_segment ss;
432 struct vmcb_segment ds;
433 struct vmcb_segment fs;
434 struct vmcb_segment gs;
435 struct vmcb_segment gdt;
436 struct vmcb_segment ldt;
437 struct vmcb_segment idt;
438 struct vmcb_segment tr;
439 uint8_t rsvd1[43];
440 uint8_t cpl;
441 uint8_t rsvd2[4];
442 uint64_t efer;
443 uint8_t rsvd3[112];
444 uint64_t cr4;
445 uint64_t cr3;
446 uint64_t cr0;
447 uint64_t dr7;
448 uint64_t dr6;
449 uint64_t rflags;
450 uint64_t rip;
451 uint8_t rsvd4[88];
452 uint64_t rsp;
453 uint8_t rsvd5[24];
454 uint64_t rax;
455 uint64_t star;
456 uint64_t lstar;
457 uint64_t cstar;
458 uint64_t sfmask;
459 uint64_t kernelgsbase;
460 uint64_t sysenter_cs;
461 uint64_t sysenter_esp;
462 uint64_t sysenter_eip;
463 uint64_t cr2;
464 uint8_t rsvd6[32];
465 uint64_t g_pat;
466 uint64_t dbgctl;
467 uint64_t br_from;
468 uint64_t br_to;
469 uint64_t int_from;
470 uint64_t int_to;
471 uint8_t pad[2408];
472 } __packed;
473
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475
476 struct vmcb {
477 struct vmcb_ctrl ctrl;
478 struct vmcb_state state;
479 } __packed;
480
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483
484 /* -------------------------------------------------------------------------- */
485
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488
489 struct svm_hsave {
490 paddr_t pa;
491 };
492
493 static struct svm_hsave hsave[MAXCPUS];
494
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501
502 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504
505 #define SVM_NCPUIDS 32
506
507 #define VMCB_NPAGES 1
508
509 #define MSRBM_NPAGES 2
510 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
511
512 #define IOBM_NPAGES 3
513 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
514
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518
519 #define EFER_TLB_FLUSH \
520 (EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525
526 #define CR4_VALID \
527 (CR4_VME | \
528 CR4_PVI | \
529 CR4_TSD | \
530 CR4_DE | \
531 CR4_PSE | \
532 CR4_PAE | \
533 CR4_MCE | \
534 CR4_PGE | \
535 CR4_PCE | \
536 CR4_OSFXSR | \
537 CR4_OSXMMEXCPT | \
538 CR4_UMIP | \
539 /* CR4_LA57 excluded */ \
540 /* bit 13 reserved on AMD */ \
541 /* bit 14 reserved on AMD */ \
542 /* bit 15 reserved on AMD */ \
543 CR4_FSGSBASE | \
544 CR4_PCIDE | \
545 CR4_OSXSAVE | \
546 /* bit 19 reserved on AMD */ \
547 CR4_SMEP | \
548 CR4_SMAP \
549 /* CR4_PKE excluded */ \
550 /* CR4_CET excluded */ \
551 /* bits 24:63 reserved on AMD */)
552
553 /* -------------------------------------------------------------------------- */
554
555 struct svm_machdata {
556 volatile uint64_t mach_htlb_gen;
557 };
558
559 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
560 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
561 sizeof(struct nvmm_vcpu_conf_cpuid),
562 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
563 sizeof(struct nvmm_vcpu_conf_tpr)
564 };
565
566 struct svm_cpudata {
567 /* General */
568 bool shared_asid;
569 bool gtlb_want_flush;
570 bool gtsc_want_update;
571 uint64_t vcpu_htlb_gen;
572
573 /* VMCB */
574 struct vmcb *vmcb;
575 paddr_t vmcb_pa;
576
577 /* I/O bitmap */
578 uint8_t *iobm;
579 paddr_t iobm_pa;
580
581 /* MSR bitmap */
582 uint8_t *msrbm;
583 paddr_t msrbm_pa;
584
585 /* Host state */
586 uint64_t hxcr0;
587 uint64_t star;
588 uint64_t lstar;
589 uint64_t cstar;
590 uint64_t sfmask;
591 uint64_t fsbase;
592 uint64_t kernelgsbase;
593
594 /* Intr state */
595 bool int_window_exit;
596 bool nmi_window_exit;
597 bool evt_pending;
598
599 /* Guest state */
600 uint64_t gxcr0;
601 uint64_t gprs[NVMM_X64_NGPR];
602 uint64_t drs[NVMM_X64_NDR];
603 uint64_t gtsc;
604 struct xsave_header gfpu __aligned(64);
605
606 /* VCPU configuration. */
607 bool cpuidpresent[SVM_NCPUIDS];
608 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
609 };
610
611 static void
612 svm_vmcb_cache_default(struct vmcb *vmcb)
613 {
614 vmcb->ctrl.vmcb_clean =
615 VMCB_CTRL_VMCB_CLEAN_I |
616 VMCB_CTRL_VMCB_CLEAN_IOPM |
617 VMCB_CTRL_VMCB_CLEAN_ASID |
618 VMCB_CTRL_VMCB_CLEAN_TPR |
619 VMCB_CTRL_VMCB_CLEAN_NP |
620 VMCB_CTRL_VMCB_CLEAN_CR |
621 VMCB_CTRL_VMCB_CLEAN_DR |
622 VMCB_CTRL_VMCB_CLEAN_DT |
623 VMCB_CTRL_VMCB_CLEAN_SEG |
624 VMCB_CTRL_VMCB_CLEAN_CR2 |
625 VMCB_CTRL_VMCB_CLEAN_LBR |
626 VMCB_CTRL_VMCB_CLEAN_AVIC;
627 }
628
629 static void
630 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
631 {
632 if (flags & NVMM_X64_STATE_SEGS) {
633 vmcb->ctrl.vmcb_clean &=
634 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
635 }
636 if (flags & NVMM_X64_STATE_CRS) {
637 vmcb->ctrl.vmcb_clean &=
638 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
639 VMCB_CTRL_VMCB_CLEAN_TPR);
640 }
641 if (flags & NVMM_X64_STATE_DRS) {
642 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
643 }
644 if (flags & NVMM_X64_STATE_MSRS) {
645 /* CR for EFER, NP for PAT. */
646 vmcb->ctrl.vmcb_clean &=
647 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
648 }
649 }
650
651 static inline void
652 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
653 {
654 vmcb->ctrl.vmcb_clean &= ~flags;
655 }
656
657 static inline void
658 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
659 {
660 vmcb->ctrl.vmcb_clean = 0;
661 }
662
663 #define SVM_EVENT_TYPE_HW_INT 0
664 #define SVM_EVENT_TYPE_NMI 2
665 #define SVM_EVENT_TYPE_EXC 3
666 #define SVM_EVENT_TYPE_SW_INT 4
667
668 static void
669 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
670 {
671 struct svm_cpudata *cpudata = vcpu->cpudata;
672 struct vmcb *vmcb = cpudata->vmcb;
673
674 if (nmi) {
675 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
676 cpudata->nmi_window_exit = true;
677 } else {
678 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
679 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
680 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
681 cpudata->int_window_exit = true;
682 }
683
684 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
685 }
686
687 static void
688 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
689 {
690 struct svm_cpudata *cpudata = vcpu->cpudata;
691 struct vmcb *vmcb = cpudata->vmcb;
692
693 if (nmi) {
694 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
695 cpudata->nmi_window_exit = false;
696 } else {
697 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
698 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
699 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
700 cpudata->int_window_exit = false;
701 }
702
703 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
704 }
705
706 static inline bool
707 svm_excp_has_rf(uint8_t vector)
708 {
709 switch (vector) {
710 case 1: /* #DB */
711 case 4: /* #OF */
712 case 8: /* #DF */
713 case 18: /* #MC */
714 return false;
715 default:
716 return true;
717 }
718 }
719
720 static inline int
721 svm_excp_has_error(uint8_t vector)
722 {
723 switch (vector) {
724 case 8: /* #DF */
725 case 10: /* #TS */
726 case 11: /* #NP */
727 case 12: /* #SS */
728 case 13: /* #GP */
729 case 14: /* #PF */
730 case 17: /* #AC */
731 case 30: /* #SX */
732 return 1;
733 default:
734 return 0;
735 }
736 }
737
738 static int
739 svm_vcpu_inject(struct nvmm_cpu *vcpu)
740 {
741 struct nvmm_comm_page *comm = vcpu->comm;
742 struct svm_cpudata *cpudata = vcpu->cpudata;
743 struct vmcb *vmcb = cpudata->vmcb;
744 u_int evtype;
745 uint8_t vector;
746 uint64_t error;
747 int type = 0, err = 0;
748
749 evtype = comm->event.type;
750 vector = comm->event.vector;
751 error = comm->event.u.excp.error;
752 __insn_barrier();
753
754 switch (evtype) {
755 case NVMM_VCPU_EVENT_EXCP:
756 type = SVM_EVENT_TYPE_EXC;
757 if (vector == 2 || vector >= 32)
758 return EINVAL;
759 if (vector == 3 || vector == 0)
760 return EINVAL;
761 if (svm_excp_has_rf(vector)) {
762 vmcb->state.rflags |= PSL_RF;
763 }
764 err = svm_excp_has_error(vector);
765 break;
766 case NVMM_VCPU_EVENT_INTR:
767 type = SVM_EVENT_TYPE_HW_INT;
768 if (vector == 2) {
769 type = SVM_EVENT_TYPE_NMI;
770 svm_event_waitexit_enable(vcpu, true);
771 }
772 err = 0;
773 break;
774 default:
775 return EINVAL;
776 }
777
778 vmcb->ctrl.eventinj =
779 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
780 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
781 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
782 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
783 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
784
785 cpudata->evt_pending = true;
786
787 return 0;
788 }
789
790 static void
791 svm_inject_ud(struct nvmm_cpu *vcpu)
792 {
793 struct nvmm_comm_page *comm = vcpu->comm;
794 int ret __diagused;
795
796 comm->event.type = NVMM_VCPU_EVENT_EXCP;
797 comm->event.vector = 6;
798 comm->event.u.excp.error = 0;
799
800 ret = svm_vcpu_inject(vcpu);
801 KASSERT(ret == 0);
802 }
803
804 static void
805 svm_inject_gp(struct nvmm_cpu *vcpu)
806 {
807 struct nvmm_comm_page *comm = vcpu->comm;
808 int ret __diagused;
809
810 comm->event.type = NVMM_VCPU_EVENT_EXCP;
811 comm->event.vector = 13;
812 comm->event.u.excp.error = 0;
813
814 ret = svm_vcpu_inject(vcpu);
815 KASSERT(ret == 0);
816 }
817
818 static inline int
819 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
820 {
821 if (__predict_true(!vcpu->comm->event_commit)) {
822 return 0;
823 }
824 vcpu->comm->event_commit = false;
825 return svm_vcpu_inject(vcpu);
826 }
827
828 static inline void
829 svm_inkernel_advance(struct vmcb *vmcb)
830 {
831 /*
832 * Maybe we should also apply single-stepping and debug exceptions.
833 * Matters for guest-ring3, because it can execute 'cpuid' under a
834 * debugger.
835 */
836 vmcb->state.rip = vmcb->ctrl.nrip;
837 vmcb->state.rflags &= ~PSL_RF;
838 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
839 }
840
841 #define SVM_CPUID_MAX_BASIC 0xD
842 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
843 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
844 static uint32_t svm_cpuid_max_basic __read_mostly;
845 static uint32_t svm_cpuid_max_extended __read_mostly;
846
847 static void
848 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
849 {
850 u_int descs[4];
851
852 x86_cpuid2(eax, ecx, descs);
853 cpudata->vmcb->state.rax = descs[0];
854 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
855 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
856 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
857 }
858
859 static void
860 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
861 {
862 struct svm_cpudata *cpudata = vcpu->cpudata;
863 uint64_t cr4;
864
865
866 /*
867 * `If a value entered for CPUID.EAX is higher than the maximum
868 * input value for basic or extended function for that
869 * processor then the dtaa for the highest basic information
870 * leaf is returned.'
871 *
872 * --Intel 64 and IA-32 Architectures Software Developer's
873 * Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
874 * Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
875 * pp. 3-214.
876 *
877 * We take the same to hold for the hypervisor range,
878 * 0x40000000-0x4fffffff.
879 */
880 if (eax < 0x40000000) { /* basic CPUID range */
881 if (__predict_false(eax > svm_cpuid_max_basic)) {
882 eax = svm_cpuid_max_basic;
883 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
884 }
885 } else if (eax < 0x80000000) { /* hypervisor CPUID range */
886 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
887 eax = svm_cpuid_max_basic;
888 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
889 }
890 } else { /* extended CPUID range */
891 if (__predict_false(eax > svm_cpuid_max_extended)) {
892 eax = svm_cpuid_max_basic;
893 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
894 }
895 }
896
897 switch (eax) {
898
899 /*
900 * basic CPUID range
901 */
902 case 0x00000000:
903 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
904 break;
905 case 0x00000001:
906 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
907
908 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
909 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
910 CPUID_LOCAL_APIC_ID);
911
912 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
913 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
914
915 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
916
917 /* CPUID2_OSXSAVE depends on CR4. */
918 cr4 = cpudata->vmcb->state.cr4;
919 if (!(cr4 & CR4_OSXSAVE)) {
920 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
921 }
922 break;
923 case 0x00000002: /* Empty */
924 case 0x00000003: /* Empty */
925 case 0x00000004: /* Empty */
926 case 0x00000005: /* Monitor/MWait */
927 case 0x00000006: /* Power Management Related Features */
928 cpudata->vmcb->state.rax = 0;
929 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
930 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
931 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
932 break;
933 case 0x00000007: /* Structured Extended Features */
934 switch (ecx) {
935 case 0:
936 cpudata->vmcb->state.rax = 0;
937 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
938 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
939 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
940 break;
941 default:
942 cpudata->vmcb->state.rax = 0;
943 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
944 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
945 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
946 break;
947 }
948 break;
949 case 0x00000008: /* Empty */
950 case 0x00000009: /* Empty */
951 case 0x0000000A: /* Empty */
952 case 0x0000000B: /* Empty */
953 case 0x0000000C: /* Empty */
954 cpudata->vmcb->state.rax = 0;
955 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
956 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
957 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
958 break;
959 case 0x0000000D: /* Processor Extended State Enumeration */
960 if (svm_xcr0_mask == 0) {
961 break;
962 }
963 switch (ecx) {
964 case 0:
965 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
966 if (cpudata->gxcr0 & XCR0_SSE) {
967 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
968 } else {
969 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
970 }
971 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
972 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
973 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
974 break;
975 case 1:
976 cpudata->vmcb->state.rax &=
977 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
978 CPUID_PES1_XGETBV);
979 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
980 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
981 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
982 break;
983 default:
984 cpudata->vmcb->state.rax = 0;
985 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
986 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
987 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
988 break;
989 }
990 break;
991
992 /*
993 * hypervisor CPUID range
994 */
995 case 0x40000000: /* Hypervisor Information */
996 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
997 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
998 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
999 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1000 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1001 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1002 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1003 break;
1004
1005 /*
1006 * extended CPUID range
1007 */
1008 case 0x80000000:
1009 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
1010 break;
1011 case 0x80000001:
1012 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
1013 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1014 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1015 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1016 break;
1017 case 0x80000002: /* Extended Processor Name String */
1018 case 0x80000003: /* Extended Processor Name String */
1019 case 0x80000004: /* Extended Processor Name String */
1020 case 0x80000005: /* L1 Cache and TLB Information */
1021 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
1022 break;
1023 case 0x80000007: /* Processor Power Management and RAS Capabilities */
1024 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
1025 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1026 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1027 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1028 break;
1029 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
1030 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
1031 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1032 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1033 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1034 break;
1035 case 0x80000009: /* Empty */
1036 case 0x8000000A: /* SVM Features */
1037 case 0x8000000B: /* Empty */
1038 case 0x8000000C: /* Empty */
1039 case 0x8000000D: /* Empty */
1040 case 0x8000000E: /* Empty */
1041 case 0x8000000F: /* Empty */
1042 case 0x80000010: /* Empty */
1043 case 0x80000011: /* Empty */
1044 case 0x80000012: /* Empty */
1045 case 0x80000013: /* Empty */
1046 case 0x80000014: /* Empty */
1047 case 0x80000015: /* Empty */
1048 case 0x80000016: /* Empty */
1049 case 0x80000017: /* Empty */
1050 case 0x80000018: /* Empty */
1051 cpudata->vmcb->state.rax = 0;
1052 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1053 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1054 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1055 break;
1056 case 0x80000019: /* TLB Characteristics for 1GB pages */
1057 case 0x8000001A: /* Instruction Optimizations */
1058 break;
1059 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1060 case 0x8000001C: /* Lightweight Profiling Capabilities */
1061 cpudata->vmcb->state.rax = 0;
1062 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1063 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1064 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1065 break;
1066 case 0x8000001D: /* Cache Topology Information */
1067 case 0x8000001E: /* Processor Topology Information */
1068 break; /* TODO? */
1069 case 0x8000001F: /* Encrypted Memory Capabilities */
1070 cpudata->vmcb->state.rax = 0;
1071 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1072 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1073 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1074 break;
1075
1076 default:
1077 break;
1078 }
1079 }
1080
1081 static void
1082 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1083 {
1084 exit->u.insn.npc = vmcb->ctrl.nrip;
1085 exit->reason = reason;
1086 }
1087
1088 static void
1089 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1090 struct nvmm_vcpu_exit *exit)
1091 {
1092 struct svm_cpudata *cpudata = vcpu->cpudata;
1093 struct nvmm_vcpu_conf_cpuid *cpuid;
1094 uint64_t eax, ecx;
1095 size_t i;
1096
1097 eax = cpudata->vmcb->state.rax;
1098 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1099 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1100 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1101
1102 for (i = 0; i < SVM_NCPUIDS; i++) {
1103 if (!cpudata->cpuidpresent[i]) {
1104 continue;
1105 }
1106 cpuid = &cpudata->cpuid[i];
1107 if (cpuid->leaf != eax) {
1108 continue;
1109 }
1110
1111 if (cpuid->exit) {
1112 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1113 return;
1114 }
1115 KASSERT(cpuid->mask);
1116
1117 /* del */
1118 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1119 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1120 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1121 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1122
1123 /* set */
1124 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1125 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1126 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1127 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1128
1129 break;
1130 }
1131
1132 svm_inkernel_advance(cpudata->vmcb);
1133 exit->reason = NVMM_VCPU_EXIT_NONE;
1134 }
1135
1136 static void
1137 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1138 struct nvmm_vcpu_exit *exit)
1139 {
1140 struct svm_cpudata *cpudata = vcpu->cpudata;
1141 struct vmcb *vmcb = cpudata->vmcb;
1142
1143 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1144 svm_event_waitexit_disable(vcpu, false);
1145 }
1146
1147 svm_inkernel_advance(cpudata->vmcb);
1148 exit->reason = NVMM_VCPU_EXIT_HALTED;
1149 }
1150
1151 #define SVM_EXIT_IO_PORT __BITS(31,16)
1152 #define SVM_EXIT_IO_SEG __BITS(12,10)
1153 #define SVM_EXIT_IO_A64 __BIT(9)
1154 #define SVM_EXIT_IO_A32 __BIT(8)
1155 #define SVM_EXIT_IO_A16 __BIT(7)
1156 #define SVM_EXIT_IO_SZ32 __BIT(6)
1157 #define SVM_EXIT_IO_SZ16 __BIT(5)
1158 #define SVM_EXIT_IO_SZ8 __BIT(4)
1159 #define SVM_EXIT_IO_REP __BIT(3)
1160 #define SVM_EXIT_IO_STR __BIT(2)
1161 #define SVM_EXIT_IO_IN __BIT(0)
1162
1163 static void
1164 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1165 struct nvmm_vcpu_exit *exit)
1166 {
1167 struct svm_cpudata *cpudata = vcpu->cpudata;
1168 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1169 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1170
1171 exit->reason = NVMM_VCPU_EXIT_IO;
1172
1173 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1174 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1175
1176 if (svm_decode_assist) {
1177 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1178 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1179 } else {
1180 exit->u.io.seg = -1;
1181 }
1182
1183 if (info & SVM_EXIT_IO_A64) {
1184 exit->u.io.address_size = 8;
1185 } else if (info & SVM_EXIT_IO_A32) {
1186 exit->u.io.address_size = 4;
1187 } else if (info & SVM_EXIT_IO_A16) {
1188 exit->u.io.address_size = 2;
1189 }
1190
1191 if (info & SVM_EXIT_IO_SZ32) {
1192 exit->u.io.operand_size = 4;
1193 } else if (info & SVM_EXIT_IO_SZ16) {
1194 exit->u.io.operand_size = 2;
1195 } else if (info & SVM_EXIT_IO_SZ8) {
1196 exit->u.io.operand_size = 1;
1197 }
1198
1199 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1200 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1201 exit->u.io.npc = nextpc;
1202
1203 svm_vcpu_state_provide(vcpu,
1204 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1205 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1206 }
1207
1208 static const uint64_t msr_ignore_list[] = {
1209 0xc0010055, /* MSR_CMPHALT */
1210 MSR_DE_CFG,
1211 MSR_IC_CFG,
1212 MSR_UCODE_AMD_PATCHLEVEL
1213 };
1214
1215 static bool
1216 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1217 struct nvmm_vcpu_exit *exit)
1218 {
1219 struct svm_cpudata *cpudata = vcpu->cpudata;
1220 struct vmcb *vmcb = cpudata->vmcb;
1221 uint64_t val;
1222 size_t i;
1223
1224 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1225 if (exit->u.rdmsr.msr == MSR_EFER) {
1226 val = vmcb->state.efer & ~EFER_SVME;
1227 vmcb->state.rax = (val & 0xFFFFFFFF);
1228 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1229 goto handled;
1230 }
1231 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1232 val = NB_CFG_INITAPICCPUIDLO;
1233 vmcb->state.rax = (val & 0xFFFFFFFF);
1234 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1235 goto handled;
1236 }
1237 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1238 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1239 continue;
1240 val = 0;
1241 vmcb->state.rax = (val & 0xFFFFFFFF);
1242 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1243 goto handled;
1244 }
1245 } else {
1246 if (exit->u.wrmsr.msr == MSR_EFER) {
1247 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1248 goto error;
1249 }
1250 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1251 EFER_TLB_FLUSH) {
1252 cpudata->gtlb_want_flush = true;
1253 }
1254 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1255 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1256 goto handled;
1257 }
1258 if (exit->u.wrmsr.msr == MSR_TSC) {
1259 cpudata->gtsc = exit->u.wrmsr.val;
1260 cpudata->gtsc_want_update = true;
1261 goto handled;
1262 }
1263 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1264 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1265 continue;
1266 goto handled;
1267 }
1268 }
1269
1270 return false;
1271
1272 handled:
1273 svm_inkernel_advance(cpudata->vmcb);
1274 return true;
1275
1276 error:
1277 svm_inject_gp(vcpu);
1278 return true;
1279 }
1280
1281 static inline void
1282 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1283 struct nvmm_vcpu_exit *exit)
1284 {
1285 struct svm_cpudata *cpudata = vcpu->cpudata;
1286
1287 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1288 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1289 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1290
1291 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1292 exit->reason = NVMM_VCPU_EXIT_NONE;
1293 return;
1294 }
1295
1296 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1297 }
1298
1299 static inline void
1300 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1301 struct nvmm_vcpu_exit *exit)
1302 {
1303 struct svm_cpudata *cpudata = vcpu->cpudata;
1304 uint64_t rdx, rax;
1305
1306 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1307 rax = cpudata->vmcb->state.rax;
1308
1309 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1310 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1311 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1312 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1313
1314 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1315 exit->reason = NVMM_VCPU_EXIT_NONE;
1316 return;
1317 }
1318
1319 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1320 }
1321
1322 static void
1323 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1324 struct nvmm_vcpu_exit *exit)
1325 {
1326 struct svm_cpudata *cpudata = vcpu->cpudata;
1327 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1328
1329 if (info == 0) {
1330 svm_exit_rdmsr(mach, vcpu, exit);
1331 } else {
1332 svm_exit_wrmsr(mach, vcpu, exit);
1333 }
1334 }
1335
1336 static void
1337 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1338 struct nvmm_vcpu_exit *exit)
1339 {
1340 struct svm_cpudata *cpudata = vcpu->cpudata;
1341 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1342
1343 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1344 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1345 exit->u.mem.prot = PROT_WRITE;
1346 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1347 exit->u.mem.prot = PROT_EXEC;
1348 else
1349 exit->u.mem.prot = PROT_READ;
1350 exit->u.mem.gpa = gpa;
1351 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1352 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1353 sizeof(exit->u.mem.inst_bytes));
1354
1355 svm_vcpu_state_provide(vcpu,
1356 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1357 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1358 }
1359
1360 static void
1361 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1362 struct nvmm_vcpu_exit *exit)
1363 {
1364 struct svm_cpudata *cpudata = vcpu->cpudata;
1365 struct vmcb *vmcb = cpudata->vmcb;
1366 uint64_t val;
1367
1368 exit->reason = NVMM_VCPU_EXIT_NONE;
1369
1370 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1371 (vmcb->state.rax & 0xFFFFFFFF);
1372
1373 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1374 goto error;
1375 } else if (__predict_false(vmcb->state.cpl != 0)) {
1376 goto error;
1377 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1378 goto error;
1379 } else if (__predict_false((val & XCR0_X87) == 0)) {
1380 goto error;
1381 }
1382
1383 cpudata->gxcr0 = val;
1384
1385 svm_inkernel_advance(cpudata->vmcb);
1386 return;
1387
1388 error:
1389 svm_inject_gp(vcpu);
1390 }
1391
1392 static void
1393 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1394 {
1395 exit->u.inv.hwcode = code;
1396 exit->reason = NVMM_VCPU_EXIT_INVALID;
1397 }
1398
1399 /* -------------------------------------------------------------------------- */
1400
1401 static void
1402 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1403 {
1404 struct svm_cpudata *cpudata = vcpu->cpudata;
1405
1406 fpu_kern_enter();
1407 /* TODO: should we use *XSAVE64 here? */
1408 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
1409
1410 if (svm_xcr0_mask != 0) {
1411 cpudata->hxcr0 = rdxcr(0);
1412 wrxcr(0, cpudata->gxcr0);
1413 }
1414 }
1415
1416 static void
1417 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1418 {
1419 struct svm_cpudata *cpudata = vcpu->cpudata;
1420
1421 if (svm_xcr0_mask != 0) {
1422 cpudata->gxcr0 = rdxcr(0);
1423 wrxcr(0, cpudata->hxcr0);
1424 }
1425
1426 /* TODO: should we use *XSAVE64 here? */
1427 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
1428 fpu_kern_leave();
1429 }
1430
1431 static void
1432 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1433 {
1434 struct svm_cpudata *cpudata = vcpu->cpudata;
1435
1436 x86_dbregs_save(curlwp);
1437
1438 ldr7(0);
1439
1440 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1441 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1442 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1443 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1444 }
1445
1446 static void
1447 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1448 {
1449 struct svm_cpudata *cpudata = vcpu->cpudata;
1450
1451 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1452 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1453 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1454 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1455
1456 x86_dbregs_restore(curlwp);
1457 }
1458
1459 static void
1460 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1461 {
1462 struct svm_cpudata *cpudata = vcpu->cpudata;
1463
1464 cpudata->fsbase = rdmsr(MSR_FSBASE);
1465 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1466 }
1467
1468 static void
1469 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1470 {
1471 struct svm_cpudata *cpudata = vcpu->cpudata;
1472
1473 wrmsr(MSR_STAR, cpudata->star);
1474 wrmsr(MSR_LSTAR, cpudata->lstar);
1475 wrmsr(MSR_CSTAR, cpudata->cstar);
1476 wrmsr(MSR_SFMASK, cpudata->sfmask);
1477 wrmsr(MSR_FSBASE, cpudata->fsbase);
1478 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1479 }
1480
1481 /* -------------------------------------------------------------------------- */
1482
1483 static inline void
1484 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1485 {
1486 struct svm_cpudata *cpudata = vcpu->cpudata;
1487
1488 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1489 cpudata->gtlb_want_flush = true;
1490 }
1491 }
1492
1493 static inline void
1494 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1495 {
1496 /*
1497 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1498 * executing on this hCPU and the hTLB already got flushed, or it
1499 * was executing on another hCPU in which case the catchup is done
1500 * in svm_gtlb_catchup().
1501 */
1502 }
1503
1504 static inline uint64_t
1505 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1506 {
1507 struct vmcb *vmcb = cpudata->vmcb;
1508 uint64_t machgen;
1509
1510 machgen = machdata->mach_htlb_gen;
1511 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1512 return machgen;
1513 }
1514
1515 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1516 return machgen;
1517 }
1518
1519 static inline void
1520 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1521 {
1522 struct vmcb *vmcb = cpudata->vmcb;
1523
1524 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1525 cpudata->vcpu_htlb_gen = machgen;
1526 }
1527 }
1528
1529 static inline void
1530 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1531 {
1532 cpudata->evt_pending = false;
1533
1534 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1535 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1536 cpudata->evt_pending = true;
1537 }
1538 }
1539
1540 static int
1541 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1542 struct nvmm_vcpu_exit *exit)
1543 {
1544 struct nvmm_comm_page *comm = vcpu->comm;
1545 struct svm_machdata *machdata = mach->machdata;
1546 struct svm_cpudata *cpudata = vcpu->cpudata;
1547 struct vmcb *vmcb = cpudata->vmcb;
1548 uint64_t machgen;
1549 int hcpu;
1550
1551 svm_vcpu_state_commit(vcpu);
1552 comm->state_cached = 0;
1553
1554 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1555 return EINVAL;
1556 }
1557
1558 kpreempt_disable();
1559 hcpu = cpu_number();
1560
1561 svm_gtlb_catchup(vcpu, hcpu);
1562 svm_htlb_catchup(vcpu, hcpu);
1563
1564 if (vcpu->hcpu_last != hcpu) {
1565 svm_vmcb_cache_flush_all(vmcb);
1566 cpudata->gtsc_want_update = true;
1567 }
1568
1569 svm_vcpu_guest_dbregs_enter(vcpu);
1570 svm_vcpu_guest_misc_enter(vcpu);
1571
1572 while (1) {
1573 if (cpudata->gtlb_want_flush) {
1574 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1575 } else {
1576 vmcb->ctrl.tlb_ctrl = 0;
1577 }
1578
1579 if (__predict_false(cpudata->gtsc_want_update)) {
1580 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1581 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1582 }
1583
1584 svm_vcpu_guest_fpu_enter(vcpu);
1585 svm_clgi();
1586 machgen = svm_htlb_flush(machdata, cpudata);
1587 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1588 svm_htlb_flush_ack(cpudata, machgen);
1589 svm_stgi();
1590 svm_vcpu_guest_fpu_leave(vcpu);
1591
1592 svm_vmcb_cache_default(vmcb);
1593
1594 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1595 cpudata->gtlb_want_flush = false;
1596 cpudata->gtsc_want_update = false;
1597 vcpu->hcpu_last = hcpu;
1598 }
1599 svm_exit_evt(cpudata, vmcb);
1600
1601 switch (vmcb->ctrl.exitcode) {
1602 case VMCB_EXITCODE_INTR:
1603 case VMCB_EXITCODE_NMI:
1604 exit->reason = NVMM_VCPU_EXIT_NONE;
1605 break;
1606 case VMCB_EXITCODE_VINTR:
1607 svm_event_waitexit_disable(vcpu, false);
1608 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1609 break;
1610 case VMCB_EXITCODE_IRET:
1611 svm_event_waitexit_disable(vcpu, true);
1612 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1613 break;
1614 case VMCB_EXITCODE_CPUID:
1615 svm_exit_cpuid(mach, vcpu, exit);
1616 break;
1617 case VMCB_EXITCODE_HLT:
1618 svm_exit_hlt(mach, vcpu, exit);
1619 break;
1620 case VMCB_EXITCODE_IOIO:
1621 svm_exit_io(mach, vcpu, exit);
1622 break;
1623 case VMCB_EXITCODE_MSR:
1624 svm_exit_msr(mach, vcpu, exit);
1625 break;
1626 case VMCB_EXITCODE_SHUTDOWN:
1627 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1628 break;
1629 case VMCB_EXITCODE_RDPMC:
1630 case VMCB_EXITCODE_RSM:
1631 case VMCB_EXITCODE_INVLPGA:
1632 case VMCB_EXITCODE_VMRUN:
1633 case VMCB_EXITCODE_VMMCALL:
1634 case VMCB_EXITCODE_VMLOAD:
1635 case VMCB_EXITCODE_VMSAVE:
1636 case VMCB_EXITCODE_STGI:
1637 case VMCB_EXITCODE_CLGI:
1638 case VMCB_EXITCODE_SKINIT:
1639 case VMCB_EXITCODE_RDTSCP:
1640 case VMCB_EXITCODE_RDPRU:
1641 case VMCB_EXITCODE_INVLPGB:
1642 case VMCB_EXITCODE_INVPCID:
1643 case VMCB_EXITCODE_MCOMMIT:
1644 case VMCB_EXITCODE_TLBSYNC:
1645 svm_inject_ud(vcpu);
1646 exit->reason = NVMM_VCPU_EXIT_NONE;
1647 break;
1648 case VMCB_EXITCODE_MONITOR:
1649 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1650 break;
1651 case VMCB_EXITCODE_MWAIT:
1652 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1653 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1654 break;
1655 case VMCB_EXITCODE_XSETBV:
1656 svm_exit_xsetbv(mach, vcpu, exit);
1657 break;
1658 case VMCB_EXITCODE_NPF:
1659 svm_exit_npf(mach, vcpu, exit);
1660 break;
1661 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1662 default:
1663 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1664 break;
1665 }
1666
1667 /* If no reason to return to userland, keep rolling. */
1668 if (nvmm_return_needed(vcpu, exit)) {
1669 break;
1670 }
1671 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1672 break;
1673 }
1674 }
1675
1676 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1677
1678 svm_vcpu_guest_misc_leave(vcpu);
1679 svm_vcpu_guest_dbregs_leave(vcpu);
1680
1681 kpreempt_enable();
1682
1683 exit->exitstate.rflags = vmcb->state.rflags;
1684 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1685 exit->exitstate.int_shadow =
1686 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1687 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1688 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1689 exit->exitstate.evt_pending = cpudata->evt_pending;
1690
1691 return 0;
1692 }
1693
1694 /* -------------------------------------------------------------------------- */
1695
1696 static int
1697 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1698 {
1699 struct pglist pglist;
1700 paddr_t _pa;
1701 vaddr_t _va;
1702 size_t i;
1703 int ret;
1704
1705 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1706 &pglist, 1, 0);
1707 if (ret != 0)
1708 return ENOMEM;
1709 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1710 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1711 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1712 if (_va == 0)
1713 goto error;
1714
1715 for (i = 0; i < npages; i++) {
1716 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1717 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1718 }
1719 pmap_update(pmap_kernel());
1720
1721 memset((void *)_va, 0, npages * PAGE_SIZE);
1722
1723 *pa = _pa;
1724 *va = _va;
1725 return 0;
1726
1727 error:
1728 for (i = 0; i < npages; i++) {
1729 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1730 }
1731 return ENOMEM;
1732 }
1733
1734 static void
1735 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1736 {
1737 size_t i;
1738
1739 pmap_kremove(va, npages * PAGE_SIZE);
1740 pmap_update(pmap_kernel());
1741 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1742 for (i = 0; i < npages; i++) {
1743 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1744 }
1745 }
1746
1747 /* -------------------------------------------------------------------------- */
1748
1749 #define SVM_MSRBM_READ __BIT(0)
1750 #define SVM_MSRBM_WRITE __BIT(1)
1751
1752 static void
1753 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1754 {
1755 uint64_t byte;
1756 uint8_t bitoff;
1757
1758 if (msr < 0x00002000) {
1759 /* Range 1 */
1760 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1761 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1762 /* Range 2 */
1763 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1764 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1765 /* Range 3 */
1766 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1767 } else {
1768 panic("%s: wrong range", __func__);
1769 }
1770
1771 bitoff = (msr & 0x3) << 1;
1772
1773 if (read) {
1774 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1775 }
1776 if (write) {
1777 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1778 }
1779 }
1780
1781 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1782 #define SVM_SEG_ATTRIB_S __BIT(4)
1783 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1784 #define SVM_SEG_ATTRIB_P __BIT(7)
1785 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1786 #define SVM_SEG_ATTRIB_L __BIT(9)
1787 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1788 #define SVM_SEG_ATTRIB_G __BIT(11)
1789
1790 static void
1791 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1792 struct vmcb_segment *vseg)
1793 {
1794 vseg->selector = seg->selector;
1795 vseg->attrib =
1796 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1797 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1798 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1799 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1800 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1801 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1802 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1803 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1804 vseg->limit = seg->limit;
1805 vseg->base = seg->base;
1806 }
1807
1808 static void
1809 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1810 {
1811 seg->selector = vseg->selector;
1812 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1813 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1814 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1815 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1816 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1817 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1818 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1819 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1820 seg->limit = vseg->limit;
1821 seg->base = vseg->base;
1822 }
1823
1824 static inline bool
1825 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1826 uint64_t flags)
1827 {
1828 if (flags & NVMM_X64_STATE_CRS) {
1829 if ((vmcb->state.cr0 ^
1830 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1831 return true;
1832 }
1833 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1834 return true;
1835 }
1836 if ((vmcb->state.cr4 ^
1837 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1838 return true;
1839 }
1840 }
1841
1842 if (flags & NVMM_X64_STATE_MSRS) {
1843 if ((vmcb->state.efer ^
1844 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1845 return true;
1846 }
1847 }
1848
1849 return false;
1850 }
1851
1852 static void
1853 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1854 {
1855 struct nvmm_comm_page *comm = vcpu->comm;
1856 const struct nvmm_x64_state *state = &comm->state;
1857 struct svm_cpudata *cpudata = vcpu->cpudata;
1858 struct vmcb *vmcb = cpudata->vmcb;
1859 struct fxsave *fpustate;
1860 uint64_t flags;
1861
1862 flags = comm->state_wanted;
1863
1864 if (svm_state_tlb_flush(vmcb, state, flags)) {
1865 cpudata->gtlb_want_flush = true;
1866 }
1867
1868 if (flags & NVMM_X64_STATE_SEGS) {
1869 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1870 &vmcb->state.cs);
1871 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1872 &vmcb->state.ds);
1873 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1874 &vmcb->state.es);
1875 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1876 &vmcb->state.fs);
1877 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1878 &vmcb->state.gs);
1879 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1880 &vmcb->state.ss);
1881 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1882 &vmcb->state.gdt);
1883 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1884 &vmcb->state.idt);
1885 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1886 &vmcb->state.ldt);
1887 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1888 &vmcb->state.tr);
1889
1890 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1891 }
1892
1893 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1894 if (flags & NVMM_X64_STATE_GPRS) {
1895 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1896
1897 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1898 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1899 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1900 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1901 }
1902
1903 if (flags & NVMM_X64_STATE_CRS) {
1904 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1905 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1906 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1907 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1908 vmcb->state.cr4 &= CR4_VALID;
1909
1910 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1911 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1912 VMCB_CTRL_V_TPR);
1913
1914 if (svm_xcr0_mask != 0) {
1915 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1916 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1917 cpudata->gxcr0 &= svm_xcr0_mask;
1918 cpudata->gxcr0 |= XCR0_X87;
1919 }
1920 }
1921
1922 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1923 if (flags & NVMM_X64_STATE_DRS) {
1924 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1925
1926 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1927 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1928 }
1929
1930 if (flags & NVMM_X64_STATE_MSRS) {
1931 /*
1932 * EFER_SVME is mandatory.
1933 */
1934 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1935 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1936 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1937 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1938 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1939 vmcb->state.kernelgsbase =
1940 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1941 vmcb->state.sysenter_cs =
1942 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1943 vmcb->state.sysenter_esp =
1944 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1945 vmcb->state.sysenter_eip =
1946 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1947 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1948
1949 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1950 cpudata->gtsc_want_update = true;
1951 }
1952
1953 if (flags & NVMM_X64_STATE_INTR) {
1954 if (state->intr.int_shadow) {
1955 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1956 } else {
1957 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1958 }
1959
1960 if (state->intr.int_window_exiting) {
1961 svm_event_waitexit_enable(vcpu, false);
1962 } else {
1963 svm_event_waitexit_disable(vcpu, false);
1964 }
1965
1966 if (state->intr.nmi_window_exiting) {
1967 svm_event_waitexit_enable(vcpu, true);
1968 } else {
1969 svm_event_waitexit_disable(vcpu, true);
1970 }
1971 }
1972
1973 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1974 if (flags & NVMM_X64_STATE_FPU) {
1975 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1976 sizeof(state->fpu));
1977
1978 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1979 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1980 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1981
1982 if (svm_xcr0_mask != 0) {
1983 /* Reset XSTATE_BV, to force a reload. */
1984 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1985 }
1986 }
1987
1988 svm_vmcb_cache_update(vmcb, flags);
1989
1990 comm->state_wanted = 0;
1991 comm->state_cached |= flags;
1992 }
1993
1994 static void
1995 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1996 {
1997 struct nvmm_comm_page *comm = vcpu->comm;
1998 struct nvmm_x64_state *state = &comm->state;
1999 struct svm_cpudata *cpudata = vcpu->cpudata;
2000 struct vmcb *vmcb = cpudata->vmcb;
2001 uint64_t flags;
2002
2003 flags = comm->state_wanted;
2004
2005 if (flags & NVMM_X64_STATE_SEGS) {
2006 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
2007 &vmcb->state.cs);
2008 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
2009 &vmcb->state.ds);
2010 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
2011 &vmcb->state.es);
2012 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
2013 &vmcb->state.fs);
2014 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
2015 &vmcb->state.gs);
2016 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
2017 &vmcb->state.ss);
2018 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
2019 &vmcb->state.gdt);
2020 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
2021 &vmcb->state.idt);
2022 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
2023 &vmcb->state.ldt);
2024 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
2025 &vmcb->state.tr);
2026
2027 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
2028 }
2029
2030 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2031 if (flags & NVMM_X64_STATE_GPRS) {
2032 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2033
2034 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
2035 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
2036 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
2037 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
2038 }
2039
2040 if (flags & NVMM_X64_STATE_CRS) {
2041 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
2042 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
2043 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
2044 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
2045 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
2046 VMCB_CTRL_V_TPR);
2047 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2048 }
2049
2050 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2051 if (flags & NVMM_X64_STATE_DRS) {
2052 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2053
2054 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2055 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2056 }
2057
2058 if (flags & NVMM_X64_STATE_MSRS) {
2059 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2060 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2061 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2062 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2063 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2064 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2065 vmcb->state.kernelgsbase;
2066 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2067 vmcb->state.sysenter_cs;
2068 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2069 vmcb->state.sysenter_esp;
2070 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2071 vmcb->state.sysenter_eip;
2072 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2073 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2074
2075 /* Hide SVME. */
2076 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2077 }
2078
2079 if (flags & NVMM_X64_STATE_INTR) {
2080 state->intr.int_shadow =
2081 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2082 state->intr.int_window_exiting = cpudata->int_window_exit;
2083 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2084 state->intr.evt_pending = cpudata->evt_pending;
2085 }
2086
2087 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2088 if (flags & NVMM_X64_STATE_FPU) {
2089 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2090 sizeof(state->fpu));
2091 }
2092
2093 comm->state_wanted = 0;
2094 comm->state_cached |= flags;
2095 }
2096
2097 static void
2098 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2099 {
2100 vcpu->comm->state_wanted = flags;
2101 svm_vcpu_getstate(vcpu);
2102 }
2103
2104 static void
2105 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2106 {
2107 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2108 vcpu->comm->state_commit = 0;
2109 svm_vcpu_setstate(vcpu);
2110 }
2111
2112 /* -------------------------------------------------------------------------- */
2113
2114 static void
2115 svm_asid_alloc(struct nvmm_cpu *vcpu)
2116 {
2117 struct svm_cpudata *cpudata = vcpu->cpudata;
2118 struct vmcb *vmcb = cpudata->vmcb;
2119 size_t i, oct, bit;
2120
2121 mutex_enter(&svm_asidlock);
2122
2123 for (i = 0; i < svm_maxasid; i++) {
2124 oct = i / 8;
2125 bit = i % 8;
2126
2127 if (svm_asidmap[oct] & __BIT(bit)) {
2128 continue;
2129 }
2130
2131 svm_asidmap[oct] |= __BIT(bit);
2132 vmcb->ctrl.guest_asid = i;
2133 mutex_exit(&svm_asidlock);
2134 return;
2135 }
2136
2137 /*
2138 * No free ASID. Use the last one, which is shared and requires
2139 * special TLB handling.
2140 */
2141 cpudata->shared_asid = true;
2142 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2143 mutex_exit(&svm_asidlock);
2144 }
2145
2146 static void
2147 svm_asid_free(struct nvmm_cpu *vcpu)
2148 {
2149 struct svm_cpudata *cpudata = vcpu->cpudata;
2150 struct vmcb *vmcb = cpudata->vmcb;
2151 size_t oct, bit;
2152
2153 if (cpudata->shared_asid) {
2154 return;
2155 }
2156
2157 oct = vmcb->ctrl.guest_asid / 8;
2158 bit = vmcb->ctrl.guest_asid % 8;
2159
2160 mutex_enter(&svm_asidlock);
2161 svm_asidmap[oct] &= ~__BIT(bit);
2162 mutex_exit(&svm_asidlock);
2163 }
2164
2165 static void
2166 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2167 {
2168 struct svm_cpudata *cpudata = vcpu->cpudata;
2169 struct vmcb *vmcb = cpudata->vmcb;
2170
2171 /* Allow reads/writes of Control Registers. */
2172 vmcb->ctrl.intercept_cr = 0;
2173
2174 /* Allow reads/writes of Debug Registers. */
2175 vmcb->ctrl.intercept_dr = 0;
2176
2177 /* Allow exceptions 0 to 31. */
2178 vmcb->ctrl.intercept_vec = 0;
2179
2180 /*
2181 * Allow:
2182 * - SMI [smm interrupts]
2183 * - VINTR [virtual interrupts]
2184 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2185 * - RIDTR [reads of IDTR]
2186 * - RGDTR [reads of GDTR]
2187 * - RLDTR [reads of LDTR]
2188 * - RTR [reads of TR]
2189 * - WIDTR [writes of IDTR]
2190 * - WGDTR [writes of GDTR]
2191 * - WLDTR [writes of LDTR]
2192 * - WTR [writes of TR]
2193 * - RDTSC [rdtsc instruction]
2194 * - PUSHF [pushf instruction]
2195 * - POPF [popf instruction]
2196 * - IRET [iret instruction]
2197 * - INTN [int $n instructions]
2198 * - PAUSE [pause instruction]
2199 * - INVLPG [invplg instruction]
2200 * - TASKSW [task switches]
2201 *
2202 * Intercept the rest below.
2203 */
2204 vmcb->ctrl.intercept_misc1 =
2205 VMCB_CTRL_INTERCEPT_INTR |
2206 VMCB_CTRL_INTERCEPT_NMI |
2207 VMCB_CTRL_INTERCEPT_INIT |
2208 VMCB_CTRL_INTERCEPT_RDPMC |
2209 VMCB_CTRL_INTERCEPT_CPUID |
2210 VMCB_CTRL_INTERCEPT_RSM |
2211 VMCB_CTRL_INTERCEPT_INVD |
2212 VMCB_CTRL_INTERCEPT_HLT |
2213 VMCB_CTRL_INTERCEPT_INVLPGA |
2214 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2215 VMCB_CTRL_INTERCEPT_MSR_PROT |
2216 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2217 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2218
2219 /*
2220 * Allow:
2221 * - ICEBP [icebp instruction]
2222 * - WBINVD [wbinvd instruction]
2223 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2224 *
2225 * Intercept the rest below.
2226 */
2227 vmcb->ctrl.intercept_misc2 =
2228 VMCB_CTRL_INTERCEPT_VMRUN |
2229 VMCB_CTRL_INTERCEPT_VMMCALL |
2230 VMCB_CTRL_INTERCEPT_VMLOAD |
2231 VMCB_CTRL_INTERCEPT_VMSAVE |
2232 VMCB_CTRL_INTERCEPT_STGI |
2233 VMCB_CTRL_INTERCEPT_CLGI |
2234 VMCB_CTRL_INTERCEPT_SKINIT |
2235 VMCB_CTRL_INTERCEPT_RDTSCP |
2236 VMCB_CTRL_INTERCEPT_MONITOR |
2237 VMCB_CTRL_INTERCEPT_MWAIT |
2238 VMCB_CTRL_INTERCEPT_XSETBV |
2239 VMCB_CTRL_INTERCEPT_RDPRU;
2240
2241 /*
2242 * Intercept everything.
2243 */
2244 vmcb->ctrl.intercept_misc3 =
2245 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2246 VMCB_CTRL_INTERCEPT_PCID |
2247 VMCB_CTRL_INTERCEPT_MCOMMIT |
2248 VMCB_CTRL_INTERCEPT_TLBSYNC;
2249
2250 /* Intercept all I/O accesses. */
2251 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2252 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2253
2254 /* Allow direct access to certain MSRs. */
2255 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2256 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2257 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2258 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2259 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2260 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2261 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2262 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2263 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2264 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2265 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2266 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2267 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2268 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2269
2270 /* Generate ASID. */
2271 svm_asid_alloc(vcpu);
2272
2273 /* Virtual TPR. */
2274 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2275
2276 /* Enable Nested Paging. */
2277 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2278 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2279
2280 /* Init XSAVE header. */
2281 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2282 cpudata->gfpu.xsh_xcomp_bv = 0;
2283
2284 /* These MSRs are static. */
2285 cpudata->star = rdmsr(MSR_STAR);
2286 cpudata->lstar = rdmsr(MSR_LSTAR);
2287 cpudata->cstar = rdmsr(MSR_CSTAR);
2288 cpudata->sfmask = rdmsr(MSR_SFMASK);
2289
2290 /* Install the RESET state. */
2291 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2292 sizeof(nvmm_x86_reset_state));
2293 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2294 vcpu->comm->state_cached = 0;
2295 svm_vcpu_setstate(vcpu);
2296 }
2297
2298 static int
2299 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2300 {
2301 struct svm_cpudata *cpudata;
2302 int error;
2303
2304 /* Allocate the SVM cpudata. */
2305 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2306 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2307 UVM_KMF_WIRED|UVM_KMF_ZERO);
2308 vcpu->cpudata = cpudata;
2309
2310 /* VMCB */
2311 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2312 VMCB_NPAGES);
2313 if (error)
2314 goto error;
2315
2316 /* I/O Bitmap */
2317 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2318 IOBM_NPAGES);
2319 if (error)
2320 goto error;
2321
2322 /* MSR Bitmap */
2323 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2324 MSRBM_NPAGES);
2325 if (error)
2326 goto error;
2327
2328 /* Init the VCPU info. */
2329 svm_vcpu_init(mach, vcpu);
2330
2331 return 0;
2332
2333 error:
2334 if (cpudata->vmcb_pa) {
2335 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2336 VMCB_NPAGES);
2337 }
2338 if (cpudata->iobm_pa) {
2339 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2340 IOBM_NPAGES);
2341 }
2342 if (cpudata->msrbm_pa) {
2343 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2344 MSRBM_NPAGES);
2345 }
2346 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2347 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2348 return error;
2349 }
2350
2351 static void
2352 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2353 {
2354 struct svm_cpudata *cpudata = vcpu->cpudata;
2355
2356 svm_asid_free(vcpu);
2357
2358 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2359 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2360 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2361
2362 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2363 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2364 }
2365
2366 /* -------------------------------------------------------------------------- */
2367
2368 static int
2369 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2370 {
2371 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2372 size_t i;
2373
2374 if (__predict_false(cpuid->mask && cpuid->exit)) {
2375 return EINVAL;
2376 }
2377 if (__predict_false(cpuid->mask &&
2378 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2379 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2380 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2381 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2382 return EINVAL;
2383 }
2384
2385 /* If unset, delete, to restore the default behavior. */
2386 if (!cpuid->mask && !cpuid->exit) {
2387 for (i = 0; i < SVM_NCPUIDS; i++) {
2388 if (!cpudata->cpuidpresent[i]) {
2389 continue;
2390 }
2391 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2392 cpudata->cpuidpresent[i] = false;
2393 }
2394 }
2395 return 0;
2396 }
2397
2398 /* If already here, replace. */
2399 for (i = 0; i < SVM_NCPUIDS; i++) {
2400 if (!cpudata->cpuidpresent[i]) {
2401 continue;
2402 }
2403 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2404 memcpy(&cpudata->cpuid[i], cpuid,
2405 sizeof(struct nvmm_vcpu_conf_cpuid));
2406 return 0;
2407 }
2408 }
2409
2410 /* Not here, insert. */
2411 for (i = 0; i < SVM_NCPUIDS; i++) {
2412 if (!cpudata->cpuidpresent[i]) {
2413 cpudata->cpuidpresent[i] = true;
2414 memcpy(&cpudata->cpuid[i], cpuid,
2415 sizeof(struct nvmm_vcpu_conf_cpuid));
2416 return 0;
2417 }
2418 }
2419
2420 return ENOBUFS;
2421 }
2422
2423 static int
2424 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2425 {
2426 struct svm_cpudata *cpudata = vcpu->cpudata;
2427
2428 switch (op) {
2429 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2430 return svm_vcpu_configure_cpuid(cpudata, data);
2431 default:
2432 return EINVAL;
2433 }
2434 }
2435
2436 /* -------------------------------------------------------------------------- */
2437
2438 static void
2439 svm_tlb_flush(struct pmap *pm)
2440 {
2441 struct nvmm_machine *mach = pm->pm_data;
2442 struct svm_machdata *machdata = mach->machdata;
2443
2444 atomic_inc_64(&machdata->mach_htlb_gen);
2445
2446 /* Generates IPIs, which cause #VMEXITs. */
2447 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2448 }
2449
2450 static void
2451 svm_machine_create(struct nvmm_machine *mach)
2452 {
2453 struct svm_machdata *machdata;
2454
2455 /* Fill in pmap info. */
2456 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2457 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2458
2459 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2460 mach->machdata = machdata;
2461
2462 /* Start with an hTLB flush everywhere. */
2463 machdata->mach_htlb_gen = 1;
2464 }
2465
2466 static void
2467 svm_machine_destroy(struct nvmm_machine *mach)
2468 {
2469 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2470 }
2471
2472 static int
2473 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2474 {
2475 panic("%s: impossible", __func__);
2476 }
2477
2478 /* -------------------------------------------------------------------------- */
2479
2480 static bool
2481 svm_ident(void)
2482 {
2483 u_int descs[4];
2484 uint64_t msr;
2485
2486 if (cpu_vendor != CPUVENDOR_AMD) {
2487 return false;
2488 }
2489 if (!(cpu_feature[3] & CPUID_SVM)) {
2490 printf("NVMM: SVM not supported\n");
2491 return false;
2492 }
2493
2494 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2495 printf("NVMM: CPUID leaf not available\n");
2496 return false;
2497 }
2498 x86_cpuid(0x8000000a, descs);
2499
2500 /* Expect revision 1. */
2501 if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2502 printf("NVMM: SVM revision not supported\n");
2503 return false;
2504 }
2505
2506 /* Want Nested Paging. */
2507 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2508 printf("NVMM: SVM-NP not supported\n");
2509 return false;
2510 }
2511
2512 /* Want nRIP. */
2513 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2514 printf("NVMM: SVM-NRIPS not supported\n");
2515 return false;
2516 }
2517
2518 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2519
2520 msr = rdmsr(MSR_VMCR);
2521 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2522 printf("NVMM: SVM disabled in BIOS\n");
2523 return false;
2524 }
2525
2526 return true;
2527 }
2528
2529 static void
2530 svm_init_asid(uint32_t maxasid)
2531 {
2532 size_t i, j, allocsz;
2533
2534 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2535
2536 /* Arbitrarily limit. */
2537 maxasid = uimin(maxasid, 8192);
2538
2539 svm_maxasid = maxasid;
2540 allocsz = roundup(maxasid, 8) / 8;
2541 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2542
2543 /* ASID 0 is reserved for the host. */
2544 svm_asidmap[0] |= __BIT(0);
2545
2546 /* ASID n-1 is special, we share it. */
2547 i = (maxasid - 1) / 8;
2548 j = (maxasid - 1) % 8;
2549 svm_asidmap[i] |= __BIT(j);
2550 }
2551
2552 static void
2553 svm_change_cpu(void *arg1, void *arg2)
2554 {
2555 bool enable = arg1 != NULL;
2556 uint64_t msr;
2557
2558 msr = rdmsr(MSR_VMCR);
2559 if (msr & VMCR_SVMED) {
2560 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2561 }
2562
2563 if (!enable) {
2564 wrmsr(MSR_VM_HSAVE_PA, 0);
2565 }
2566
2567 msr = rdmsr(MSR_EFER);
2568 if (enable) {
2569 msr |= EFER_SVME;
2570 } else {
2571 msr &= ~EFER_SVME;
2572 }
2573 wrmsr(MSR_EFER, msr);
2574
2575 if (enable) {
2576 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2577 }
2578 }
2579
2580 static void
2581 svm_init(void)
2582 {
2583 CPU_INFO_ITERATOR cii;
2584 struct cpu_info *ci;
2585 struct vm_page *pg;
2586 u_int descs[4];
2587 uint64_t xc;
2588
2589 x86_cpuid(0x8000000a, descs);
2590
2591 /* The guest TLB flush command. */
2592 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2593 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2594 } else {
2595 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2596 }
2597
2598 /* Init the ASID. */
2599 svm_init_asid(descs[1]);
2600
2601 /* Init the XCR0 mask. */
2602 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2603
2604 /* Init the max basic CPUID leaf. */
2605 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2606
2607 /* Init the max extended CPUID leaf. */
2608 x86_cpuid(0x80000000, descs);
2609 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2610
2611 memset(hsave, 0, sizeof(hsave));
2612 for (CPU_INFO_FOREACH(cii, ci)) {
2613 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2614 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2615 }
2616
2617 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2618 xc_wait(xc);
2619 }
2620
2621 static void
2622 svm_fini_asid(void)
2623 {
2624 size_t allocsz;
2625
2626 allocsz = roundup(svm_maxasid, 8) / 8;
2627 kmem_free(svm_asidmap, allocsz);
2628
2629 mutex_destroy(&svm_asidlock);
2630 }
2631
2632 static void
2633 svm_fini(void)
2634 {
2635 uint64_t xc;
2636 size_t i;
2637
2638 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2639 xc_wait(xc);
2640
2641 for (i = 0; i < MAXCPUS; i++) {
2642 if (hsave[i].pa != 0)
2643 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2644 }
2645
2646 svm_fini_asid();
2647 }
2648
2649 static void
2650 svm_capability(struct nvmm_capability *cap)
2651 {
2652 cap->arch.mach_conf_support = 0;
2653 cap->arch.vcpu_conf_support =
2654 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2655 cap->arch.xcr0_mask = svm_xcr0_mask;
2656 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2657 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2658 }
2659
2660 const struct nvmm_impl nvmm_x86_svm = {
2661 .name = "x86-svm",
2662 .ident = svm_ident,
2663 .init = svm_init,
2664 .fini = svm_fini,
2665 .capability = svm_capability,
2666 .mach_conf_max = NVMM_X86_MACH_NCONF,
2667 .mach_conf_sizes = NULL,
2668 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2669 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2670 .state_size = sizeof(struct nvmm_x64_state),
2671 .machine_create = svm_machine_create,
2672 .machine_destroy = svm_machine_destroy,
2673 .machine_configure = svm_machine_configure,
2674 .vcpu_create = svm_vcpu_create,
2675 .vcpu_destroy = svm_vcpu_destroy,
2676 .vcpu_configure = svm_vcpu_configure,
2677 .vcpu_setstate = svm_vcpu_setstate,
2678 .vcpu_getstate = svm_vcpu_getstate,
2679 .vcpu_inject = svm_vcpu_inject,
2680 .vcpu_run = svm_vcpu_run
2681 };
2682