nvmm_x86_svm.c revision 1.87 1 /* $NetBSD: nvmm_x86_svm.c,v 1.87 2025/04/11 04:54:02 imil Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.87 2025/04/11 04:54:02 imil Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/apicvar.h>
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50
51 #include <machine/cpuvar.h>
52 #include <machine/pmap_private.h>
53
54 #include <dev/nvmm/nvmm.h>
55 #include <dev/nvmm/nvmm_internal.h>
56 #include <dev/nvmm/x86/nvmm_x86.h>
57
58 int svm_vmrun(paddr_t, uint64_t *);
59
60 static inline void
61 svm_clgi(void)
62 {
63 asm volatile ("clgi" ::: "memory");
64 }
65
66 static inline void
67 svm_stgi(void)
68 {
69 asm volatile ("stgi" ::: "memory");
70 }
71
72 #define MSR_VM_HSAVE_PA 0xC0010117
73
74 /* -------------------------------------------------------------------------- */
75
76 #define VMCB_EXITCODE_CR0_READ 0x0000
77 #define VMCB_EXITCODE_CR1_READ 0x0001
78 #define VMCB_EXITCODE_CR2_READ 0x0002
79 #define VMCB_EXITCODE_CR3_READ 0x0003
80 #define VMCB_EXITCODE_CR4_READ 0x0004
81 #define VMCB_EXITCODE_CR5_READ 0x0005
82 #define VMCB_EXITCODE_CR6_READ 0x0006
83 #define VMCB_EXITCODE_CR7_READ 0x0007
84 #define VMCB_EXITCODE_CR8_READ 0x0008
85 #define VMCB_EXITCODE_CR9_READ 0x0009
86 #define VMCB_EXITCODE_CR10_READ 0x000A
87 #define VMCB_EXITCODE_CR11_READ 0x000B
88 #define VMCB_EXITCODE_CR12_READ 0x000C
89 #define VMCB_EXITCODE_CR13_READ 0x000D
90 #define VMCB_EXITCODE_CR14_READ 0x000E
91 #define VMCB_EXITCODE_CR15_READ 0x000F
92 #define VMCB_EXITCODE_CR0_WRITE 0x0010
93 #define VMCB_EXITCODE_CR1_WRITE 0x0011
94 #define VMCB_EXITCODE_CR2_WRITE 0x0012
95 #define VMCB_EXITCODE_CR3_WRITE 0x0013
96 #define VMCB_EXITCODE_CR4_WRITE 0x0014
97 #define VMCB_EXITCODE_CR5_WRITE 0x0015
98 #define VMCB_EXITCODE_CR6_WRITE 0x0016
99 #define VMCB_EXITCODE_CR7_WRITE 0x0017
100 #define VMCB_EXITCODE_CR8_WRITE 0x0018
101 #define VMCB_EXITCODE_CR9_WRITE 0x0019
102 #define VMCB_EXITCODE_CR10_WRITE 0x001A
103 #define VMCB_EXITCODE_CR11_WRITE 0x001B
104 #define VMCB_EXITCODE_CR12_WRITE 0x001C
105 #define VMCB_EXITCODE_CR13_WRITE 0x001D
106 #define VMCB_EXITCODE_CR14_WRITE 0x001E
107 #define VMCB_EXITCODE_CR15_WRITE 0x001F
108 #define VMCB_EXITCODE_DR0_READ 0x0020
109 #define VMCB_EXITCODE_DR1_READ 0x0021
110 #define VMCB_EXITCODE_DR2_READ 0x0022
111 #define VMCB_EXITCODE_DR3_READ 0x0023
112 #define VMCB_EXITCODE_DR4_READ 0x0024
113 #define VMCB_EXITCODE_DR5_READ 0x0025
114 #define VMCB_EXITCODE_DR6_READ 0x0026
115 #define VMCB_EXITCODE_DR7_READ 0x0027
116 #define VMCB_EXITCODE_DR8_READ 0x0028
117 #define VMCB_EXITCODE_DR9_READ 0x0029
118 #define VMCB_EXITCODE_DR10_READ 0x002A
119 #define VMCB_EXITCODE_DR11_READ 0x002B
120 #define VMCB_EXITCODE_DR12_READ 0x002C
121 #define VMCB_EXITCODE_DR13_READ 0x002D
122 #define VMCB_EXITCODE_DR14_READ 0x002E
123 #define VMCB_EXITCODE_DR15_READ 0x002F
124 #define VMCB_EXITCODE_DR0_WRITE 0x0030
125 #define VMCB_EXITCODE_DR1_WRITE 0x0031
126 #define VMCB_EXITCODE_DR2_WRITE 0x0032
127 #define VMCB_EXITCODE_DR3_WRITE 0x0033
128 #define VMCB_EXITCODE_DR4_WRITE 0x0034
129 #define VMCB_EXITCODE_DR5_WRITE 0x0035
130 #define VMCB_EXITCODE_DR6_WRITE 0x0036
131 #define VMCB_EXITCODE_DR7_WRITE 0x0037
132 #define VMCB_EXITCODE_DR8_WRITE 0x0038
133 #define VMCB_EXITCODE_DR9_WRITE 0x0039
134 #define VMCB_EXITCODE_DR10_WRITE 0x003A
135 #define VMCB_EXITCODE_DR11_WRITE 0x003B
136 #define VMCB_EXITCODE_DR12_WRITE 0x003C
137 #define VMCB_EXITCODE_DR13_WRITE 0x003D
138 #define VMCB_EXITCODE_DR14_WRITE 0x003E
139 #define VMCB_EXITCODE_DR15_WRITE 0x003F
140 #define VMCB_EXITCODE_EXCP0 0x0040
141 #define VMCB_EXITCODE_EXCP1 0x0041
142 #define VMCB_EXITCODE_EXCP2 0x0042
143 #define VMCB_EXITCODE_EXCP3 0x0043
144 #define VMCB_EXITCODE_EXCP4 0x0044
145 #define VMCB_EXITCODE_EXCP5 0x0045
146 #define VMCB_EXITCODE_EXCP6 0x0046
147 #define VMCB_EXITCODE_EXCP7 0x0047
148 #define VMCB_EXITCODE_EXCP8 0x0048
149 #define VMCB_EXITCODE_EXCP9 0x0049
150 #define VMCB_EXITCODE_EXCP10 0x004A
151 #define VMCB_EXITCODE_EXCP11 0x004B
152 #define VMCB_EXITCODE_EXCP12 0x004C
153 #define VMCB_EXITCODE_EXCP13 0x004D
154 #define VMCB_EXITCODE_EXCP14 0x004E
155 #define VMCB_EXITCODE_EXCP15 0x004F
156 #define VMCB_EXITCODE_EXCP16 0x0050
157 #define VMCB_EXITCODE_EXCP17 0x0051
158 #define VMCB_EXITCODE_EXCP18 0x0052
159 #define VMCB_EXITCODE_EXCP19 0x0053
160 #define VMCB_EXITCODE_EXCP20 0x0054
161 #define VMCB_EXITCODE_EXCP21 0x0055
162 #define VMCB_EXITCODE_EXCP22 0x0056
163 #define VMCB_EXITCODE_EXCP23 0x0057
164 #define VMCB_EXITCODE_EXCP24 0x0058
165 #define VMCB_EXITCODE_EXCP25 0x0059
166 #define VMCB_EXITCODE_EXCP26 0x005A
167 #define VMCB_EXITCODE_EXCP27 0x005B
168 #define VMCB_EXITCODE_EXCP28 0x005C
169 #define VMCB_EXITCODE_EXCP29 0x005D
170 #define VMCB_EXITCODE_EXCP30 0x005E
171 #define VMCB_EXITCODE_EXCP31 0x005F
172 #define VMCB_EXITCODE_INTR 0x0060
173 #define VMCB_EXITCODE_NMI 0x0061
174 #define VMCB_EXITCODE_SMI 0x0062
175 #define VMCB_EXITCODE_INIT 0x0063
176 #define VMCB_EXITCODE_VINTR 0x0064
177 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
178 #define VMCB_EXITCODE_IDTR_READ 0x0066
179 #define VMCB_EXITCODE_GDTR_READ 0x0067
180 #define VMCB_EXITCODE_LDTR_READ 0x0068
181 #define VMCB_EXITCODE_TR_READ 0x0069
182 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
183 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
184 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
185 #define VMCB_EXITCODE_TR_WRITE 0x006D
186 #define VMCB_EXITCODE_RDTSC 0x006E
187 #define VMCB_EXITCODE_RDPMC 0x006F
188 #define VMCB_EXITCODE_PUSHF 0x0070
189 #define VMCB_EXITCODE_POPF 0x0071
190 #define VMCB_EXITCODE_CPUID 0x0072
191 #define VMCB_EXITCODE_RSM 0x0073
192 #define VMCB_EXITCODE_IRET 0x0074
193 #define VMCB_EXITCODE_SWINT 0x0075
194 #define VMCB_EXITCODE_INVD 0x0076
195 #define VMCB_EXITCODE_PAUSE 0x0077
196 #define VMCB_EXITCODE_HLT 0x0078
197 #define VMCB_EXITCODE_INVLPG 0x0079
198 #define VMCB_EXITCODE_INVLPGA 0x007A
199 #define VMCB_EXITCODE_IOIO 0x007B
200 #define VMCB_EXITCODE_MSR 0x007C
201 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
202 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
203 #define VMCB_EXITCODE_SHUTDOWN 0x007F
204 #define VMCB_EXITCODE_VMRUN 0x0080
205 #define VMCB_EXITCODE_VMMCALL 0x0081
206 #define VMCB_EXITCODE_VMLOAD 0x0082
207 #define VMCB_EXITCODE_VMSAVE 0x0083
208 #define VMCB_EXITCODE_STGI 0x0084
209 #define VMCB_EXITCODE_CLGI 0x0085
210 #define VMCB_EXITCODE_SKINIT 0x0086
211 #define VMCB_EXITCODE_RDTSCP 0x0087
212 #define VMCB_EXITCODE_ICEBP 0x0088
213 #define VMCB_EXITCODE_WBINVD 0x0089
214 #define VMCB_EXITCODE_MONITOR 0x008A
215 #define VMCB_EXITCODE_MWAIT 0x008B
216 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
217 #define VMCB_EXITCODE_XSETBV 0x008D
218 #define VMCB_EXITCODE_RDPRU 0x008E
219 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
220 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
221 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
222 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
223 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
224 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
225 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
226 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
227 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
228 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
229 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
230 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
231 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
232 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
233 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
234 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
235 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
236 #define VMCB_EXITCODE_INVLPGB 0x00A0
237 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
238 #define VMCB_EXITCODE_INVPCID 0x00A2
239 #define VMCB_EXITCODE_MCOMMIT 0x00A3
240 #define VMCB_EXITCODE_TLBSYNC 0x00A4
241 #define VMCB_EXITCODE_NPF 0x0400
242 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
243 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
244 #define VMCB_EXITCODE_VMGEXIT 0x0403
245 #define VMCB_EXITCODE_BUSY -2ULL
246 #define VMCB_EXITCODE_INVALID -1ULL
247
248 /* -------------------------------------------------------------------------- */
249
250 struct vmcb_ctrl {
251 uint32_t intercept_cr;
252 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
253 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
254
255 uint32_t intercept_dr;
256 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
257 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
258
259 uint32_t intercept_vec;
260 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
261
262 uint32_t intercept_misc1;
263 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
264 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
265 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
266 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
267 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
268 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
269 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
270 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
271 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
272 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
273 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
274 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
275 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
276 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
277 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
278 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
279 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
280 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
281 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
282 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
283 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
284 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
285 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
286 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
287 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
288 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
289 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
290 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
291 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
292 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
293 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
294 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
295
296 uint32_t intercept_misc2;
297 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
298 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
299 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
300 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
301 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
302 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
303 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
304 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
305 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
306 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
307 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
308 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
309 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
310 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
311 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
312 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
313 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
314
315 uint32_t intercept_misc3;
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
317 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
318 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
319 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
320 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
321
322 uint8_t rsvd1[36];
323 uint16_t pause_filt_thresh;
324 uint16_t pause_filt_cnt;
325 uint64_t iopm_base_pa;
326 uint64_t msrpm_base_pa;
327 uint64_t tsc_offset;
328 uint32_t guest_asid;
329
330 uint32_t tlb_ctrl;
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
333 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
334
335 uint64_t v;
336 #define VMCB_CTRL_V_TPR __BITS(3,0)
337 #define VMCB_CTRL_V_IRQ __BIT(8)
338 #define VMCB_CTRL_V_VGIF __BIT(9)
339 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
340 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
341 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
342 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
343 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
344 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
345
346 uint64_t intr;
347 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
348 #define VMCB_CTRL_INTR_MASK __BIT(1)
349
350 uint64_t exitcode;
351 uint64_t exitinfo1;
352 uint64_t exitinfo2;
353
354 uint64_t exitintinfo;
355 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
356 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
357 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
358 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
359 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
360
361 uint64_t enable1;
362 #define VMCB_CTRL_ENABLE_NP __BIT(0)
363 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
364 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
365 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
366 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
367
368 uint64_t avic;
369 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
370
371 uint64_t ghcb;
372
373 uint64_t eventinj;
374 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
375 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
376 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
377 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
378 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
379
380 uint64_t n_cr3;
381
382 uint64_t enable2;
383 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
384 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
385
386 uint32_t vmcb_clean;
387 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
388 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
389 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
390 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
391 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
392 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
393 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
394 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
395 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
396 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
397 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
398 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
399
400 uint32_t rsvd2;
401 uint64_t nrip;
402 uint8_t inst_len;
403 uint8_t inst_bytes[15];
404 uint64_t avic_abpp;
405 uint64_t rsvd3;
406 uint64_t avic_ltp;
407
408 uint64_t avic_phys;
409 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
410 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
411
412 uint64_t rsvd4;
413 uint64_t vmsa_ptr;
414
415 uint8_t pad[752];
416 } __packed;
417
418 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
419
420 struct vmcb_segment {
421 uint16_t selector;
422 uint16_t attrib; /* hidden */
423 uint32_t limit; /* hidden */
424 uint64_t base; /* hidden */
425 } __packed;
426
427 CTASSERT(sizeof(struct vmcb_segment) == 16);
428
429 struct vmcb_state {
430 struct vmcb_segment es;
431 struct vmcb_segment cs;
432 struct vmcb_segment ss;
433 struct vmcb_segment ds;
434 struct vmcb_segment fs;
435 struct vmcb_segment gs;
436 struct vmcb_segment gdt;
437 struct vmcb_segment ldt;
438 struct vmcb_segment idt;
439 struct vmcb_segment tr;
440 uint8_t rsvd1[43];
441 uint8_t cpl;
442 uint8_t rsvd2[4];
443 uint64_t efer;
444 uint8_t rsvd3[112];
445 uint64_t cr4;
446 uint64_t cr3;
447 uint64_t cr0;
448 uint64_t dr7;
449 uint64_t dr6;
450 uint64_t rflags;
451 uint64_t rip;
452 uint8_t rsvd4[88];
453 uint64_t rsp;
454 uint8_t rsvd5[24];
455 uint64_t rax;
456 uint64_t star;
457 uint64_t lstar;
458 uint64_t cstar;
459 uint64_t sfmask;
460 uint64_t kernelgsbase;
461 uint64_t sysenter_cs;
462 uint64_t sysenter_esp;
463 uint64_t sysenter_eip;
464 uint64_t cr2;
465 uint8_t rsvd6[32];
466 uint64_t g_pat;
467 uint64_t dbgctl;
468 uint64_t br_from;
469 uint64_t br_to;
470 uint64_t int_from;
471 uint64_t int_to;
472 uint8_t pad[2408];
473 } __packed;
474
475 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
476
477 struct vmcb {
478 struct vmcb_ctrl ctrl;
479 struct vmcb_state state;
480 } __packed;
481
482 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
483 CTASSERT(offsetof(struct vmcb, state) == 0x400);
484
485 /* -------------------------------------------------------------------------- */
486
487 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
488 static void svm_vcpu_state_commit(struct nvmm_cpu *);
489
490 struct svm_hsave {
491 paddr_t pa;
492 };
493
494 static struct svm_hsave hsave[MAXCPUS];
495
496 static uint8_t *svm_asidmap __read_mostly;
497 static uint32_t svm_maxasid __read_mostly;
498 static kmutex_t svm_asidlock __cacheline_aligned;
499
500 static bool svm_decode_assist __read_mostly;
501 static uint32_t svm_ctrl_tlb_flush __read_mostly;
502
503 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
504 static uint64_t svm_xcr0_mask __read_mostly;
505
506 #define SVM_NCPUIDS 32
507
508 #define VMCB_NPAGES 1
509
510 #define MSRBM_NPAGES 2
511 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
512
513 #define IOBM_NPAGES 3
514 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
515
516 /* Does not include EFER_LMSLE. */
517 #define EFER_VALID \
518 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
519
520 #define EFER_TLB_FLUSH \
521 (EFER_NXE|EFER_LMA|EFER_LME)
522 #define CR0_TLB_FLUSH \
523 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
524 #define CR4_TLB_FLUSH \
525 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
526
527 #define CR4_VALID \
528 (CR4_VME | \
529 CR4_PVI | \
530 CR4_TSD | \
531 CR4_DE | \
532 CR4_PSE | \
533 CR4_PAE | \
534 CR4_MCE | \
535 CR4_PGE | \
536 CR4_PCE | \
537 CR4_OSFXSR | \
538 CR4_OSXMMEXCPT | \
539 CR4_UMIP | \
540 /* CR4_LA57 excluded */ \
541 /* bit 13 reserved on AMD */ \
542 /* bit 14 reserved on AMD */ \
543 /* bit 15 reserved on AMD */ \
544 CR4_FSGSBASE | \
545 CR4_PCIDE | \
546 CR4_OSXSAVE | \
547 /* bit 19 reserved on AMD */ \
548 CR4_SMEP | \
549 CR4_SMAP \
550 /* CR4_PKE excluded */ \
551 /* CR4_CET excluded */ \
552 /* bits 24:63 reserved on AMD */)
553
554 /* -------------------------------------------------------------------------- */
555
556 struct svm_machdata {
557 volatile uint64_t mach_htlb_gen;
558 };
559
560 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
561 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
562 sizeof(struct nvmm_vcpu_conf_cpuid),
563 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
564 sizeof(struct nvmm_vcpu_conf_tpr)
565 };
566
567 struct svm_cpudata {
568 /* General */
569 bool shared_asid;
570 bool gtlb_want_flush;
571 bool gtsc_want_update;
572 uint64_t vcpu_htlb_gen;
573
574 /* VMCB */
575 struct vmcb *vmcb;
576 paddr_t vmcb_pa;
577
578 /* I/O bitmap */
579 uint8_t *iobm;
580 paddr_t iobm_pa;
581
582 /* MSR bitmap */
583 uint8_t *msrbm;
584 paddr_t msrbm_pa;
585
586 /* Host state */
587 uint64_t hxcr0;
588 uint64_t star;
589 uint64_t lstar;
590 uint64_t cstar;
591 uint64_t sfmask;
592 uint64_t fsbase;
593 uint64_t kernelgsbase;
594
595 /* Intr state */
596 bool int_window_exit;
597 bool nmi_window_exit;
598 bool evt_pending;
599
600 /* Guest state */
601 uint64_t gxcr0;
602 uint64_t gprs[NVMM_X64_NGPR];
603 uint64_t drs[NVMM_X64_NDR];
604 uint64_t gtsc;
605 struct xsave_header gfpu __aligned(64);
606
607 /* VCPU configuration. */
608 bool cpuidpresent[SVM_NCPUIDS];
609 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
610 };
611
612 static void
613 svm_vmcb_cache_default(struct vmcb *vmcb)
614 {
615 vmcb->ctrl.vmcb_clean =
616 VMCB_CTRL_VMCB_CLEAN_I |
617 VMCB_CTRL_VMCB_CLEAN_IOPM |
618 VMCB_CTRL_VMCB_CLEAN_ASID |
619 VMCB_CTRL_VMCB_CLEAN_TPR |
620 VMCB_CTRL_VMCB_CLEAN_NP |
621 VMCB_CTRL_VMCB_CLEAN_CR |
622 VMCB_CTRL_VMCB_CLEAN_DR |
623 VMCB_CTRL_VMCB_CLEAN_DT |
624 VMCB_CTRL_VMCB_CLEAN_SEG |
625 VMCB_CTRL_VMCB_CLEAN_CR2 |
626 VMCB_CTRL_VMCB_CLEAN_LBR |
627 VMCB_CTRL_VMCB_CLEAN_AVIC;
628 }
629
630 static void
631 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
632 {
633 if (flags & NVMM_X64_STATE_SEGS) {
634 vmcb->ctrl.vmcb_clean &=
635 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
636 }
637 if (flags & NVMM_X64_STATE_CRS) {
638 vmcb->ctrl.vmcb_clean &=
639 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
640 VMCB_CTRL_VMCB_CLEAN_TPR);
641 }
642 if (flags & NVMM_X64_STATE_DRS) {
643 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
644 }
645 if (flags & NVMM_X64_STATE_MSRS) {
646 /* CR for EFER, NP for PAT. */
647 vmcb->ctrl.vmcb_clean &=
648 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
649 }
650 }
651
652 static inline void
653 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
654 {
655 vmcb->ctrl.vmcb_clean &= ~flags;
656 }
657
658 static inline void
659 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
660 {
661 vmcb->ctrl.vmcb_clean = 0;
662 }
663
664 #define SVM_EVENT_TYPE_HW_INT 0
665 #define SVM_EVENT_TYPE_NMI 2
666 #define SVM_EVENT_TYPE_EXC 3
667 #define SVM_EVENT_TYPE_SW_INT 4
668
669 static void
670 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
671 {
672 struct svm_cpudata *cpudata = vcpu->cpudata;
673 struct vmcb *vmcb = cpudata->vmcb;
674
675 if (nmi) {
676 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
677 cpudata->nmi_window_exit = true;
678 } else {
679 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
680 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
681 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
682 cpudata->int_window_exit = true;
683 }
684
685 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
686 }
687
688 static void
689 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
690 {
691 struct svm_cpudata *cpudata = vcpu->cpudata;
692 struct vmcb *vmcb = cpudata->vmcb;
693
694 if (nmi) {
695 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
696 cpudata->nmi_window_exit = false;
697 } else {
698 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
699 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
700 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
701 cpudata->int_window_exit = false;
702 }
703
704 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
705 }
706
707 static inline bool
708 svm_excp_has_rf(uint8_t vector)
709 {
710 switch (vector) {
711 case 1: /* #DB */
712 case 4: /* #OF */
713 case 8: /* #DF */
714 case 18: /* #MC */
715 return false;
716 default:
717 return true;
718 }
719 }
720
721 static inline int
722 svm_excp_has_error(uint8_t vector)
723 {
724 switch (vector) {
725 case 8: /* #DF */
726 case 10: /* #TS */
727 case 11: /* #NP */
728 case 12: /* #SS */
729 case 13: /* #GP */
730 case 14: /* #PF */
731 case 17: /* #AC */
732 case 30: /* #SX */
733 return 1;
734 default:
735 return 0;
736 }
737 }
738
739 static int
740 svm_vcpu_inject(struct nvmm_cpu *vcpu)
741 {
742 struct nvmm_comm_page *comm = vcpu->comm;
743 struct svm_cpudata *cpudata = vcpu->cpudata;
744 struct vmcb *vmcb = cpudata->vmcb;
745 u_int evtype;
746 uint8_t vector;
747 uint64_t error;
748 int type = 0, err = 0;
749
750 evtype = comm->event.type;
751 vector = comm->event.vector;
752 error = comm->event.u.excp.error;
753 __insn_barrier();
754
755 switch (evtype) {
756 case NVMM_VCPU_EVENT_EXCP:
757 type = SVM_EVENT_TYPE_EXC;
758 if (vector == 2 || vector >= 32)
759 return EINVAL;
760 if (vector == 3 || vector == 0)
761 return EINVAL;
762 if (svm_excp_has_rf(vector)) {
763 vmcb->state.rflags |= PSL_RF;
764 }
765 err = svm_excp_has_error(vector);
766 break;
767 case NVMM_VCPU_EVENT_INTR:
768 type = SVM_EVENT_TYPE_HW_INT;
769 if (vector == 2) {
770 type = SVM_EVENT_TYPE_NMI;
771 svm_event_waitexit_enable(vcpu, true);
772 }
773 err = 0;
774 break;
775 default:
776 return EINVAL;
777 }
778
779 vmcb->ctrl.eventinj =
780 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
781 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
782 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
783 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
784 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
785
786 cpudata->evt_pending = true;
787
788 return 0;
789 }
790
791 static void
792 svm_inject_ud(struct nvmm_cpu *vcpu)
793 {
794 struct nvmm_comm_page *comm = vcpu->comm;
795 int ret __diagused;
796
797 comm->event.type = NVMM_VCPU_EVENT_EXCP;
798 comm->event.vector = 6;
799 comm->event.u.excp.error = 0;
800
801 ret = svm_vcpu_inject(vcpu);
802 KASSERT(ret == 0);
803 }
804
805 static void
806 svm_inject_gp(struct nvmm_cpu *vcpu)
807 {
808 struct nvmm_comm_page *comm = vcpu->comm;
809 int ret __diagused;
810
811 comm->event.type = NVMM_VCPU_EVENT_EXCP;
812 comm->event.vector = 13;
813 comm->event.u.excp.error = 0;
814
815 ret = svm_vcpu_inject(vcpu);
816 KASSERT(ret == 0);
817 }
818
819 static inline int
820 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
821 {
822 if (__predict_true(!vcpu->comm->event_commit)) {
823 return 0;
824 }
825 vcpu->comm->event_commit = false;
826 return svm_vcpu_inject(vcpu);
827 }
828
829 static inline void
830 svm_inkernel_advance(struct vmcb *vmcb)
831 {
832 /*
833 * Maybe we should also apply single-stepping and debug exceptions.
834 * Matters for guest-ring3, because it can execute 'cpuid' under a
835 * debugger.
836 */
837 vmcb->state.rip = vmcb->ctrl.nrip;
838 vmcb->state.rflags &= ~PSL_RF;
839 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
840 }
841
842 #define SVM_CPUID_MAX_BASIC 0xD
843 #define SVM_CPUID_MAX_HYPERVISOR 0x40000010
844 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
845 static uint32_t svm_cpuid_max_basic __read_mostly;
846 static uint32_t svm_cpuid_max_extended __read_mostly;
847
848 static void
849 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
850 {
851 u_int descs[4];
852
853 x86_cpuid2(eax, ecx, descs);
854 cpudata->vmcb->state.rax = descs[0];
855 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
856 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
857 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
858 }
859
860 static void
861 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
862 {
863 struct svm_cpudata *cpudata = vcpu->cpudata;
864 uint64_t cr4;
865
866
867 /*
868 * `If a value entered for CPUID.EAX is higher than the maximum
869 * input value for basic or extended function for that
870 * processor then the dtaa for the highest basic information
871 * leaf is returned.'
872 *
873 * --Intel 64 and IA-32 Architectures Software Developer's
874 * Manual, Vol. 2A, Order Number: 325383-077US, April 2022,
875 * Sec. 3.2 `Instructions (A-L)', CPUID--CPU Identification,
876 * pp. 3-214.
877 *
878 * We take the same to hold for the hypervisor range,
879 * 0x40000000-0x4fffffff.
880 */
881 if (eax < 0x40000000) { /* basic CPUID range */
882 if (__predict_false(eax > svm_cpuid_max_basic)) {
883 eax = svm_cpuid_max_basic;
884 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
885 }
886 } else if (eax < 0x80000000) { /* hypervisor CPUID range */
887 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
888 eax = svm_cpuid_max_basic;
889 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
890 }
891 } else { /* extended CPUID range */
892 if (__predict_false(eax > svm_cpuid_max_extended)) {
893 eax = svm_cpuid_max_basic;
894 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
895 }
896 }
897
898 switch (eax) {
899
900 /*
901 * basic CPUID range
902 */
903 case 0x00000000:
904 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
905 break;
906 case 0x00000001:
907 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
908
909 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
910 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
911 CPUID_LOCAL_APIC_ID);
912
913 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
914 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
915
916 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
917
918 /* CPUID2_OSXSAVE depends on CR4. */
919 cr4 = cpudata->vmcb->state.cr4;
920 if (!(cr4 & CR4_OSXSAVE)) {
921 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
922 }
923 break;
924 case 0x00000002: /* Empty */
925 case 0x00000003: /* Empty */
926 case 0x00000004: /* Empty */
927 case 0x00000005: /* Monitor/MWait */
928 case 0x00000006: /* Power Management Related Features */
929 cpudata->vmcb->state.rax = 0;
930 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
931 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
932 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
933 break;
934 case 0x00000007: /* Structured Extended Features */
935 switch (ecx) {
936 case 0:
937 cpudata->vmcb->state.rax = 0;
938 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
939 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
940 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
941 break;
942 default:
943 cpudata->vmcb->state.rax = 0;
944 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
945 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
946 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
947 break;
948 }
949 break;
950 case 0x00000008: /* Empty */
951 case 0x00000009: /* Empty */
952 case 0x0000000A: /* Empty */
953 case 0x0000000B: /* Empty */
954 case 0x0000000C: /* Empty */
955 cpudata->vmcb->state.rax = 0;
956 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
957 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
958 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
959 break;
960 case 0x0000000D: /* Processor Extended State Enumeration */
961 if (svm_xcr0_mask == 0) {
962 break;
963 }
964 switch (ecx) {
965 case 0:
966 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
967 if (cpudata->gxcr0 & XCR0_SSE) {
968 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
969 } else {
970 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
971 }
972 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
973 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
974 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
975 break;
976 case 1:
977 cpudata->vmcb->state.rax &=
978 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
979 CPUID_PES1_XGETBV);
980 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
981 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
982 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
983 break;
984 default:
985 cpudata->vmcb->state.rax = 0;
986 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
987 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
988 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
989 break;
990 }
991 break;
992
993 /*
994 * hypervisor CPUID range
995 */
996 case 0x40000000: /* Hypervisor Information */
997 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
998 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
999 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1000 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1001 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1002 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1003 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1004 break;
1005 case 0x40000010: /* VMware-style TSC and LAPIC freq */
1006 cpudata->gprs[NVMM_X64_GPR_RAX] = curcpu()->ci_data.cpu_cc_freq / 1000;
1007 if (has_lapic())
1008 cpudata->gprs[NVMM_X64_GPR_RBX] = lapic_per_second / 1000;
1009 else
1010 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1011 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1012 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1013 break;
1014
1015 /*
1016 * extended CPUID range
1017 */
1018 case 0x80000000:
1019 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
1020 break;
1021 case 0x80000001:
1022 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
1023 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1024 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1025 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1026 break;
1027 case 0x80000002: /* Extended Processor Name String */
1028 case 0x80000003: /* Extended Processor Name String */
1029 case 0x80000004: /* Extended Processor Name String */
1030 case 0x80000005: /* L1 Cache and TLB Information */
1031 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
1032 break;
1033 case 0x80000007: /* Processor Power Management and RAS Capabilities */
1034 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
1035 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1036 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1037 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1038 break;
1039 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
1040 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
1041 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1042 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1043 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1044 break;
1045 case 0x80000009: /* Empty */
1046 case 0x8000000A: /* SVM Features */
1047 case 0x8000000B: /* Empty */
1048 case 0x8000000C: /* Empty */
1049 case 0x8000000D: /* Empty */
1050 case 0x8000000E: /* Empty */
1051 case 0x8000000F: /* Empty */
1052 case 0x80000010: /* Empty */
1053 case 0x80000011: /* Empty */
1054 case 0x80000012: /* Empty */
1055 case 0x80000013: /* Empty */
1056 case 0x80000014: /* Empty */
1057 case 0x80000015: /* Empty */
1058 case 0x80000016: /* Empty */
1059 case 0x80000017: /* Empty */
1060 case 0x80000018: /* Empty */
1061 cpudata->vmcb->state.rax = 0;
1062 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1063 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1064 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1065 break;
1066 case 0x80000019: /* TLB Characteristics for 1GB pages */
1067 case 0x8000001A: /* Instruction Optimizations */
1068 break;
1069 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1070 case 0x8000001C: /* Lightweight Profiling Capabilities */
1071 cpudata->vmcb->state.rax = 0;
1072 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1073 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1074 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1075 break;
1076 case 0x8000001D: /* Cache Topology Information */
1077 case 0x8000001E: /* Processor Topology Information */
1078 break; /* TODO? */
1079 case 0x8000001F: /* Encrypted Memory Capabilities */
1080 cpudata->vmcb->state.rax = 0;
1081 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1082 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1083 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1084 break;
1085
1086 default:
1087 break;
1088 }
1089 }
1090
1091 static void
1092 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1093 {
1094 exit->u.insn.npc = vmcb->ctrl.nrip;
1095 exit->reason = reason;
1096 }
1097
1098 static void
1099 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1100 struct nvmm_vcpu_exit *exit)
1101 {
1102 struct svm_cpudata *cpudata = vcpu->cpudata;
1103 struct nvmm_vcpu_conf_cpuid *cpuid;
1104 uint64_t eax, ecx;
1105 size_t i;
1106
1107 eax = cpudata->vmcb->state.rax;
1108 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1109 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1110 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1111
1112 for (i = 0; i < SVM_NCPUIDS; i++) {
1113 if (!cpudata->cpuidpresent[i]) {
1114 continue;
1115 }
1116 cpuid = &cpudata->cpuid[i];
1117 if (cpuid->leaf != eax) {
1118 continue;
1119 }
1120
1121 if (cpuid->exit) {
1122 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1123 return;
1124 }
1125 KASSERT(cpuid->mask);
1126
1127 /* del */
1128 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1129 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1130 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1131 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1132
1133 /* set */
1134 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1135 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1136 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1137 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1138
1139 break;
1140 }
1141
1142 svm_inkernel_advance(cpudata->vmcb);
1143 exit->reason = NVMM_VCPU_EXIT_NONE;
1144 }
1145
1146 static void
1147 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1148 struct nvmm_vcpu_exit *exit)
1149 {
1150 struct svm_cpudata *cpudata = vcpu->cpudata;
1151 struct vmcb *vmcb = cpudata->vmcb;
1152
1153 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1154 svm_event_waitexit_disable(vcpu, false);
1155 }
1156
1157 svm_inkernel_advance(cpudata->vmcb);
1158 exit->reason = NVMM_VCPU_EXIT_HALTED;
1159 }
1160
1161 #define SVM_EXIT_IO_PORT __BITS(31,16)
1162 #define SVM_EXIT_IO_SEG __BITS(12,10)
1163 #define SVM_EXIT_IO_A64 __BIT(9)
1164 #define SVM_EXIT_IO_A32 __BIT(8)
1165 #define SVM_EXIT_IO_A16 __BIT(7)
1166 #define SVM_EXIT_IO_SZ32 __BIT(6)
1167 #define SVM_EXIT_IO_SZ16 __BIT(5)
1168 #define SVM_EXIT_IO_SZ8 __BIT(4)
1169 #define SVM_EXIT_IO_REP __BIT(3)
1170 #define SVM_EXIT_IO_STR __BIT(2)
1171 #define SVM_EXIT_IO_IN __BIT(0)
1172
1173 static void
1174 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1175 struct nvmm_vcpu_exit *exit)
1176 {
1177 struct svm_cpudata *cpudata = vcpu->cpudata;
1178 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1179 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1180
1181 exit->reason = NVMM_VCPU_EXIT_IO;
1182
1183 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1184 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1185
1186 if (svm_decode_assist) {
1187 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1188 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1189 } else {
1190 exit->u.io.seg = -1;
1191 }
1192
1193 if (info & SVM_EXIT_IO_A64) {
1194 exit->u.io.address_size = 8;
1195 } else if (info & SVM_EXIT_IO_A32) {
1196 exit->u.io.address_size = 4;
1197 } else if (info & SVM_EXIT_IO_A16) {
1198 exit->u.io.address_size = 2;
1199 }
1200
1201 if (info & SVM_EXIT_IO_SZ32) {
1202 exit->u.io.operand_size = 4;
1203 } else if (info & SVM_EXIT_IO_SZ16) {
1204 exit->u.io.operand_size = 2;
1205 } else if (info & SVM_EXIT_IO_SZ8) {
1206 exit->u.io.operand_size = 1;
1207 }
1208
1209 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1210 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1211 exit->u.io.npc = nextpc;
1212
1213 svm_vcpu_state_provide(vcpu,
1214 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1215 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1216 }
1217
1218 static const uint64_t msr_ignore_list[] = {
1219 0xc0010055, /* MSR_CMPHALT */
1220 MSR_DE_CFG,
1221 MSR_IC_CFG,
1222 MSR_UCODE_AMD_PATCHLEVEL
1223 };
1224
1225 static bool
1226 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1227 struct nvmm_vcpu_exit *exit)
1228 {
1229 struct svm_cpudata *cpudata = vcpu->cpudata;
1230 struct vmcb *vmcb = cpudata->vmcb;
1231 uint64_t val;
1232 size_t i;
1233
1234 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1235 if (exit->u.rdmsr.msr == MSR_EFER) {
1236 val = vmcb->state.efer & ~EFER_SVME;
1237 vmcb->state.rax = (val & 0xFFFFFFFF);
1238 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1239 goto handled;
1240 }
1241 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1242 val = NB_CFG_INITAPICCPUIDLO;
1243 vmcb->state.rax = (val & 0xFFFFFFFF);
1244 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1245 goto handled;
1246 }
1247 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1248 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1249 continue;
1250 val = 0;
1251 vmcb->state.rax = (val & 0xFFFFFFFF);
1252 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1253 goto handled;
1254 }
1255 } else {
1256 if (exit->u.wrmsr.msr == MSR_EFER) {
1257 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1258 goto error;
1259 }
1260 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1261 EFER_TLB_FLUSH) {
1262 cpudata->gtlb_want_flush = true;
1263 }
1264 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1265 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1266 goto handled;
1267 }
1268 if (exit->u.wrmsr.msr == MSR_TSC) {
1269 cpudata->gtsc = exit->u.wrmsr.val;
1270 cpudata->gtsc_want_update = true;
1271 goto handled;
1272 }
1273 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1274 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1275 continue;
1276 goto handled;
1277 }
1278 }
1279
1280 return false;
1281
1282 handled:
1283 svm_inkernel_advance(cpudata->vmcb);
1284 return true;
1285
1286 error:
1287 svm_inject_gp(vcpu);
1288 return true;
1289 }
1290
1291 static inline void
1292 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1293 struct nvmm_vcpu_exit *exit)
1294 {
1295 struct svm_cpudata *cpudata = vcpu->cpudata;
1296
1297 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1298 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1299 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1300
1301 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1302 exit->reason = NVMM_VCPU_EXIT_NONE;
1303 return;
1304 }
1305
1306 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1307 }
1308
1309 static inline void
1310 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1311 struct nvmm_vcpu_exit *exit)
1312 {
1313 struct svm_cpudata *cpudata = vcpu->cpudata;
1314 uint64_t rdx, rax;
1315
1316 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1317 rax = cpudata->vmcb->state.rax;
1318
1319 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1320 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1321 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1322 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1323
1324 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1325 exit->reason = NVMM_VCPU_EXIT_NONE;
1326 return;
1327 }
1328
1329 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1330 }
1331
1332 static void
1333 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1334 struct nvmm_vcpu_exit *exit)
1335 {
1336 struct svm_cpudata *cpudata = vcpu->cpudata;
1337 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1338
1339 if (info == 0) {
1340 svm_exit_rdmsr(mach, vcpu, exit);
1341 } else {
1342 svm_exit_wrmsr(mach, vcpu, exit);
1343 }
1344 }
1345
1346 static void
1347 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1348 struct nvmm_vcpu_exit *exit)
1349 {
1350 struct svm_cpudata *cpudata = vcpu->cpudata;
1351 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1352
1353 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1354 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1355 exit->u.mem.prot = PROT_WRITE;
1356 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1357 exit->u.mem.prot = PROT_EXEC;
1358 else
1359 exit->u.mem.prot = PROT_READ;
1360 exit->u.mem.gpa = gpa;
1361 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1362 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1363 sizeof(exit->u.mem.inst_bytes));
1364
1365 svm_vcpu_state_provide(vcpu,
1366 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1367 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1368 }
1369
1370 static void
1371 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1372 struct nvmm_vcpu_exit *exit)
1373 {
1374 struct svm_cpudata *cpudata = vcpu->cpudata;
1375 struct vmcb *vmcb = cpudata->vmcb;
1376 uint64_t val;
1377
1378 exit->reason = NVMM_VCPU_EXIT_NONE;
1379
1380 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1381 (vmcb->state.rax & 0xFFFFFFFF);
1382
1383 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1384 goto error;
1385 } else if (__predict_false(vmcb->state.cpl != 0)) {
1386 goto error;
1387 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1388 goto error;
1389 } else if (__predict_false((val & XCR0_X87) == 0)) {
1390 goto error;
1391 }
1392
1393 cpudata->gxcr0 = val;
1394
1395 svm_inkernel_advance(cpudata->vmcb);
1396 return;
1397
1398 error:
1399 svm_inject_gp(vcpu);
1400 }
1401
1402 static void
1403 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1404 {
1405 exit->u.inv.hwcode = code;
1406 exit->reason = NVMM_VCPU_EXIT_INVALID;
1407 }
1408
1409 /* -------------------------------------------------------------------------- */
1410
1411 static void
1412 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1413 {
1414 struct svm_cpudata *cpudata = vcpu->cpudata;
1415
1416 fpu_kern_enter();
1417 /* TODO: should we use *XSAVE64 here? */
1418 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
1419
1420 if (svm_xcr0_mask != 0) {
1421 cpudata->hxcr0 = rdxcr(0);
1422 wrxcr(0, cpudata->gxcr0);
1423 }
1424 }
1425
1426 static void
1427 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1428 {
1429 struct svm_cpudata *cpudata = vcpu->cpudata;
1430
1431 if (svm_xcr0_mask != 0) {
1432 cpudata->gxcr0 = rdxcr(0);
1433 wrxcr(0, cpudata->hxcr0);
1434 }
1435
1436 /* TODO: should we use *XSAVE64 here? */
1437 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
1438 fpu_kern_leave();
1439 }
1440
1441 static void
1442 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1443 {
1444 struct svm_cpudata *cpudata = vcpu->cpudata;
1445
1446 x86_dbregs_save(curlwp);
1447
1448 ldr7(0);
1449
1450 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1451 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1452 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1453 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1454 }
1455
1456 static void
1457 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1458 {
1459 struct svm_cpudata *cpudata = vcpu->cpudata;
1460
1461 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1462 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1463 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1464 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1465
1466 x86_dbregs_restore(curlwp);
1467 }
1468
1469 static void
1470 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1471 {
1472 struct svm_cpudata *cpudata = vcpu->cpudata;
1473
1474 cpudata->fsbase = rdmsr(MSR_FSBASE);
1475 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1476 }
1477
1478 static void
1479 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1480 {
1481 struct svm_cpudata *cpudata = vcpu->cpudata;
1482
1483 wrmsr(MSR_STAR, cpudata->star);
1484 wrmsr(MSR_LSTAR, cpudata->lstar);
1485 wrmsr(MSR_CSTAR, cpudata->cstar);
1486 wrmsr(MSR_SFMASK, cpudata->sfmask);
1487 wrmsr(MSR_FSBASE, cpudata->fsbase);
1488 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1489 }
1490
1491 /* -------------------------------------------------------------------------- */
1492
1493 static inline void
1494 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1495 {
1496 struct svm_cpudata *cpudata = vcpu->cpudata;
1497
1498 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1499 cpudata->gtlb_want_flush = true;
1500 }
1501 }
1502
1503 static inline void
1504 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1505 {
1506 /*
1507 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1508 * executing on this hCPU and the hTLB already got flushed, or it
1509 * was executing on another hCPU in which case the catchup is done
1510 * in svm_gtlb_catchup().
1511 */
1512 }
1513
1514 static inline uint64_t
1515 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1516 {
1517 struct vmcb *vmcb = cpudata->vmcb;
1518 uint64_t machgen;
1519
1520 machgen = machdata->mach_htlb_gen;
1521 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1522 return machgen;
1523 }
1524
1525 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1526 return machgen;
1527 }
1528
1529 static inline void
1530 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1531 {
1532 struct vmcb *vmcb = cpudata->vmcb;
1533
1534 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1535 cpudata->vcpu_htlb_gen = machgen;
1536 }
1537 }
1538
1539 static inline void
1540 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1541 {
1542 cpudata->evt_pending = false;
1543
1544 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1545 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1546 cpudata->evt_pending = true;
1547 }
1548 }
1549
1550 static int
1551 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1552 struct nvmm_vcpu_exit *exit)
1553 {
1554 struct nvmm_comm_page *comm = vcpu->comm;
1555 struct svm_machdata *machdata = mach->machdata;
1556 struct svm_cpudata *cpudata = vcpu->cpudata;
1557 struct vmcb *vmcb = cpudata->vmcb;
1558 uint64_t machgen;
1559 int hcpu;
1560
1561 svm_vcpu_state_commit(vcpu);
1562 comm->state_cached = 0;
1563
1564 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1565 return EINVAL;
1566 }
1567
1568 kpreempt_disable();
1569 hcpu = cpu_number();
1570
1571 svm_gtlb_catchup(vcpu, hcpu);
1572 svm_htlb_catchup(vcpu, hcpu);
1573
1574 if (vcpu->hcpu_last != hcpu) {
1575 svm_vmcb_cache_flush_all(vmcb);
1576 cpudata->gtsc_want_update = true;
1577 }
1578
1579 svm_vcpu_guest_dbregs_enter(vcpu);
1580 svm_vcpu_guest_misc_enter(vcpu);
1581
1582 while (1) {
1583 if (cpudata->gtlb_want_flush) {
1584 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1585 } else {
1586 vmcb->ctrl.tlb_ctrl = 0;
1587 }
1588
1589 if (__predict_false(cpudata->gtsc_want_update)) {
1590 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1591 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1592 }
1593
1594 svm_vcpu_guest_fpu_enter(vcpu);
1595 svm_clgi();
1596 machgen = svm_htlb_flush(machdata, cpudata);
1597 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1598 svm_htlb_flush_ack(cpudata, machgen);
1599 svm_stgi();
1600 svm_vcpu_guest_fpu_leave(vcpu);
1601
1602 svm_vmcb_cache_default(vmcb);
1603
1604 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1605 cpudata->gtlb_want_flush = false;
1606 cpudata->gtsc_want_update = false;
1607 vcpu->hcpu_last = hcpu;
1608 }
1609 svm_exit_evt(cpudata, vmcb);
1610
1611 switch (vmcb->ctrl.exitcode) {
1612 case VMCB_EXITCODE_INTR:
1613 case VMCB_EXITCODE_NMI:
1614 exit->reason = NVMM_VCPU_EXIT_NONE;
1615 break;
1616 case VMCB_EXITCODE_VINTR:
1617 svm_event_waitexit_disable(vcpu, false);
1618 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1619 break;
1620 case VMCB_EXITCODE_IRET:
1621 svm_event_waitexit_disable(vcpu, true);
1622 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1623 break;
1624 case VMCB_EXITCODE_CPUID:
1625 svm_exit_cpuid(mach, vcpu, exit);
1626 break;
1627 case VMCB_EXITCODE_HLT:
1628 svm_exit_hlt(mach, vcpu, exit);
1629 break;
1630 case VMCB_EXITCODE_IOIO:
1631 svm_exit_io(mach, vcpu, exit);
1632 break;
1633 case VMCB_EXITCODE_MSR:
1634 svm_exit_msr(mach, vcpu, exit);
1635 break;
1636 case VMCB_EXITCODE_SHUTDOWN:
1637 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1638 break;
1639 case VMCB_EXITCODE_RDPMC:
1640 case VMCB_EXITCODE_RSM:
1641 case VMCB_EXITCODE_INVLPGA:
1642 case VMCB_EXITCODE_VMRUN:
1643 case VMCB_EXITCODE_VMMCALL:
1644 case VMCB_EXITCODE_VMLOAD:
1645 case VMCB_EXITCODE_VMSAVE:
1646 case VMCB_EXITCODE_STGI:
1647 case VMCB_EXITCODE_CLGI:
1648 case VMCB_EXITCODE_SKINIT:
1649 case VMCB_EXITCODE_RDTSCP:
1650 case VMCB_EXITCODE_RDPRU:
1651 case VMCB_EXITCODE_INVLPGB:
1652 case VMCB_EXITCODE_INVPCID:
1653 case VMCB_EXITCODE_MCOMMIT:
1654 case VMCB_EXITCODE_TLBSYNC:
1655 svm_inject_ud(vcpu);
1656 exit->reason = NVMM_VCPU_EXIT_NONE;
1657 break;
1658 case VMCB_EXITCODE_MONITOR:
1659 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1660 break;
1661 case VMCB_EXITCODE_MWAIT:
1662 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1663 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1664 break;
1665 case VMCB_EXITCODE_XSETBV:
1666 svm_exit_xsetbv(mach, vcpu, exit);
1667 break;
1668 case VMCB_EXITCODE_NPF:
1669 svm_exit_npf(mach, vcpu, exit);
1670 break;
1671 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1672 default:
1673 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1674 break;
1675 }
1676
1677 /* If no reason to return to userland, keep rolling. */
1678 if (nvmm_return_needed(vcpu, exit)) {
1679 break;
1680 }
1681 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1682 break;
1683 }
1684 }
1685
1686 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1687
1688 svm_vcpu_guest_misc_leave(vcpu);
1689 svm_vcpu_guest_dbregs_leave(vcpu);
1690
1691 kpreempt_enable();
1692
1693 exit->exitstate.rflags = vmcb->state.rflags;
1694 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1695 exit->exitstate.int_shadow =
1696 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1697 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1698 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1699 exit->exitstate.evt_pending = cpudata->evt_pending;
1700
1701 return 0;
1702 }
1703
1704 /* -------------------------------------------------------------------------- */
1705
1706 static int
1707 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1708 {
1709 struct pglist pglist;
1710 paddr_t _pa;
1711 vaddr_t _va;
1712 size_t i;
1713 int ret;
1714
1715 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1716 &pglist, 1, 0);
1717 if (ret != 0)
1718 return ENOMEM;
1719 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1720 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1721 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1722 if (_va == 0)
1723 goto error;
1724
1725 for (i = 0; i < npages; i++) {
1726 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1727 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1728 }
1729 pmap_update(pmap_kernel());
1730
1731 memset((void *)_va, 0, npages * PAGE_SIZE);
1732
1733 *pa = _pa;
1734 *va = _va;
1735 return 0;
1736
1737 error:
1738 for (i = 0; i < npages; i++) {
1739 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1740 }
1741 return ENOMEM;
1742 }
1743
1744 static void
1745 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1746 {
1747 size_t i;
1748
1749 pmap_kremove(va, npages * PAGE_SIZE);
1750 pmap_update(pmap_kernel());
1751 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1752 for (i = 0; i < npages; i++) {
1753 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1754 }
1755 }
1756
1757 /* -------------------------------------------------------------------------- */
1758
1759 #define SVM_MSRBM_READ __BIT(0)
1760 #define SVM_MSRBM_WRITE __BIT(1)
1761
1762 static void
1763 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1764 {
1765 uint64_t byte;
1766 uint8_t bitoff;
1767
1768 if (msr < 0x00002000) {
1769 /* Range 1 */
1770 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1771 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1772 /* Range 2 */
1773 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1774 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1775 /* Range 3 */
1776 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1777 } else {
1778 panic("%s: wrong range", __func__);
1779 }
1780
1781 bitoff = (msr & 0x3) << 1;
1782
1783 if (read) {
1784 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1785 }
1786 if (write) {
1787 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1788 }
1789 }
1790
1791 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1792 #define SVM_SEG_ATTRIB_S __BIT(4)
1793 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1794 #define SVM_SEG_ATTRIB_P __BIT(7)
1795 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1796 #define SVM_SEG_ATTRIB_L __BIT(9)
1797 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1798 #define SVM_SEG_ATTRIB_G __BIT(11)
1799
1800 static void
1801 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1802 struct vmcb_segment *vseg)
1803 {
1804 vseg->selector = seg->selector;
1805 vseg->attrib =
1806 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1807 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1808 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1809 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1810 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1811 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1812 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1813 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1814 vseg->limit = seg->limit;
1815 vseg->base = seg->base;
1816 }
1817
1818 static void
1819 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1820 {
1821 seg->selector = vseg->selector;
1822 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1823 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1824 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1825 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1826 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1827 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1828 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1829 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1830 seg->limit = vseg->limit;
1831 seg->base = vseg->base;
1832 }
1833
1834 static inline bool
1835 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1836 uint64_t flags)
1837 {
1838 if (flags & NVMM_X64_STATE_CRS) {
1839 if ((vmcb->state.cr0 ^
1840 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1841 return true;
1842 }
1843 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1844 return true;
1845 }
1846 if ((vmcb->state.cr4 ^
1847 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1848 return true;
1849 }
1850 }
1851
1852 if (flags & NVMM_X64_STATE_MSRS) {
1853 if ((vmcb->state.efer ^
1854 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1855 return true;
1856 }
1857 }
1858
1859 return false;
1860 }
1861
1862 static void
1863 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1864 {
1865 struct nvmm_comm_page *comm = vcpu->comm;
1866 const struct nvmm_x64_state *state = &comm->state;
1867 struct svm_cpudata *cpudata = vcpu->cpudata;
1868 struct vmcb *vmcb = cpudata->vmcb;
1869 struct fxsave *fpustate;
1870 uint64_t flags;
1871
1872 flags = comm->state_wanted;
1873
1874 if (svm_state_tlb_flush(vmcb, state, flags)) {
1875 cpudata->gtlb_want_flush = true;
1876 }
1877
1878 if (flags & NVMM_X64_STATE_SEGS) {
1879 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1880 &vmcb->state.cs);
1881 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1882 &vmcb->state.ds);
1883 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1884 &vmcb->state.es);
1885 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1886 &vmcb->state.fs);
1887 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1888 &vmcb->state.gs);
1889 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1890 &vmcb->state.ss);
1891 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1892 &vmcb->state.gdt);
1893 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1894 &vmcb->state.idt);
1895 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1896 &vmcb->state.ldt);
1897 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1898 &vmcb->state.tr);
1899
1900 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1901 }
1902
1903 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1904 if (flags & NVMM_X64_STATE_GPRS) {
1905 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1906
1907 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1908 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1909 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1910 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1911 }
1912
1913 if (flags & NVMM_X64_STATE_CRS) {
1914 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1915 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1916 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1917 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1918 vmcb->state.cr4 &= CR4_VALID;
1919
1920 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1921 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1922 VMCB_CTRL_V_TPR);
1923
1924 if (svm_xcr0_mask != 0) {
1925 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1926 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1927 cpudata->gxcr0 &= svm_xcr0_mask;
1928 cpudata->gxcr0 |= XCR0_X87;
1929 }
1930 }
1931
1932 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1933 if (flags & NVMM_X64_STATE_DRS) {
1934 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1935
1936 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1937 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1938 }
1939
1940 if (flags & NVMM_X64_STATE_MSRS) {
1941 /*
1942 * EFER_SVME is mandatory.
1943 */
1944 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1945 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1946 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1947 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1948 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1949 vmcb->state.kernelgsbase =
1950 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1951 vmcb->state.sysenter_cs =
1952 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1953 vmcb->state.sysenter_esp =
1954 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1955 vmcb->state.sysenter_eip =
1956 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1957 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1958
1959 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1960 cpudata->gtsc_want_update = true;
1961 }
1962
1963 if (flags & NVMM_X64_STATE_INTR) {
1964 if (state->intr.int_shadow) {
1965 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1966 } else {
1967 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1968 }
1969
1970 if (state->intr.int_window_exiting) {
1971 svm_event_waitexit_enable(vcpu, false);
1972 } else {
1973 svm_event_waitexit_disable(vcpu, false);
1974 }
1975
1976 if (state->intr.nmi_window_exiting) {
1977 svm_event_waitexit_enable(vcpu, true);
1978 } else {
1979 svm_event_waitexit_disable(vcpu, true);
1980 }
1981 }
1982
1983 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1984 if (flags & NVMM_X64_STATE_FPU) {
1985 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1986 sizeof(state->fpu));
1987
1988 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1989 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1990 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1991
1992 if (svm_xcr0_mask != 0) {
1993 /* Reset XSTATE_BV, to force a reload. */
1994 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1995 }
1996 }
1997
1998 svm_vmcb_cache_update(vmcb, flags);
1999
2000 comm->state_wanted = 0;
2001 comm->state_cached |= flags;
2002 }
2003
2004 static void
2005 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
2006 {
2007 struct nvmm_comm_page *comm = vcpu->comm;
2008 struct nvmm_x64_state *state = &comm->state;
2009 struct svm_cpudata *cpudata = vcpu->cpudata;
2010 struct vmcb *vmcb = cpudata->vmcb;
2011 uint64_t flags;
2012
2013 flags = comm->state_wanted;
2014
2015 if (flags & NVMM_X64_STATE_SEGS) {
2016 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
2017 &vmcb->state.cs);
2018 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
2019 &vmcb->state.ds);
2020 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
2021 &vmcb->state.es);
2022 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
2023 &vmcb->state.fs);
2024 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
2025 &vmcb->state.gs);
2026 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
2027 &vmcb->state.ss);
2028 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
2029 &vmcb->state.gdt);
2030 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
2031 &vmcb->state.idt);
2032 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
2033 &vmcb->state.ldt);
2034 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
2035 &vmcb->state.tr);
2036
2037 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
2038 }
2039
2040 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2041 if (flags & NVMM_X64_STATE_GPRS) {
2042 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2043
2044 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
2045 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
2046 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
2047 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
2048 }
2049
2050 if (flags & NVMM_X64_STATE_CRS) {
2051 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
2052 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
2053 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
2054 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
2055 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
2056 VMCB_CTRL_V_TPR);
2057 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2058 }
2059
2060 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2061 if (flags & NVMM_X64_STATE_DRS) {
2062 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2063
2064 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2065 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2066 }
2067
2068 if (flags & NVMM_X64_STATE_MSRS) {
2069 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2070 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2071 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2072 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2073 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2074 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2075 vmcb->state.kernelgsbase;
2076 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2077 vmcb->state.sysenter_cs;
2078 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2079 vmcb->state.sysenter_esp;
2080 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2081 vmcb->state.sysenter_eip;
2082 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2083 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2084
2085 /* Hide SVME. */
2086 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2087 }
2088
2089 if (flags & NVMM_X64_STATE_INTR) {
2090 state->intr.int_shadow =
2091 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2092 state->intr.int_window_exiting = cpudata->int_window_exit;
2093 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2094 state->intr.evt_pending = cpudata->evt_pending;
2095 }
2096
2097 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2098 if (flags & NVMM_X64_STATE_FPU) {
2099 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2100 sizeof(state->fpu));
2101 }
2102
2103 comm->state_wanted = 0;
2104 comm->state_cached |= flags;
2105 }
2106
2107 static void
2108 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2109 {
2110 vcpu->comm->state_wanted = flags;
2111 svm_vcpu_getstate(vcpu);
2112 }
2113
2114 static void
2115 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2116 {
2117 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2118 vcpu->comm->state_commit = 0;
2119 svm_vcpu_setstate(vcpu);
2120 }
2121
2122 /* -------------------------------------------------------------------------- */
2123
2124 static void
2125 svm_asid_alloc(struct nvmm_cpu *vcpu)
2126 {
2127 struct svm_cpudata *cpudata = vcpu->cpudata;
2128 struct vmcb *vmcb = cpudata->vmcb;
2129 size_t i, oct, bit;
2130
2131 mutex_enter(&svm_asidlock);
2132
2133 for (i = 0; i < svm_maxasid; i++) {
2134 oct = i / 8;
2135 bit = i % 8;
2136
2137 if (svm_asidmap[oct] & __BIT(bit)) {
2138 continue;
2139 }
2140
2141 svm_asidmap[oct] |= __BIT(bit);
2142 vmcb->ctrl.guest_asid = i;
2143 mutex_exit(&svm_asidlock);
2144 return;
2145 }
2146
2147 /*
2148 * No free ASID. Use the last one, which is shared and requires
2149 * special TLB handling.
2150 */
2151 cpudata->shared_asid = true;
2152 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2153 mutex_exit(&svm_asidlock);
2154 }
2155
2156 static void
2157 svm_asid_free(struct nvmm_cpu *vcpu)
2158 {
2159 struct svm_cpudata *cpudata = vcpu->cpudata;
2160 struct vmcb *vmcb = cpudata->vmcb;
2161 size_t oct, bit;
2162
2163 if (cpudata->shared_asid) {
2164 return;
2165 }
2166
2167 oct = vmcb->ctrl.guest_asid / 8;
2168 bit = vmcb->ctrl.guest_asid % 8;
2169
2170 mutex_enter(&svm_asidlock);
2171 svm_asidmap[oct] &= ~__BIT(bit);
2172 mutex_exit(&svm_asidlock);
2173 }
2174
2175 static void
2176 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2177 {
2178 struct svm_cpudata *cpudata = vcpu->cpudata;
2179 struct vmcb *vmcb = cpudata->vmcb;
2180
2181 /* Allow reads/writes of Control Registers. */
2182 vmcb->ctrl.intercept_cr = 0;
2183
2184 /* Allow reads/writes of Debug Registers. */
2185 vmcb->ctrl.intercept_dr = 0;
2186
2187 /* Allow exceptions 0 to 31. */
2188 vmcb->ctrl.intercept_vec = 0;
2189
2190 /*
2191 * Allow:
2192 * - SMI [smm interrupts]
2193 * - VINTR [virtual interrupts]
2194 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2195 * - RIDTR [reads of IDTR]
2196 * - RGDTR [reads of GDTR]
2197 * - RLDTR [reads of LDTR]
2198 * - RTR [reads of TR]
2199 * - WIDTR [writes of IDTR]
2200 * - WGDTR [writes of GDTR]
2201 * - WLDTR [writes of LDTR]
2202 * - WTR [writes of TR]
2203 * - RDTSC [rdtsc instruction]
2204 * - PUSHF [pushf instruction]
2205 * - POPF [popf instruction]
2206 * - IRET [iret instruction]
2207 * - INTN [int $n instructions]
2208 * - PAUSE [pause instruction]
2209 * - INVLPG [invplg instruction]
2210 * - TASKSW [task switches]
2211 *
2212 * Intercept the rest below.
2213 */
2214 vmcb->ctrl.intercept_misc1 =
2215 VMCB_CTRL_INTERCEPT_INTR |
2216 VMCB_CTRL_INTERCEPT_NMI |
2217 VMCB_CTRL_INTERCEPT_INIT |
2218 VMCB_CTRL_INTERCEPT_RDPMC |
2219 VMCB_CTRL_INTERCEPT_CPUID |
2220 VMCB_CTRL_INTERCEPT_RSM |
2221 VMCB_CTRL_INTERCEPT_INVD |
2222 VMCB_CTRL_INTERCEPT_HLT |
2223 VMCB_CTRL_INTERCEPT_INVLPGA |
2224 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2225 VMCB_CTRL_INTERCEPT_MSR_PROT |
2226 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2227 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2228
2229 /*
2230 * Allow:
2231 * - ICEBP [icebp instruction]
2232 * - WBINVD [wbinvd instruction]
2233 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2234 *
2235 * Intercept the rest below.
2236 */
2237 vmcb->ctrl.intercept_misc2 =
2238 VMCB_CTRL_INTERCEPT_VMRUN |
2239 VMCB_CTRL_INTERCEPT_VMMCALL |
2240 VMCB_CTRL_INTERCEPT_VMLOAD |
2241 VMCB_CTRL_INTERCEPT_VMSAVE |
2242 VMCB_CTRL_INTERCEPT_STGI |
2243 VMCB_CTRL_INTERCEPT_CLGI |
2244 VMCB_CTRL_INTERCEPT_SKINIT |
2245 VMCB_CTRL_INTERCEPT_RDTSCP |
2246 VMCB_CTRL_INTERCEPT_MONITOR |
2247 VMCB_CTRL_INTERCEPT_MWAIT |
2248 VMCB_CTRL_INTERCEPT_XSETBV |
2249 VMCB_CTRL_INTERCEPT_RDPRU;
2250
2251 /*
2252 * Intercept everything.
2253 */
2254 vmcb->ctrl.intercept_misc3 =
2255 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2256 VMCB_CTRL_INTERCEPT_PCID |
2257 VMCB_CTRL_INTERCEPT_MCOMMIT |
2258 VMCB_CTRL_INTERCEPT_TLBSYNC;
2259
2260 /* Intercept all I/O accesses. */
2261 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2262 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2263
2264 /* Allow direct access to certain MSRs. */
2265 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2266 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2267 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2268 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2269 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2270 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2271 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2272 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2273 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2274 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2275 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2276 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2277 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2278 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2279
2280 /* Generate ASID. */
2281 svm_asid_alloc(vcpu);
2282
2283 /* Virtual TPR. */
2284 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2285
2286 /* Enable Nested Paging. */
2287 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2288 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2289
2290 /* Init XSAVE header. */
2291 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2292 cpudata->gfpu.xsh_xcomp_bv = 0;
2293
2294 /* These MSRs are static. */
2295 cpudata->star = rdmsr(MSR_STAR);
2296 cpudata->lstar = rdmsr(MSR_LSTAR);
2297 cpudata->cstar = rdmsr(MSR_CSTAR);
2298 cpudata->sfmask = rdmsr(MSR_SFMASK);
2299
2300 /* Install the RESET state. */
2301 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2302 sizeof(nvmm_x86_reset_state));
2303 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2304 vcpu->comm->state_cached = 0;
2305 svm_vcpu_setstate(vcpu);
2306 }
2307
2308 static int
2309 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2310 {
2311 struct svm_cpudata *cpudata;
2312 int error;
2313
2314 /* Allocate the SVM cpudata. */
2315 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2316 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2317 UVM_KMF_WIRED|UVM_KMF_ZERO);
2318 vcpu->cpudata = cpudata;
2319
2320 /* VMCB */
2321 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2322 VMCB_NPAGES);
2323 if (error)
2324 goto error;
2325
2326 /* I/O Bitmap */
2327 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2328 IOBM_NPAGES);
2329 if (error)
2330 goto error;
2331
2332 /* MSR Bitmap */
2333 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2334 MSRBM_NPAGES);
2335 if (error)
2336 goto error;
2337
2338 /* Init the VCPU info. */
2339 svm_vcpu_init(mach, vcpu);
2340
2341 return 0;
2342
2343 error:
2344 if (cpudata->vmcb_pa) {
2345 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2346 VMCB_NPAGES);
2347 }
2348 if (cpudata->iobm_pa) {
2349 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2350 IOBM_NPAGES);
2351 }
2352 if (cpudata->msrbm_pa) {
2353 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2354 MSRBM_NPAGES);
2355 }
2356 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2357 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2358 return error;
2359 }
2360
2361 static void
2362 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2363 {
2364 struct svm_cpudata *cpudata = vcpu->cpudata;
2365
2366 svm_asid_free(vcpu);
2367
2368 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2369 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2370 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2371
2372 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2373 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2374 }
2375
2376 /* -------------------------------------------------------------------------- */
2377
2378 static int
2379 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2380 {
2381 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2382 size_t i;
2383
2384 if (__predict_false(cpuid->mask && cpuid->exit)) {
2385 return EINVAL;
2386 }
2387 if (__predict_false(cpuid->mask &&
2388 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2389 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2390 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2391 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2392 return EINVAL;
2393 }
2394
2395 /* If unset, delete, to restore the default behavior. */
2396 if (!cpuid->mask && !cpuid->exit) {
2397 for (i = 0; i < SVM_NCPUIDS; i++) {
2398 if (!cpudata->cpuidpresent[i]) {
2399 continue;
2400 }
2401 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2402 cpudata->cpuidpresent[i] = false;
2403 }
2404 }
2405 return 0;
2406 }
2407
2408 /* If already here, replace. */
2409 for (i = 0; i < SVM_NCPUIDS; i++) {
2410 if (!cpudata->cpuidpresent[i]) {
2411 continue;
2412 }
2413 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2414 memcpy(&cpudata->cpuid[i], cpuid,
2415 sizeof(struct nvmm_vcpu_conf_cpuid));
2416 return 0;
2417 }
2418 }
2419
2420 /* Not here, insert. */
2421 for (i = 0; i < SVM_NCPUIDS; i++) {
2422 if (!cpudata->cpuidpresent[i]) {
2423 cpudata->cpuidpresent[i] = true;
2424 memcpy(&cpudata->cpuid[i], cpuid,
2425 sizeof(struct nvmm_vcpu_conf_cpuid));
2426 return 0;
2427 }
2428 }
2429
2430 return ENOBUFS;
2431 }
2432
2433 static int
2434 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2435 {
2436 struct svm_cpudata *cpudata = vcpu->cpudata;
2437
2438 switch (op) {
2439 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2440 return svm_vcpu_configure_cpuid(cpudata, data);
2441 default:
2442 return EINVAL;
2443 }
2444 }
2445
2446 /* -------------------------------------------------------------------------- */
2447
2448 static void
2449 svm_tlb_flush(struct pmap *pm)
2450 {
2451 struct nvmm_machine *mach = pm->pm_data;
2452 struct svm_machdata *machdata = mach->machdata;
2453
2454 atomic_inc_64(&machdata->mach_htlb_gen);
2455
2456 /* Generates IPIs, which cause #VMEXITs. */
2457 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2458 }
2459
2460 static void
2461 svm_machine_create(struct nvmm_machine *mach)
2462 {
2463 struct svm_machdata *machdata;
2464
2465 /* Fill in pmap info. */
2466 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2467 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2468
2469 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2470 mach->machdata = machdata;
2471
2472 /* Start with an hTLB flush everywhere. */
2473 machdata->mach_htlb_gen = 1;
2474 }
2475
2476 static void
2477 svm_machine_destroy(struct nvmm_machine *mach)
2478 {
2479 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2480 }
2481
2482 static int
2483 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2484 {
2485 panic("%s: impossible", __func__);
2486 }
2487
2488 /* -------------------------------------------------------------------------- */
2489
2490 static bool
2491 svm_ident(void)
2492 {
2493 u_int descs[4];
2494 uint64_t msr;
2495
2496 if (cpu_vendor != CPUVENDOR_AMD) {
2497 return false;
2498 }
2499 if (!(cpu_feature[3] & CPUID_SVM)) {
2500 printf("NVMM: SVM not supported\n");
2501 return false;
2502 }
2503
2504 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2505 printf("NVMM: CPUID leaf not available\n");
2506 return false;
2507 }
2508 x86_cpuid(0x8000000a, descs);
2509
2510 /* Expect revision 1. */
2511 if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2512 printf("NVMM: SVM revision not supported\n");
2513 return false;
2514 }
2515
2516 /* Want Nested Paging. */
2517 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2518 printf("NVMM: SVM-NP not supported\n");
2519 return false;
2520 }
2521
2522 /* Want nRIP. */
2523 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2524 printf("NVMM: SVM-NRIPS not supported\n");
2525 return false;
2526 }
2527
2528 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2529
2530 msr = rdmsr(MSR_VMCR);
2531 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2532 printf("NVMM: SVM disabled in BIOS\n");
2533 return false;
2534 }
2535
2536 return true;
2537 }
2538
2539 static void
2540 svm_init_asid(uint32_t maxasid)
2541 {
2542 size_t i, j, allocsz;
2543
2544 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2545
2546 /* Arbitrarily limit. */
2547 maxasid = uimin(maxasid, 8192);
2548
2549 svm_maxasid = maxasid;
2550 allocsz = roundup(maxasid, 8) / 8;
2551 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2552
2553 /* ASID 0 is reserved for the host. */
2554 svm_asidmap[0] |= __BIT(0);
2555
2556 /* ASID n-1 is special, we share it. */
2557 i = (maxasid - 1) / 8;
2558 j = (maxasid - 1) % 8;
2559 svm_asidmap[i] |= __BIT(j);
2560 }
2561
2562 static void
2563 svm_change_cpu(void *arg1, void *arg2)
2564 {
2565 bool enable = arg1 != NULL;
2566 uint64_t msr;
2567
2568 msr = rdmsr(MSR_VMCR);
2569 if (msr & VMCR_SVMED) {
2570 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2571 }
2572
2573 if (!enable) {
2574 wrmsr(MSR_VM_HSAVE_PA, 0);
2575 }
2576
2577 msr = rdmsr(MSR_EFER);
2578 if (enable) {
2579 msr |= EFER_SVME;
2580 } else {
2581 msr &= ~EFER_SVME;
2582 }
2583 wrmsr(MSR_EFER, msr);
2584
2585 if (enable) {
2586 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2587 }
2588 }
2589
2590 static void
2591 svm_init(void)
2592 {
2593 CPU_INFO_ITERATOR cii;
2594 struct cpu_info *ci;
2595 struct vm_page *pg;
2596 u_int descs[4];
2597 uint64_t xc;
2598
2599 x86_cpuid(0x8000000a, descs);
2600
2601 /* The guest TLB flush command. */
2602 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2603 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2604 } else {
2605 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2606 }
2607
2608 /* Init the ASID. */
2609 svm_init_asid(descs[1]);
2610
2611 /* Init the XCR0 mask. */
2612 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2613
2614 /* Init the max basic CPUID leaf. */
2615 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2616
2617 /* Init the max extended CPUID leaf. */
2618 x86_cpuid(0x80000000, descs);
2619 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2620
2621 memset(hsave, 0, sizeof(hsave));
2622 for (CPU_INFO_FOREACH(cii, ci)) {
2623 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2624 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2625 }
2626
2627 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2628 xc_wait(xc);
2629 }
2630
2631 static void
2632 svm_fini_asid(void)
2633 {
2634 size_t allocsz;
2635
2636 allocsz = roundup(svm_maxasid, 8) / 8;
2637 kmem_free(svm_asidmap, allocsz);
2638
2639 mutex_destroy(&svm_asidlock);
2640 }
2641
2642 static void
2643 svm_fini(void)
2644 {
2645 uint64_t xc;
2646 size_t i;
2647
2648 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2649 xc_wait(xc);
2650
2651 for (i = 0; i < MAXCPUS; i++) {
2652 if (hsave[i].pa != 0)
2653 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2654 }
2655
2656 svm_fini_asid();
2657 }
2658
2659 static void
2660 svm_capability(struct nvmm_capability *cap)
2661 {
2662 cap->arch.mach_conf_support = 0;
2663 cap->arch.vcpu_conf_support =
2664 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2665 cap->arch.xcr0_mask = svm_xcr0_mask;
2666 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2667 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2668 }
2669
2670 const struct nvmm_impl nvmm_x86_svm = {
2671 .name = "x86-svm",
2672 .ident = svm_ident,
2673 .init = svm_init,
2674 .fini = svm_fini,
2675 .capability = svm_capability,
2676 .mach_conf_max = NVMM_X86_MACH_NCONF,
2677 .mach_conf_sizes = NULL,
2678 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2679 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2680 .state_size = sizeof(struct nvmm_x64_state),
2681 .machine_create = svm_machine_create,
2682 .machine_destroy = svm_machine_destroy,
2683 .machine_configure = svm_machine_configure,
2684 .vcpu_create = svm_vcpu_create,
2685 .vcpu_destroy = svm_vcpu_destroy,
2686 .vcpu_configure = svm_vcpu_configure,
2687 .vcpu_setstate = svm_vcpu_setstate,
2688 .vcpu_getstate = svm_vcpu_getstate,
2689 .vcpu_inject = svm_vcpu_inject,
2690 .vcpu_run = svm_vcpu_run
2691 };
2692