nvmm_x86_vmx.c revision 1.10 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.10 2019/02/21 13:25:44 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.10 2019/02/21 13:25:44 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int _vmx_vmxon(paddr_t *pa);
57 int _vmx_vmxoff(void);
58 int _vmx_invept(uint64_t op, void *desc);
59 int _vmx_invvpid(uint64_t op, void *desc);
60 int _vmx_vmread(uint64_t op, uint64_t *val);
61 int _vmx_vmwrite(uint64_t op, uint64_t val);
62 int _vmx_vmptrld(paddr_t *pa);
63 int _vmx_vmptrst(paddr_t *pa);
64 int _vmx_vmclear(paddr_t *pa);
65 int vmx_vmlaunch(uint64_t *gprs);
66 int vmx_vmresume(uint64_t *gprs);
67
68 #define vmx_vmxon(a) \
69 if (__predict_false(_vmx_vmxon(a) != 0)) { \
70 panic("%s: VMXON failed", __func__); \
71 }
72 #define vmx_vmxoff() \
73 if (__predict_false(_vmx_vmxoff() != 0)) { \
74 panic("%s: VMXOFF failed", __func__); \
75 }
76 #define vmx_invept(a, b) \
77 if (__predict_false(_vmx_invept(a, b) != 0)) { \
78 panic("%s: INVEPT failed", __func__); \
79 }
80 #define vmx_invvpid(a, b) \
81 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
82 panic("%s: INVVPID failed", __func__); \
83 }
84 #define vmx_vmread(a, b) \
85 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
86 panic("%s: VMREAD failed", __func__); \
87 }
88 #define vmx_vmwrite(a, b) \
89 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
90 panic("%s: VMWRITE failed", __func__); \
91 }
92 #define vmx_vmptrld(a) \
93 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
94 panic("%s: VMPTRLD failed", __func__); \
95 }
96 #define vmx_vmptrst(a) \
97 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
98 panic("%s: VMPTRST failed", __func__); \
99 }
100 #define vmx_vmclear(a) \
101 if (__predict_false(_vmx_vmclear(a) != 0)) { \
102 panic("%s: VMCLEAR failed", __func__); \
103 }
104
105 #define MSR_IA32_FEATURE_CONTROL 0x003A
106 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
107 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
108 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
109
110 #define MSR_IA32_VMX_BASIC 0x0480
111 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
112 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
113 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
114 #define IA32_VMX_BASIC_DUAL __BIT(49)
115 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
116 #define MEM_TYPE_UC 0
117 #define MEM_TYPE_WB 6
118 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
119 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
120
121 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
122 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
123 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
124 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
125 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
126
127 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
128 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
129 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
130 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
131
132 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
133 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
134 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
135 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
136
137 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
138 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
139 #define IA32_VMX_EPT_VPID_UC __BIT(8)
140 #define IA32_VMX_EPT_VPID_WB __BIT(14)
141 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
142 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
143 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
144 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
145 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
146 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
147 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
148 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
149 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
150
151 /* -------------------------------------------------------------------------- */
152
153 /* 16-bit control fields */
154 #define VMCS_VPID 0x00000000
155 #define VMCS_PIR_VECTOR 0x00000002
156 #define VMCS_EPTP_INDEX 0x00000004
157 /* 16-bit guest-state fields */
158 #define VMCS_GUEST_ES_SELECTOR 0x00000800
159 #define VMCS_GUEST_CS_SELECTOR 0x00000802
160 #define VMCS_GUEST_SS_SELECTOR 0x00000804
161 #define VMCS_GUEST_DS_SELECTOR 0x00000806
162 #define VMCS_GUEST_FS_SELECTOR 0x00000808
163 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
164 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
165 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
166 #define VMCS_GUEST_INTR_STATUS 0x00000810
167 #define VMCS_PML_INDEX 0x00000812
168 /* 16-bit host-state fields */
169 #define VMCS_HOST_ES_SELECTOR 0x00000C00
170 #define VMCS_HOST_CS_SELECTOR 0x00000C02
171 #define VMCS_HOST_SS_SELECTOR 0x00000C04
172 #define VMCS_HOST_DS_SELECTOR 0x00000C06
173 #define VMCS_HOST_FS_SELECTOR 0x00000C08
174 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
175 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
176 /* 64-bit control fields */
177 #define VMCS_IO_BITMAP_A 0x00002000
178 #define VMCS_IO_BITMAP_B 0x00002002
179 #define VMCS_MSR_BITMAP 0x00002004
180 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
181 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
182 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
183 #define VMCS_EXECUTIVE_VMCS 0x0000200C
184 #define VMCS_PML_ADDRESS 0x0000200E
185 #define VMCS_TSC_OFFSET 0x00002010
186 #define VMCS_VIRTUAL_APIC 0x00002012
187 #define VMCS_APIC_ACCESS 0x00002014
188 #define VMCS_PIR_DESC 0x00002016
189 #define VMCS_VM_CONTROL 0x00002018
190 #define VMCS_EPTP 0x0000201A
191 #define EPTP_TYPE __BITS(2,0)
192 #define EPTP_TYPE_UC 0
193 #define EPTP_TYPE_WB 6
194 #define EPTP_WALKLEN __BITS(5,3)
195 #define EPTP_FLAGS_AD __BIT(6)
196 #define EPTP_PHYSADDR __BITS(63,12)
197 #define VMCS_EOI_EXIT0 0x0000201C
198 #define VMCS_EOI_EXIT1 0x0000201E
199 #define VMCS_EOI_EXIT2 0x00002020
200 #define VMCS_EOI_EXIT3 0x00002022
201 #define VMCS_EPTP_LIST 0x00002024
202 #define VMCS_VMREAD_BITMAP 0x00002026
203 #define VMCS_VMWRITE_BITMAP 0x00002028
204 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
205 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
206 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
207 #define VMCS_TSC_MULTIPLIER 0x00002032
208 /* 64-bit read-only fields */
209 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
210 /* 64-bit guest-state fields */
211 #define VMCS_LINK_POINTER 0x00002800
212 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
213 #define VMCS_GUEST_IA32_PAT 0x00002804
214 #define VMCS_GUEST_IA32_EFER 0x00002806
215 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
216 #define VMCS_GUEST_PDPTE0 0x0000280A
217 #define VMCS_GUEST_PDPTE1 0x0000280C
218 #define VMCS_GUEST_PDPTE2 0x0000280E
219 #define VMCS_GUEST_PDPTE3 0x00002810
220 #define VMCS_GUEST_BNDCFGS 0x00002812
221 /* 64-bit host-state fields */
222 #define VMCS_HOST_IA32_PAT 0x00002C00
223 #define VMCS_HOST_IA32_EFER 0x00002C02
224 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
225 /* 32-bit control fields */
226 #define VMCS_PINBASED_CTLS 0x00004000
227 #define PIN_CTLS_INT_EXITING __BIT(0)
228 #define PIN_CTLS_NMI_EXITING __BIT(3)
229 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
230 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
231 #define PIN_CTLS_PROCESS_POSTEd_INTS __BIT(7)
232 #define VMCS_PROCBASED_CTLS 0x00004002
233 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
234 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
235 #define PROC_CTLS_HLT_EXITING __BIT(7)
236 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
237 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
238 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
239 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
240 #define PROC_CTLS_RCR3_EXITING __BIT(15)
241 #define PROC_CTLS_LCR3_EXITING __BIT(16)
242 #define PROC_CTLS_RCR8_EXITING __BIT(19)
243 #define PROC_CTLS_LCR8_EXITING __BIT(20)
244 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
245 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
246 #define PROC_CTLS_DR_EXITING __BIT(23)
247 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
248 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
249 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
250 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
251 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
252 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
253 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
254 #define VMCS_EXCEPTION_BITMAP 0x00004004
255 #define VMCS_PF_ERROR_MASK 0x00004006
256 #define VMCS_PF_ERROR_MATCH 0x00004008
257 #define VMCS_CR3_TARGET_COUNT 0x0000400A
258 #define VMCS_EXIT_CTLS 0x0000400C
259 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
260 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
261 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
262 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
263 #define EXIT_CTLS_SAVE_PAT __BIT(18)
264 #define EXIT_CTLS_LOAD_PAT __BIT(19)
265 #define EXIT_CTLS_SAVE_EFER __BIT(20)
266 #define EXIT_CTLS_LOAD_EFER __BIT(21)
267 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
268 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
269 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
270 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
271 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
272 #define VMCS_ENTRY_CTLS 0x00004012
273 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
274 #define ENTRY_CTLS_LONG_MODE __BIT(9)
275 #define ENTRY_CTLS_SMM __BIT(10)
276 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
277 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
278 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
279 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
280 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
281 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
282 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
283 #define VMCS_ENTRY_INTR_INFO 0x00004016
284 #define INTR_INFO_VECTOR __BITS(7,0)
285 #define INTR_INFO_TYPE_EXT_INT (0 << 8)
286 #define INTR_INFO_TYPE_NMI (2 << 8)
287 #define INTR_INFO_TYPE_HW_EXC (3 << 8)
288 #define INTR_INFO_TYPE_SW_INT (4 << 8)
289 #define INTR_INFO_TYPE_PRIV_SW_EXC (5 << 8)
290 #define INTR_INFO_TYPE_SW_EXC (6 << 8)
291 #define INTR_INFO_TYPE_OTHER (7 << 8)
292 #define INTR_INFO_ERROR __BIT(11)
293 #define INTR_INFO_VALID __BIT(31)
294 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
295 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
296 #define VMCS_TPR_THRESHOLD 0x0000401C
297 #define VMCS_PROCBASED_CTLS2 0x0000401E
298 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
299 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
300 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
301 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
302 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
303 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
304 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
305 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
306 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
307 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
308 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
309 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
310 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
311 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
312 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
313 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
314 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
315 #define PROC_CTLS2_PML_ENABLE __BIT(17)
316 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
317 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
318 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
319 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
320 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
321 #define VMCS_PLE_GAP 0x00004020
322 #define VMCS_PLE_WINDOW 0x00004022
323 /* 32-bit read-only data fields */
324 #define VMCS_INSTRUCTION_ERROR 0x00004400
325 #define VMCS_EXIT_REASON 0x00004402
326 #define VMCS_EXIT_INTR_INFO 0x00004404
327 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
328 #define VMCS_IDT_VECTORING_INFO 0x00004408
329 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
330 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
331 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
332 /* 32-bit guest-state fields */
333 #define VMCS_GUEST_ES_LIMIT 0x00004800
334 #define VMCS_GUEST_CS_LIMIT 0x00004802
335 #define VMCS_GUEST_SS_LIMIT 0x00004804
336 #define VMCS_GUEST_DS_LIMIT 0x00004806
337 #define VMCS_GUEST_FS_LIMIT 0x00004808
338 #define VMCS_GUEST_GS_LIMIT 0x0000480A
339 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
340 #define VMCS_GUEST_TR_LIMIT 0x0000480E
341 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
342 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
343 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
344 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
345 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
346 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
347 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
348 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
349 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
350 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
351 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
352 #define INT_STATE_STI __BIT(0)
353 #define INT_STATE_MOVSS __BIT(1)
354 #define INT_STATE_SMI __BIT(2)
355 #define INT_STATE_NMI __BIT(3)
356 #define INT_STATE_ENCLAVE __BIT(4)
357 #define VMCS_GUEST_ACTIVITY 0x00004826
358 #define VMCS_GUEST_SMBASE 0x00004828
359 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
360 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
361 /* 32-bit host state fields */
362 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
363 /* Natural-Width control fields */
364 #define VMCS_CR0_MASK 0x00006000
365 #define VMCS_CR4_MASK 0x00006002
366 #define VMCS_CR0_SHADOW 0x00006004
367 #define VMCS_CR4_SHADOW 0x00006006
368 #define VMCS_CR3_TARGET0 0x00006008
369 #define VMCS_CR3_TARGET1 0x0000600A
370 #define VMCS_CR3_TARGET2 0x0000600C
371 #define VMCS_CR3_TARGET3 0x0000600E
372 /* Natural-Width read-only fields */
373 #define VMCS_EXIT_QUALIFICATION 0x00006400
374 #define VMCS_IO_RCX 0x00006402
375 #define VMCS_IO_RSI 0x00006404
376 #define VMCS_IO_RDI 0x00006406
377 #define VMCS_IO_RIP 0x00006408
378 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
379 /* Natural-Width guest-state fields */
380 #define VMCS_GUEST_CR0 0x00006800
381 #define VMCS_GUEST_CR3 0x00006802
382 #define VMCS_GUEST_CR4 0x00006804
383 #define VMCS_GUEST_ES_BASE 0x00006806
384 #define VMCS_GUEST_CS_BASE 0x00006808
385 #define VMCS_GUEST_SS_BASE 0x0000680A
386 #define VMCS_GUEST_DS_BASE 0x0000680C
387 #define VMCS_GUEST_FS_BASE 0x0000680E
388 #define VMCS_GUEST_GS_BASE 0x00006810
389 #define VMCS_GUEST_LDTR_BASE 0x00006812
390 #define VMCS_GUEST_TR_BASE 0x00006814
391 #define VMCS_GUEST_GDTR_BASE 0x00006816
392 #define VMCS_GUEST_IDTR_BASE 0x00006818
393 #define VMCS_GUEST_DR7 0x0000681A
394 #define VMCS_GUEST_RSP 0x0000681C
395 #define VMCS_GUEST_RIP 0x0000681E
396 #define VMCS_GUEST_RFLAGS 0x00006820
397 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
398 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
399 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
400 /* Natural-Width host-state fields */
401 #define VMCS_HOST_CR0 0x00006C00
402 #define VMCS_HOST_CR3 0x00006C02
403 #define VMCS_HOST_CR4 0x00006C04
404 #define VMCS_HOST_FS_BASE 0x00006C06
405 #define VMCS_HOST_GS_BASE 0x00006C08
406 #define VMCS_HOST_TR_BASE 0x00006C0A
407 #define VMCS_HOST_GDTR_BASE 0x00006C0C
408 #define VMCS_HOST_IDTR_BASE 0x00006C0E
409 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
410 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
411 #define VMCS_HOST_RSP 0x00006C14
412 #define VMCS_HOST_RIP 0x00006c16
413
414 /* VMX basic exit reasons. */
415 #define VMCS_EXITCODE_EXC_NMI 0
416 #define VMCS_EXITCODE_EXT_INT 1
417 #define VMCS_EXITCODE_SHUTDOWN 2
418 #define VMCS_EXITCODE_INIT 3
419 #define VMCS_EXITCODE_SIPI 4
420 #define VMCS_EXITCODE_SMI 5
421 #define VMCS_EXITCODE_OTHER_SMI 6
422 #define VMCS_EXITCODE_INT_WINDOW 7
423 #define VMCS_EXITCODE_NMI_WINDOW 8
424 #define VMCS_EXITCODE_TASK_SWITCH 9
425 #define VMCS_EXITCODE_CPUID 10
426 #define VMCS_EXITCODE_GETSEC 11
427 #define VMCS_EXITCODE_HLT 12
428 #define VMCS_EXITCODE_INVD 13
429 #define VMCS_EXITCODE_INVLPG 14
430 #define VMCS_EXITCODE_RDPMC 15
431 #define VMCS_EXITCODE_RDTSC 16
432 #define VMCS_EXITCODE_RSM 17
433 #define VMCS_EXITCODE_VMCALL 18
434 #define VMCS_EXITCODE_VMCLEAR 19
435 #define VMCS_EXITCODE_VMLAUNCH 20
436 #define VMCS_EXITCODE_VMPTRLD 21
437 #define VMCS_EXITCODE_VMPTRST 22
438 #define VMCS_EXITCODE_VMREAD 23
439 #define VMCS_EXITCODE_VMRESUME 24
440 #define VMCS_EXITCODE_VMWRITE 25
441 #define VMCS_EXITCODE_VMXOFF 26
442 #define VMCS_EXITCODE_VMXON 27
443 #define VMCS_EXITCODE_CR 28
444 #define VMCS_EXITCODE_DR 29
445 #define VMCS_EXITCODE_IO 30
446 #define VMCS_EXITCODE_RDMSR 31
447 #define VMCS_EXITCODE_WRMSR 32
448 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
449 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
450 #define VMCS_EXITCODE_MWAIT 36
451 #define VMCS_EXITCODE_TRAP_FLAG 37
452 #define VMCS_EXITCODE_MONITOR 39
453 #define VMCS_EXITCODE_PAUSE 40
454 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
455 #define VMCS_EXITCODE_TPR_BELOW 43
456 #define VMCS_EXITCODE_APIC_ACCESS 44
457 #define VMCS_EXITCODE_VEOI 45
458 #define VMCS_EXITCODE_GDTR_IDTR 46
459 #define VMCS_EXITCODE_LDTR_TR 47
460 #define VMCS_EXITCODE_EPT_VIOLATION 48
461 #define VMCS_EXITCODE_EPT_MISCONFIG 49
462 #define VMCS_EXITCODE_INVEPT 50
463 #define VMCS_EXITCODE_RDTSCP 51
464 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
465 #define VMCS_EXITCODE_INVVPID 53
466 #define VMCS_EXITCODE_WBINVD 54
467 #define VMCS_EXITCODE_XSETBV 55
468 #define VMCS_EXITCODE_APIC_WRITE 56
469 #define VMCS_EXITCODE_RDRAND 57
470 #define VMCS_EXITCODE_INVPCID 58
471 #define VMCS_EXITCODE_VMFUNC 59
472 #define VMCS_EXITCODE_ENCLS 60
473 #define VMCS_EXITCODE_RDSEED 61
474 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
475 #define VMCS_EXITCODE_XSAVES 63
476 #define VMCS_EXITCODE_XRSTORS 64
477
478 /* -------------------------------------------------------------------------- */
479
480 #define VMX_MSRLIST_STAR 0
481 #define VMX_MSRLIST_LSTAR 1
482 #define VMX_MSRLIST_CSTAR 2
483 #define VMX_MSRLIST_SFMASK 3
484 #define VMX_MSRLIST_KERNELGSBASE 4
485 #define VMX_MSRLIST_EXIT_NMSR 5
486 #define VMX_MSRLIST_L1DFLUSH 5
487
488 /* On entry, we may do +1 to include L1DFLUSH. */
489 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
490
491 struct vmxon {
492 uint32_t ident;
493 #define VMXON_IDENT_REVISION __BITS(30,0)
494
495 uint8_t data[PAGE_SIZE - 4];
496 } __packed;
497
498 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
499
500 struct vmxoncpu {
501 vaddr_t va;
502 paddr_t pa;
503 };
504
505 static struct vmxoncpu vmxoncpu[MAXCPUS];
506
507 struct vmcs {
508 uint32_t ident;
509 #define VMCS_IDENT_REVISION __BITS(30,0)
510 #define VMCS_IDENT_SHADOW __BIT(31)
511
512 uint32_t abort;
513 uint8_t data[PAGE_SIZE - 8];
514 } __packed;
515
516 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
517
518 struct msr_entry {
519 uint32_t msr;
520 uint32_t rsvd;
521 uint64_t val;
522 } __packed;
523
524 struct ept_desc {
525 uint64_t eptp;
526 uint64_t mbz;
527 } __packed;
528
529 struct vpid_desc {
530 uint64_t vpid;
531 uint64_t addr;
532 } __packed;
533
534 #define VPID_MAX 0xFFFF
535
536 /* Make sure we never run out of VPIDs. */
537 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
538
539 static uint64_t vmx_tlb_flush_op __read_mostly;
540 static uint64_t vmx_ept_flush_op __read_mostly;
541 static uint64_t vmx_eptp_type __read_mostly;
542
543 static uint64_t vmx_pinbased_ctls __read_mostly;
544 static uint64_t vmx_procbased_ctls __read_mostly;
545 static uint64_t vmx_procbased_ctls2 __read_mostly;
546 static uint64_t vmx_entry_ctls __read_mostly;
547 static uint64_t vmx_exit_ctls __read_mostly;
548
549 static uint64_t vmx_cr0_fixed0 __read_mostly;
550 static uint64_t vmx_cr0_fixed1 __read_mostly;
551 static uint64_t vmx_cr4_fixed0 __read_mostly;
552 static uint64_t vmx_cr4_fixed1 __read_mostly;
553
554 #define VMX_PINBASED_CTLS_ONE \
555 (PIN_CTLS_INT_EXITING| \
556 PIN_CTLS_NMI_EXITING| \
557 PIN_CTLS_VIRTUAL_NMIS)
558
559 #define VMX_PINBASED_CTLS_ZERO 0
560
561 #define VMX_PROCBASED_CTLS_ONE \
562 (PROC_CTLS_USE_TSC_OFFSETTING| \
563 PROC_CTLS_HLT_EXITING| \
564 PROC_CTLS_MWAIT_EXITING | \
565 PROC_CTLS_RDPMC_EXITING | \
566 PROC_CTLS_RCR8_EXITING | \
567 PROC_CTLS_LCR8_EXITING | \
568 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
569 PROC_CTLS_USE_MSR_BITMAPS | \
570 PROC_CTLS_MONITOR_EXITING | \
571 PROC_CTLS_ACTIVATE_CTLS2)
572
573 #define VMX_PROCBASED_CTLS_ZERO \
574 (PROC_CTLS_RCR3_EXITING| \
575 PROC_CTLS_LCR3_EXITING)
576
577 #define VMX_PROCBASED_CTLS2_ONE \
578 (PROC_CTLS2_ENABLE_EPT| \
579 PROC_CTLS2_ENABLE_VPID| \
580 PROC_CTLS2_UNRESTRICTED_GUEST)
581
582 #define VMX_PROCBASED_CTLS2_ZERO 0
583
584 #define VMX_ENTRY_CTLS_ONE \
585 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
586 ENTRY_CTLS_LOAD_EFER| \
587 ENTRY_CTLS_LOAD_PAT)
588
589 #define VMX_ENTRY_CTLS_ZERO \
590 (ENTRY_CTLS_SMM| \
591 ENTRY_CTLS_DISABLE_DUAL)
592
593 #define VMX_EXIT_CTLS_ONE \
594 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
595 EXIT_CTLS_HOST_LONG_MODE| \
596 EXIT_CTLS_SAVE_PAT| \
597 EXIT_CTLS_LOAD_PAT| \
598 EXIT_CTLS_SAVE_EFER| \
599 EXIT_CTLS_LOAD_EFER)
600
601 #define VMX_EXIT_CTLS_ZERO 0
602
603 static uint8_t *vmx_asidmap __read_mostly;
604 static uint32_t vmx_maxasid __read_mostly;
605 static kmutex_t vmx_asidlock __cacheline_aligned;
606
607 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
608 static uint64_t vmx_xcr0_mask __read_mostly;
609
610 #define VMX_NCPUIDS 32
611
612 #define VMCS_NPAGES 1
613 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
614
615 #define MSRBM_NPAGES 1
616 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
617
618 #define EFER_TLB_FLUSH \
619 (EFER_NXE|EFER_LMA|EFER_LME)
620 #define CR0_TLB_FLUSH \
621 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
622 #define CR4_TLB_FLUSH \
623 (CR4_PGE|CR4_PAE|CR4_PSE)
624
625 /* -------------------------------------------------------------------------- */
626
627 struct vmx_machdata {
628 bool cpuidpresent[VMX_NCPUIDS];
629 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
630 volatile uint64_t mach_htlb_gen;
631 };
632
633 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
634 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
635 };
636
637 struct vmx_cpudata {
638 /* General */
639 uint64_t asid;
640 bool gtlb_want_flush;
641 uint64_t vcpu_htlb_gen;
642 kcpuset_t *htlb_want_flush;
643
644 /* VMCS */
645 struct vmcs *vmcs;
646 paddr_t vmcs_pa;
647 size_t vmcs_refcnt;
648
649 /* MSR bitmap */
650 uint8_t *msrbm;
651 paddr_t msrbm_pa;
652
653 /* Host state */
654 uint64_t hxcr0;
655 uint64_t star;
656 uint64_t lstar;
657 uint64_t cstar;
658 uint64_t sfmask;
659 uint64_t kernelgsbase;
660 bool ts_set;
661 struct xsave_header hfpu __aligned(64);
662
663 /* Event state */
664 bool int_window_exit;
665 bool nmi_window_exit;
666
667 /* Guest state */
668 struct msr_entry *gmsr;
669 paddr_t gmsr_pa;
670 uint64_t gmsr_misc_enable;
671 uint64_t gcr2;
672 uint64_t gcr8;
673 uint64_t gxcr0;
674 uint64_t gprs[NVMM_X64_NGPR];
675 uint64_t drs[NVMM_X64_NDR];
676 uint64_t tsc_offset;
677 struct xsave_header gfpu __aligned(64);
678 };
679
680 static const struct {
681 uint64_t selector;
682 uint64_t attrib;
683 uint64_t limit;
684 uint64_t base;
685 } vmx_guest_segs[NVMM_X64_NSEG] = {
686 [NVMM_X64_SEG_ES] = {
687 VMCS_GUEST_ES_SELECTOR,
688 VMCS_GUEST_ES_ACCESS_RIGHTS,
689 VMCS_GUEST_ES_LIMIT,
690 VMCS_GUEST_ES_BASE
691 },
692 [NVMM_X64_SEG_CS] = {
693 VMCS_GUEST_CS_SELECTOR,
694 VMCS_GUEST_CS_ACCESS_RIGHTS,
695 VMCS_GUEST_CS_LIMIT,
696 VMCS_GUEST_CS_BASE
697 },
698 [NVMM_X64_SEG_SS] = {
699 VMCS_GUEST_SS_SELECTOR,
700 VMCS_GUEST_SS_ACCESS_RIGHTS,
701 VMCS_GUEST_SS_LIMIT,
702 VMCS_GUEST_SS_BASE
703 },
704 [NVMM_X64_SEG_DS] = {
705 VMCS_GUEST_DS_SELECTOR,
706 VMCS_GUEST_DS_ACCESS_RIGHTS,
707 VMCS_GUEST_DS_LIMIT,
708 VMCS_GUEST_DS_BASE
709 },
710 [NVMM_X64_SEG_FS] = {
711 VMCS_GUEST_FS_SELECTOR,
712 VMCS_GUEST_FS_ACCESS_RIGHTS,
713 VMCS_GUEST_FS_LIMIT,
714 VMCS_GUEST_FS_BASE
715 },
716 [NVMM_X64_SEG_GS] = {
717 VMCS_GUEST_GS_SELECTOR,
718 VMCS_GUEST_GS_ACCESS_RIGHTS,
719 VMCS_GUEST_GS_LIMIT,
720 VMCS_GUEST_GS_BASE
721 },
722 [NVMM_X64_SEG_GDT] = {
723 0, /* doesn't exist */
724 0, /* doesn't exist */
725 VMCS_GUEST_GDTR_LIMIT,
726 VMCS_GUEST_GDTR_BASE
727 },
728 [NVMM_X64_SEG_IDT] = {
729 0, /* doesn't exist */
730 0, /* doesn't exist */
731 VMCS_GUEST_IDTR_LIMIT,
732 VMCS_GUEST_IDTR_BASE
733 },
734 [NVMM_X64_SEG_LDT] = {
735 VMCS_GUEST_LDTR_SELECTOR,
736 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
737 VMCS_GUEST_LDTR_LIMIT,
738 VMCS_GUEST_LDTR_BASE
739 },
740 [NVMM_X64_SEG_TR] = {
741 VMCS_GUEST_TR_SELECTOR,
742 VMCS_GUEST_TR_ACCESS_RIGHTS,
743 VMCS_GUEST_TR_LIMIT,
744 VMCS_GUEST_TR_BASE
745 }
746 };
747
748 /* -------------------------------------------------------------------------- */
749
750 static uint64_t
751 vmx_get_revision(void)
752 {
753 uint64_t msr;
754
755 msr = rdmsr(MSR_IA32_VMX_BASIC);
756 msr &= IA32_VMX_BASIC_IDENT;
757
758 return msr;
759 }
760
761 static void
762 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
763 {
764 struct vmx_cpudata *cpudata = vcpu->cpudata;
765 paddr_t oldpa __diagused;
766
767 cpudata->vmcs_refcnt++;
768 if (cpudata->vmcs_refcnt > 1) {
769 #ifdef DIAGNOSTIC
770 KASSERT(kpreempt_disabled());
771 vmx_vmptrst(&oldpa);
772 KASSERT(oldpa == cpudata->vmcs_pa);
773 #endif
774 return;
775 }
776
777 kpreempt_disable();
778
779 #ifdef DIAGNOSTIC
780 vmx_vmptrst(&oldpa);
781 KASSERT(oldpa == 0xFFFFFFFFFFFFFFFF);
782 #endif
783
784 vmx_vmptrld(&cpudata->vmcs_pa);
785 }
786
787 static void
788 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
789 {
790 struct vmx_cpudata *cpudata = vcpu->cpudata;
791 paddr_t oldpa __diagused;
792
793 KASSERT(kpreempt_disabled());
794 KASSERT(cpudata->vmcs_refcnt > 0);
795 cpudata->vmcs_refcnt--;
796
797 if (cpudata->vmcs_refcnt > 0) {
798 #ifdef DIAGNOSTIC
799 vmx_vmptrst(&oldpa);
800 KASSERT(oldpa == cpudata->vmcs_pa);
801 #endif
802 return;
803 }
804
805 vmx_vmclear(&cpudata->vmcs_pa);
806 kpreempt_enable();
807 }
808
809 /* -------------------------------------------------------------------------- */
810
811 static void
812 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
813 {
814 struct vmx_cpudata *cpudata = vcpu->cpudata;
815 uint64_t ctls1;
816
817 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
818
819 if (nmi) {
820 // XXX INT_STATE_NMI?
821 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
822 cpudata->nmi_window_exit = true;
823 } else {
824 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
825 cpudata->int_window_exit = true;
826 }
827
828 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
829 }
830
831 static void
832 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
833 {
834 struct vmx_cpudata *cpudata = vcpu->cpudata;
835 uint64_t ctls1;
836
837 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
838
839 if (nmi) {
840 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
841 cpudata->nmi_window_exit = false;
842 } else {
843 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
844 cpudata->int_window_exit = false;
845 }
846
847 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
848 }
849
850 static inline int
851 vmx_event_has_error(uint64_t vector)
852 {
853 switch (vector) {
854 case 8: /* #DF */
855 case 10: /* #TS */
856 case 11: /* #NP */
857 case 12: /* #SS */
858 case 13: /* #GP */
859 case 14: /* #PF */
860 case 17: /* #AC */
861 case 30: /* #SX */
862 return 1;
863 default:
864 return 0;
865 }
866 }
867
868 static int
869 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
870 struct nvmm_event *event)
871 {
872 struct vmx_cpudata *cpudata = vcpu->cpudata;
873 int type = 0, err = 0, ret = 0;
874 uint64_t info, intstate, rflags;
875
876 if (event->vector >= 256) {
877 return EINVAL;
878 }
879
880 vmx_vmcs_enter(vcpu);
881
882 switch (event->type) {
883 case NVMM_EVENT_INTERRUPT_HW:
884 type = INTR_INFO_TYPE_EXT_INT;
885 if (event->vector == 2) {
886 type = INTR_INFO_TYPE_NMI;
887 }
888 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
889 if (type == INTR_INFO_TYPE_NMI) {
890 if (cpudata->nmi_window_exit) {
891 ret = EAGAIN;
892 goto out;
893 }
894 vmx_event_waitexit_enable(vcpu, true);
895 } else {
896 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
897 if ((rflags & PSL_I) == 0 ||
898 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
899 vmx_event_waitexit_enable(vcpu, false);
900 ret = EAGAIN;
901 goto out;
902 }
903 }
904 err = 0;
905 break;
906 case NVMM_EVENT_INTERRUPT_SW:
907 ret = EINVAL;
908 goto out;
909 case NVMM_EVENT_EXCEPTION:
910 if (event->vector == 2 || event->vector >= 32) {
911 ret = EINVAL;
912 goto out;
913 }
914 if (event->vector == 3 || event->vector == 0) {
915 ret = EINVAL;
916 goto out;
917 }
918 type = INTR_INFO_TYPE_HW_EXC;
919 err = vmx_event_has_error(event->vector);
920 break;
921 default:
922 ret = EAGAIN;
923 goto out;
924 }
925
926 info =
927 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
928 type |
929 __SHIFTIN(err, INTR_INFO_ERROR) |
930 __SHIFTIN(1, INTR_INFO_VALID);
931 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
932 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
933
934 out:
935 vmx_vmcs_leave(vcpu);
936 return ret;
937 }
938
939 static void
940 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
941 {
942 struct nvmm_event event;
943 int ret __diagused;
944
945 event.type = NVMM_EVENT_EXCEPTION;
946 event.vector = 6;
947 event.u.error = 0;
948
949 ret = vmx_vcpu_inject(mach, vcpu, &event);
950 KASSERT(ret == 0);
951 }
952
953 static void
954 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
955 {
956 struct nvmm_event event;
957 int ret __diagused;
958
959 event.type = NVMM_EVENT_EXCEPTION;
960 event.vector = 13;
961 event.u.error = 0;
962
963 ret = vmx_vcpu_inject(mach, vcpu, &event);
964 KASSERT(ret == 0);
965 }
966
967 static inline void
968 vmx_inkernel_advance(void)
969 {
970 uint64_t rip, inslen, intstate;
971
972 /*
973 * Maybe we should also apply single-stepping and debug exceptions.
974 * Matters for guest-ring3, because it can execute 'cpuid' under a
975 * debugger.
976 */
977 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
978 vmx_vmread(VMCS_GUEST_RIP, &rip);
979 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
980 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
981 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
982 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
983 }
984
985 static void
986 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
987 {
988 struct vmx_cpudata *cpudata = vcpu->cpudata;
989 uint64_t cr4;
990
991 switch (eax) {
992 case 0x00000001:
993 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
994 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
995 CPUID_LOCAL_APIC_ID);
996 cpudata->gprs[NVMM_X64_GPR_RCX] &=
997 ~(CPUID2_VMX|CPUID2_SMX|CPUID2_EST|CPUID2_TM2|CPUID2_PDCM|
998 CPUID2_PCID|CPUID2_DEADLINE);
999 cpudata->gprs[NVMM_X64_GPR_RDX] &=
1000 ~(CPUID_DS|CPUID_ACPI|CPUID_TM);
1001
1002 /* CPUID2_OSXSAVE depends on CR4. */
1003 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1004 if (!(cr4 & CR4_OSXSAVE)) {
1005 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1006 }
1007 break;
1008 case 0x00000005:
1009 case 0x00000006:
1010 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1011 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1012 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1013 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1014 break;
1015 case 0x00000007:
1016 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_SEF_INVPCID;
1017 cpudata->gprs[NVMM_X64_GPR_RDX] &=
1018 ~(CPUID_SEF_IBRS|CPUID_SEF_STIBP|CPUID_SEF_L1D_FLUSH|
1019 CPUID_SEF_SSBD);
1020 break;
1021 case 0x0000000D:
1022 if (vmx_xcr0_mask == 0) {
1023 break;
1024 }
1025 switch (ecx) {
1026 case 0:
1027 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1028 if (cpudata->gxcr0 & XCR0_SSE) {
1029 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1030 } else {
1031 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1032 }
1033 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1034 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1035 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1036 break;
1037 case 1:
1038 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1039 break;
1040 }
1041 break;
1042 case 0x40000000:
1043 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1044 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1045 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1046 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1047 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1048 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1049 break;
1050 case 0x80000001:
1051 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
1052 break;
1053 default:
1054 break;
1055 }
1056 }
1057
1058 static void
1059 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1060 struct nvmm_exit *exit)
1061 {
1062 struct vmx_machdata *machdata = mach->machdata;
1063 struct vmx_cpudata *cpudata = vcpu->cpudata;
1064 struct nvmm_x86_conf_cpuid *cpuid;
1065 uint64_t eax, ecx;
1066 u_int descs[4];
1067 size_t i;
1068
1069 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1070 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1071 x86_cpuid2(eax, ecx, descs);
1072
1073 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1074 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1075 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1076 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1077
1078 for (i = 0; i < VMX_NCPUIDS; i++) {
1079 cpuid = &machdata->cpuid[i];
1080 if (!machdata->cpuidpresent[i]) {
1081 continue;
1082 }
1083 if (cpuid->leaf != eax) {
1084 continue;
1085 }
1086
1087 /* del */
1088 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1089 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1090 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1091 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1092
1093 /* set */
1094 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1095 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1096 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1097 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1098
1099 break;
1100 }
1101
1102 /* Overwrite non-tunable leaves. */
1103 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1104
1105 vmx_inkernel_advance();
1106 exit->reason = NVMM_EXIT_NONE;
1107 }
1108
1109 static void
1110 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1111 struct nvmm_exit *exit)
1112 {
1113 struct vmx_cpudata *cpudata = vcpu->cpudata;
1114 uint64_t rflags;
1115
1116 if (cpudata->int_window_exit) {
1117 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1118 if (rflags & PSL_I) {
1119 vmx_event_waitexit_disable(vcpu, false);
1120 }
1121 }
1122
1123 vmx_inkernel_advance();
1124 exit->reason = NVMM_EXIT_HALTED;
1125 }
1126
1127 #define VMX_QUAL_CR_NUM __BITS(3,0)
1128 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1129 #define CR_TYPE_WRITE 0
1130 #define CR_TYPE_READ 1
1131 #define CR_TYPE_CLTS 2
1132 #define CR_TYPE_LMSW 3
1133 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1134 #define VMX_QUAL_CR_GPR __BITS(11,8)
1135 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1136
1137 static inline int
1138 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1139 {
1140 /* Bits set to 1 in fixed0 are fixed to 1. */
1141 if ((crval & fixed0) != fixed0) {
1142 return -1;
1143 }
1144 /* Bits set to 0 in fixed1 are fixed to 0. */
1145 if (crval & ~fixed1) {
1146 return -1;
1147 }
1148 return 0;
1149 }
1150
1151 static int
1152 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1153 uint64_t qual)
1154 {
1155 struct vmx_cpudata *cpudata = vcpu->cpudata;
1156 uint64_t type, gpr, cr0;
1157
1158 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1159 if (type != CR_TYPE_WRITE) {
1160 return -1;
1161 }
1162
1163 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1164 KASSERT(gpr < 16);
1165
1166 if (gpr == NVMM_X64_GPR_RSP) {
1167 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1168 } else {
1169 gpr = cpudata->gprs[gpr];
1170 }
1171
1172 cr0 = gpr | CR0_NE | CR0_ET;
1173 cr0 &= ~(CR0_NW|CR0_CD);
1174
1175 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1176 return -1;
1177 }
1178
1179 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1180 vmx_inkernel_advance();
1181 return 0;
1182 }
1183
1184 static int
1185 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1186 uint64_t qual)
1187 {
1188 struct vmx_cpudata *cpudata = vcpu->cpudata;
1189 uint64_t type, gpr, cr4;
1190
1191 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1192 if (type != CR_TYPE_WRITE) {
1193 return -1;
1194 }
1195
1196 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1197 KASSERT(gpr < 16);
1198
1199 if (gpr == NVMM_X64_GPR_RSP) {
1200 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1201 } else {
1202 gpr = cpudata->gprs[gpr];
1203 }
1204
1205 cr4 = gpr | CR4_VMXE;
1206
1207 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1208 return -1;
1209 }
1210
1211 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1212 vmx_inkernel_advance();
1213 return 0;
1214 }
1215
1216 static int
1217 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1218 uint64_t qual)
1219 {
1220 struct vmx_cpudata *cpudata = vcpu->cpudata;
1221 uint64_t type, gpr;
1222 bool write;
1223
1224 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1225 if (type == CR_TYPE_WRITE) {
1226 write = true;
1227 } else if (type == CR_TYPE_READ) {
1228 write = false;
1229 } else {
1230 return -1;
1231 }
1232
1233 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1234 KASSERT(gpr < 16);
1235
1236 if (write) {
1237 if (gpr == NVMM_X64_GPR_RSP) {
1238 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1239 } else {
1240 cpudata->gcr8 = cpudata->gprs[gpr];
1241 }
1242 } else {
1243 if (gpr == NVMM_X64_GPR_RSP) {
1244 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1245 } else {
1246 cpudata->gprs[gpr] = cpudata->gcr8;
1247 }
1248 }
1249
1250 vmx_inkernel_advance();
1251 return 0;
1252 }
1253
1254 static void
1255 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1256 struct nvmm_exit *exit)
1257 {
1258 uint64_t qual;
1259 int ret;
1260
1261 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1262
1263 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1264 case 0:
1265 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1266 break;
1267 case 4:
1268 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1269 break;
1270 case 8:
1271 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1272 break;
1273 default:
1274 ret = -1;
1275 break;
1276 }
1277
1278 if (ret == -1) {
1279 vmx_inject_gp(mach, vcpu);
1280 }
1281
1282 exit->reason = NVMM_EXIT_NONE;
1283 }
1284
1285 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1286 #define IO_SIZE_8 0
1287 #define IO_SIZE_16 1
1288 #define IO_SIZE_32 3
1289 #define VMX_QUAL_IO_IN __BIT(3)
1290 #define VMX_QUAL_IO_STR __BIT(4)
1291 #define VMX_QUAL_IO_REP __BIT(5)
1292 #define VMX_QUAL_IO_DX __BIT(6)
1293 #define VMX_QUAL_IO_PORT __BITS(31,16)
1294
1295 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1296 #define IO_ADRSIZE_16 0
1297 #define IO_ADRSIZE_32 1
1298 #define IO_ADRSIZE_64 2
1299 #define VMX_INFO_IO_SEG __BITS(17,15)
1300
1301 static const int seg_to_nvmm[] = {
1302 [0] = NVMM_X64_SEG_ES,
1303 [1] = NVMM_X64_SEG_CS,
1304 [2] = NVMM_X64_SEG_SS,
1305 [3] = NVMM_X64_SEG_DS,
1306 [4] = NVMM_X64_SEG_FS,
1307 [5] = NVMM_X64_SEG_GS
1308 };
1309
1310 static void
1311 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1312 struct nvmm_exit *exit)
1313 {
1314 uint64_t qual, info, inslen, rip;
1315
1316 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1317 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1318
1319 exit->reason = NVMM_EXIT_IO;
1320
1321 if (qual & VMX_QUAL_IO_IN) {
1322 exit->u.io.type = NVMM_EXIT_IO_IN;
1323 } else {
1324 exit->u.io.type = NVMM_EXIT_IO_OUT;
1325 }
1326
1327 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1328
1329 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1330 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, VMX_INFO_IO_SEG)];
1331
1332 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1333 exit->u.io.address_size = 8;
1334 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1335 exit->u.io.address_size = 4;
1336 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1337 exit->u.io.address_size = 2;
1338 }
1339
1340 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1341 exit->u.io.operand_size = 4;
1342 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1343 exit->u.io.operand_size = 2;
1344 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1345 exit->u.io.operand_size = 1;
1346 }
1347
1348 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1349 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1350
1351 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1352 exit->u.io.seg = NVMM_X64_SEG_ES;
1353 }
1354
1355 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1356 vmx_vmread(VMCS_GUEST_RIP, &rip);
1357 exit->u.io.npc = rip + inslen;
1358 }
1359
1360 static const uint64_t msr_ignore_list[] = {
1361 MSR_BIOS_SIGN,
1362 MSR_IA32_PLATFORM_ID
1363 };
1364
1365 static bool
1366 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1367 struct nvmm_exit *exit)
1368 {
1369 struct vmx_cpudata *cpudata = vcpu->cpudata;
1370 uint64_t val;
1371 size_t i;
1372
1373 switch (exit->u.msr.type) {
1374 case NVMM_EXIT_MSR_RDMSR:
1375 if (exit->u.msr.msr == MSR_CR_PAT) {
1376 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1377 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1378 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1379 goto handled;
1380 }
1381 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1382 val = cpudata->gmsr_misc_enable;
1383 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1384 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1385 goto handled;
1386 }
1387 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1388 if (msr_ignore_list[i] != exit->u.msr.msr)
1389 continue;
1390 val = 0;
1391 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1392 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1393 goto handled;
1394 }
1395 break;
1396 case NVMM_EXIT_MSR_WRMSR:
1397 if (exit->u.msr.msr == MSR_TSC) {
1398 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
1399 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1400 curcpu()->ci_data.cpu_cc_skew);
1401 goto handled;
1402 }
1403 if (exit->u.msr.msr == MSR_CR_PAT) {
1404 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1405 goto handled;
1406 }
1407 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1408 /* Don't care. */
1409 goto handled;
1410 }
1411 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1412 if (msr_ignore_list[i] != exit->u.msr.msr)
1413 continue;
1414 goto handled;
1415 }
1416 break;
1417 }
1418
1419 return false;
1420
1421 handled:
1422 vmx_inkernel_advance();
1423 return true;
1424 }
1425
1426 static void
1427 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1428 struct nvmm_exit *exit, bool rdmsr)
1429 {
1430 struct vmx_cpudata *cpudata = vcpu->cpudata;
1431 uint64_t inslen, rip;
1432
1433 if (rdmsr) {
1434 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1435 } else {
1436 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1437 }
1438
1439 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1440
1441 if (rdmsr) {
1442 exit->u.msr.val = 0;
1443 } else {
1444 uint64_t rdx, rax;
1445 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1446 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1447 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1448 }
1449
1450 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1451 exit->reason = NVMM_EXIT_NONE;
1452 return;
1453 }
1454
1455 exit->reason = NVMM_EXIT_MSR;
1456 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1457 vmx_vmread(VMCS_GUEST_RIP, &rip);
1458 exit->u.msr.npc = rip + inslen;
1459 }
1460
1461 static void
1462 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1463 struct nvmm_exit *exit)
1464 {
1465 struct vmx_cpudata *cpudata = vcpu->cpudata;
1466 uint16_t val;
1467
1468 exit->reason = NVMM_EXIT_NONE;
1469
1470 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1471 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1472
1473 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1474 goto error;
1475 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1476 goto error;
1477 } else if (__predict_false((val & XCR0_X87) == 0)) {
1478 goto error;
1479 }
1480
1481 cpudata->gxcr0 = val;
1482
1483 vmx_inkernel_advance();
1484 return;
1485
1486 error:
1487 vmx_inject_gp(mach, vcpu);
1488 }
1489
1490 #define VMX_EPT_VIOLATION_READ __BIT(0)
1491 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1492 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1493
1494 static void
1495 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1496 struct nvmm_exit *exit)
1497 {
1498 uint64_t perm;
1499 gpaddr_t gpa;
1500
1501 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1502
1503 exit->reason = NVMM_EXIT_MEMORY;
1504 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1505 if (perm & VMX_EPT_VIOLATION_WRITE)
1506 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1507 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1508 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1509 else
1510 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1511 exit->u.mem.gpa = gpa;
1512 exit->u.mem.inst_len = 0;
1513 }
1514
1515 /* -------------------------------------------------------------------------- */
1516
1517 static void
1518 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1519 {
1520 struct vmx_cpudata *cpudata = vcpu->cpudata;
1521
1522 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1523
1524 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1525 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1526
1527 if (vmx_xcr0_mask != 0) {
1528 cpudata->hxcr0 = rdxcr(0);
1529 wrxcr(0, cpudata->gxcr0);
1530 }
1531 }
1532
1533 static void
1534 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1535 {
1536 struct vmx_cpudata *cpudata = vcpu->cpudata;
1537
1538 if (vmx_xcr0_mask != 0) {
1539 cpudata->gxcr0 = rdxcr(0);
1540 wrxcr(0, cpudata->hxcr0);
1541 }
1542
1543 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1544 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1545
1546 if (cpudata->ts_set) {
1547 stts();
1548 }
1549 }
1550
1551 static void
1552 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1553 {
1554 struct vmx_cpudata *cpudata = vcpu->cpudata;
1555
1556 x86_dbregs_save(curlwp);
1557
1558 ldr7(0);
1559
1560 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1561 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1562 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1563 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1564 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1565 }
1566
1567 static void
1568 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1569 {
1570 struct vmx_cpudata *cpudata = vcpu->cpudata;
1571
1572 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1573 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1574 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1575 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1576 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1577
1578 x86_dbregs_restore(curlwp);
1579 }
1580
1581 static void
1582 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1583 {
1584 struct vmx_cpudata *cpudata = vcpu->cpudata;
1585
1586 /* This gets restored automatically by the CPU. */
1587 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1588 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1589 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1590
1591 /* Note: MSR_LSTAR is not static, because of SVS. */
1592 cpudata->lstar = rdmsr(MSR_LSTAR);
1593 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1594 }
1595
1596 static void
1597 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1598 {
1599 struct vmx_cpudata *cpudata = vcpu->cpudata;
1600
1601 wrmsr(MSR_STAR, cpudata->star);
1602 wrmsr(MSR_LSTAR, cpudata->lstar);
1603 wrmsr(MSR_CSTAR, cpudata->cstar);
1604 wrmsr(MSR_SFMASK, cpudata->sfmask);
1605 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1606 }
1607
1608 /* -------------------------------------------------------------------------- */
1609
1610 #define VMX_INVVPID_ADDRESS 0
1611 #define VMX_INVVPID_CONTEXT 1
1612 #define VMX_INVVPID_ALL 2
1613 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1614
1615 #define VMX_INVEPT_CONTEXT 1
1616 #define VMX_INVEPT_ALL 2
1617
1618 static inline void
1619 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1620 {
1621 struct vmx_cpudata *cpudata = vcpu->cpudata;
1622
1623 if (vcpu->hcpu_last != hcpu) {
1624 cpudata->gtlb_want_flush = true;
1625 }
1626 }
1627
1628 static inline void
1629 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1630 {
1631 struct vmx_cpudata *cpudata = vcpu->cpudata;
1632 struct ept_desc ept_desc;
1633
1634 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1635 return;
1636 }
1637
1638 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1639 ept_desc.mbz = 0;
1640 vmx_invept(vmx_ept_flush_op, &ept_desc);
1641 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1642 }
1643
1644 static inline uint64_t
1645 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1646 {
1647 struct ept_desc ept_desc;
1648 uint64_t machgen;
1649
1650 machgen = machdata->mach_htlb_gen;
1651 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1652 return machgen;
1653 }
1654
1655 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1656
1657 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1658 ept_desc.mbz = 0;
1659 vmx_invept(vmx_ept_flush_op, &ept_desc);
1660
1661 return machgen;
1662 }
1663
1664 static inline void
1665 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1666 {
1667 cpudata->vcpu_htlb_gen = machgen;
1668 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1669 }
1670
1671 static int
1672 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1673 struct nvmm_exit *exit)
1674 {
1675 struct vmx_machdata *machdata = mach->machdata;
1676 struct vmx_cpudata *cpudata = vcpu->cpudata;
1677 struct vpid_desc vpid_desc;
1678 struct cpu_info *ci;
1679 uint64_t exitcode;
1680 uint64_t intstate;
1681 uint64_t machgen;
1682 int hcpu, s, ret;
1683 bool launched = false;
1684
1685 vmx_vmcs_enter(vcpu);
1686 ci = curcpu();
1687 hcpu = cpu_number();
1688
1689 vmx_gtlb_catchup(vcpu, hcpu);
1690 vmx_htlb_catchup(vcpu, hcpu);
1691
1692 if (vcpu->hcpu_last != hcpu) {
1693 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1694 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1695 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1696 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1697 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1698 curcpu()->ci_data.cpu_cc_skew);
1699 vcpu->hcpu_last = hcpu;
1700 }
1701
1702 vmx_vcpu_guest_dbregs_enter(vcpu);
1703 vmx_vcpu_guest_misc_enter(vcpu);
1704
1705 while (1) {
1706 if (cpudata->gtlb_want_flush) {
1707 vpid_desc.vpid = cpudata->asid;
1708 vpid_desc.addr = 0;
1709 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1710 cpudata->gtlb_want_flush = false;
1711 }
1712
1713 s = splhigh();
1714 machgen = vmx_htlb_flush(machdata, cpudata);
1715 vmx_vcpu_guest_fpu_enter(vcpu);
1716 lcr2(cpudata->gcr2);
1717 if (launched) {
1718 ret = vmx_vmresume(cpudata->gprs);
1719 } else {
1720 ret = vmx_vmlaunch(cpudata->gprs);
1721 }
1722 cpudata->gcr2 = rcr2();
1723 vmx_vcpu_guest_fpu_leave(vcpu);
1724 vmx_htlb_flush_ack(cpudata, machgen);
1725 splx(s);
1726
1727 if (__predict_false(ret != 0)) {
1728 exit->reason = NVMM_EXIT_INVALID;
1729 break;
1730 }
1731
1732 launched = true;
1733
1734 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1735 exitcode &= __BITS(15,0);
1736
1737 switch (exitcode) {
1738 case VMCS_EXITCODE_EXT_INT:
1739 exit->reason = NVMM_EXIT_NONE;
1740 break;
1741 case VMCS_EXITCODE_CPUID:
1742 vmx_exit_cpuid(mach, vcpu, exit);
1743 break;
1744 case VMCS_EXITCODE_HLT:
1745 vmx_exit_hlt(mach, vcpu, exit);
1746 break;
1747 case VMCS_EXITCODE_CR:
1748 vmx_exit_cr(mach, vcpu, exit);
1749 break;
1750 case VMCS_EXITCODE_IO:
1751 vmx_exit_io(mach, vcpu, exit);
1752 break;
1753 case VMCS_EXITCODE_RDMSR:
1754 vmx_exit_msr(mach, vcpu, exit, true);
1755 break;
1756 case VMCS_EXITCODE_WRMSR:
1757 vmx_exit_msr(mach, vcpu, exit, false);
1758 break;
1759 case VMCS_EXITCODE_SHUTDOWN:
1760 exit->reason = NVMM_EXIT_SHUTDOWN;
1761 break;
1762 case VMCS_EXITCODE_MONITOR:
1763 exit->reason = NVMM_EXIT_MONITOR;
1764 break;
1765 case VMCS_EXITCODE_MWAIT:
1766 exit->reason = NVMM_EXIT_MWAIT;
1767 break;
1768 case VMCS_EXITCODE_XSETBV:
1769 vmx_exit_xsetbv(mach, vcpu, exit);
1770 break;
1771 case VMCS_EXITCODE_RDPMC:
1772 case VMCS_EXITCODE_RDTSCP:
1773 case VMCS_EXITCODE_INVVPID:
1774 case VMCS_EXITCODE_INVEPT:
1775 case VMCS_EXITCODE_VMCALL:
1776 case VMCS_EXITCODE_VMCLEAR:
1777 case VMCS_EXITCODE_VMLAUNCH:
1778 case VMCS_EXITCODE_VMPTRLD:
1779 case VMCS_EXITCODE_VMPTRST:
1780 case VMCS_EXITCODE_VMREAD:
1781 case VMCS_EXITCODE_VMRESUME:
1782 case VMCS_EXITCODE_VMWRITE:
1783 case VMCS_EXITCODE_VMXOFF:
1784 case VMCS_EXITCODE_VMXON:
1785 vmx_inject_ud(mach, vcpu);
1786 exit->reason = NVMM_EXIT_NONE;
1787 break;
1788 case VMCS_EXITCODE_EPT_VIOLATION:
1789 vmx_exit_epf(mach, vcpu, exit);
1790 break;
1791 case VMCS_EXITCODE_INT_WINDOW:
1792 vmx_event_waitexit_disable(vcpu, false);
1793 exit->reason = NVMM_EXIT_INT_READY;
1794 break;
1795 case VMCS_EXITCODE_NMI_WINDOW:
1796 vmx_event_waitexit_disable(vcpu, true);
1797 exit->reason = NVMM_EXIT_NMI_READY;
1798 break;
1799 default:
1800 exit->reason = NVMM_EXIT_INVALID;
1801 break;
1802 }
1803
1804 /* If no reason to return to userland, keep rolling. */
1805 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1806 break;
1807 }
1808 if (curcpu()->ci_data.cpu_softints != 0) {
1809 break;
1810 }
1811 if (curlwp->l_flag & LW_USERRET) {
1812 break;
1813 }
1814 if (exit->reason != NVMM_EXIT_NONE) {
1815 break;
1816 }
1817 }
1818
1819 vmx_vcpu_guest_misc_leave(vcpu);
1820 vmx_vcpu_guest_dbregs_leave(vcpu);
1821
1822 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1823 vmx_vmread(VMCS_GUEST_RFLAGS,
1824 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1825 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1826 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1827 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1828 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1829 cpudata->int_window_exit;
1830 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1831 cpudata->nmi_window_exit;
1832
1833 vmx_vmcs_leave(vcpu);
1834
1835 return 0;
1836 }
1837
1838 /* -------------------------------------------------------------------------- */
1839
1840 static int
1841 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1842 {
1843 struct pglist pglist;
1844 paddr_t _pa;
1845 vaddr_t _va;
1846 size_t i;
1847 int ret;
1848
1849 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1850 &pglist, 1, 0);
1851 if (ret != 0)
1852 return ENOMEM;
1853 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1854 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1855 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1856 if (_va == 0)
1857 goto error;
1858
1859 for (i = 0; i < npages; i++) {
1860 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1861 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1862 }
1863 pmap_update(pmap_kernel());
1864
1865 memset((void *)_va, 0, npages * PAGE_SIZE);
1866
1867 *pa = _pa;
1868 *va = _va;
1869 return 0;
1870
1871 error:
1872 for (i = 0; i < npages; i++) {
1873 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1874 }
1875 return ENOMEM;
1876 }
1877
1878 static void
1879 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1880 {
1881 size_t i;
1882
1883 pmap_kremove(va, npages * PAGE_SIZE);
1884 pmap_update(pmap_kernel());
1885 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1886 for (i = 0; i < npages; i++) {
1887 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1888 }
1889 }
1890
1891 /* -------------------------------------------------------------------------- */
1892
1893 static void
1894 vmx_asid_alloc(struct nvmm_cpu *vcpu)
1895 {
1896 struct vmx_cpudata *cpudata = vcpu->cpudata;
1897 size_t i, oct, bit;
1898
1899 mutex_enter(&vmx_asidlock);
1900
1901 for (i = 0; i < vmx_maxasid; i++) {
1902 oct = i / 8;
1903 bit = i % 8;
1904
1905 if (vmx_asidmap[oct] & __BIT(bit)) {
1906 continue;
1907 }
1908
1909 cpudata->asid = i;
1910
1911 vmx_asidmap[oct] |= __BIT(bit);
1912 vmx_vmwrite(VMCS_VPID, i);
1913 mutex_exit(&vmx_asidlock);
1914 return;
1915 }
1916
1917 mutex_exit(&vmx_asidlock);
1918
1919 panic("%s: impossible", __func__);
1920 }
1921
1922 static void
1923 vmx_asid_free(struct nvmm_cpu *vcpu)
1924 {
1925 size_t oct, bit;
1926 uint64_t asid;
1927
1928 vmx_vmread(VMCS_VPID, &asid);
1929
1930 oct = asid / 8;
1931 bit = asid % 8;
1932
1933 mutex_enter(&vmx_asidlock);
1934 vmx_asidmap[oct] &= ~__BIT(bit);
1935 mutex_exit(&vmx_asidlock);
1936 }
1937
1938 static void
1939 vmx_init_asid(uint32_t maxasid)
1940 {
1941 size_t allocsz;
1942
1943 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
1944
1945 vmx_maxasid = maxasid;
1946 allocsz = roundup(maxasid, 8) / 8;
1947 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
1948
1949 /* ASID 0 is reserved for the host. */
1950 vmx_asidmap[0] |= __BIT(0);
1951 }
1952
1953 static void
1954 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1955 {
1956 uint64_t byte;
1957 uint8_t bitoff;
1958
1959 if (msr < 0x00002000) {
1960 /* Range 1 */
1961 byte = ((msr - 0x00000000) / 8) + 0;
1962 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1963 /* Range 2 */
1964 byte = ((msr - 0xC0000000) / 8) + 1024;
1965 } else {
1966 panic("%s: wrong range", __func__);
1967 }
1968
1969 bitoff = (msr & 0x7);
1970
1971 if (read) {
1972 bitmap[byte] &= ~__BIT(bitoff);
1973 }
1974 if (write) {
1975 bitmap[2048 + byte] &= ~__BIT(bitoff);
1976 }
1977 }
1978
1979 static void
1980 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1981 {
1982 struct vmx_cpudata *cpudata = vcpu->cpudata;
1983 struct vmcs *vmcs = cpudata->vmcs;
1984 struct msr_entry *gmsr = cpudata->gmsr;
1985 extern uint8_t vmx_resume_rip;
1986 uint64_t rev, eptp;
1987
1988 rev = vmx_get_revision();
1989
1990 memset(vmcs, 0, VMCS_SIZE);
1991 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
1992 vmcs->abort = 0;
1993
1994 vmx_vmcs_enter(vcpu);
1995
1996 /* No link pointer. */
1997 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
1998
1999 /* Install the CTLSs. */
2000 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2001 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2002 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2003 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2004 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2005
2006 /* Allow direct access to certain MSRs. */
2007 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2008 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2009 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2010 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2011 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2012 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2013 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2014 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2015 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2016 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2017 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2018 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2019 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2020 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2021 true, false);
2022 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2023
2024 /*
2025 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2026 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2027 */
2028 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2029 gmsr[VMX_MSRLIST_STAR].val = 0;
2030 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2031 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2032 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2033 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2034 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2035 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2036 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2037 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2038 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2039 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2040 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2041 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2042 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2043 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2044
2045 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2046 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD);
2047 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2048
2049 /* Force CR4_VMXE to zero. */
2050 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2051
2052 /* Set the Host state for resuming. */
2053 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2054 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2055 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2056 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2057 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2058 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2059 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2060 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2061 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2062 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2063 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2064 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2065 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2066 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2067
2068 /* Generate ASID. */
2069 vmx_asid_alloc(vcpu);
2070
2071 /* Enable Extended Paging, 4-Level. */
2072 eptp =
2073 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2074 __SHIFTIN(4-1, EPTP_WALKLEN) |
2075 EPTP_FLAGS_AD |
2076 mach->vm->vm_map.pmap->pm_pdirpa[0];
2077 vmx_vmwrite(VMCS_EPTP, eptp);
2078
2079 /* Init IA32_MISC_ENABLE. */
2080 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2081 cpudata->gmsr_misc_enable &=
2082 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2083 cpudata->gmsr_misc_enable |=
2084 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2085
2086 /* Must always be set. */
2087 vmx_vmwrite(VMCS_GUEST_CR4, CR4_VMXE);
2088 vmx_vmwrite(VMCS_GUEST_CR0, CR0_NE);
2089 cpudata->gxcr0 = XCR0_X87;
2090
2091 /* Init XSAVE header. */
2092 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2093 cpudata->gfpu.xsh_xcomp_bv = 0;
2094
2095 /* Set guest TSC to zero, more or less. */
2096 cpudata->tsc_offset = -cpu_counter();
2097
2098 /* These MSRs are static. */
2099 cpudata->star = rdmsr(MSR_STAR);
2100 cpudata->cstar = rdmsr(MSR_CSTAR);
2101 cpudata->sfmask = rdmsr(MSR_SFMASK);
2102
2103 vmx_vmcs_leave(vcpu);
2104 }
2105
2106 static int
2107 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2108 {
2109 struct vmx_cpudata *cpudata;
2110 int error;
2111
2112 /* Allocate the VMX cpudata. */
2113 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2114 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2115 UVM_KMF_WIRED|UVM_KMF_ZERO);
2116 vcpu->cpudata = cpudata;
2117
2118 /* VMCS */
2119 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2120 VMCS_NPAGES);
2121 if (error)
2122 goto error;
2123
2124 /* MSR Bitmap */
2125 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2126 MSRBM_NPAGES);
2127 if (error)
2128 goto error;
2129
2130 /* Guest MSR List */
2131 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2132 if (error)
2133 goto error;
2134
2135 kcpuset_create(&cpudata->htlb_want_flush, true);
2136
2137 /* Init the VCPU info. */
2138 vmx_vcpu_init(mach, vcpu);
2139
2140 return 0;
2141
2142 error:
2143 if (cpudata->vmcs_pa) {
2144 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2145 VMCS_NPAGES);
2146 }
2147 if (cpudata->msrbm_pa) {
2148 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2149 MSRBM_NPAGES);
2150 }
2151 if (cpudata->gmsr_pa) {
2152 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2153 }
2154
2155 kmem_free(cpudata, sizeof(*cpudata));
2156 return error;
2157 }
2158
2159 static void
2160 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2161 {
2162 struct vmx_cpudata *cpudata = vcpu->cpudata;
2163
2164 vmx_vmcs_enter(vcpu);
2165 vmx_asid_free(vcpu);
2166 vmx_vmcs_leave(vcpu);
2167
2168 kcpuset_destroy(cpudata->htlb_want_flush);
2169
2170 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2171 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2172 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2173 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2174 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2175 }
2176
2177 #define VMX_SEG_ATTRIB_TYPE __BITS(4,0)
2178 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2179 #define VMX_SEG_ATTRIB_P __BIT(7)
2180 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2181 #define VMX_SEG_ATTRIB_LONG __BIT(13)
2182 #define VMX_SEG_ATTRIB_DEF32 __BIT(14)
2183 #define VMX_SEG_ATTRIB_GRAN __BIT(15)
2184 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2185
2186 static void
2187 vmx_vcpu_setstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2188 {
2189 uint64_t attrib;
2190
2191 attrib =
2192 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2193 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2194 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2195 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2196 __SHIFTIN(segs[idx].attrib.lng, VMX_SEG_ATTRIB_LONG) |
2197 __SHIFTIN(segs[idx].attrib.def32, VMX_SEG_ATTRIB_DEF32) |
2198 __SHIFTIN(segs[idx].attrib.gran, VMX_SEG_ATTRIB_GRAN) |
2199 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2200
2201 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2202 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2203 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2204 }
2205 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2206 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2207 }
2208
2209 static void
2210 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2211 {
2212 uint64_t attrib = 0;
2213
2214 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2215 vmx_vmread(vmx_guest_segs[idx].selector, &segs[idx].selector);
2216 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2217 }
2218 vmx_vmread(vmx_guest_segs[idx].limit, &segs[idx].limit);
2219 vmx_vmread(vmx_guest_segs[idx].base, &segs[idx].base);
2220
2221 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2222 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2223 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2224 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2225 segs[idx].attrib.lng = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_LONG);
2226 segs[idx].attrib.def32 = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF32);
2227 segs[idx].attrib.gran = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_GRAN);
2228 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2229 segs[idx].attrib.p = 0;
2230 }
2231 }
2232
2233 static inline bool
2234 vmx_state_tlb_flush(struct nvmm_x64_state *state, uint64_t flags)
2235 {
2236 uint64_t cr0, cr3, cr4, efer;
2237
2238 if (flags & NVMM_X64_STATE_CRS) {
2239 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2240 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2241 return true;
2242 }
2243 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2244 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2245 return true;
2246 }
2247 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2248 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2249 return true;
2250 }
2251 }
2252
2253 if (flags & NVMM_X64_STATE_MSRS) {
2254 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2255 if ((efer ^
2256 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2257 return true;
2258 }
2259 }
2260
2261 return false;
2262 }
2263
2264 static void
2265 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2266 {
2267 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2268 struct vmx_cpudata *cpudata = vcpu->cpudata;
2269 struct fxsave *fpustate;
2270 uint64_t ctls1, intstate;
2271
2272 vmx_vmcs_enter(vcpu);
2273
2274 if (vmx_state_tlb_flush(state, flags)) {
2275 cpudata->gtlb_want_flush = true;
2276 }
2277
2278 if (flags & NVMM_X64_STATE_SEGS) {
2279 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2280 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2281 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2282 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2283 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2284 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2285 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2286 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2287 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2288 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2289 }
2290
2291 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2292 if (flags & NVMM_X64_STATE_GPRS) {
2293 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2294
2295 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2296 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2297 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2298 }
2299
2300 if (flags & NVMM_X64_STATE_CRS) {
2301 /* These bits are mandatory. */
2302 state->crs[NVMM_X64_CR_CR4] |= CR4_VMXE;
2303 state->crs[NVMM_X64_CR_CR0] |= CR0_NE;
2304
2305 vmx_vmwrite(VMCS_GUEST_CR0, state->crs[NVMM_X64_CR_CR0]);
2306 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2307 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2308 vmx_vmwrite(VMCS_GUEST_CR4, state->crs[NVMM_X64_CR_CR4]);
2309 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2310
2311 if (vmx_xcr0_mask != 0) {
2312 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2313 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2314 cpudata->gxcr0 &= vmx_xcr0_mask;
2315 cpudata->gxcr0 |= XCR0_X87;
2316 }
2317 }
2318
2319 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2320 if (flags & NVMM_X64_STATE_DRS) {
2321 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2322
2323 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2324 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2325 }
2326
2327 if (flags & NVMM_X64_STATE_MSRS) {
2328 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2329 state->msrs[NVMM_X64_MSR_STAR];
2330 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2331 state->msrs[NVMM_X64_MSR_LSTAR];
2332 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2333 state->msrs[NVMM_X64_MSR_CSTAR];
2334 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2335 state->msrs[NVMM_X64_MSR_SFMASK];
2336 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2337 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2338
2339 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2340 state->msrs[NVMM_X64_MSR_EFER]);
2341 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2342 state->msrs[NVMM_X64_MSR_PAT]);
2343 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2344 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2345 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2346 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2347 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2348 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2349
2350 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2351 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2352 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2353 ctls1 |= ENTRY_CTLS_LONG_MODE;
2354 } else {
2355 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2356 }
2357 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2358 }
2359
2360 if (flags & NVMM_X64_STATE_MISC) {
2361 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2362 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2363 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2364 intstate |= INT_STATE_MOVSS;
2365 }
2366 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2367
2368 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2369 vmx_event_waitexit_enable(vcpu, false);
2370 } else {
2371 vmx_event_waitexit_disable(vcpu, false);
2372 }
2373
2374 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2375 vmx_event_waitexit_enable(vcpu, true);
2376 } else {
2377 vmx_event_waitexit_disable(vcpu, true);
2378 }
2379 }
2380
2381 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2382 if (flags & NVMM_X64_STATE_FPU) {
2383 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2384 sizeof(state->fpu));
2385
2386 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2387 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2388 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2389
2390 if (vmx_xcr0_mask != 0) {
2391 /* Reset XSTATE_BV, to force a reload. */
2392 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2393 }
2394 }
2395
2396 vmx_vmcs_leave(vcpu);
2397 }
2398
2399 static void
2400 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2401 {
2402 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2403 struct vmx_cpudata *cpudata = vcpu->cpudata;
2404 uint64_t intstate;
2405
2406 vmx_vmcs_enter(vcpu);
2407
2408 if (flags & NVMM_X64_STATE_SEGS) {
2409 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2410 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2411 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2412 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2413 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2414 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2415 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2416 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2417 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2418 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2419 }
2420
2421 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2422 if (flags & NVMM_X64_STATE_GPRS) {
2423 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2424
2425 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2426 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2427 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2428 }
2429
2430 if (flags & NVMM_X64_STATE_CRS) {
2431 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2432 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2433 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2434 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2435 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2436 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2437
2438 /* Hide VMXE. */
2439 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2440 }
2441
2442 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2443 if (flags & NVMM_X64_STATE_DRS) {
2444 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2445
2446 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2447 }
2448
2449 if (flags & NVMM_X64_STATE_MSRS) {
2450 state->msrs[NVMM_X64_MSR_STAR] =
2451 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2452 state->msrs[NVMM_X64_MSR_LSTAR] =
2453 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2454 state->msrs[NVMM_X64_MSR_CSTAR] =
2455 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2456 state->msrs[NVMM_X64_MSR_SFMASK] =
2457 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2458 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2459 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2460
2461 vmx_vmread(VMCS_GUEST_IA32_EFER,
2462 &state->msrs[NVMM_X64_MSR_EFER]);
2463 vmx_vmread(VMCS_GUEST_IA32_PAT,
2464 &state->msrs[NVMM_X64_MSR_PAT]);
2465 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2466 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2467 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2468 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2469 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2470 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2471 }
2472
2473 if (flags & NVMM_X64_STATE_MISC) {
2474 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2475 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2476 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2477
2478 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2479 cpudata->int_window_exit;
2480 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2481 cpudata->nmi_window_exit;
2482 }
2483
2484 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2485 if (flags & NVMM_X64_STATE_FPU) {
2486 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2487 sizeof(state->fpu));
2488 }
2489
2490 vmx_vmcs_leave(vcpu);
2491 }
2492
2493 /* -------------------------------------------------------------------------- */
2494
2495 static void
2496 vmx_tlb_flush(struct pmap *pm)
2497 {
2498 struct nvmm_machine *mach = pm->pm_data;
2499 struct vmx_machdata *machdata = mach->machdata;
2500
2501 atomic_inc_64(&machdata->mach_htlb_gen);
2502
2503 /* Generates IPIs, which cause #VMEXITs. */
2504 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2505 }
2506
2507 static void
2508 vmx_machine_create(struct nvmm_machine *mach)
2509 {
2510 struct pmap *pmap = mach->vm->vm_map.pmap;
2511 struct vmx_machdata *machdata;
2512
2513 /* Convert to EPT. */
2514 pmap_ept_transform(pmap);
2515
2516 /* Fill in pmap info. */
2517 pmap->pm_data = (void *)mach;
2518 pmap->pm_tlb_flush = vmx_tlb_flush;
2519
2520 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2521 mach->machdata = machdata;
2522
2523 /* Start with an hTLB flush everywhere. */
2524 machdata->mach_htlb_gen = 1;
2525 }
2526
2527 static void
2528 vmx_machine_destroy(struct nvmm_machine *mach)
2529 {
2530 struct vmx_machdata *machdata = mach->machdata;
2531
2532 kmem_free(machdata, sizeof(struct vmx_machdata));
2533 }
2534
2535 static int
2536 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2537 {
2538 struct nvmm_x86_conf_cpuid *cpuid = data;
2539 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2540 size_t i;
2541
2542 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2543 return EINVAL;
2544 }
2545
2546 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2547 (cpuid->set.ebx & cpuid->del.ebx) ||
2548 (cpuid->set.ecx & cpuid->del.ecx) ||
2549 (cpuid->set.edx & cpuid->del.edx))) {
2550 return EINVAL;
2551 }
2552
2553 /* If already here, replace. */
2554 for (i = 0; i < VMX_NCPUIDS; i++) {
2555 if (!machdata->cpuidpresent[i]) {
2556 continue;
2557 }
2558 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2559 memcpy(&machdata->cpuid[i], cpuid,
2560 sizeof(struct nvmm_x86_conf_cpuid));
2561 return 0;
2562 }
2563 }
2564
2565 /* Not here, insert. */
2566 for (i = 0; i < VMX_NCPUIDS; i++) {
2567 if (!machdata->cpuidpresent[i]) {
2568 machdata->cpuidpresent[i] = true;
2569 memcpy(&machdata->cpuid[i], cpuid,
2570 sizeof(struct nvmm_x86_conf_cpuid));
2571 return 0;
2572 }
2573 }
2574
2575 return ENOBUFS;
2576 }
2577
2578 /* -------------------------------------------------------------------------- */
2579
2580 static int
2581 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2582 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2583 {
2584 uint64_t basic, val, true_val;
2585 bool one_allowed, zero_allowed, has_true;
2586 size_t i;
2587
2588 basic = rdmsr(MSR_IA32_VMX_BASIC);
2589 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2590
2591 val = rdmsr(msr_ctls);
2592 if (has_true) {
2593 true_val = rdmsr(msr_true_ctls);
2594 } else {
2595 true_val = val;
2596 }
2597
2598 #define ONE_ALLOWED(msrval, bitoff) \
2599 ((msrval & __BIT(32 + bitoff)) != 0)
2600 #define ZERO_ALLOWED(msrval, bitoff) \
2601 ((msrval & __BIT(bitoff)) == 0)
2602
2603 for (i = 0; i < 32; i++) {
2604 one_allowed = ONE_ALLOWED(true_val, i);
2605 zero_allowed = ZERO_ALLOWED(true_val, i);
2606
2607 if (zero_allowed && !one_allowed) {
2608 if (set_one & __BIT(i))
2609 return -1;
2610 *res &= ~__BIT(i);
2611 } else if (one_allowed && !zero_allowed) {
2612 if (set_zero & __BIT(i))
2613 return -1;
2614 *res |= __BIT(i);
2615 } else {
2616 if (set_zero & __BIT(i)) {
2617 *res &= ~__BIT(i);
2618 } else if (set_one & __BIT(i)) {
2619 *res |= __BIT(i);
2620 } else if (!has_true) {
2621 *res &= ~__BIT(i);
2622 } else if (ZERO_ALLOWED(val, i)) {
2623 *res &= ~__BIT(i);
2624 } else if (ONE_ALLOWED(val, i)) {
2625 *res |= __BIT(i);
2626 } else {
2627 return -1;
2628 }
2629 }
2630 }
2631
2632 return 0;
2633 }
2634
2635 static bool
2636 vmx_ident(void)
2637 {
2638 uint64_t msr;
2639 int ret;
2640
2641 if (!(cpu_feature[1] & CPUID2_VMX)) {
2642 return false;
2643 }
2644
2645 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2646 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2647 return false;
2648 }
2649
2650 msr = rdmsr(MSR_IA32_VMX_BASIC);
2651 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2652 return false;
2653 }
2654 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2655 return false;
2656 }
2657
2658 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2659 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2660 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2661 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2662 if (ret == -1) {
2663 return false;
2664 }
2665
2666 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2667 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2668 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2669 if (ret == -1) {
2670 return false;
2671 }
2672
2673 /* Init the CTLSs right now, and check for errors. */
2674 ret = vmx_init_ctls(
2675 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2676 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2677 &vmx_pinbased_ctls);
2678 if (ret == -1) {
2679 return false;
2680 }
2681 ret = vmx_init_ctls(
2682 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2683 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2684 &vmx_procbased_ctls);
2685 if (ret == -1) {
2686 return false;
2687 }
2688 ret = vmx_init_ctls(
2689 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2690 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2691 &vmx_procbased_ctls2);
2692 if (ret == -1) {
2693 return false;
2694 }
2695 ret = vmx_init_ctls(
2696 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2697 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2698 &vmx_entry_ctls);
2699 if (ret == -1) {
2700 return false;
2701 }
2702 ret = vmx_init_ctls(
2703 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2704 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2705 &vmx_exit_ctls);
2706 if (ret == -1) {
2707 return false;
2708 }
2709
2710 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2711 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2712 return false;
2713 }
2714 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2715 return false;
2716 }
2717 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2718 return false;
2719 }
2720 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) == 0) {
2721 return false;
2722 }
2723 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2724 return false;
2725 }
2726
2727 return true;
2728 }
2729
2730 static void
2731 vmx_change_cpu(void *arg1, void *arg2)
2732 {
2733 struct cpu_info *ci = curcpu();
2734 bool enable = (bool)arg1;
2735 uint64_t cr4;
2736
2737 if (!enable) {
2738 vmx_vmxoff();
2739 }
2740
2741 cr4 = rcr4();
2742 if (enable) {
2743 cr4 |= CR4_VMXE;
2744 } else {
2745 cr4 &= ~CR4_VMXE;
2746 }
2747 lcr4(cr4);
2748
2749 if (enable) {
2750 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2751 }
2752 }
2753
2754 static void
2755 vmx_init_l1tf(void)
2756 {
2757 u_int descs[4];
2758 uint64_t msr;
2759
2760 if (cpuid_level < 7) {
2761 return;
2762 }
2763
2764 x86_cpuid(7, descs);
2765
2766 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2767 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2768 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2769 /* No mitigation needed. */
2770 return;
2771 }
2772 }
2773
2774 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2775 /* Enable hardware mitigation. */
2776 vmx_msrlist_entry_nmsr += 1;
2777 }
2778 }
2779
2780 static void
2781 vmx_init(void)
2782 {
2783 CPU_INFO_ITERATOR cii;
2784 struct cpu_info *ci;
2785 uint64_t xc, msr;
2786 struct vmxon *vmxon;
2787 uint32_t revision;
2788 paddr_t pa;
2789 vaddr_t va;
2790 int error;
2791
2792 /* Init the ASID bitmap (VPID). */
2793 vmx_init_asid(VPID_MAX);
2794
2795 /* Init the XCR0 mask. */
2796 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2797
2798 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2799 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2800 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2801 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2802 } else {
2803 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2804 }
2805 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2806 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2807 } else {
2808 vmx_ept_flush_op = VMX_INVEPT_ALL;
2809 }
2810 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2811 vmx_eptp_type = EPTP_TYPE_WB;
2812 } else {
2813 vmx_eptp_type = EPTP_TYPE_UC;
2814 }
2815
2816 /* Init the L1TF mitigation. */
2817 vmx_init_l1tf();
2818
2819 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2820 revision = vmx_get_revision();
2821
2822 for (CPU_INFO_FOREACH(cii, ci)) {
2823 error = vmx_memalloc(&pa, &va, 1);
2824 if (error) {
2825 panic("%s: out of memory", __func__);
2826 }
2827 vmxoncpu[cpu_index(ci)].pa = pa;
2828 vmxoncpu[cpu_index(ci)].va = va;
2829
2830 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2831 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2832 }
2833
2834 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2835 xc_wait(xc);
2836 }
2837
2838 static void
2839 vmx_fini_asid(void)
2840 {
2841 size_t allocsz;
2842
2843 allocsz = roundup(vmx_maxasid, 8) / 8;
2844 kmem_free(vmx_asidmap, allocsz);
2845
2846 mutex_destroy(&vmx_asidlock);
2847 }
2848
2849 static void
2850 vmx_fini(void)
2851 {
2852 uint64_t xc;
2853 size_t i;
2854
2855 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2856 xc_wait(xc);
2857
2858 for (i = 0; i < MAXCPUS; i++) {
2859 if (vmxoncpu[i].pa != 0)
2860 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2861 }
2862
2863 vmx_fini_asid();
2864 }
2865
2866 static void
2867 vmx_capability(struct nvmm_capability *cap)
2868 {
2869 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2870 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2871 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2872 }
2873
2874 const struct nvmm_impl nvmm_x86_vmx = {
2875 .ident = vmx_ident,
2876 .init = vmx_init,
2877 .fini = vmx_fini,
2878 .capability = vmx_capability,
2879 .conf_max = NVMM_X86_NCONF,
2880 .conf_sizes = vmx_conf_sizes,
2881 .state_size = sizeof(struct nvmm_x64_state),
2882 .machine_create = vmx_machine_create,
2883 .machine_destroy = vmx_machine_destroy,
2884 .machine_configure = vmx_machine_configure,
2885 .vcpu_create = vmx_vcpu_create,
2886 .vcpu_destroy = vmx_vcpu_destroy,
2887 .vcpu_setstate = vmx_vcpu_setstate,
2888 .vcpu_getstate = vmx_vcpu_getstate,
2889 .vcpu_inject = vmx_vcpu_inject,
2890 .vcpu_run = vmx_vcpu_run
2891 };
2892