Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_svm.c revision 1.86
      1 /*	$NetBSD: nvmm_x86_svm.c,v 1.86 2025/03/09 19:16:47 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
      5  * All rights reserved.
      6  *
      7  * This code is part of the NVMM hypervisor.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.86 2025/03/09 19:16:47 riastradh Exp $");
     33 
     34 #include <sys/param.h>
     35 #include <sys/systm.h>
     36 #include <sys/kernel.h>
     37 #include <sys/kmem.h>
     38 #include <sys/cpu.h>
     39 #include <sys/xcall.h>
     40 #include <sys/mman.h>
     41 
     42 #include <uvm/uvm_extern.h>
     43 #include <uvm/uvm_page.h>
     44 
     45 #include <x86/cputypes.h>
     46 #include <x86/specialreg.h>
     47 #include <x86/dbregs.h>
     48 #include <x86/cpu_counter.h>
     49 
     50 #include <machine/cpuvar.h>
     51 #include <machine/pmap_private.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int svm_vmrun(paddr_t, uint64_t *);
     58 
     59 static inline void
     60 svm_clgi(void)
     61 {
     62 	asm volatile ("clgi" ::: "memory");
     63 }
     64 
     65 static inline void
     66 svm_stgi(void)
     67 {
     68 	asm volatile ("stgi" ::: "memory");
     69 }
     70 
     71 #define	MSR_VM_HSAVE_PA	0xC0010117
     72 
     73 /* -------------------------------------------------------------------------- */
     74 
     75 #define VMCB_EXITCODE_CR0_READ		0x0000
     76 #define VMCB_EXITCODE_CR1_READ		0x0001
     77 #define VMCB_EXITCODE_CR2_READ		0x0002
     78 #define VMCB_EXITCODE_CR3_READ		0x0003
     79 #define VMCB_EXITCODE_CR4_READ		0x0004
     80 #define VMCB_EXITCODE_CR5_READ		0x0005
     81 #define VMCB_EXITCODE_CR6_READ		0x0006
     82 #define VMCB_EXITCODE_CR7_READ		0x0007
     83 #define VMCB_EXITCODE_CR8_READ		0x0008
     84 #define VMCB_EXITCODE_CR9_READ		0x0009
     85 #define VMCB_EXITCODE_CR10_READ		0x000A
     86 #define VMCB_EXITCODE_CR11_READ		0x000B
     87 #define VMCB_EXITCODE_CR12_READ		0x000C
     88 #define VMCB_EXITCODE_CR13_READ		0x000D
     89 #define VMCB_EXITCODE_CR14_READ		0x000E
     90 #define VMCB_EXITCODE_CR15_READ		0x000F
     91 #define VMCB_EXITCODE_CR0_WRITE		0x0010
     92 #define VMCB_EXITCODE_CR1_WRITE		0x0011
     93 #define VMCB_EXITCODE_CR2_WRITE		0x0012
     94 #define VMCB_EXITCODE_CR3_WRITE		0x0013
     95 #define VMCB_EXITCODE_CR4_WRITE		0x0014
     96 #define VMCB_EXITCODE_CR5_WRITE		0x0015
     97 #define VMCB_EXITCODE_CR6_WRITE		0x0016
     98 #define VMCB_EXITCODE_CR7_WRITE		0x0017
     99 #define VMCB_EXITCODE_CR8_WRITE		0x0018
    100 #define VMCB_EXITCODE_CR9_WRITE		0x0019
    101 #define VMCB_EXITCODE_CR10_WRITE	0x001A
    102 #define VMCB_EXITCODE_CR11_WRITE	0x001B
    103 #define VMCB_EXITCODE_CR12_WRITE	0x001C
    104 #define VMCB_EXITCODE_CR13_WRITE	0x001D
    105 #define VMCB_EXITCODE_CR14_WRITE	0x001E
    106 #define VMCB_EXITCODE_CR15_WRITE	0x001F
    107 #define VMCB_EXITCODE_DR0_READ		0x0020
    108 #define VMCB_EXITCODE_DR1_READ		0x0021
    109 #define VMCB_EXITCODE_DR2_READ		0x0022
    110 #define VMCB_EXITCODE_DR3_READ		0x0023
    111 #define VMCB_EXITCODE_DR4_READ		0x0024
    112 #define VMCB_EXITCODE_DR5_READ		0x0025
    113 #define VMCB_EXITCODE_DR6_READ		0x0026
    114 #define VMCB_EXITCODE_DR7_READ		0x0027
    115 #define VMCB_EXITCODE_DR8_READ		0x0028
    116 #define VMCB_EXITCODE_DR9_READ		0x0029
    117 #define VMCB_EXITCODE_DR10_READ		0x002A
    118 #define VMCB_EXITCODE_DR11_READ		0x002B
    119 #define VMCB_EXITCODE_DR12_READ		0x002C
    120 #define VMCB_EXITCODE_DR13_READ		0x002D
    121 #define VMCB_EXITCODE_DR14_READ		0x002E
    122 #define VMCB_EXITCODE_DR15_READ		0x002F
    123 #define VMCB_EXITCODE_DR0_WRITE		0x0030
    124 #define VMCB_EXITCODE_DR1_WRITE		0x0031
    125 #define VMCB_EXITCODE_DR2_WRITE		0x0032
    126 #define VMCB_EXITCODE_DR3_WRITE		0x0033
    127 #define VMCB_EXITCODE_DR4_WRITE		0x0034
    128 #define VMCB_EXITCODE_DR5_WRITE		0x0035
    129 #define VMCB_EXITCODE_DR6_WRITE		0x0036
    130 #define VMCB_EXITCODE_DR7_WRITE		0x0037
    131 #define VMCB_EXITCODE_DR8_WRITE		0x0038
    132 #define VMCB_EXITCODE_DR9_WRITE		0x0039
    133 #define VMCB_EXITCODE_DR10_WRITE	0x003A
    134 #define VMCB_EXITCODE_DR11_WRITE	0x003B
    135 #define VMCB_EXITCODE_DR12_WRITE	0x003C
    136 #define VMCB_EXITCODE_DR13_WRITE	0x003D
    137 #define VMCB_EXITCODE_DR14_WRITE	0x003E
    138 #define VMCB_EXITCODE_DR15_WRITE	0x003F
    139 #define VMCB_EXITCODE_EXCP0		0x0040
    140 #define VMCB_EXITCODE_EXCP1		0x0041
    141 #define VMCB_EXITCODE_EXCP2		0x0042
    142 #define VMCB_EXITCODE_EXCP3		0x0043
    143 #define VMCB_EXITCODE_EXCP4		0x0044
    144 #define VMCB_EXITCODE_EXCP5		0x0045
    145 #define VMCB_EXITCODE_EXCP6		0x0046
    146 #define VMCB_EXITCODE_EXCP7		0x0047
    147 #define VMCB_EXITCODE_EXCP8		0x0048
    148 #define VMCB_EXITCODE_EXCP9		0x0049
    149 #define VMCB_EXITCODE_EXCP10		0x004A
    150 #define VMCB_EXITCODE_EXCP11		0x004B
    151 #define VMCB_EXITCODE_EXCP12		0x004C
    152 #define VMCB_EXITCODE_EXCP13		0x004D
    153 #define VMCB_EXITCODE_EXCP14		0x004E
    154 #define VMCB_EXITCODE_EXCP15		0x004F
    155 #define VMCB_EXITCODE_EXCP16		0x0050
    156 #define VMCB_EXITCODE_EXCP17		0x0051
    157 #define VMCB_EXITCODE_EXCP18		0x0052
    158 #define VMCB_EXITCODE_EXCP19		0x0053
    159 #define VMCB_EXITCODE_EXCP20		0x0054
    160 #define VMCB_EXITCODE_EXCP21		0x0055
    161 #define VMCB_EXITCODE_EXCP22		0x0056
    162 #define VMCB_EXITCODE_EXCP23		0x0057
    163 #define VMCB_EXITCODE_EXCP24		0x0058
    164 #define VMCB_EXITCODE_EXCP25		0x0059
    165 #define VMCB_EXITCODE_EXCP26		0x005A
    166 #define VMCB_EXITCODE_EXCP27		0x005B
    167 #define VMCB_EXITCODE_EXCP28		0x005C
    168 #define VMCB_EXITCODE_EXCP29		0x005D
    169 #define VMCB_EXITCODE_EXCP30		0x005E
    170 #define VMCB_EXITCODE_EXCP31		0x005F
    171 #define VMCB_EXITCODE_INTR		0x0060
    172 #define VMCB_EXITCODE_NMI		0x0061
    173 #define VMCB_EXITCODE_SMI		0x0062
    174 #define VMCB_EXITCODE_INIT		0x0063
    175 #define VMCB_EXITCODE_VINTR		0x0064
    176 #define VMCB_EXITCODE_CR0_SEL_WRITE	0x0065
    177 #define VMCB_EXITCODE_IDTR_READ		0x0066
    178 #define VMCB_EXITCODE_GDTR_READ		0x0067
    179 #define VMCB_EXITCODE_LDTR_READ		0x0068
    180 #define VMCB_EXITCODE_TR_READ		0x0069
    181 #define VMCB_EXITCODE_IDTR_WRITE	0x006A
    182 #define VMCB_EXITCODE_GDTR_WRITE	0x006B
    183 #define VMCB_EXITCODE_LDTR_WRITE	0x006C
    184 #define VMCB_EXITCODE_TR_WRITE		0x006D
    185 #define VMCB_EXITCODE_RDTSC		0x006E
    186 #define VMCB_EXITCODE_RDPMC		0x006F
    187 #define VMCB_EXITCODE_PUSHF		0x0070
    188 #define VMCB_EXITCODE_POPF		0x0071
    189 #define VMCB_EXITCODE_CPUID		0x0072
    190 #define VMCB_EXITCODE_RSM		0x0073
    191 #define VMCB_EXITCODE_IRET		0x0074
    192 #define VMCB_EXITCODE_SWINT		0x0075
    193 #define VMCB_EXITCODE_INVD		0x0076
    194 #define VMCB_EXITCODE_PAUSE		0x0077
    195 #define VMCB_EXITCODE_HLT		0x0078
    196 #define VMCB_EXITCODE_INVLPG		0x0079
    197 #define VMCB_EXITCODE_INVLPGA		0x007A
    198 #define VMCB_EXITCODE_IOIO		0x007B
    199 #define VMCB_EXITCODE_MSR		0x007C
    200 #define VMCB_EXITCODE_TASK_SWITCH	0x007D
    201 #define VMCB_EXITCODE_FERR_FREEZE	0x007E
    202 #define VMCB_EXITCODE_SHUTDOWN		0x007F
    203 #define VMCB_EXITCODE_VMRUN		0x0080
    204 #define VMCB_EXITCODE_VMMCALL		0x0081
    205 #define VMCB_EXITCODE_VMLOAD		0x0082
    206 #define VMCB_EXITCODE_VMSAVE		0x0083
    207 #define VMCB_EXITCODE_STGI		0x0084
    208 #define VMCB_EXITCODE_CLGI		0x0085
    209 #define VMCB_EXITCODE_SKINIT		0x0086
    210 #define VMCB_EXITCODE_RDTSCP		0x0087
    211 #define VMCB_EXITCODE_ICEBP		0x0088
    212 #define VMCB_EXITCODE_WBINVD		0x0089
    213 #define VMCB_EXITCODE_MONITOR		0x008A
    214 #define VMCB_EXITCODE_MWAIT		0x008B
    215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL	0x008C
    216 #define VMCB_EXITCODE_XSETBV		0x008D
    217 #define VMCB_EXITCODE_RDPRU		0x008E
    218 #define VMCB_EXITCODE_EFER_WRITE_TRAP	0x008F
    219 #define VMCB_EXITCODE_CR0_WRITE_TRAP	0x0090
    220 #define VMCB_EXITCODE_CR1_WRITE_TRAP	0x0091
    221 #define VMCB_EXITCODE_CR2_WRITE_TRAP	0x0092
    222 #define VMCB_EXITCODE_CR3_WRITE_TRAP	0x0093
    223 #define VMCB_EXITCODE_CR4_WRITE_TRAP	0x0094
    224 #define VMCB_EXITCODE_CR5_WRITE_TRAP	0x0095
    225 #define VMCB_EXITCODE_CR6_WRITE_TRAP	0x0096
    226 #define VMCB_EXITCODE_CR7_WRITE_TRAP	0x0097
    227 #define VMCB_EXITCODE_CR8_WRITE_TRAP	0x0098
    228 #define VMCB_EXITCODE_CR9_WRITE_TRAP	0x0099
    229 #define VMCB_EXITCODE_CR10_WRITE_TRAP	0x009A
    230 #define VMCB_EXITCODE_CR11_WRITE_TRAP	0x009B
    231 #define VMCB_EXITCODE_CR12_WRITE_TRAP	0x009C
    232 #define VMCB_EXITCODE_CR13_WRITE_TRAP	0x009D
    233 #define VMCB_EXITCODE_CR14_WRITE_TRAP	0x009E
    234 #define VMCB_EXITCODE_CR15_WRITE_TRAP	0x009F
    235 #define VMCB_EXITCODE_INVLPGB		0x00A0
    236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL	0x00A1
    237 #define VMCB_EXITCODE_INVPCID		0x00A2
    238 #define VMCB_EXITCODE_MCOMMIT		0x00A3
    239 #define VMCB_EXITCODE_TLBSYNC		0x00A4
    240 #define VMCB_EXITCODE_NPF		0x0400
    241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI	0x0401
    242 #define VMCB_EXITCODE_AVIC_NOACCEL	0x0402
    243 #define VMCB_EXITCODE_VMGEXIT		0x0403
    244 #define VMCB_EXITCODE_BUSY		-2ULL
    245 #define VMCB_EXITCODE_INVALID		-1ULL
    246 
    247 /* -------------------------------------------------------------------------- */
    248 
    249 struct vmcb_ctrl {
    250 	uint32_t intercept_cr;
    251 #define VMCB_CTRL_INTERCEPT_RCR(x)	__BIT( 0 + x)
    252 #define VMCB_CTRL_INTERCEPT_WCR(x)	__BIT(16 + x)
    253 
    254 	uint32_t intercept_dr;
    255 #define VMCB_CTRL_INTERCEPT_RDR(x)	__BIT( 0 + x)
    256 #define VMCB_CTRL_INTERCEPT_WDR(x)	__BIT(16 + x)
    257 
    258 	uint32_t intercept_vec;
    259 #define VMCB_CTRL_INTERCEPT_VEC(x)	__BIT(x)
    260 
    261 	uint32_t intercept_misc1;
    262 #define VMCB_CTRL_INTERCEPT_INTR	__BIT(0)
    263 #define VMCB_CTRL_INTERCEPT_NMI		__BIT(1)
    264 #define VMCB_CTRL_INTERCEPT_SMI		__BIT(2)
    265 #define VMCB_CTRL_INTERCEPT_INIT	__BIT(3)
    266 #define VMCB_CTRL_INTERCEPT_VINTR	__BIT(4)
    267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC	__BIT(5)
    268 #define VMCB_CTRL_INTERCEPT_RIDTR	__BIT(6)
    269 #define VMCB_CTRL_INTERCEPT_RGDTR	__BIT(7)
    270 #define VMCB_CTRL_INTERCEPT_RLDTR	__BIT(8)
    271 #define VMCB_CTRL_INTERCEPT_RTR		__BIT(9)
    272 #define VMCB_CTRL_INTERCEPT_WIDTR	__BIT(10)
    273 #define VMCB_CTRL_INTERCEPT_WGDTR	__BIT(11)
    274 #define VMCB_CTRL_INTERCEPT_WLDTR	__BIT(12)
    275 #define VMCB_CTRL_INTERCEPT_WTR		__BIT(13)
    276 #define VMCB_CTRL_INTERCEPT_RDTSC	__BIT(14)
    277 #define VMCB_CTRL_INTERCEPT_RDPMC	__BIT(15)
    278 #define VMCB_CTRL_INTERCEPT_PUSHF	__BIT(16)
    279 #define VMCB_CTRL_INTERCEPT_POPF	__BIT(17)
    280 #define VMCB_CTRL_INTERCEPT_CPUID	__BIT(18)
    281 #define VMCB_CTRL_INTERCEPT_RSM		__BIT(19)
    282 #define VMCB_CTRL_INTERCEPT_IRET	__BIT(20)
    283 #define VMCB_CTRL_INTERCEPT_INTN	__BIT(21)
    284 #define VMCB_CTRL_INTERCEPT_INVD	__BIT(22)
    285 #define VMCB_CTRL_INTERCEPT_PAUSE	__BIT(23)
    286 #define VMCB_CTRL_INTERCEPT_HLT		__BIT(24)
    287 #define VMCB_CTRL_INTERCEPT_INVLPG	__BIT(25)
    288 #define VMCB_CTRL_INTERCEPT_INVLPGA	__BIT(26)
    289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT	__BIT(27)
    290 #define VMCB_CTRL_INTERCEPT_MSR_PROT	__BIT(28)
    291 #define VMCB_CTRL_INTERCEPT_TASKSW	__BIT(29)
    292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE	__BIT(30)
    293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN	__BIT(31)
    294 
    295 	uint32_t intercept_misc2;
    296 #define VMCB_CTRL_INTERCEPT_VMRUN	__BIT(0)
    297 #define VMCB_CTRL_INTERCEPT_VMMCALL	__BIT(1)
    298 #define VMCB_CTRL_INTERCEPT_VMLOAD	__BIT(2)
    299 #define VMCB_CTRL_INTERCEPT_VMSAVE	__BIT(3)
    300 #define VMCB_CTRL_INTERCEPT_STGI	__BIT(4)
    301 #define VMCB_CTRL_INTERCEPT_CLGI	__BIT(5)
    302 #define VMCB_CTRL_INTERCEPT_SKINIT	__BIT(6)
    303 #define VMCB_CTRL_INTERCEPT_RDTSCP	__BIT(7)
    304 #define VMCB_CTRL_INTERCEPT_ICEBP	__BIT(8)
    305 #define VMCB_CTRL_INTERCEPT_WBINVD	__BIT(9)
    306 #define VMCB_CTRL_INTERCEPT_MONITOR	__BIT(10)
    307 #define VMCB_CTRL_INTERCEPT_MWAIT	__BIT(11)
    308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED	__BIT(12)
    309 #define VMCB_CTRL_INTERCEPT_XSETBV	__BIT(13)
    310 #define VMCB_CTRL_INTERCEPT_RDPRU	__BIT(14)
    311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC	__BIT(15)
    312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x)	__BIT(16 + x)
    313 
    314 	uint32_t intercept_misc3;
    315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL	__BIT(0)
    316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL	__BIT(1)
    317 #define VMCB_CTRL_INTERCEPT_PCID	__BIT(2)
    318 #define VMCB_CTRL_INTERCEPT_MCOMMIT	__BIT(3)
    319 #define VMCB_CTRL_INTERCEPT_TLBSYNC	__BIT(4)
    320 
    321 	uint8_t  rsvd1[36];
    322 	uint16_t pause_filt_thresh;
    323 	uint16_t pause_filt_cnt;
    324 	uint64_t iopm_base_pa;
    325 	uint64_t msrpm_base_pa;
    326 	uint64_t tsc_offset;
    327 	uint32_t guest_asid;
    328 
    329 	uint32_t tlb_ctrl;
    330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL			0x01
    331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST			0x03
    332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL	0x07
    333 
    334 	uint64_t v;
    335 #define VMCB_CTRL_V_TPR			__BITS(3,0)
    336 #define VMCB_CTRL_V_IRQ			__BIT(8)
    337 #define VMCB_CTRL_V_VGIF		__BIT(9)
    338 #define VMCB_CTRL_V_INTR_PRIO		__BITS(19,16)
    339 #define VMCB_CTRL_V_IGN_TPR		__BIT(20)
    340 #define VMCB_CTRL_V_INTR_MASKING	__BIT(24)
    341 #define VMCB_CTRL_V_GUEST_VGIF		__BIT(25)
    342 #define VMCB_CTRL_V_AVIC_EN		__BIT(31)
    343 #define VMCB_CTRL_V_INTR_VECTOR		__BITS(39,32)
    344 
    345 	uint64_t intr;
    346 #define VMCB_CTRL_INTR_SHADOW		__BIT(0)
    347 #define VMCB_CTRL_INTR_MASK		__BIT(1)
    348 
    349 	uint64_t exitcode;
    350 	uint64_t exitinfo1;
    351 	uint64_t exitinfo2;
    352 
    353 	uint64_t exitintinfo;
    354 #define VMCB_CTRL_EXITINTINFO_VECTOR	__BITS(7,0)
    355 #define VMCB_CTRL_EXITINTINFO_TYPE	__BITS(10,8)
    356 #define VMCB_CTRL_EXITINTINFO_EV	__BIT(11)
    357 #define VMCB_CTRL_EXITINTINFO_V		__BIT(31)
    358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE	__BITS(63,32)
    359 
    360 	uint64_t enable1;
    361 #define VMCB_CTRL_ENABLE_NP		__BIT(0)
    362 #define VMCB_CTRL_ENABLE_SEV		__BIT(1)
    363 #define VMCB_CTRL_ENABLE_ES_SEV		__BIT(2)
    364 #define VMCB_CTRL_ENABLE_GMET		__BIT(3)
    365 #define VMCB_CTRL_ENABLE_VTE		__BIT(5)
    366 
    367 	uint64_t avic;
    368 #define VMCB_CTRL_AVIC_APIC_BAR		__BITS(51,0)
    369 
    370 	uint64_t ghcb;
    371 
    372 	uint64_t eventinj;
    373 #define VMCB_CTRL_EVENTINJ_VECTOR	__BITS(7,0)
    374 #define VMCB_CTRL_EVENTINJ_TYPE		__BITS(10,8)
    375 #define VMCB_CTRL_EVENTINJ_EV		__BIT(11)
    376 #define VMCB_CTRL_EVENTINJ_V		__BIT(31)
    377 #define VMCB_CTRL_EVENTINJ_ERRORCODE	__BITS(63,32)
    378 
    379 	uint64_t n_cr3;
    380 
    381 	uint64_t enable2;
    382 #define VMCB_CTRL_ENABLE_LBR		__BIT(0)
    383 #define VMCB_CTRL_ENABLE_VVMSAVE	__BIT(1)
    384 
    385 	uint32_t vmcb_clean;
    386 #define VMCB_CTRL_VMCB_CLEAN_I		__BIT(0)
    387 #define VMCB_CTRL_VMCB_CLEAN_IOPM	__BIT(1)
    388 #define VMCB_CTRL_VMCB_CLEAN_ASID	__BIT(2)
    389 #define VMCB_CTRL_VMCB_CLEAN_TPR	__BIT(3)
    390 #define VMCB_CTRL_VMCB_CLEAN_NP		__BIT(4)
    391 #define VMCB_CTRL_VMCB_CLEAN_CR		__BIT(5)
    392 #define VMCB_CTRL_VMCB_CLEAN_DR		__BIT(6)
    393 #define VMCB_CTRL_VMCB_CLEAN_DT		__BIT(7)
    394 #define VMCB_CTRL_VMCB_CLEAN_SEG	__BIT(8)
    395 #define VMCB_CTRL_VMCB_CLEAN_CR2	__BIT(9)
    396 #define VMCB_CTRL_VMCB_CLEAN_LBR	__BIT(10)
    397 #define VMCB_CTRL_VMCB_CLEAN_AVIC	__BIT(11)
    398 
    399 	uint32_t rsvd2;
    400 	uint64_t nrip;
    401 	uint8_t	inst_len;
    402 	uint8_t	inst_bytes[15];
    403 	uint64_t avic_abpp;
    404 	uint64_t rsvd3;
    405 	uint64_t avic_ltp;
    406 
    407 	uint64_t avic_phys;
    408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR	__BITS(51,12)
    409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX	__BITS(7,0)
    410 
    411 	uint64_t rsvd4;
    412 	uint64_t vmsa_ptr;
    413 
    414 	uint8_t	pad[752];
    415 } __packed;
    416 
    417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
    418 
    419 struct vmcb_segment {
    420 	uint16_t selector;
    421 	uint16_t attrib;	/* hidden */
    422 	uint32_t limit;		/* hidden */
    423 	uint64_t base;		/* hidden */
    424 } __packed;
    425 
    426 CTASSERT(sizeof(struct vmcb_segment) == 16);
    427 
    428 struct vmcb_state {
    429 	struct   vmcb_segment es;
    430 	struct   vmcb_segment cs;
    431 	struct   vmcb_segment ss;
    432 	struct   vmcb_segment ds;
    433 	struct   vmcb_segment fs;
    434 	struct   vmcb_segment gs;
    435 	struct   vmcb_segment gdt;
    436 	struct   vmcb_segment ldt;
    437 	struct   vmcb_segment idt;
    438 	struct   vmcb_segment tr;
    439 	uint8_t	 rsvd1[43];
    440 	uint8_t	 cpl;
    441 	uint8_t  rsvd2[4];
    442 	uint64_t efer;
    443 	uint8_t	 rsvd3[112];
    444 	uint64_t cr4;
    445 	uint64_t cr3;
    446 	uint64_t cr0;
    447 	uint64_t dr7;
    448 	uint64_t dr6;
    449 	uint64_t rflags;
    450 	uint64_t rip;
    451 	uint8_t	 rsvd4[88];
    452 	uint64_t rsp;
    453 	uint8_t	 rsvd5[24];
    454 	uint64_t rax;
    455 	uint64_t star;
    456 	uint64_t lstar;
    457 	uint64_t cstar;
    458 	uint64_t sfmask;
    459 	uint64_t kernelgsbase;
    460 	uint64_t sysenter_cs;
    461 	uint64_t sysenter_esp;
    462 	uint64_t sysenter_eip;
    463 	uint64_t cr2;
    464 	uint8_t	 rsvd6[32];
    465 	uint64_t g_pat;
    466 	uint64_t dbgctl;
    467 	uint64_t br_from;
    468 	uint64_t br_to;
    469 	uint64_t int_from;
    470 	uint64_t int_to;
    471 	uint8_t	 pad[2408];
    472 } __packed;
    473 
    474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
    475 
    476 struct vmcb {
    477 	struct vmcb_ctrl ctrl;
    478 	struct vmcb_state state;
    479 } __packed;
    480 
    481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
    482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
    483 
    484 /* -------------------------------------------------------------------------- */
    485 
    486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
    487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
    488 
    489 struct svm_hsave {
    490 	paddr_t pa;
    491 };
    492 
    493 static struct svm_hsave hsave[MAXCPUS];
    494 
    495 static uint8_t *svm_asidmap __read_mostly;
    496 static uint32_t svm_maxasid __read_mostly;
    497 static kmutex_t svm_asidlock __cacheline_aligned;
    498 
    499 static bool svm_decode_assist __read_mostly;
    500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
    501 
    502 #define SVM_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    503 static uint64_t svm_xcr0_mask __read_mostly;
    504 
    505 #define SVM_NCPUIDS	32
    506 
    507 #define VMCB_NPAGES	1
    508 
    509 #define MSRBM_NPAGES	2
    510 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    511 
    512 #define IOBM_NPAGES	3
    513 #define IOBM_SIZE	(IOBM_NPAGES * PAGE_SIZE)
    514 
    515 /* Does not include EFER_LMSLE. */
    516 #define EFER_VALID \
    517 	(EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
    518 
    519 #define EFER_TLB_FLUSH \
    520 	(EFER_NXE|EFER_LMA|EFER_LME)
    521 #define CR0_TLB_FLUSH \
    522 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    523 #define CR4_TLB_FLUSH \
    524 	(CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
    525 
    526 #define CR4_VALID \
    527 	(CR4_VME |			\
    528 	 CR4_PVI |			\
    529 	 CR4_TSD |			\
    530 	 CR4_DE |			\
    531 	 CR4_PSE |			\
    532 	 CR4_PAE |			\
    533 	 CR4_MCE |			\
    534 	 CR4_PGE |			\
    535 	 CR4_PCE |			\
    536 	 CR4_OSFXSR |			\
    537 	 CR4_OSXMMEXCPT |		\
    538 	 CR4_UMIP |			\
    539 	 /* CR4_LA57 excluded */	\
    540 	 /* bit 13 reserved on AMD */	\
    541 	 /* bit 14 reserved on AMD */	\
    542 	 /* bit 15 reserved on AMD */	\
    543 	 CR4_FSGSBASE |			\
    544 	 CR4_PCIDE |			\
    545 	 CR4_OSXSAVE |			\
    546 	 /* bit 19 reserved on AMD */	\
    547 	 CR4_SMEP |			\
    548 	 CR4_SMAP			\
    549 	 /* CR4_PKE excluded */		\
    550 	 /* CR4_CET excluded */		\
    551 	 /* bits 24:63 reserved on AMD */)
    552 
    553 /* -------------------------------------------------------------------------- */
    554 
    555 struct svm_machdata {
    556 	volatile uint64_t mach_htlb_gen;
    557 };
    558 
    559 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
    560 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
    561 	    sizeof(struct nvmm_vcpu_conf_cpuid),
    562 	[NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
    563 	    sizeof(struct nvmm_vcpu_conf_tpr)
    564 };
    565 
    566 struct svm_cpudata {
    567 	/* General */
    568 	bool shared_asid;
    569 	bool gtlb_want_flush;
    570 	bool gtsc_want_update;
    571 	uint64_t vcpu_htlb_gen;
    572 
    573 	/* VMCB */
    574 	struct vmcb *vmcb;
    575 	paddr_t vmcb_pa;
    576 
    577 	/* I/O bitmap */
    578 	uint8_t *iobm;
    579 	paddr_t iobm_pa;
    580 
    581 	/* MSR bitmap */
    582 	uint8_t *msrbm;
    583 	paddr_t msrbm_pa;
    584 
    585 	/* Host state */
    586 	uint64_t hxcr0;
    587 	uint64_t star;
    588 	uint64_t lstar;
    589 	uint64_t cstar;
    590 	uint64_t sfmask;
    591 	uint64_t fsbase;
    592 	uint64_t kernelgsbase;
    593 
    594 	/* Intr state */
    595 	bool int_window_exit;
    596 	bool nmi_window_exit;
    597 	bool evt_pending;
    598 
    599 	/* Guest state */
    600 	uint64_t gxcr0;
    601 	uint64_t gprs[NVMM_X64_NGPR];
    602 	uint64_t drs[NVMM_X64_NDR];
    603 	uint64_t gtsc;
    604 	struct xsave_header gfpu __aligned(64);
    605 
    606 	/* VCPU configuration. */
    607 	bool cpuidpresent[SVM_NCPUIDS];
    608 	struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
    609 };
    610 
    611 static void
    612 svm_vmcb_cache_default(struct vmcb *vmcb)
    613 {
    614 	vmcb->ctrl.vmcb_clean =
    615 	    VMCB_CTRL_VMCB_CLEAN_I |
    616 	    VMCB_CTRL_VMCB_CLEAN_IOPM |
    617 	    VMCB_CTRL_VMCB_CLEAN_ASID |
    618 	    VMCB_CTRL_VMCB_CLEAN_TPR |
    619 	    VMCB_CTRL_VMCB_CLEAN_NP |
    620 	    VMCB_CTRL_VMCB_CLEAN_CR |
    621 	    VMCB_CTRL_VMCB_CLEAN_DR |
    622 	    VMCB_CTRL_VMCB_CLEAN_DT |
    623 	    VMCB_CTRL_VMCB_CLEAN_SEG |
    624 	    VMCB_CTRL_VMCB_CLEAN_CR2 |
    625 	    VMCB_CTRL_VMCB_CLEAN_LBR |
    626 	    VMCB_CTRL_VMCB_CLEAN_AVIC;
    627 }
    628 
    629 static void
    630 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
    631 {
    632 	if (flags & NVMM_X64_STATE_SEGS) {
    633 		vmcb->ctrl.vmcb_clean &=
    634 		    ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
    635 	}
    636 	if (flags & NVMM_X64_STATE_CRS) {
    637 		vmcb->ctrl.vmcb_clean &=
    638 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
    639 		      VMCB_CTRL_VMCB_CLEAN_TPR);
    640 	}
    641 	if (flags & NVMM_X64_STATE_DRS) {
    642 		vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
    643 	}
    644 	if (flags & NVMM_X64_STATE_MSRS) {
    645 		/* CR for EFER, NP for PAT. */
    646 		vmcb->ctrl.vmcb_clean &=
    647 		    ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
    648 	}
    649 }
    650 
    651 static inline void
    652 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
    653 {
    654 	vmcb->ctrl.vmcb_clean &= ~flags;
    655 }
    656 
    657 static inline void
    658 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
    659 {
    660 	vmcb->ctrl.vmcb_clean = 0;
    661 }
    662 
    663 #define SVM_EVENT_TYPE_HW_INT	0
    664 #define SVM_EVENT_TYPE_NMI	2
    665 #define SVM_EVENT_TYPE_EXC	3
    666 #define SVM_EVENT_TYPE_SW_INT	4
    667 
    668 static void
    669 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    670 {
    671 	struct svm_cpudata *cpudata = vcpu->cpudata;
    672 	struct vmcb *vmcb = cpudata->vmcb;
    673 
    674 	if (nmi) {
    675 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
    676 		cpudata->nmi_window_exit = true;
    677 	} else {
    678 		vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
    679 		vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    680 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    681 		cpudata->int_window_exit = true;
    682 	}
    683 
    684 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    685 }
    686 
    687 static void
    688 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    689 {
    690 	struct svm_cpudata *cpudata = vcpu->cpudata;
    691 	struct vmcb *vmcb = cpudata->vmcb;
    692 
    693 	if (nmi) {
    694 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
    695 		cpudata->nmi_window_exit = false;
    696 	} else {
    697 		vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
    698 		vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
    699 		svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
    700 		cpudata->int_window_exit = false;
    701 	}
    702 
    703 	svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
    704 }
    705 
    706 static inline bool
    707 svm_excp_has_rf(uint8_t vector)
    708 {
    709 	switch (vector) {
    710 	case 1:		/* #DB */
    711 	case 4:		/* #OF */
    712 	case 8:		/* #DF */
    713 	case 18:	/* #MC */
    714 		return false;
    715 	default:
    716 		return true;
    717 	}
    718 }
    719 
    720 static inline int
    721 svm_excp_has_error(uint8_t vector)
    722 {
    723 	switch (vector) {
    724 	case 8:		/* #DF */
    725 	case 10:	/* #TS */
    726 	case 11:	/* #NP */
    727 	case 12:	/* #SS */
    728 	case 13:	/* #GP */
    729 	case 14:	/* #PF */
    730 	case 17:	/* #AC */
    731 	case 30:	/* #SX */
    732 		return 1;
    733 	default:
    734 		return 0;
    735 	}
    736 }
    737 
    738 static int
    739 svm_vcpu_inject(struct nvmm_cpu *vcpu)
    740 {
    741 	struct nvmm_comm_page *comm = vcpu->comm;
    742 	struct svm_cpudata *cpudata = vcpu->cpudata;
    743 	struct vmcb *vmcb = cpudata->vmcb;
    744 	u_int evtype;
    745 	uint8_t vector;
    746 	uint64_t error;
    747 	int type = 0, err = 0;
    748 
    749 	evtype = comm->event.type;
    750 	vector = comm->event.vector;
    751 	error = comm->event.u.excp.error;
    752 	__insn_barrier();
    753 
    754 	switch (evtype) {
    755 	case NVMM_VCPU_EVENT_EXCP:
    756 		type = SVM_EVENT_TYPE_EXC;
    757 		if (vector == 2 || vector >= 32)
    758 			return EINVAL;
    759 		if (vector == 3 || vector == 0)
    760 			return EINVAL;
    761 		if (svm_excp_has_rf(vector)) {
    762 			vmcb->state.rflags |= PSL_RF;
    763 		}
    764 		err = svm_excp_has_error(vector);
    765 		break;
    766 	case NVMM_VCPU_EVENT_INTR:
    767 		type = SVM_EVENT_TYPE_HW_INT;
    768 		if (vector == 2) {
    769 			type = SVM_EVENT_TYPE_NMI;
    770 			svm_event_waitexit_enable(vcpu, true);
    771 		}
    772 		err = 0;
    773 		break;
    774 	default:
    775 		return EINVAL;
    776 	}
    777 
    778 	vmcb->ctrl.eventinj =
    779 	    __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
    780 	    __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
    781 	    __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
    782 	    __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
    783 	    __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
    784 
    785 	cpudata->evt_pending = true;
    786 
    787 	return 0;
    788 }
    789 
    790 static void
    791 svm_inject_ud(struct nvmm_cpu *vcpu)
    792 {
    793 	struct nvmm_comm_page *comm = vcpu->comm;
    794 	int ret __diagused;
    795 
    796 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
    797 	comm->event.vector = 6;
    798 	comm->event.u.excp.error = 0;
    799 
    800 	ret = svm_vcpu_inject(vcpu);
    801 	KASSERT(ret == 0);
    802 }
    803 
    804 static void
    805 svm_inject_gp(struct nvmm_cpu *vcpu)
    806 {
    807 	struct nvmm_comm_page *comm = vcpu->comm;
    808 	int ret __diagused;
    809 
    810 	comm->event.type = NVMM_VCPU_EVENT_EXCP;
    811 	comm->event.vector = 13;
    812 	comm->event.u.excp.error = 0;
    813 
    814 	ret = svm_vcpu_inject(vcpu);
    815 	KASSERT(ret == 0);
    816 }
    817 
    818 static inline int
    819 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
    820 {
    821 	if (__predict_true(!vcpu->comm->event_commit)) {
    822 		return 0;
    823 	}
    824 	vcpu->comm->event_commit = false;
    825 	return svm_vcpu_inject(vcpu);
    826 }
    827 
    828 static inline void
    829 svm_inkernel_advance(struct vmcb *vmcb)
    830 {
    831 	/*
    832 	 * Maybe we should also apply single-stepping and debug exceptions.
    833 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    834 	 * debugger.
    835 	 */
    836 	vmcb->state.rip = vmcb->ctrl.nrip;
    837 	vmcb->state.rflags &= ~PSL_RF;
    838 	vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
    839 }
    840 
    841 #define SVM_CPUID_MAX_BASIC		0xD
    842 #define SVM_CPUID_MAX_HYPERVISOR	0x40000000
    843 #define SVM_CPUID_MAX_EXTENDED		0x8000001F
    844 static uint32_t svm_cpuid_max_basic __read_mostly;
    845 static uint32_t svm_cpuid_max_extended __read_mostly;
    846 
    847 static void
    848 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
    849 {
    850 	u_int descs[4];
    851 
    852 	x86_cpuid2(eax, ecx, descs);
    853 	cpudata->vmcb->state.rax = descs[0];
    854 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
    855 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
    856 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
    857 }
    858 
    859 static void
    860 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    861 {
    862 	struct svm_cpudata *cpudata = vcpu->cpudata;
    863 	uint64_t cr4;
    864 
    865 
    866 	/*
    867 	 * `If a value entered for CPUID.EAX is higher than the maximum
    868 	 *  input value for basic or extended function for that
    869 	 *  processor then the dtaa for the highest basic information
    870 	 *  leaf is returned.'
    871 	 *
    872 	 * --Intel 64 and IA-32 Architectures Software Developer's
    873 	 *   Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
    874 	 *   Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
    875 	 *   pp. 3-214.
    876 	 *
    877 	 * We take the same to hold for the hypervisor range,
    878 	 * 0x40000000-0x4fffffff.
    879 	 */
    880 	if (eax < 0x40000000) {		/* basic CPUID range */
    881 		if (__predict_false(eax > svm_cpuid_max_basic)) {
    882 			eax = svm_cpuid_max_basic;
    883 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
    884 		}
    885 	} else if (eax < 0x80000000) {	/* hypervisor CPUID range */
    886 		if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
    887 			eax = svm_cpuid_max_basic;
    888 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
    889 		}
    890 	} else {			/* extended CPUID range */
    891 		if (__predict_false(eax > svm_cpuid_max_extended)) {
    892 			eax = svm_cpuid_max_basic;
    893 			svm_inkernel_exec_cpuid(cpudata, eax, ecx);
    894 		}
    895 	}
    896 
    897 	switch (eax) {
    898 
    899 	/*
    900 	 * basic CPUID range
    901 	 */
    902 	case 0x00000000:
    903 		cpudata->vmcb->state.rax = svm_cpuid_max_basic;
    904 		break;
    905 	case 0x00000001:
    906 		cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
    907 
    908 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    909 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    910 		    CPUID_LOCAL_APIC_ID);
    911 
    912 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
    913 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
    914 
    915 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
    916 
    917 		/* CPUID2_OSXSAVE depends on CR4. */
    918 		cr4 = cpudata->vmcb->state.cr4;
    919 		if (!(cr4 & CR4_OSXSAVE)) {
    920 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
    921 		}
    922 		break;
    923 	case 0x00000002: /* Empty */
    924 	case 0x00000003: /* Empty */
    925 	case 0x00000004: /* Empty */
    926 	case 0x00000005: /* Monitor/MWait */
    927 	case 0x00000006: /* Power Management Related Features */
    928 		cpudata->vmcb->state.rax = 0;
    929 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    930 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    931 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    932 		break;
    933 	case 0x00000007: /* Structured Extended Features */
    934 		switch (ecx) {
    935 		case 0:
    936 			cpudata->vmcb->state.rax = 0;
    937 			cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
    938 			cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
    939 			cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
    940 			break;
    941 		default:
    942 			cpudata->vmcb->state.rax = 0;
    943 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    944 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    945 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    946 			break;
    947 		}
    948 		break;
    949 	case 0x00000008: /* Empty */
    950 	case 0x00000009: /* Empty */
    951 	case 0x0000000A: /* Empty */
    952 	case 0x0000000B: /* Empty */
    953 	case 0x0000000C: /* Empty */
    954 		cpudata->vmcb->state.rax = 0;
    955 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    956 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    957 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    958 		break;
    959 	case 0x0000000D: /* Processor Extended State Enumeration */
    960 		if (svm_xcr0_mask == 0) {
    961 			break;
    962 		}
    963 		switch (ecx) {
    964 		case 0:
    965 			cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
    966 			if (cpudata->gxcr0 & XCR0_SSE) {
    967 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
    968 			} else {
    969 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
    970 			}
    971 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
    972 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
    973 			cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
    974 			break;
    975 		case 1:
    976 			cpudata->vmcb->state.rax &=
    977 			    (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
    978 			     CPUID_PES1_XGETBV);
    979 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    980 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    981 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    982 			break;
    983 		default:
    984 			cpudata->vmcb->state.rax = 0;
    985 			cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    986 			cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    987 			cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
    988 			break;
    989 		}
    990 		break;
    991 
    992 	/*
    993 	 * hypervisor CPUID range
    994 	 */
    995 	case 0x40000000: /* Hypervisor Information */
    996 		cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
    997 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
    998 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
    999 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1000 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1001 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1002 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1003 		break;
   1004 
   1005 	/*
   1006 	 * extended CPUID range
   1007 	 */
   1008 	case 0x80000000:
   1009 		cpudata->vmcb->state.rax = svm_cpuid_max_extended;
   1010 		break;
   1011 	case 0x80000001:
   1012 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
   1013 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1014 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1015 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1016 		break;
   1017 	case 0x80000002: /* Extended Processor Name String */
   1018 	case 0x80000003: /* Extended Processor Name String */
   1019 	case 0x80000004: /* Extended Processor Name String */
   1020 	case 0x80000005: /* L1 Cache and TLB Information */
   1021 	case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
   1022 		break;
   1023 	case 0x80000007: /* Processor Power Management and RAS Capabilities */
   1024 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
   1025 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
   1026 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
   1027 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
   1028 		break;
   1029 	case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
   1030 		cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
   1031 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
   1032 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
   1033 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
   1034 		break;
   1035 	case 0x80000009: /* Empty */
   1036 	case 0x8000000A: /* SVM Features */
   1037 	case 0x8000000B: /* Empty */
   1038 	case 0x8000000C: /* Empty */
   1039 	case 0x8000000D: /* Empty */
   1040 	case 0x8000000E: /* Empty */
   1041 	case 0x8000000F: /* Empty */
   1042 	case 0x80000010: /* Empty */
   1043 	case 0x80000011: /* Empty */
   1044 	case 0x80000012: /* Empty */
   1045 	case 0x80000013: /* Empty */
   1046 	case 0x80000014: /* Empty */
   1047 	case 0x80000015: /* Empty */
   1048 	case 0x80000016: /* Empty */
   1049 	case 0x80000017: /* Empty */
   1050 	case 0x80000018: /* Empty */
   1051 		cpudata->vmcb->state.rax = 0;
   1052 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1053 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1054 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1055 		break;
   1056 	case 0x80000019: /* TLB Characteristics for 1GB pages */
   1057 	case 0x8000001A: /* Instruction Optimizations */
   1058 		break;
   1059 	case 0x8000001B: /* Instruction-Based Sampling Capabilities */
   1060 	case 0x8000001C: /* Lightweight Profiling Capabilities */
   1061 		cpudata->vmcb->state.rax = 0;
   1062 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1063 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1064 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1065 		break;
   1066 	case 0x8000001D: /* Cache Topology Information */
   1067 	case 0x8000001E: /* Processor Topology Information */
   1068 		break; /* TODO? */
   1069 	case 0x8000001F: /* Encrypted Memory Capabilities */
   1070 		cpudata->vmcb->state.rax = 0;
   1071 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1072 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1073 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1074 		break;
   1075 
   1076 	default:
   1077 		break;
   1078 	}
   1079 }
   1080 
   1081 static void
   1082 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
   1083 {
   1084 	exit->u.insn.npc = vmcb->ctrl.nrip;
   1085 	exit->reason = reason;
   1086 }
   1087 
   1088 static void
   1089 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1090     struct nvmm_vcpu_exit *exit)
   1091 {
   1092 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1093 	struct nvmm_vcpu_conf_cpuid *cpuid;
   1094 	uint64_t eax, ecx;
   1095 	size_t i;
   1096 
   1097 	eax = cpudata->vmcb->state.rax;
   1098 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1099 	svm_inkernel_exec_cpuid(cpudata, eax, ecx);
   1100 	svm_inkernel_handle_cpuid(vcpu, eax, ecx);
   1101 
   1102 	for (i = 0; i < SVM_NCPUIDS; i++) {
   1103 		if (!cpudata->cpuidpresent[i]) {
   1104 			continue;
   1105 		}
   1106 		cpuid = &cpudata->cpuid[i];
   1107 		if (cpuid->leaf != eax) {
   1108 			continue;
   1109 		}
   1110 
   1111 		if (cpuid->exit) {
   1112 			svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
   1113 			return;
   1114 		}
   1115 		KASSERT(cpuid->mask);
   1116 
   1117 		/* del */
   1118 		cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
   1119 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
   1120 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
   1121 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
   1122 
   1123 		/* set */
   1124 		cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
   1125 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
   1126 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
   1127 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
   1128 
   1129 		break;
   1130 	}
   1131 
   1132 	svm_inkernel_advance(cpudata->vmcb);
   1133 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1134 }
   1135 
   1136 static void
   1137 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1138     struct nvmm_vcpu_exit *exit)
   1139 {
   1140 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1141 	struct vmcb *vmcb = cpudata->vmcb;
   1142 
   1143 	if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
   1144 		svm_event_waitexit_disable(vcpu, false);
   1145 	}
   1146 
   1147 	svm_inkernel_advance(cpudata->vmcb);
   1148 	exit->reason = NVMM_VCPU_EXIT_HALTED;
   1149 }
   1150 
   1151 #define SVM_EXIT_IO_PORT	__BITS(31,16)
   1152 #define SVM_EXIT_IO_SEG		__BITS(12,10)
   1153 #define SVM_EXIT_IO_A64		__BIT(9)
   1154 #define SVM_EXIT_IO_A32		__BIT(8)
   1155 #define SVM_EXIT_IO_A16		__BIT(7)
   1156 #define SVM_EXIT_IO_SZ32	__BIT(6)
   1157 #define SVM_EXIT_IO_SZ16	__BIT(5)
   1158 #define SVM_EXIT_IO_SZ8		__BIT(4)
   1159 #define SVM_EXIT_IO_REP		__BIT(3)
   1160 #define SVM_EXIT_IO_STR		__BIT(2)
   1161 #define SVM_EXIT_IO_IN		__BIT(0)
   1162 
   1163 static void
   1164 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1165     struct nvmm_vcpu_exit *exit)
   1166 {
   1167 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1168 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1169 	uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
   1170 
   1171 	exit->reason = NVMM_VCPU_EXIT_IO;
   1172 
   1173 	exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
   1174 	exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
   1175 
   1176 	if (svm_decode_assist) {
   1177 		KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
   1178 		exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
   1179 	} else {
   1180 		exit->u.io.seg = -1;
   1181 	}
   1182 
   1183 	if (info & SVM_EXIT_IO_A64) {
   1184 		exit->u.io.address_size = 8;
   1185 	} else if (info & SVM_EXIT_IO_A32) {
   1186 		exit->u.io.address_size = 4;
   1187 	} else if (info & SVM_EXIT_IO_A16) {
   1188 		exit->u.io.address_size = 2;
   1189 	}
   1190 
   1191 	if (info & SVM_EXIT_IO_SZ32) {
   1192 		exit->u.io.operand_size = 4;
   1193 	} else if (info & SVM_EXIT_IO_SZ16) {
   1194 		exit->u.io.operand_size = 2;
   1195 	} else if (info & SVM_EXIT_IO_SZ8) {
   1196 		exit->u.io.operand_size = 1;
   1197 	}
   1198 
   1199 	exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
   1200 	exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
   1201 	exit->u.io.npc = nextpc;
   1202 
   1203 	svm_vcpu_state_provide(vcpu,
   1204 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1205 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1206 }
   1207 
   1208 static const uint64_t msr_ignore_list[] = {
   1209 	0xc0010055, /* MSR_CMPHALT */
   1210 	MSR_DE_CFG,
   1211 	MSR_IC_CFG,
   1212 	MSR_UCODE_AMD_PATCHLEVEL
   1213 };
   1214 
   1215 static bool
   1216 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1217     struct nvmm_vcpu_exit *exit)
   1218 {
   1219 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1220 	struct vmcb *vmcb = cpudata->vmcb;
   1221 	uint64_t val;
   1222 	size_t i;
   1223 
   1224 	if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
   1225 		if (exit->u.rdmsr.msr == MSR_EFER) {
   1226 			val = vmcb->state.efer & ~EFER_SVME;
   1227 			vmcb->state.rax = (val & 0xFFFFFFFF);
   1228 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1229 			goto handled;
   1230 		}
   1231 		if (exit->u.rdmsr.msr == MSR_NB_CFG) {
   1232 			val = NB_CFG_INITAPICCPUIDLO;
   1233 			vmcb->state.rax = (val & 0xFFFFFFFF);
   1234 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1235 			goto handled;
   1236 		}
   1237 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1238 			if (msr_ignore_list[i] != exit->u.rdmsr.msr)
   1239 				continue;
   1240 			val = 0;
   1241 			vmcb->state.rax = (val & 0xFFFFFFFF);
   1242 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1243 			goto handled;
   1244 		}
   1245 	} else {
   1246 		if (exit->u.wrmsr.msr == MSR_EFER) {
   1247 			if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
   1248 				goto error;
   1249 			}
   1250 			if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
   1251 			     EFER_TLB_FLUSH) {
   1252 				cpudata->gtlb_want_flush = true;
   1253 			}
   1254 			vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
   1255 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
   1256 			goto handled;
   1257 		}
   1258 		if (exit->u.wrmsr.msr == MSR_TSC) {
   1259 			cpudata->gtsc = exit->u.wrmsr.val;
   1260 			cpudata->gtsc_want_update = true;
   1261 			goto handled;
   1262 		}
   1263 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1264 			if (msr_ignore_list[i] != exit->u.wrmsr.msr)
   1265 				continue;
   1266 			goto handled;
   1267 		}
   1268 	}
   1269 
   1270 	return false;
   1271 
   1272 handled:
   1273 	svm_inkernel_advance(cpudata->vmcb);
   1274 	return true;
   1275 
   1276 error:
   1277 	svm_inject_gp(vcpu);
   1278 	return true;
   1279 }
   1280 
   1281 static inline void
   1282 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1283     struct nvmm_vcpu_exit *exit)
   1284 {
   1285 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1286 
   1287 	exit->reason = NVMM_VCPU_EXIT_RDMSR;
   1288 	exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1289 	exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
   1290 
   1291 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1292 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1293 		return;
   1294 	}
   1295 
   1296 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1297 }
   1298 
   1299 static inline void
   1300 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1301     struct nvmm_vcpu_exit *exit)
   1302 {
   1303 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1304 	uint64_t rdx, rax;
   1305 
   1306 	rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1307 	rax = cpudata->vmcb->state.rax;
   1308 
   1309 	exit->reason = NVMM_VCPU_EXIT_WRMSR;
   1310 	exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1311 	exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1312 	exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
   1313 
   1314 	if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
   1315 		exit->reason = NVMM_VCPU_EXIT_NONE;
   1316 		return;
   1317 	}
   1318 
   1319 	svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
   1320 }
   1321 
   1322 static void
   1323 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1324     struct nvmm_vcpu_exit *exit)
   1325 {
   1326 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1327 	uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
   1328 
   1329 	if (info == 0) {
   1330 		svm_exit_rdmsr(mach, vcpu, exit);
   1331 	} else {
   1332 		svm_exit_wrmsr(mach, vcpu, exit);
   1333 	}
   1334 }
   1335 
   1336 static void
   1337 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1338     struct nvmm_vcpu_exit *exit)
   1339 {
   1340 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1341 	gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
   1342 
   1343 	exit->reason = NVMM_VCPU_EXIT_MEMORY;
   1344 	if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
   1345 		exit->u.mem.prot = PROT_WRITE;
   1346 	else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
   1347 		exit->u.mem.prot = PROT_EXEC;
   1348 	else
   1349 		exit->u.mem.prot = PROT_READ;
   1350 	exit->u.mem.gpa = gpa;
   1351 	exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
   1352 	memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
   1353 	    sizeof(exit->u.mem.inst_bytes));
   1354 
   1355 	svm_vcpu_state_provide(vcpu,
   1356 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
   1357 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
   1358 }
   1359 
   1360 static void
   1361 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1362     struct nvmm_vcpu_exit *exit)
   1363 {
   1364 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1365 	struct vmcb *vmcb = cpudata->vmcb;
   1366 	uint64_t val;
   1367 
   1368 	exit->reason = NVMM_VCPU_EXIT_NONE;
   1369 
   1370 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1371 	    (vmcb->state.rax & 0xFFFFFFFF);
   1372 
   1373 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1374 		goto error;
   1375 	} else if (__predict_false(vmcb->state.cpl != 0)) {
   1376 		goto error;
   1377 	} else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
   1378 		goto error;
   1379 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1380 		goto error;
   1381 	}
   1382 
   1383 	cpudata->gxcr0 = val;
   1384 
   1385 	svm_inkernel_advance(cpudata->vmcb);
   1386 	return;
   1387 
   1388 error:
   1389 	svm_inject_gp(vcpu);
   1390 }
   1391 
   1392 static void
   1393 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
   1394 {
   1395 	exit->u.inv.hwcode = code;
   1396 	exit->reason = NVMM_VCPU_EXIT_INVALID;
   1397 }
   1398 
   1399 /* -------------------------------------------------------------------------- */
   1400 
   1401 static void
   1402 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1403 {
   1404 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1405 
   1406 	fpu_kern_enter();
   1407 	/* TODO: should we use *XSAVE64 here? */
   1408 	fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
   1409 
   1410 	if (svm_xcr0_mask != 0) {
   1411 		cpudata->hxcr0 = rdxcr(0);
   1412 		wrxcr(0, cpudata->gxcr0);
   1413 	}
   1414 }
   1415 
   1416 static void
   1417 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1418 {
   1419 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1420 
   1421 	if (svm_xcr0_mask != 0) {
   1422 		cpudata->gxcr0 = rdxcr(0);
   1423 		wrxcr(0, cpudata->hxcr0);
   1424 	}
   1425 
   1426 	/* TODO: should we use *XSAVE64 here? */
   1427 	fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
   1428 	fpu_kern_leave();
   1429 }
   1430 
   1431 static void
   1432 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1433 {
   1434 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1435 
   1436 	x86_dbregs_save(curlwp);
   1437 
   1438 	ldr7(0);
   1439 
   1440 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1441 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1442 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1443 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1444 }
   1445 
   1446 static void
   1447 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1448 {
   1449 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1450 
   1451 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1452 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1453 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1454 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1455 
   1456 	x86_dbregs_restore(curlwp);
   1457 }
   1458 
   1459 static void
   1460 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1461 {
   1462 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1463 
   1464 	cpudata->fsbase = rdmsr(MSR_FSBASE);
   1465 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1466 }
   1467 
   1468 static void
   1469 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1470 {
   1471 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1472 
   1473 	wrmsr(MSR_STAR, cpudata->star);
   1474 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1475 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1476 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1477 	wrmsr(MSR_FSBASE, cpudata->fsbase);
   1478 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1479 }
   1480 
   1481 /* -------------------------------------------------------------------------- */
   1482 
   1483 static inline void
   1484 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1485 {
   1486 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1487 
   1488 	if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
   1489 		cpudata->gtlb_want_flush = true;
   1490 	}
   1491 }
   1492 
   1493 static inline void
   1494 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1495 {
   1496 	/*
   1497 	 * Nothing to do. If an hTLB flush was needed, either the VCPU was
   1498 	 * executing on this hCPU and the hTLB already got flushed, or it
   1499 	 * was executing on another hCPU in which case the catchup is done
   1500 	 * in svm_gtlb_catchup().
   1501 	 */
   1502 }
   1503 
   1504 static inline uint64_t
   1505 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
   1506 {
   1507 	struct vmcb *vmcb = cpudata->vmcb;
   1508 	uint64_t machgen;
   1509 
   1510 	machgen = machdata->mach_htlb_gen;
   1511 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1512 		return machgen;
   1513 	}
   1514 
   1515 	vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1516 	return machgen;
   1517 }
   1518 
   1519 static inline void
   1520 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
   1521 {
   1522 	struct vmcb *vmcb = cpudata->vmcb;
   1523 
   1524 	if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
   1525 		cpudata->vcpu_htlb_gen = machgen;
   1526 	}
   1527 }
   1528 
   1529 static inline void
   1530 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
   1531 {
   1532 	cpudata->evt_pending = false;
   1533 
   1534 	if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
   1535 		vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
   1536 		cpudata->evt_pending = true;
   1537 	}
   1538 }
   1539 
   1540 static int
   1541 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1542     struct nvmm_vcpu_exit *exit)
   1543 {
   1544 	struct nvmm_comm_page *comm = vcpu->comm;
   1545 	struct svm_machdata *machdata = mach->machdata;
   1546 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1547 	struct vmcb *vmcb = cpudata->vmcb;
   1548 	uint64_t machgen;
   1549 	int hcpu;
   1550 
   1551 	svm_vcpu_state_commit(vcpu);
   1552 	comm->state_cached = 0;
   1553 
   1554 	if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
   1555 		return EINVAL;
   1556 	}
   1557 
   1558 	kpreempt_disable();
   1559 	hcpu = cpu_number();
   1560 
   1561 	svm_gtlb_catchup(vcpu, hcpu);
   1562 	svm_htlb_catchup(vcpu, hcpu);
   1563 
   1564 	if (vcpu->hcpu_last != hcpu) {
   1565 		svm_vmcb_cache_flush_all(vmcb);
   1566 		cpudata->gtsc_want_update = true;
   1567 	}
   1568 
   1569 	svm_vcpu_guest_dbregs_enter(vcpu);
   1570 	svm_vcpu_guest_misc_enter(vcpu);
   1571 
   1572 	while (1) {
   1573 		if (cpudata->gtlb_want_flush) {
   1574 			vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
   1575 		} else {
   1576 			vmcb->ctrl.tlb_ctrl = 0;
   1577 		}
   1578 
   1579 		if (__predict_false(cpudata->gtsc_want_update)) {
   1580 			vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
   1581 			svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
   1582 		}
   1583 
   1584 		svm_vcpu_guest_fpu_enter(vcpu);
   1585 		svm_clgi();
   1586 		machgen = svm_htlb_flush(machdata, cpudata);
   1587 		svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
   1588 		svm_htlb_flush_ack(cpudata, machgen);
   1589 		svm_stgi();
   1590 		svm_vcpu_guest_fpu_leave(vcpu);
   1591 
   1592 		svm_vmcb_cache_default(vmcb);
   1593 
   1594 		if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
   1595 			cpudata->gtlb_want_flush = false;
   1596 			cpudata->gtsc_want_update = false;
   1597 			vcpu->hcpu_last = hcpu;
   1598 		}
   1599 		svm_exit_evt(cpudata, vmcb);
   1600 
   1601 		switch (vmcb->ctrl.exitcode) {
   1602 		case VMCB_EXITCODE_INTR:
   1603 		case VMCB_EXITCODE_NMI:
   1604 			exit->reason = NVMM_VCPU_EXIT_NONE;
   1605 			break;
   1606 		case VMCB_EXITCODE_VINTR:
   1607 			svm_event_waitexit_disable(vcpu, false);
   1608 			exit->reason = NVMM_VCPU_EXIT_INT_READY;
   1609 			break;
   1610 		case VMCB_EXITCODE_IRET:
   1611 			svm_event_waitexit_disable(vcpu, true);
   1612 			exit->reason = NVMM_VCPU_EXIT_NMI_READY;
   1613 			break;
   1614 		case VMCB_EXITCODE_CPUID:
   1615 			svm_exit_cpuid(mach, vcpu, exit);
   1616 			break;
   1617 		case VMCB_EXITCODE_HLT:
   1618 			svm_exit_hlt(mach, vcpu, exit);
   1619 			break;
   1620 		case VMCB_EXITCODE_IOIO:
   1621 			svm_exit_io(mach, vcpu, exit);
   1622 			break;
   1623 		case VMCB_EXITCODE_MSR:
   1624 			svm_exit_msr(mach, vcpu, exit);
   1625 			break;
   1626 		case VMCB_EXITCODE_SHUTDOWN:
   1627 			exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
   1628 			break;
   1629 		case VMCB_EXITCODE_RDPMC:
   1630 		case VMCB_EXITCODE_RSM:
   1631 		case VMCB_EXITCODE_INVLPGA:
   1632 		case VMCB_EXITCODE_VMRUN:
   1633 		case VMCB_EXITCODE_VMMCALL:
   1634 		case VMCB_EXITCODE_VMLOAD:
   1635 		case VMCB_EXITCODE_VMSAVE:
   1636 		case VMCB_EXITCODE_STGI:
   1637 		case VMCB_EXITCODE_CLGI:
   1638 		case VMCB_EXITCODE_SKINIT:
   1639 		case VMCB_EXITCODE_RDTSCP:
   1640 		case VMCB_EXITCODE_RDPRU:
   1641 		case VMCB_EXITCODE_INVLPGB:
   1642 		case VMCB_EXITCODE_INVPCID:
   1643 		case VMCB_EXITCODE_MCOMMIT:
   1644 		case VMCB_EXITCODE_TLBSYNC:
   1645 			svm_inject_ud(vcpu);
   1646 			exit->reason = NVMM_VCPU_EXIT_NONE;
   1647 			break;
   1648 		case VMCB_EXITCODE_MONITOR:
   1649 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
   1650 			break;
   1651 		case VMCB_EXITCODE_MWAIT:
   1652 		case VMCB_EXITCODE_MWAIT_CONDITIONAL:
   1653 			svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
   1654 			break;
   1655 		case VMCB_EXITCODE_XSETBV:
   1656 			svm_exit_xsetbv(mach, vcpu, exit);
   1657 			break;
   1658 		case VMCB_EXITCODE_NPF:
   1659 			svm_exit_npf(mach, vcpu, exit);
   1660 			break;
   1661 		case VMCB_EXITCODE_FERR_FREEZE: /* ? */
   1662 		default:
   1663 			svm_exit_invalid(exit, vmcb->ctrl.exitcode);
   1664 			break;
   1665 		}
   1666 
   1667 		/* If no reason to return to userland, keep rolling. */
   1668 		if (nvmm_return_needed(vcpu, exit)) {
   1669 			break;
   1670 		}
   1671 		if (exit->reason != NVMM_VCPU_EXIT_NONE) {
   1672 			break;
   1673 		}
   1674 	}
   1675 
   1676 	cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
   1677 
   1678 	svm_vcpu_guest_misc_leave(vcpu);
   1679 	svm_vcpu_guest_dbregs_leave(vcpu);
   1680 
   1681 	kpreempt_enable();
   1682 
   1683 	exit->exitstate.rflags = vmcb->state.rflags;
   1684 	exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
   1685 	exit->exitstate.int_shadow =
   1686 	    ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
   1687 	exit->exitstate.int_window_exiting = cpudata->int_window_exit;
   1688 	exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
   1689 	exit->exitstate.evt_pending = cpudata->evt_pending;
   1690 
   1691 	return 0;
   1692 }
   1693 
   1694 /* -------------------------------------------------------------------------- */
   1695 
   1696 static int
   1697 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1698 {
   1699 	struct pglist pglist;
   1700 	paddr_t _pa;
   1701 	vaddr_t _va;
   1702 	size_t i;
   1703 	int ret;
   1704 
   1705 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1706 	    &pglist, 1, 0);
   1707 	if (ret != 0)
   1708 		return ENOMEM;
   1709 	_pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
   1710 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1711 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1712 	if (_va == 0)
   1713 		goto error;
   1714 
   1715 	for (i = 0; i < npages; i++) {
   1716 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1717 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1718 	}
   1719 	pmap_update(pmap_kernel());
   1720 
   1721 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1722 
   1723 	*pa = _pa;
   1724 	*va = _va;
   1725 	return 0;
   1726 
   1727 error:
   1728 	for (i = 0; i < npages; i++) {
   1729 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1730 	}
   1731 	return ENOMEM;
   1732 }
   1733 
   1734 static void
   1735 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1736 {
   1737 	size_t i;
   1738 
   1739 	pmap_kremove(va, npages * PAGE_SIZE);
   1740 	pmap_update(pmap_kernel());
   1741 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1742 	for (i = 0; i < npages; i++) {
   1743 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1744 	}
   1745 }
   1746 
   1747 /* -------------------------------------------------------------------------- */
   1748 
   1749 #define SVM_MSRBM_READ	__BIT(0)
   1750 #define SVM_MSRBM_WRITE	__BIT(1)
   1751 
   1752 static void
   1753 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1754 {
   1755 	uint64_t byte;
   1756 	uint8_t bitoff;
   1757 
   1758 	if (msr < 0x00002000) {
   1759 		/* Range 1 */
   1760 		byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
   1761 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1762 		/* Range 2 */
   1763 		byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
   1764 	} else if (msr >= 0xC0010000 && msr < 0xC0012000) {
   1765 		/* Range 3 */
   1766 		byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
   1767 	} else {
   1768 		panic("%s: wrong range", __func__);
   1769 	}
   1770 
   1771 	bitoff = (msr & 0x3) << 1;
   1772 
   1773 	if (read) {
   1774 		bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
   1775 	}
   1776 	if (write) {
   1777 		bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
   1778 	}
   1779 }
   1780 
   1781 #define SVM_SEG_ATTRIB_TYPE		__BITS(3,0)
   1782 #define SVM_SEG_ATTRIB_S		__BIT(4)
   1783 #define SVM_SEG_ATTRIB_DPL		__BITS(6,5)
   1784 #define SVM_SEG_ATTRIB_P		__BIT(7)
   1785 #define SVM_SEG_ATTRIB_AVL		__BIT(8)
   1786 #define SVM_SEG_ATTRIB_L		__BIT(9)
   1787 #define SVM_SEG_ATTRIB_DEF		__BIT(10)
   1788 #define SVM_SEG_ATTRIB_G		__BIT(11)
   1789 
   1790 static void
   1791 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
   1792     struct vmcb_segment *vseg)
   1793 {
   1794 	vseg->selector = seg->selector;
   1795 	vseg->attrib =
   1796 	    __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
   1797 	    __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
   1798 	    __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
   1799 	    __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
   1800 	    __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
   1801 	    __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
   1802 	    __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
   1803 	    __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
   1804 	vseg->limit = seg->limit;
   1805 	vseg->base = seg->base;
   1806 }
   1807 
   1808 static void
   1809 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
   1810 {
   1811 	seg->selector = vseg->selector;
   1812 	seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
   1813 	seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
   1814 	seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
   1815 	seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
   1816 	seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
   1817 	seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
   1818 	seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
   1819 	seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
   1820 	seg->limit = vseg->limit;
   1821 	seg->base = vseg->base;
   1822 }
   1823 
   1824 static inline bool
   1825 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
   1826     uint64_t flags)
   1827 {
   1828 	if (flags & NVMM_X64_STATE_CRS) {
   1829 		if ((vmcb->state.cr0 ^
   1830 		     state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   1831 			return true;
   1832 		}
   1833 		if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
   1834 			return true;
   1835 		}
   1836 		if ((vmcb->state.cr4 ^
   1837 		     state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   1838 			return true;
   1839 		}
   1840 	}
   1841 
   1842 	if (flags & NVMM_X64_STATE_MSRS) {
   1843 		if ((vmcb->state.efer ^
   1844 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   1845 			return true;
   1846 		}
   1847 	}
   1848 
   1849 	return false;
   1850 }
   1851 
   1852 static void
   1853 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
   1854 {
   1855 	struct nvmm_comm_page *comm = vcpu->comm;
   1856 	const struct nvmm_x64_state *state = &comm->state;
   1857 	struct svm_cpudata *cpudata = vcpu->cpudata;
   1858 	struct vmcb *vmcb = cpudata->vmcb;
   1859 	struct fxsave *fpustate;
   1860 	uint64_t flags;
   1861 
   1862 	flags = comm->state_wanted;
   1863 
   1864 	if (svm_state_tlb_flush(vmcb, state, flags)) {
   1865 		cpudata->gtlb_want_flush = true;
   1866 	}
   1867 
   1868 	if (flags & NVMM_X64_STATE_SEGS) {
   1869 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
   1870 		    &vmcb->state.cs);
   1871 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
   1872 		    &vmcb->state.ds);
   1873 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
   1874 		    &vmcb->state.es);
   1875 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
   1876 		    &vmcb->state.fs);
   1877 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
   1878 		    &vmcb->state.gs);
   1879 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
   1880 		    &vmcb->state.ss);
   1881 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   1882 		    &vmcb->state.gdt);
   1883 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   1884 		    &vmcb->state.idt);
   1885 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   1886 		    &vmcb->state.ldt);
   1887 		svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
   1888 		    &vmcb->state.tr);
   1889 
   1890 		vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
   1891 	}
   1892 
   1893 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   1894 	if (flags & NVMM_X64_STATE_GPRS) {
   1895 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   1896 
   1897 		vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
   1898 		vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
   1899 		vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
   1900 		vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
   1901 	}
   1902 
   1903 	if (flags & NVMM_X64_STATE_CRS) {
   1904 		vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
   1905 		vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
   1906 		vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
   1907 		vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
   1908 		vmcb->state.cr4 &= CR4_VALID;
   1909 
   1910 		vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
   1911 		vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
   1912 		    VMCB_CTRL_V_TPR);
   1913 
   1914 		if (svm_xcr0_mask != 0) {
   1915 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   1916 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   1917 			cpudata->gxcr0 &= svm_xcr0_mask;
   1918 			cpudata->gxcr0 |= XCR0_X87;
   1919 		}
   1920 	}
   1921 
   1922 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   1923 	if (flags & NVMM_X64_STATE_DRS) {
   1924 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   1925 
   1926 		vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
   1927 		vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
   1928 	}
   1929 
   1930 	if (flags & NVMM_X64_STATE_MSRS) {
   1931 		/*
   1932 		 * EFER_SVME is mandatory.
   1933 		 */
   1934 		vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
   1935 		vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
   1936 		vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
   1937 		vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
   1938 		vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
   1939 		vmcb->state.kernelgsbase =
   1940 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   1941 		vmcb->state.sysenter_cs =
   1942 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS];
   1943 		vmcb->state.sysenter_esp =
   1944 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
   1945 		vmcb->state.sysenter_eip =
   1946 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
   1947 		vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
   1948 
   1949 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   1950 		cpudata->gtsc_want_update = true;
   1951 	}
   1952 
   1953 	if (flags & NVMM_X64_STATE_INTR) {
   1954 		if (state->intr.int_shadow) {
   1955 			vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
   1956 		} else {
   1957 			vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
   1958 		}
   1959 
   1960 		if (state->intr.int_window_exiting) {
   1961 			svm_event_waitexit_enable(vcpu, false);
   1962 		} else {
   1963 			svm_event_waitexit_disable(vcpu, false);
   1964 		}
   1965 
   1966 		if (state->intr.nmi_window_exiting) {
   1967 			svm_event_waitexit_enable(vcpu, true);
   1968 		} else {
   1969 			svm_event_waitexit_disable(vcpu, true);
   1970 		}
   1971 	}
   1972 
   1973 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   1974 	if (flags & NVMM_X64_STATE_FPU) {
   1975 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   1976 		    sizeof(state->fpu));
   1977 
   1978 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   1979 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   1980 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   1981 
   1982 		if (svm_xcr0_mask != 0) {
   1983 			/* Reset XSTATE_BV, to force a reload. */
   1984 			cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   1985 		}
   1986 	}
   1987 
   1988 	svm_vmcb_cache_update(vmcb, flags);
   1989 
   1990 	comm->state_wanted = 0;
   1991 	comm->state_cached |= flags;
   1992 }
   1993 
   1994 static void
   1995 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
   1996 {
   1997 	struct nvmm_comm_page *comm = vcpu->comm;
   1998 	struct nvmm_x64_state *state = &comm->state;
   1999 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2000 	struct vmcb *vmcb = cpudata->vmcb;
   2001 	uint64_t flags;
   2002 
   2003 	flags = comm->state_wanted;
   2004 
   2005 	if (flags & NVMM_X64_STATE_SEGS) {
   2006 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
   2007 		    &vmcb->state.cs);
   2008 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
   2009 		    &vmcb->state.ds);
   2010 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
   2011 		    &vmcb->state.es);
   2012 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
   2013 		    &vmcb->state.fs);
   2014 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
   2015 		    &vmcb->state.gs);
   2016 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
   2017 		    &vmcb->state.ss);
   2018 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
   2019 		    &vmcb->state.gdt);
   2020 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
   2021 		    &vmcb->state.idt);
   2022 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
   2023 		    &vmcb->state.ldt);
   2024 		svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
   2025 		    &vmcb->state.tr);
   2026 
   2027 		state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
   2028 	}
   2029 
   2030 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2031 	if (flags & NVMM_X64_STATE_GPRS) {
   2032 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2033 
   2034 		state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
   2035 		state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
   2036 		state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
   2037 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
   2038 	}
   2039 
   2040 	if (flags & NVMM_X64_STATE_CRS) {
   2041 		state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
   2042 		state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
   2043 		state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
   2044 		state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
   2045 		state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
   2046 		    VMCB_CTRL_V_TPR);
   2047 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2048 	}
   2049 
   2050 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2051 	if (flags & NVMM_X64_STATE_DRS) {
   2052 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2053 
   2054 		state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
   2055 		state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
   2056 	}
   2057 
   2058 	if (flags & NVMM_X64_STATE_MSRS) {
   2059 		state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
   2060 		state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
   2061 		state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
   2062 		state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
   2063 		state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
   2064 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2065 		    vmcb->state.kernelgsbase;
   2066 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   2067 		    vmcb->state.sysenter_cs;
   2068 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   2069 		    vmcb->state.sysenter_esp;
   2070 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   2071 		    vmcb->state.sysenter_eip;
   2072 		state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
   2073 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2074 
   2075 		/* Hide SVME. */
   2076 		state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
   2077 	}
   2078 
   2079 	if (flags & NVMM_X64_STATE_INTR) {
   2080 		state->intr.int_shadow =
   2081 		    (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
   2082 		state->intr.int_window_exiting = cpudata->int_window_exit;
   2083 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   2084 		state->intr.evt_pending = cpudata->evt_pending;
   2085 	}
   2086 
   2087 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2088 	if (flags & NVMM_X64_STATE_FPU) {
   2089 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2090 		    sizeof(state->fpu));
   2091 	}
   2092 
   2093 	comm->state_wanted = 0;
   2094 	comm->state_cached |= flags;
   2095 }
   2096 
   2097 static void
   2098 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
   2099 {
   2100 	vcpu->comm->state_wanted = flags;
   2101 	svm_vcpu_getstate(vcpu);
   2102 }
   2103 
   2104 static void
   2105 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
   2106 {
   2107 	vcpu->comm->state_wanted = vcpu->comm->state_commit;
   2108 	vcpu->comm->state_commit = 0;
   2109 	svm_vcpu_setstate(vcpu);
   2110 }
   2111 
   2112 /* -------------------------------------------------------------------------- */
   2113 
   2114 static void
   2115 svm_asid_alloc(struct nvmm_cpu *vcpu)
   2116 {
   2117 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2118 	struct vmcb *vmcb = cpudata->vmcb;
   2119 	size_t i, oct, bit;
   2120 
   2121 	mutex_enter(&svm_asidlock);
   2122 
   2123 	for (i = 0; i < svm_maxasid; i++) {
   2124 		oct = i / 8;
   2125 		bit = i % 8;
   2126 
   2127 		if (svm_asidmap[oct] & __BIT(bit)) {
   2128 			continue;
   2129 		}
   2130 
   2131 		svm_asidmap[oct] |= __BIT(bit);
   2132 		vmcb->ctrl.guest_asid = i;
   2133 		mutex_exit(&svm_asidlock);
   2134 		return;
   2135 	}
   2136 
   2137 	/*
   2138 	 * No free ASID. Use the last one, which is shared and requires
   2139 	 * special TLB handling.
   2140 	 */
   2141 	cpudata->shared_asid = true;
   2142 	vmcb->ctrl.guest_asid = svm_maxasid - 1;
   2143 	mutex_exit(&svm_asidlock);
   2144 }
   2145 
   2146 static void
   2147 svm_asid_free(struct nvmm_cpu *vcpu)
   2148 {
   2149 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2150 	struct vmcb *vmcb = cpudata->vmcb;
   2151 	size_t oct, bit;
   2152 
   2153 	if (cpudata->shared_asid) {
   2154 		return;
   2155 	}
   2156 
   2157 	oct = vmcb->ctrl.guest_asid / 8;
   2158 	bit = vmcb->ctrl.guest_asid % 8;
   2159 
   2160 	mutex_enter(&svm_asidlock);
   2161 	svm_asidmap[oct] &= ~__BIT(bit);
   2162 	mutex_exit(&svm_asidlock);
   2163 }
   2164 
   2165 static void
   2166 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2167 {
   2168 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2169 	struct vmcb *vmcb = cpudata->vmcb;
   2170 
   2171 	/* Allow reads/writes of Control Registers. */
   2172 	vmcb->ctrl.intercept_cr = 0;
   2173 
   2174 	/* Allow reads/writes of Debug Registers. */
   2175 	vmcb->ctrl.intercept_dr = 0;
   2176 
   2177 	/* Allow exceptions 0 to 31. */
   2178 	vmcb->ctrl.intercept_vec = 0;
   2179 
   2180 	/*
   2181 	 * Allow:
   2182 	 *  - SMI [smm interrupts]
   2183 	 *  - VINTR [virtual interrupts]
   2184 	 *  - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
   2185 	 *  - RIDTR [reads of IDTR]
   2186 	 *  - RGDTR [reads of GDTR]
   2187 	 *  - RLDTR [reads of LDTR]
   2188 	 *  - RTR [reads of TR]
   2189 	 *  - WIDTR [writes of IDTR]
   2190 	 *  - WGDTR [writes of GDTR]
   2191 	 *  - WLDTR [writes of LDTR]
   2192 	 *  - WTR [writes of TR]
   2193 	 *  - RDTSC [rdtsc instruction]
   2194 	 *  - PUSHF [pushf instruction]
   2195 	 *  - POPF [popf instruction]
   2196 	 *  - IRET [iret instruction]
   2197 	 *  - INTN [int $n instructions]
   2198 	 *  - PAUSE [pause instruction]
   2199 	 *  - INVLPG [invplg instruction]
   2200 	 *  - TASKSW [task switches]
   2201 	 *
   2202 	 * Intercept the rest below.
   2203 	 */
   2204 	vmcb->ctrl.intercept_misc1 =
   2205 	    VMCB_CTRL_INTERCEPT_INTR |
   2206 	    VMCB_CTRL_INTERCEPT_NMI |
   2207 	    VMCB_CTRL_INTERCEPT_INIT |
   2208 	    VMCB_CTRL_INTERCEPT_RDPMC |
   2209 	    VMCB_CTRL_INTERCEPT_CPUID |
   2210 	    VMCB_CTRL_INTERCEPT_RSM |
   2211 	    VMCB_CTRL_INTERCEPT_INVD |
   2212 	    VMCB_CTRL_INTERCEPT_HLT |
   2213 	    VMCB_CTRL_INTERCEPT_INVLPGA |
   2214 	    VMCB_CTRL_INTERCEPT_IOIO_PROT |
   2215 	    VMCB_CTRL_INTERCEPT_MSR_PROT |
   2216 	    VMCB_CTRL_INTERCEPT_FERR_FREEZE |
   2217 	    VMCB_CTRL_INTERCEPT_SHUTDOWN;
   2218 
   2219 	/*
   2220 	 * Allow:
   2221 	 *  - ICEBP [icebp instruction]
   2222 	 *  - WBINVD [wbinvd instruction]
   2223 	 *  - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
   2224 	 *
   2225 	 * Intercept the rest below.
   2226 	 */
   2227 	vmcb->ctrl.intercept_misc2 =
   2228 	    VMCB_CTRL_INTERCEPT_VMRUN |
   2229 	    VMCB_CTRL_INTERCEPT_VMMCALL |
   2230 	    VMCB_CTRL_INTERCEPT_VMLOAD |
   2231 	    VMCB_CTRL_INTERCEPT_VMSAVE |
   2232 	    VMCB_CTRL_INTERCEPT_STGI |
   2233 	    VMCB_CTRL_INTERCEPT_CLGI |
   2234 	    VMCB_CTRL_INTERCEPT_SKINIT |
   2235 	    VMCB_CTRL_INTERCEPT_RDTSCP |
   2236 	    VMCB_CTRL_INTERCEPT_MONITOR |
   2237 	    VMCB_CTRL_INTERCEPT_MWAIT |
   2238 	    VMCB_CTRL_INTERCEPT_XSETBV |
   2239 	    VMCB_CTRL_INTERCEPT_RDPRU;
   2240 
   2241 	/*
   2242 	 * Intercept everything.
   2243 	 */
   2244 	vmcb->ctrl.intercept_misc3 =
   2245 	    VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
   2246 	    VMCB_CTRL_INTERCEPT_PCID |
   2247 	    VMCB_CTRL_INTERCEPT_MCOMMIT |
   2248 	    VMCB_CTRL_INTERCEPT_TLBSYNC;
   2249 
   2250 	/* Intercept all I/O accesses. */
   2251 	memset(cpudata->iobm, 0xFF, IOBM_SIZE);
   2252 	vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
   2253 
   2254 	/* Allow direct access to certain MSRs. */
   2255 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2256 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2257 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2258 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2259 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2260 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2261 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2262 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2263 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2264 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2265 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2266 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
   2267 	svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2268 	vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
   2269 
   2270 	/* Generate ASID. */
   2271 	svm_asid_alloc(vcpu);
   2272 
   2273 	/* Virtual TPR. */
   2274 	vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
   2275 
   2276 	/* Enable Nested Paging. */
   2277 	vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
   2278 	vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
   2279 
   2280 	/* Init XSAVE header. */
   2281 	cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
   2282 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2283 
   2284 	/* These MSRs are static. */
   2285 	cpudata->star = rdmsr(MSR_STAR);
   2286 	cpudata->lstar = rdmsr(MSR_LSTAR);
   2287 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2288 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2289 
   2290 	/* Install the RESET state. */
   2291 	memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
   2292 	    sizeof(nvmm_x86_reset_state));
   2293 	vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
   2294 	vcpu->comm->state_cached = 0;
   2295 	svm_vcpu_setstate(vcpu);
   2296 }
   2297 
   2298 static int
   2299 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2300 {
   2301 	struct svm_cpudata *cpudata;
   2302 	int error;
   2303 
   2304 	/* Allocate the SVM cpudata. */
   2305 	cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
   2306 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2307 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2308 	vcpu->cpudata = cpudata;
   2309 
   2310 	/* VMCB */
   2311 	error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
   2312 	    VMCB_NPAGES);
   2313 	if (error)
   2314 		goto error;
   2315 
   2316 	/* I/O Bitmap */
   2317 	error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
   2318 	    IOBM_NPAGES);
   2319 	if (error)
   2320 		goto error;
   2321 
   2322 	/* MSR Bitmap */
   2323 	error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2324 	    MSRBM_NPAGES);
   2325 	if (error)
   2326 		goto error;
   2327 
   2328 	/* Init the VCPU info. */
   2329 	svm_vcpu_init(mach, vcpu);
   2330 
   2331 	return 0;
   2332 
   2333 error:
   2334 	if (cpudata->vmcb_pa) {
   2335 		svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
   2336 		    VMCB_NPAGES);
   2337 	}
   2338 	if (cpudata->iobm_pa) {
   2339 		svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
   2340 		    IOBM_NPAGES);
   2341 	}
   2342 	if (cpudata->msrbm_pa) {
   2343 		svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2344 		    MSRBM_NPAGES);
   2345 	}
   2346 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2347 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2348 	return error;
   2349 }
   2350 
   2351 static void
   2352 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2353 {
   2354 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2355 
   2356 	svm_asid_free(vcpu);
   2357 
   2358 	svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
   2359 	svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
   2360 	svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2361 
   2362 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2363 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2364 }
   2365 
   2366 /* -------------------------------------------------------------------------- */
   2367 
   2368 static int
   2369 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
   2370 {
   2371 	struct nvmm_vcpu_conf_cpuid *cpuid = data;
   2372 	size_t i;
   2373 
   2374 	if (__predict_false(cpuid->mask && cpuid->exit)) {
   2375 		return EINVAL;
   2376 	}
   2377 	if (__predict_false(cpuid->mask &&
   2378 	    ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
   2379 	     (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
   2380 	     (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
   2381 	     (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
   2382 		return EINVAL;
   2383 	}
   2384 
   2385 	/* If unset, delete, to restore the default behavior. */
   2386 	if (!cpuid->mask && !cpuid->exit) {
   2387 		for (i = 0; i < SVM_NCPUIDS; i++) {
   2388 			if (!cpudata->cpuidpresent[i]) {
   2389 				continue;
   2390 			}
   2391 			if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2392 				cpudata->cpuidpresent[i] = false;
   2393 			}
   2394 		}
   2395 		return 0;
   2396 	}
   2397 
   2398 	/* If already here, replace. */
   2399 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2400 		if (!cpudata->cpuidpresent[i]) {
   2401 			continue;
   2402 		}
   2403 		if (cpudata->cpuid[i].leaf == cpuid->leaf) {
   2404 			memcpy(&cpudata->cpuid[i], cpuid,
   2405 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2406 			return 0;
   2407 		}
   2408 	}
   2409 
   2410 	/* Not here, insert. */
   2411 	for (i = 0; i < SVM_NCPUIDS; i++) {
   2412 		if (!cpudata->cpuidpresent[i]) {
   2413 			cpudata->cpuidpresent[i] = true;
   2414 			memcpy(&cpudata->cpuid[i], cpuid,
   2415 			    sizeof(struct nvmm_vcpu_conf_cpuid));
   2416 			return 0;
   2417 		}
   2418 	}
   2419 
   2420 	return ENOBUFS;
   2421 }
   2422 
   2423 static int
   2424 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
   2425 {
   2426 	struct svm_cpudata *cpudata = vcpu->cpudata;
   2427 
   2428 	switch (op) {
   2429 	case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
   2430 		return svm_vcpu_configure_cpuid(cpudata, data);
   2431 	default:
   2432 		return EINVAL;
   2433 	}
   2434 }
   2435 
   2436 /* -------------------------------------------------------------------------- */
   2437 
   2438 static void
   2439 svm_tlb_flush(struct pmap *pm)
   2440 {
   2441 	struct nvmm_machine *mach = pm->pm_data;
   2442 	struct svm_machdata *machdata = mach->machdata;
   2443 
   2444 	atomic_inc_64(&machdata->mach_htlb_gen);
   2445 
   2446 	/* Generates IPIs, which cause #VMEXITs. */
   2447 	pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
   2448 }
   2449 
   2450 static void
   2451 svm_machine_create(struct nvmm_machine *mach)
   2452 {
   2453 	struct svm_machdata *machdata;
   2454 
   2455 	/* Fill in pmap info. */
   2456 	mach->vm->vm_map.pmap->pm_data = (void *)mach;
   2457 	mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
   2458 
   2459 	machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
   2460 	mach->machdata = machdata;
   2461 
   2462 	/* Start with an hTLB flush everywhere. */
   2463 	machdata->mach_htlb_gen = 1;
   2464 }
   2465 
   2466 static void
   2467 svm_machine_destroy(struct nvmm_machine *mach)
   2468 {
   2469 	kmem_free(mach->machdata, sizeof(struct svm_machdata));
   2470 }
   2471 
   2472 static int
   2473 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2474 {
   2475 	panic("%s: impossible", __func__);
   2476 }
   2477 
   2478 /* -------------------------------------------------------------------------- */
   2479 
   2480 static bool
   2481 svm_ident(void)
   2482 {
   2483 	u_int descs[4];
   2484 	uint64_t msr;
   2485 
   2486 	if (cpu_vendor != CPUVENDOR_AMD) {
   2487 		return false;
   2488 	}
   2489 	if (!(cpu_feature[3] & CPUID_SVM)) {
   2490 		printf("NVMM: SVM not supported\n");
   2491 		return false;
   2492 	}
   2493 
   2494 	if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
   2495 		printf("NVMM: CPUID leaf not available\n");
   2496 		return false;
   2497 	}
   2498 	x86_cpuid(0x8000000a, descs);
   2499 
   2500 	/* Expect revision 1. */
   2501 	if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
   2502 		printf("NVMM: SVM revision not supported\n");
   2503 		return false;
   2504 	}
   2505 
   2506 	/* Want Nested Paging. */
   2507 	if (!(descs[3] & CPUID_AMD_SVM_NP)) {
   2508 		printf("NVMM: SVM-NP not supported\n");
   2509 		return false;
   2510 	}
   2511 
   2512 	/* Want nRIP. */
   2513 	if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
   2514 		printf("NVMM: SVM-NRIPS not supported\n");
   2515 		return false;
   2516 	}
   2517 
   2518 	svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
   2519 
   2520 	msr = rdmsr(MSR_VMCR);
   2521 	if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
   2522 		printf("NVMM: SVM disabled in BIOS\n");
   2523 		return false;
   2524 	}
   2525 
   2526 	return true;
   2527 }
   2528 
   2529 static void
   2530 svm_init_asid(uint32_t maxasid)
   2531 {
   2532 	size_t i, j, allocsz;
   2533 
   2534 	mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2535 
   2536 	/* Arbitrarily limit. */
   2537 	maxasid = uimin(maxasid, 8192);
   2538 
   2539 	svm_maxasid = maxasid;
   2540 	allocsz = roundup(maxasid, 8) / 8;
   2541 	svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2542 
   2543 	/* ASID 0 is reserved for the host. */
   2544 	svm_asidmap[0] |= __BIT(0);
   2545 
   2546 	/* ASID n-1 is special, we share it. */
   2547 	i = (maxasid - 1) / 8;
   2548 	j = (maxasid - 1) % 8;
   2549 	svm_asidmap[i] |= __BIT(j);
   2550 }
   2551 
   2552 static void
   2553 svm_change_cpu(void *arg1, void *arg2)
   2554 {
   2555 	bool enable = arg1 != NULL;
   2556 	uint64_t msr;
   2557 
   2558 	msr = rdmsr(MSR_VMCR);
   2559 	if (msr & VMCR_SVMED) {
   2560 		wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
   2561 	}
   2562 
   2563 	if (!enable) {
   2564 		wrmsr(MSR_VM_HSAVE_PA, 0);
   2565 	}
   2566 
   2567 	msr = rdmsr(MSR_EFER);
   2568 	if (enable) {
   2569 		msr |= EFER_SVME;
   2570 	} else {
   2571 		msr &= ~EFER_SVME;
   2572 	}
   2573 	wrmsr(MSR_EFER, msr);
   2574 
   2575 	if (enable) {
   2576 		wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
   2577 	}
   2578 }
   2579 
   2580 static void
   2581 svm_init(void)
   2582 {
   2583 	CPU_INFO_ITERATOR cii;
   2584 	struct cpu_info *ci;
   2585 	struct vm_page *pg;
   2586 	u_int descs[4];
   2587 	uint64_t xc;
   2588 
   2589 	x86_cpuid(0x8000000a, descs);
   2590 
   2591 	/* The guest TLB flush command. */
   2592 	if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
   2593 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
   2594 	} else {
   2595 		svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
   2596 	}
   2597 
   2598 	/* Init the ASID. */
   2599 	svm_init_asid(descs[1]);
   2600 
   2601 	/* Init the XCR0 mask. */
   2602 	svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
   2603 
   2604 	/* Init the max basic CPUID leaf. */
   2605 	svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
   2606 
   2607 	/* Init the max extended CPUID leaf. */
   2608 	x86_cpuid(0x80000000, descs);
   2609 	svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
   2610 
   2611 	memset(hsave, 0, sizeof(hsave));
   2612 	for (CPU_INFO_FOREACH(cii, ci)) {
   2613 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   2614 		hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
   2615 	}
   2616 
   2617 	xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
   2618 	xc_wait(xc);
   2619 }
   2620 
   2621 static void
   2622 svm_fini_asid(void)
   2623 {
   2624 	size_t allocsz;
   2625 
   2626 	allocsz = roundup(svm_maxasid, 8) / 8;
   2627 	kmem_free(svm_asidmap, allocsz);
   2628 
   2629 	mutex_destroy(&svm_asidlock);
   2630 }
   2631 
   2632 static void
   2633 svm_fini(void)
   2634 {
   2635 	uint64_t xc;
   2636 	size_t i;
   2637 
   2638 	xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
   2639 	xc_wait(xc);
   2640 
   2641 	for (i = 0; i < MAXCPUS; i++) {
   2642 		if (hsave[i].pa != 0)
   2643 			uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
   2644 	}
   2645 
   2646 	svm_fini_asid();
   2647 }
   2648 
   2649 static void
   2650 svm_capability(struct nvmm_capability *cap)
   2651 {
   2652 	cap->arch.mach_conf_support = 0;
   2653 	cap->arch.vcpu_conf_support =
   2654 	    NVMM_CAP_ARCH_VCPU_CONF_CPUID;
   2655 	cap->arch.xcr0_mask = svm_xcr0_mask;
   2656 	cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
   2657 	cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
   2658 }
   2659 
   2660 const struct nvmm_impl nvmm_x86_svm = {
   2661 	.name = "x86-svm",
   2662 	.ident = svm_ident,
   2663 	.init = svm_init,
   2664 	.fini = svm_fini,
   2665 	.capability = svm_capability,
   2666 	.mach_conf_max = NVMM_X86_MACH_NCONF,
   2667 	.mach_conf_sizes = NULL,
   2668 	.vcpu_conf_max = NVMM_X86_VCPU_NCONF,
   2669 	.vcpu_conf_sizes = svm_vcpu_conf_sizes,
   2670 	.state_size = sizeof(struct nvmm_x64_state),
   2671 	.machine_create = svm_machine_create,
   2672 	.machine_destroy = svm_machine_destroy,
   2673 	.machine_configure = svm_machine_configure,
   2674 	.vcpu_create = svm_vcpu_create,
   2675 	.vcpu_destroy = svm_vcpu_destroy,
   2676 	.vcpu_configure = svm_vcpu_configure,
   2677 	.vcpu_setstate = svm_vcpu_setstate,
   2678 	.vcpu_getstate = svm_vcpu_getstate,
   2679 	.vcpu_inject = svm_vcpu_inject,
   2680 	.vcpu_run = svm_vcpu_run
   2681 };
   2682