nvmm_x86_vmx.c revision 1.14 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.14 2019/02/23 12:27:00 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.14 2019/02/23 12:27:00 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int _vmx_vmxon(paddr_t *pa);
57 int _vmx_vmxoff(void);
58 int _vmx_invept(uint64_t op, void *desc);
59 int _vmx_invvpid(uint64_t op, void *desc);
60 int _vmx_vmread(uint64_t op, uint64_t *val);
61 int _vmx_vmwrite(uint64_t op, uint64_t val);
62 int _vmx_vmptrld(paddr_t *pa);
63 int _vmx_vmptrst(paddr_t *pa);
64 int _vmx_vmclear(paddr_t *pa);
65 int vmx_vmlaunch(uint64_t *gprs);
66 int vmx_vmresume(uint64_t *gprs);
67
68 #define vmx_vmxon(a) \
69 if (__predict_false(_vmx_vmxon(a) != 0)) { \
70 panic("%s: VMXON failed", __func__); \
71 }
72 #define vmx_vmxoff() \
73 if (__predict_false(_vmx_vmxoff() != 0)) { \
74 panic("%s: VMXOFF failed", __func__); \
75 }
76 #define vmx_invept(a, b) \
77 if (__predict_false(_vmx_invept(a, b) != 0)) { \
78 panic("%s: INVEPT failed", __func__); \
79 }
80 #define vmx_invvpid(a, b) \
81 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
82 panic("%s: INVVPID failed", __func__); \
83 }
84 #define vmx_vmread(a, b) \
85 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
86 panic("%s: VMREAD failed", __func__); \
87 }
88 #define vmx_vmwrite(a, b) \
89 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
90 panic("%s: VMWRITE failed", __func__); \
91 }
92 #define vmx_vmptrld(a) \
93 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
94 panic("%s: VMPTRLD failed", __func__); \
95 }
96 #define vmx_vmptrst(a) \
97 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
98 panic("%s: VMPTRST failed", __func__); \
99 }
100 #define vmx_vmclear(a) \
101 if (__predict_false(_vmx_vmclear(a) != 0)) { \
102 panic("%s: VMCLEAR failed", __func__); \
103 }
104
105 #define MSR_IA32_FEATURE_CONTROL 0x003A
106 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
107 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
108 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
109
110 #define MSR_IA32_VMX_BASIC 0x0480
111 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
112 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
113 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
114 #define IA32_VMX_BASIC_DUAL __BIT(49)
115 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
116 #define MEM_TYPE_UC 0
117 #define MEM_TYPE_WB 6
118 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
119 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
120
121 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
122 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
123 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
124 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
125 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
126
127 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
128 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
129 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
130 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
131
132 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
133 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
134 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
135 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
136
137 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
138 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
139 #define IA32_VMX_EPT_VPID_UC __BIT(8)
140 #define IA32_VMX_EPT_VPID_WB __BIT(14)
141 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
142 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
143 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
144 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
145 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
146 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
147 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
148 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
149 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
150
151 /* -------------------------------------------------------------------------- */
152
153 /* 16-bit control fields */
154 #define VMCS_VPID 0x00000000
155 #define VMCS_PIR_VECTOR 0x00000002
156 #define VMCS_EPTP_INDEX 0x00000004
157 /* 16-bit guest-state fields */
158 #define VMCS_GUEST_ES_SELECTOR 0x00000800
159 #define VMCS_GUEST_CS_SELECTOR 0x00000802
160 #define VMCS_GUEST_SS_SELECTOR 0x00000804
161 #define VMCS_GUEST_DS_SELECTOR 0x00000806
162 #define VMCS_GUEST_FS_SELECTOR 0x00000808
163 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
164 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
165 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
166 #define VMCS_GUEST_INTR_STATUS 0x00000810
167 #define VMCS_PML_INDEX 0x00000812
168 /* 16-bit host-state fields */
169 #define VMCS_HOST_ES_SELECTOR 0x00000C00
170 #define VMCS_HOST_CS_SELECTOR 0x00000C02
171 #define VMCS_HOST_SS_SELECTOR 0x00000C04
172 #define VMCS_HOST_DS_SELECTOR 0x00000C06
173 #define VMCS_HOST_FS_SELECTOR 0x00000C08
174 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
175 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
176 /* 64-bit control fields */
177 #define VMCS_IO_BITMAP_A 0x00002000
178 #define VMCS_IO_BITMAP_B 0x00002002
179 #define VMCS_MSR_BITMAP 0x00002004
180 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
181 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
182 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
183 #define VMCS_EXECUTIVE_VMCS 0x0000200C
184 #define VMCS_PML_ADDRESS 0x0000200E
185 #define VMCS_TSC_OFFSET 0x00002010
186 #define VMCS_VIRTUAL_APIC 0x00002012
187 #define VMCS_APIC_ACCESS 0x00002014
188 #define VMCS_PIR_DESC 0x00002016
189 #define VMCS_VM_CONTROL 0x00002018
190 #define VMCS_EPTP 0x0000201A
191 #define EPTP_TYPE __BITS(2,0)
192 #define EPTP_TYPE_UC 0
193 #define EPTP_TYPE_WB 6
194 #define EPTP_WALKLEN __BITS(5,3)
195 #define EPTP_FLAGS_AD __BIT(6)
196 #define EPTP_PHYSADDR __BITS(63,12)
197 #define VMCS_EOI_EXIT0 0x0000201C
198 #define VMCS_EOI_EXIT1 0x0000201E
199 #define VMCS_EOI_EXIT2 0x00002020
200 #define VMCS_EOI_EXIT3 0x00002022
201 #define VMCS_EPTP_LIST 0x00002024
202 #define VMCS_VMREAD_BITMAP 0x00002026
203 #define VMCS_VMWRITE_BITMAP 0x00002028
204 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
205 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
206 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
207 #define VMCS_TSC_MULTIPLIER 0x00002032
208 /* 64-bit read-only fields */
209 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
210 /* 64-bit guest-state fields */
211 #define VMCS_LINK_POINTER 0x00002800
212 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
213 #define VMCS_GUEST_IA32_PAT 0x00002804
214 #define VMCS_GUEST_IA32_EFER 0x00002806
215 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
216 #define VMCS_GUEST_PDPTE0 0x0000280A
217 #define VMCS_GUEST_PDPTE1 0x0000280C
218 #define VMCS_GUEST_PDPTE2 0x0000280E
219 #define VMCS_GUEST_PDPTE3 0x00002810
220 #define VMCS_GUEST_BNDCFGS 0x00002812
221 /* 64-bit host-state fields */
222 #define VMCS_HOST_IA32_PAT 0x00002C00
223 #define VMCS_HOST_IA32_EFER 0x00002C02
224 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
225 /* 32-bit control fields */
226 #define VMCS_PINBASED_CTLS 0x00004000
227 #define PIN_CTLS_INT_EXITING __BIT(0)
228 #define PIN_CTLS_NMI_EXITING __BIT(3)
229 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
230 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
231 #define PIN_CTLS_PROCESS_POSTEd_INTS __BIT(7)
232 #define VMCS_PROCBASED_CTLS 0x00004002
233 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
234 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
235 #define PROC_CTLS_HLT_EXITING __BIT(7)
236 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
237 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
238 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
239 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
240 #define PROC_CTLS_RCR3_EXITING __BIT(15)
241 #define PROC_CTLS_LCR3_EXITING __BIT(16)
242 #define PROC_CTLS_RCR8_EXITING __BIT(19)
243 #define PROC_CTLS_LCR8_EXITING __BIT(20)
244 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
245 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
246 #define PROC_CTLS_DR_EXITING __BIT(23)
247 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
248 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
249 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
250 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
251 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
252 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
253 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
254 #define VMCS_EXCEPTION_BITMAP 0x00004004
255 #define VMCS_PF_ERROR_MASK 0x00004006
256 #define VMCS_PF_ERROR_MATCH 0x00004008
257 #define VMCS_CR3_TARGET_COUNT 0x0000400A
258 #define VMCS_EXIT_CTLS 0x0000400C
259 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
260 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
261 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
262 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
263 #define EXIT_CTLS_SAVE_PAT __BIT(18)
264 #define EXIT_CTLS_LOAD_PAT __BIT(19)
265 #define EXIT_CTLS_SAVE_EFER __BIT(20)
266 #define EXIT_CTLS_LOAD_EFER __BIT(21)
267 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
268 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
269 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
270 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
271 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
272 #define VMCS_ENTRY_CTLS 0x00004012
273 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
274 #define ENTRY_CTLS_LONG_MODE __BIT(9)
275 #define ENTRY_CTLS_SMM __BIT(10)
276 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
277 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
278 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
279 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
280 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
281 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
282 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
283 #define VMCS_ENTRY_INTR_INFO 0x00004016
284 #define INTR_INFO_VECTOR __BITS(7,0)
285 #define INTR_INFO_TYPE_EXT_INT (0 << 8)
286 #define INTR_INFO_TYPE_NMI (2 << 8)
287 #define INTR_INFO_TYPE_HW_EXC (3 << 8)
288 #define INTR_INFO_TYPE_SW_INT (4 << 8)
289 #define INTR_INFO_TYPE_PRIV_SW_EXC (5 << 8)
290 #define INTR_INFO_TYPE_SW_EXC (6 << 8)
291 #define INTR_INFO_TYPE_OTHER (7 << 8)
292 #define INTR_INFO_ERROR __BIT(11)
293 #define INTR_INFO_VALID __BIT(31)
294 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
295 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
296 #define VMCS_TPR_THRESHOLD 0x0000401C
297 #define VMCS_PROCBASED_CTLS2 0x0000401E
298 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
299 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
300 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
301 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
302 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
303 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
304 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
305 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
306 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
307 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
308 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
309 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
310 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
311 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
312 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
313 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
314 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
315 #define PROC_CTLS2_PML_ENABLE __BIT(17)
316 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
317 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
318 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
319 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
320 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
321 #define VMCS_PLE_GAP 0x00004020
322 #define VMCS_PLE_WINDOW 0x00004022
323 /* 32-bit read-only data fields */
324 #define VMCS_INSTRUCTION_ERROR 0x00004400
325 #define VMCS_EXIT_REASON 0x00004402
326 #define VMCS_EXIT_INTR_INFO 0x00004404
327 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
328 #define VMCS_IDT_VECTORING_INFO 0x00004408
329 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
330 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
331 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
332 /* 32-bit guest-state fields */
333 #define VMCS_GUEST_ES_LIMIT 0x00004800
334 #define VMCS_GUEST_CS_LIMIT 0x00004802
335 #define VMCS_GUEST_SS_LIMIT 0x00004804
336 #define VMCS_GUEST_DS_LIMIT 0x00004806
337 #define VMCS_GUEST_FS_LIMIT 0x00004808
338 #define VMCS_GUEST_GS_LIMIT 0x0000480A
339 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
340 #define VMCS_GUEST_TR_LIMIT 0x0000480E
341 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
342 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
343 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
344 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
345 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
346 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
347 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
348 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
349 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
350 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
351 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
352 #define INT_STATE_STI __BIT(0)
353 #define INT_STATE_MOVSS __BIT(1)
354 #define INT_STATE_SMI __BIT(2)
355 #define INT_STATE_NMI __BIT(3)
356 #define INT_STATE_ENCLAVE __BIT(4)
357 #define VMCS_GUEST_ACTIVITY 0x00004826
358 #define VMCS_GUEST_SMBASE 0x00004828
359 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
360 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
361 /* 32-bit host state fields */
362 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
363 /* Natural-Width control fields */
364 #define VMCS_CR0_MASK 0x00006000
365 #define VMCS_CR4_MASK 0x00006002
366 #define VMCS_CR0_SHADOW 0x00006004
367 #define VMCS_CR4_SHADOW 0x00006006
368 #define VMCS_CR3_TARGET0 0x00006008
369 #define VMCS_CR3_TARGET1 0x0000600A
370 #define VMCS_CR3_TARGET2 0x0000600C
371 #define VMCS_CR3_TARGET3 0x0000600E
372 /* Natural-Width read-only fields */
373 #define VMCS_EXIT_QUALIFICATION 0x00006400
374 #define VMCS_IO_RCX 0x00006402
375 #define VMCS_IO_RSI 0x00006404
376 #define VMCS_IO_RDI 0x00006406
377 #define VMCS_IO_RIP 0x00006408
378 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
379 /* Natural-Width guest-state fields */
380 #define VMCS_GUEST_CR0 0x00006800
381 #define VMCS_GUEST_CR3 0x00006802
382 #define VMCS_GUEST_CR4 0x00006804
383 #define VMCS_GUEST_ES_BASE 0x00006806
384 #define VMCS_GUEST_CS_BASE 0x00006808
385 #define VMCS_GUEST_SS_BASE 0x0000680A
386 #define VMCS_GUEST_DS_BASE 0x0000680C
387 #define VMCS_GUEST_FS_BASE 0x0000680E
388 #define VMCS_GUEST_GS_BASE 0x00006810
389 #define VMCS_GUEST_LDTR_BASE 0x00006812
390 #define VMCS_GUEST_TR_BASE 0x00006814
391 #define VMCS_GUEST_GDTR_BASE 0x00006816
392 #define VMCS_GUEST_IDTR_BASE 0x00006818
393 #define VMCS_GUEST_DR7 0x0000681A
394 #define VMCS_GUEST_RSP 0x0000681C
395 #define VMCS_GUEST_RIP 0x0000681E
396 #define VMCS_GUEST_RFLAGS 0x00006820
397 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
398 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
399 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
400 /* Natural-Width host-state fields */
401 #define VMCS_HOST_CR0 0x00006C00
402 #define VMCS_HOST_CR3 0x00006C02
403 #define VMCS_HOST_CR4 0x00006C04
404 #define VMCS_HOST_FS_BASE 0x00006C06
405 #define VMCS_HOST_GS_BASE 0x00006C08
406 #define VMCS_HOST_TR_BASE 0x00006C0A
407 #define VMCS_HOST_GDTR_BASE 0x00006C0C
408 #define VMCS_HOST_IDTR_BASE 0x00006C0E
409 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
410 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
411 #define VMCS_HOST_RSP 0x00006C14
412 #define VMCS_HOST_RIP 0x00006c16
413
414 /* VMX basic exit reasons. */
415 #define VMCS_EXITCODE_EXC_NMI 0
416 #define VMCS_EXITCODE_EXT_INT 1
417 #define VMCS_EXITCODE_SHUTDOWN 2
418 #define VMCS_EXITCODE_INIT 3
419 #define VMCS_EXITCODE_SIPI 4
420 #define VMCS_EXITCODE_SMI 5
421 #define VMCS_EXITCODE_OTHER_SMI 6
422 #define VMCS_EXITCODE_INT_WINDOW 7
423 #define VMCS_EXITCODE_NMI_WINDOW 8
424 #define VMCS_EXITCODE_TASK_SWITCH 9
425 #define VMCS_EXITCODE_CPUID 10
426 #define VMCS_EXITCODE_GETSEC 11
427 #define VMCS_EXITCODE_HLT 12
428 #define VMCS_EXITCODE_INVD 13
429 #define VMCS_EXITCODE_INVLPG 14
430 #define VMCS_EXITCODE_RDPMC 15
431 #define VMCS_EXITCODE_RDTSC 16
432 #define VMCS_EXITCODE_RSM 17
433 #define VMCS_EXITCODE_VMCALL 18
434 #define VMCS_EXITCODE_VMCLEAR 19
435 #define VMCS_EXITCODE_VMLAUNCH 20
436 #define VMCS_EXITCODE_VMPTRLD 21
437 #define VMCS_EXITCODE_VMPTRST 22
438 #define VMCS_EXITCODE_VMREAD 23
439 #define VMCS_EXITCODE_VMRESUME 24
440 #define VMCS_EXITCODE_VMWRITE 25
441 #define VMCS_EXITCODE_VMXOFF 26
442 #define VMCS_EXITCODE_VMXON 27
443 #define VMCS_EXITCODE_CR 28
444 #define VMCS_EXITCODE_DR 29
445 #define VMCS_EXITCODE_IO 30
446 #define VMCS_EXITCODE_RDMSR 31
447 #define VMCS_EXITCODE_WRMSR 32
448 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
449 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
450 #define VMCS_EXITCODE_MWAIT 36
451 #define VMCS_EXITCODE_TRAP_FLAG 37
452 #define VMCS_EXITCODE_MONITOR 39
453 #define VMCS_EXITCODE_PAUSE 40
454 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
455 #define VMCS_EXITCODE_TPR_BELOW 43
456 #define VMCS_EXITCODE_APIC_ACCESS 44
457 #define VMCS_EXITCODE_VEOI 45
458 #define VMCS_EXITCODE_GDTR_IDTR 46
459 #define VMCS_EXITCODE_LDTR_TR 47
460 #define VMCS_EXITCODE_EPT_VIOLATION 48
461 #define VMCS_EXITCODE_EPT_MISCONFIG 49
462 #define VMCS_EXITCODE_INVEPT 50
463 #define VMCS_EXITCODE_RDTSCP 51
464 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
465 #define VMCS_EXITCODE_INVVPID 53
466 #define VMCS_EXITCODE_WBINVD 54
467 #define VMCS_EXITCODE_XSETBV 55
468 #define VMCS_EXITCODE_APIC_WRITE 56
469 #define VMCS_EXITCODE_RDRAND 57
470 #define VMCS_EXITCODE_INVPCID 58
471 #define VMCS_EXITCODE_VMFUNC 59
472 #define VMCS_EXITCODE_ENCLS 60
473 #define VMCS_EXITCODE_RDSEED 61
474 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
475 #define VMCS_EXITCODE_XSAVES 63
476 #define VMCS_EXITCODE_XRSTORS 64
477
478 /* -------------------------------------------------------------------------- */
479
480 #define VMX_MSRLIST_STAR 0
481 #define VMX_MSRLIST_LSTAR 1
482 #define VMX_MSRLIST_CSTAR 2
483 #define VMX_MSRLIST_SFMASK 3
484 #define VMX_MSRLIST_KERNELGSBASE 4
485 #define VMX_MSRLIST_EXIT_NMSR 5
486 #define VMX_MSRLIST_L1DFLUSH 5
487
488 /* On entry, we may do +1 to include L1DFLUSH. */
489 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
490
491 struct vmxon {
492 uint32_t ident;
493 #define VMXON_IDENT_REVISION __BITS(30,0)
494
495 uint8_t data[PAGE_SIZE - 4];
496 } __packed;
497
498 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
499
500 struct vmxoncpu {
501 vaddr_t va;
502 paddr_t pa;
503 };
504
505 static struct vmxoncpu vmxoncpu[MAXCPUS];
506
507 struct vmcs {
508 uint32_t ident;
509 #define VMCS_IDENT_REVISION __BITS(30,0)
510 #define VMCS_IDENT_SHADOW __BIT(31)
511
512 uint32_t abort;
513 uint8_t data[PAGE_SIZE - 8];
514 } __packed;
515
516 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
517
518 struct msr_entry {
519 uint32_t msr;
520 uint32_t rsvd;
521 uint64_t val;
522 } __packed;
523
524 struct ept_desc {
525 uint64_t eptp;
526 uint64_t mbz;
527 } __packed;
528
529 struct vpid_desc {
530 uint64_t vpid;
531 uint64_t addr;
532 } __packed;
533
534 #define VPID_MAX 0xFFFF
535
536 /* Make sure we never run out of VPIDs. */
537 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
538
539 static uint64_t vmx_tlb_flush_op __read_mostly;
540 static uint64_t vmx_ept_flush_op __read_mostly;
541 static uint64_t vmx_eptp_type __read_mostly;
542
543 static uint64_t vmx_pinbased_ctls __read_mostly;
544 static uint64_t vmx_procbased_ctls __read_mostly;
545 static uint64_t vmx_procbased_ctls2 __read_mostly;
546 static uint64_t vmx_entry_ctls __read_mostly;
547 static uint64_t vmx_exit_ctls __read_mostly;
548
549 static uint64_t vmx_cr0_fixed0 __read_mostly;
550 static uint64_t vmx_cr0_fixed1 __read_mostly;
551 static uint64_t vmx_cr4_fixed0 __read_mostly;
552 static uint64_t vmx_cr4_fixed1 __read_mostly;
553
554 extern bool pmap_ept_has_ad;
555
556 #define VMX_PINBASED_CTLS_ONE \
557 (PIN_CTLS_INT_EXITING| \
558 PIN_CTLS_NMI_EXITING| \
559 PIN_CTLS_VIRTUAL_NMIS)
560
561 #define VMX_PINBASED_CTLS_ZERO 0
562
563 #define VMX_PROCBASED_CTLS_ONE \
564 (PROC_CTLS_USE_TSC_OFFSETTING| \
565 PROC_CTLS_HLT_EXITING| \
566 PROC_CTLS_MWAIT_EXITING | \
567 PROC_CTLS_RDPMC_EXITING | \
568 PROC_CTLS_RCR8_EXITING | \
569 PROC_CTLS_LCR8_EXITING | \
570 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
571 PROC_CTLS_USE_MSR_BITMAPS | \
572 PROC_CTLS_MONITOR_EXITING | \
573 PROC_CTLS_ACTIVATE_CTLS2)
574
575 #define VMX_PROCBASED_CTLS_ZERO \
576 (PROC_CTLS_RCR3_EXITING| \
577 PROC_CTLS_LCR3_EXITING)
578
579 #define VMX_PROCBASED_CTLS2_ONE \
580 (PROC_CTLS2_ENABLE_EPT| \
581 PROC_CTLS2_ENABLE_VPID| \
582 PROC_CTLS2_UNRESTRICTED_GUEST)
583
584 #define VMX_PROCBASED_CTLS2_ZERO 0
585
586 #define VMX_ENTRY_CTLS_ONE \
587 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
588 ENTRY_CTLS_LOAD_EFER| \
589 ENTRY_CTLS_LOAD_PAT)
590
591 #define VMX_ENTRY_CTLS_ZERO \
592 (ENTRY_CTLS_SMM| \
593 ENTRY_CTLS_DISABLE_DUAL)
594
595 #define VMX_EXIT_CTLS_ONE \
596 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
597 EXIT_CTLS_HOST_LONG_MODE| \
598 EXIT_CTLS_SAVE_PAT| \
599 EXIT_CTLS_LOAD_PAT| \
600 EXIT_CTLS_SAVE_EFER| \
601 EXIT_CTLS_LOAD_EFER)
602
603 #define VMX_EXIT_CTLS_ZERO 0
604
605 static uint8_t *vmx_asidmap __read_mostly;
606 static uint32_t vmx_maxasid __read_mostly;
607 static kmutex_t vmx_asidlock __cacheline_aligned;
608
609 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
610 static uint64_t vmx_xcr0_mask __read_mostly;
611
612 #define VMX_NCPUIDS 32
613
614 #define VMCS_NPAGES 1
615 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
616
617 #define MSRBM_NPAGES 1
618 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
619
620 #define EFER_TLB_FLUSH \
621 (EFER_NXE|EFER_LMA|EFER_LME)
622 #define CR0_TLB_FLUSH \
623 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
624 #define CR4_TLB_FLUSH \
625 (CR4_PGE|CR4_PAE|CR4_PSE)
626
627 /* -------------------------------------------------------------------------- */
628
629 struct vmx_machdata {
630 bool cpuidpresent[VMX_NCPUIDS];
631 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
632 volatile uint64_t mach_htlb_gen;
633 };
634
635 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
636 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
637 };
638
639 struct vmx_cpudata {
640 /* General */
641 uint64_t asid;
642 bool gtlb_want_flush;
643 uint64_t vcpu_htlb_gen;
644 kcpuset_t *htlb_want_flush;
645
646 /* VMCS */
647 struct vmcs *vmcs;
648 paddr_t vmcs_pa;
649 size_t vmcs_refcnt;
650
651 /* MSR bitmap */
652 uint8_t *msrbm;
653 paddr_t msrbm_pa;
654
655 /* Host state */
656 uint64_t hxcr0;
657 uint64_t star;
658 uint64_t lstar;
659 uint64_t cstar;
660 uint64_t sfmask;
661 uint64_t kernelgsbase;
662 bool ts_set;
663 struct xsave_header hfpu __aligned(64);
664
665 /* Event state */
666 bool int_window_exit;
667 bool nmi_window_exit;
668
669 /* Guest state */
670 struct msr_entry *gmsr;
671 paddr_t gmsr_pa;
672 uint64_t gmsr_misc_enable;
673 uint64_t gcr2;
674 uint64_t gcr8;
675 uint64_t gxcr0;
676 uint64_t gprs[NVMM_X64_NGPR];
677 uint64_t drs[NVMM_X64_NDR];
678 uint64_t tsc_offset;
679 struct xsave_header gfpu __aligned(64);
680 };
681
682 static const struct {
683 uint64_t selector;
684 uint64_t attrib;
685 uint64_t limit;
686 uint64_t base;
687 } vmx_guest_segs[NVMM_X64_NSEG] = {
688 [NVMM_X64_SEG_ES] = {
689 VMCS_GUEST_ES_SELECTOR,
690 VMCS_GUEST_ES_ACCESS_RIGHTS,
691 VMCS_GUEST_ES_LIMIT,
692 VMCS_GUEST_ES_BASE
693 },
694 [NVMM_X64_SEG_CS] = {
695 VMCS_GUEST_CS_SELECTOR,
696 VMCS_GUEST_CS_ACCESS_RIGHTS,
697 VMCS_GUEST_CS_LIMIT,
698 VMCS_GUEST_CS_BASE
699 },
700 [NVMM_X64_SEG_SS] = {
701 VMCS_GUEST_SS_SELECTOR,
702 VMCS_GUEST_SS_ACCESS_RIGHTS,
703 VMCS_GUEST_SS_LIMIT,
704 VMCS_GUEST_SS_BASE
705 },
706 [NVMM_X64_SEG_DS] = {
707 VMCS_GUEST_DS_SELECTOR,
708 VMCS_GUEST_DS_ACCESS_RIGHTS,
709 VMCS_GUEST_DS_LIMIT,
710 VMCS_GUEST_DS_BASE
711 },
712 [NVMM_X64_SEG_FS] = {
713 VMCS_GUEST_FS_SELECTOR,
714 VMCS_GUEST_FS_ACCESS_RIGHTS,
715 VMCS_GUEST_FS_LIMIT,
716 VMCS_GUEST_FS_BASE
717 },
718 [NVMM_X64_SEG_GS] = {
719 VMCS_GUEST_GS_SELECTOR,
720 VMCS_GUEST_GS_ACCESS_RIGHTS,
721 VMCS_GUEST_GS_LIMIT,
722 VMCS_GUEST_GS_BASE
723 },
724 [NVMM_X64_SEG_GDT] = {
725 0, /* doesn't exist */
726 0, /* doesn't exist */
727 VMCS_GUEST_GDTR_LIMIT,
728 VMCS_GUEST_GDTR_BASE
729 },
730 [NVMM_X64_SEG_IDT] = {
731 0, /* doesn't exist */
732 0, /* doesn't exist */
733 VMCS_GUEST_IDTR_LIMIT,
734 VMCS_GUEST_IDTR_BASE
735 },
736 [NVMM_X64_SEG_LDT] = {
737 VMCS_GUEST_LDTR_SELECTOR,
738 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
739 VMCS_GUEST_LDTR_LIMIT,
740 VMCS_GUEST_LDTR_BASE
741 },
742 [NVMM_X64_SEG_TR] = {
743 VMCS_GUEST_TR_SELECTOR,
744 VMCS_GUEST_TR_ACCESS_RIGHTS,
745 VMCS_GUEST_TR_LIMIT,
746 VMCS_GUEST_TR_BASE
747 }
748 };
749
750 /* -------------------------------------------------------------------------- */
751
752 static uint64_t
753 vmx_get_revision(void)
754 {
755 uint64_t msr;
756
757 msr = rdmsr(MSR_IA32_VMX_BASIC);
758 msr &= IA32_VMX_BASIC_IDENT;
759
760 return msr;
761 }
762
763 static void
764 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
765 {
766 struct vmx_cpudata *cpudata = vcpu->cpudata;
767 paddr_t oldpa __diagused;
768
769 cpudata->vmcs_refcnt++;
770 if (cpudata->vmcs_refcnt > 1) {
771 #ifdef DIAGNOSTIC
772 KASSERT(kpreempt_disabled());
773 vmx_vmptrst(&oldpa);
774 KASSERT(oldpa == cpudata->vmcs_pa);
775 #endif
776 return;
777 }
778
779 kpreempt_disable();
780
781 #ifdef DIAGNOSTIC
782 vmx_vmptrst(&oldpa);
783 KASSERT(oldpa == 0xFFFFFFFFFFFFFFFF);
784 #endif
785
786 vmx_vmptrld(&cpudata->vmcs_pa);
787 }
788
789 static void
790 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
791 {
792 struct vmx_cpudata *cpudata = vcpu->cpudata;
793 paddr_t oldpa __diagused;
794
795 KASSERT(kpreempt_disabled());
796 KASSERT(cpudata->vmcs_refcnt > 0);
797 cpudata->vmcs_refcnt--;
798
799 if (cpudata->vmcs_refcnt > 0) {
800 #ifdef DIAGNOSTIC
801 vmx_vmptrst(&oldpa);
802 KASSERT(oldpa == cpudata->vmcs_pa);
803 #endif
804 return;
805 }
806
807 vmx_vmclear(&cpudata->vmcs_pa);
808 kpreempt_enable();
809 }
810
811 /* -------------------------------------------------------------------------- */
812
813 static void
814 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
815 {
816 struct vmx_cpudata *cpudata = vcpu->cpudata;
817 uint64_t ctls1;
818
819 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
820
821 if (nmi) {
822 // XXX INT_STATE_NMI?
823 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
824 cpudata->nmi_window_exit = true;
825 } else {
826 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
827 cpudata->int_window_exit = true;
828 }
829
830 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
831 }
832
833 static void
834 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
835 {
836 struct vmx_cpudata *cpudata = vcpu->cpudata;
837 uint64_t ctls1;
838
839 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
840
841 if (nmi) {
842 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
843 cpudata->nmi_window_exit = false;
844 } else {
845 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
846 cpudata->int_window_exit = false;
847 }
848
849 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
850 }
851
852 static inline int
853 vmx_event_has_error(uint64_t vector)
854 {
855 switch (vector) {
856 case 8: /* #DF */
857 case 10: /* #TS */
858 case 11: /* #NP */
859 case 12: /* #SS */
860 case 13: /* #GP */
861 case 14: /* #PF */
862 case 17: /* #AC */
863 case 30: /* #SX */
864 return 1;
865 default:
866 return 0;
867 }
868 }
869
870 static int
871 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
872 struct nvmm_event *event)
873 {
874 struct vmx_cpudata *cpudata = vcpu->cpudata;
875 int type = 0, err = 0, ret = 0;
876 uint64_t info, intstate, rflags;
877
878 if (event->vector >= 256) {
879 return EINVAL;
880 }
881
882 vmx_vmcs_enter(vcpu);
883
884 switch (event->type) {
885 case NVMM_EVENT_INTERRUPT_HW:
886 type = INTR_INFO_TYPE_EXT_INT;
887 if (event->vector == 2) {
888 type = INTR_INFO_TYPE_NMI;
889 }
890 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
891 if (type == INTR_INFO_TYPE_NMI) {
892 if (cpudata->nmi_window_exit) {
893 ret = EAGAIN;
894 goto out;
895 }
896 vmx_event_waitexit_enable(vcpu, true);
897 } else {
898 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
899 if ((rflags & PSL_I) == 0 ||
900 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
901 vmx_event_waitexit_enable(vcpu, false);
902 ret = EAGAIN;
903 goto out;
904 }
905 }
906 err = 0;
907 break;
908 case NVMM_EVENT_INTERRUPT_SW:
909 ret = EINVAL;
910 goto out;
911 case NVMM_EVENT_EXCEPTION:
912 if (event->vector == 2 || event->vector >= 32) {
913 ret = EINVAL;
914 goto out;
915 }
916 if (event->vector == 3 || event->vector == 0) {
917 ret = EINVAL;
918 goto out;
919 }
920 type = INTR_INFO_TYPE_HW_EXC;
921 err = vmx_event_has_error(event->vector);
922 break;
923 default:
924 ret = EAGAIN;
925 goto out;
926 }
927
928 info =
929 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
930 type |
931 __SHIFTIN(err, INTR_INFO_ERROR) |
932 __SHIFTIN(1, INTR_INFO_VALID);
933 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
934 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
935
936 out:
937 vmx_vmcs_leave(vcpu);
938 return ret;
939 }
940
941 static void
942 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
943 {
944 struct nvmm_event event;
945 int ret __diagused;
946
947 event.type = NVMM_EVENT_EXCEPTION;
948 event.vector = 6;
949 event.u.error = 0;
950
951 ret = vmx_vcpu_inject(mach, vcpu, &event);
952 KASSERT(ret == 0);
953 }
954
955 static void
956 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
957 {
958 struct nvmm_event event;
959 int ret __diagused;
960
961 event.type = NVMM_EVENT_EXCEPTION;
962 event.vector = 13;
963 event.u.error = 0;
964
965 ret = vmx_vcpu_inject(mach, vcpu, &event);
966 KASSERT(ret == 0);
967 }
968
969 static inline void
970 vmx_inkernel_advance(void)
971 {
972 uint64_t rip, inslen, intstate;
973
974 /*
975 * Maybe we should also apply single-stepping and debug exceptions.
976 * Matters for guest-ring3, because it can execute 'cpuid' under a
977 * debugger.
978 */
979 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
980 vmx_vmread(VMCS_GUEST_RIP, &rip);
981 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
982 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
983 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
984 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
985 }
986
987 static void
988 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
989 {
990 struct vmx_cpudata *cpudata = vcpu->cpudata;
991 uint64_t cr4;
992
993 switch (eax) {
994 case 0x00000001:
995 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
996 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
997 CPUID_LOCAL_APIC_ID);
998 cpudata->gprs[NVMM_X64_GPR_RCX] &=
999 ~(CPUID2_VMX|CPUID2_SMX|CPUID2_EST|CPUID2_TM2|CPUID2_PDCM|
1000 CPUID2_PCID|CPUID2_DEADLINE);
1001 cpudata->gprs[NVMM_X64_GPR_RDX] &=
1002 ~(CPUID_DS|CPUID_ACPI|CPUID_TM);
1003
1004 /* CPUID2_OSXSAVE depends on CR4. */
1005 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1006 if (!(cr4 & CR4_OSXSAVE)) {
1007 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1008 }
1009 break;
1010 case 0x00000005:
1011 case 0x00000006:
1012 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1013 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1014 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1015 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1016 break;
1017 case 0x00000007:
1018 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_SEF_INVPCID;
1019 cpudata->gprs[NVMM_X64_GPR_RDX] &=
1020 ~(CPUID_SEF_IBRS|CPUID_SEF_STIBP|CPUID_SEF_L1D_FLUSH|
1021 CPUID_SEF_SSBD);
1022 break;
1023 case 0x0000000D:
1024 if (vmx_xcr0_mask == 0) {
1025 break;
1026 }
1027 switch (ecx) {
1028 case 0:
1029 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1030 if (cpudata->gxcr0 & XCR0_SSE) {
1031 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1032 } else {
1033 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1034 }
1035 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1036 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1037 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1038 break;
1039 case 1:
1040 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1041 break;
1042 }
1043 break;
1044 case 0x40000000:
1045 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1046 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1047 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1048 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1049 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1050 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1051 break;
1052 case 0x80000001:
1053 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
1054 break;
1055 default:
1056 break;
1057 }
1058 }
1059
1060 static void
1061 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1062 struct nvmm_exit *exit)
1063 {
1064 struct vmx_machdata *machdata = mach->machdata;
1065 struct vmx_cpudata *cpudata = vcpu->cpudata;
1066 struct nvmm_x86_conf_cpuid *cpuid;
1067 uint64_t eax, ecx;
1068 u_int descs[4];
1069 size_t i;
1070
1071 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1072 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1073 x86_cpuid2(eax, ecx, descs);
1074
1075 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1076 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1077 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1078 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1079
1080 for (i = 0; i < VMX_NCPUIDS; i++) {
1081 cpuid = &machdata->cpuid[i];
1082 if (!machdata->cpuidpresent[i]) {
1083 continue;
1084 }
1085 if (cpuid->leaf != eax) {
1086 continue;
1087 }
1088
1089 /* del */
1090 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1091 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1092 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1093 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1094
1095 /* set */
1096 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1097 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1098 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1099 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1100
1101 break;
1102 }
1103
1104 /* Overwrite non-tunable leaves. */
1105 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1106
1107 vmx_inkernel_advance();
1108 exit->reason = NVMM_EXIT_NONE;
1109 }
1110
1111 static void
1112 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1113 struct nvmm_exit *exit)
1114 {
1115 struct vmx_cpudata *cpudata = vcpu->cpudata;
1116 uint64_t rflags;
1117
1118 if (cpudata->int_window_exit) {
1119 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1120 if (rflags & PSL_I) {
1121 vmx_event_waitexit_disable(vcpu, false);
1122 }
1123 }
1124
1125 vmx_inkernel_advance();
1126 exit->reason = NVMM_EXIT_HALTED;
1127 }
1128
1129 #define VMX_QUAL_CR_NUM __BITS(3,0)
1130 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1131 #define CR_TYPE_WRITE 0
1132 #define CR_TYPE_READ 1
1133 #define CR_TYPE_CLTS 2
1134 #define CR_TYPE_LMSW 3
1135 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1136 #define VMX_QUAL_CR_GPR __BITS(11,8)
1137 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1138
1139 static inline int
1140 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1141 {
1142 /* Bits set to 1 in fixed0 are fixed to 1. */
1143 if ((crval & fixed0) != fixed0) {
1144 return -1;
1145 }
1146 /* Bits set to 0 in fixed1 are fixed to 0. */
1147 if (crval & ~fixed1) {
1148 return -1;
1149 }
1150 return 0;
1151 }
1152
1153 static int
1154 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1155 uint64_t qual)
1156 {
1157 struct vmx_cpudata *cpudata = vcpu->cpudata;
1158 uint64_t type, gpr, cr0;
1159 uint64_t efer, ctls1;
1160
1161 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1162 if (type != CR_TYPE_WRITE) {
1163 return -1;
1164 }
1165
1166 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1167 KASSERT(gpr < 16);
1168
1169 if (gpr == NVMM_X64_GPR_RSP) {
1170 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1171 } else {
1172 gpr = cpudata->gprs[gpr];
1173 }
1174
1175 cr0 = gpr | CR0_NE | CR0_ET;
1176 cr0 &= ~(CR0_NW|CR0_CD);
1177
1178 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1179 return -1;
1180 }
1181
1182 /*
1183 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1184 * from CR3.
1185 */
1186
1187 if (cr0 & CR0_PG) {
1188 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1189 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1190 if (efer & EFER_LME) {
1191 ctls1 |= ENTRY_CTLS_LONG_MODE;
1192 efer |= EFER_LMA;
1193 } else {
1194 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1195 efer &= ~EFER_LMA;
1196 }
1197 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1198 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1199 }
1200
1201 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1202 vmx_inkernel_advance();
1203 return 0;
1204 }
1205
1206 static int
1207 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1208 uint64_t qual)
1209 {
1210 struct vmx_cpudata *cpudata = vcpu->cpudata;
1211 uint64_t type, gpr, cr4;
1212
1213 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1214 if (type != CR_TYPE_WRITE) {
1215 return -1;
1216 }
1217
1218 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1219 KASSERT(gpr < 16);
1220
1221 if (gpr == NVMM_X64_GPR_RSP) {
1222 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1223 } else {
1224 gpr = cpudata->gprs[gpr];
1225 }
1226
1227 cr4 = gpr | CR4_VMXE;
1228
1229 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1230 return -1;
1231 }
1232
1233 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1234 vmx_inkernel_advance();
1235 return 0;
1236 }
1237
1238 static int
1239 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1240 uint64_t qual)
1241 {
1242 struct vmx_cpudata *cpudata = vcpu->cpudata;
1243 uint64_t type, gpr;
1244 bool write;
1245
1246 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1247 if (type == CR_TYPE_WRITE) {
1248 write = true;
1249 } else if (type == CR_TYPE_READ) {
1250 write = false;
1251 } else {
1252 return -1;
1253 }
1254
1255 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1256 KASSERT(gpr < 16);
1257
1258 if (write) {
1259 if (gpr == NVMM_X64_GPR_RSP) {
1260 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1261 } else {
1262 cpudata->gcr8 = cpudata->gprs[gpr];
1263 }
1264 } else {
1265 if (gpr == NVMM_X64_GPR_RSP) {
1266 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1267 } else {
1268 cpudata->gprs[gpr] = cpudata->gcr8;
1269 }
1270 }
1271
1272 vmx_inkernel_advance();
1273 return 0;
1274 }
1275
1276 static void
1277 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1278 struct nvmm_exit *exit)
1279 {
1280 uint64_t qual;
1281 int ret;
1282
1283 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1284
1285 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1286 case 0:
1287 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1288 break;
1289 case 4:
1290 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1291 break;
1292 case 8:
1293 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1294 break;
1295 default:
1296 ret = -1;
1297 break;
1298 }
1299
1300 if (ret == -1) {
1301 vmx_inject_gp(mach, vcpu);
1302 }
1303
1304 exit->reason = NVMM_EXIT_NONE;
1305 }
1306
1307 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1308 #define IO_SIZE_8 0
1309 #define IO_SIZE_16 1
1310 #define IO_SIZE_32 3
1311 #define VMX_QUAL_IO_IN __BIT(3)
1312 #define VMX_QUAL_IO_STR __BIT(4)
1313 #define VMX_QUAL_IO_REP __BIT(5)
1314 #define VMX_QUAL_IO_DX __BIT(6)
1315 #define VMX_QUAL_IO_PORT __BITS(31,16)
1316
1317 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1318 #define IO_ADRSIZE_16 0
1319 #define IO_ADRSIZE_32 1
1320 #define IO_ADRSIZE_64 2
1321 #define VMX_INFO_IO_SEG __BITS(17,15)
1322
1323 static const int seg_to_nvmm[] = {
1324 [0] = NVMM_X64_SEG_ES,
1325 [1] = NVMM_X64_SEG_CS,
1326 [2] = NVMM_X64_SEG_SS,
1327 [3] = NVMM_X64_SEG_DS,
1328 [4] = NVMM_X64_SEG_FS,
1329 [5] = NVMM_X64_SEG_GS
1330 };
1331
1332 static void
1333 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1334 struct nvmm_exit *exit)
1335 {
1336 uint64_t qual, info, inslen, rip;
1337
1338 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1339 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1340
1341 exit->reason = NVMM_EXIT_IO;
1342
1343 if (qual & VMX_QUAL_IO_IN) {
1344 exit->u.io.type = NVMM_EXIT_IO_IN;
1345 } else {
1346 exit->u.io.type = NVMM_EXIT_IO_OUT;
1347 }
1348
1349 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1350
1351 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1352 exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, VMX_INFO_IO_SEG)];
1353
1354 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1355 exit->u.io.address_size = 8;
1356 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1357 exit->u.io.address_size = 4;
1358 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1359 exit->u.io.address_size = 2;
1360 }
1361
1362 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1363 exit->u.io.operand_size = 4;
1364 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1365 exit->u.io.operand_size = 2;
1366 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1367 exit->u.io.operand_size = 1;
1368 }
1369
1370 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1371 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1372
1373 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1374 exit->u.io.seg = NVMM_X64_SEG_ES;
1375 }
1376
1377 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1378 vmx_vmread(VMCS_GUEST_RIP, &rip);
1379 exit->u.io.npc = rip + inslen;
1380 }
1381
1382 static const uint64_t msr_ignore_list[] = {
1383 MSR_BIOS_SIGN,
1384 MSR_IA32_PLATFORM_ID
1385 };
1386
1387 static bool
1388 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1389 struct nvmm_exit *exit)
1390 {
1391 struct vmx_cpudata *cpudata = vcpu->cpudata;
1392 uint64_t val;
1393 size_t i;
1394
1395 switch (exit->u.msr.type) {
1396 case NVMM_EXIT_MSR_RDMSR:
1397 if (exit->u.msr.msr == MSR_CR_PAT) {
1398 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1399 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1400 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1401 goto handled;
1402 }
1403 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1404 val = cpudata->gmsr_misc_enable;
1405 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1406 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1407 goto handled;
1408 }
1409 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1410 if (msr_ignore_list[i] != exit->u.msr.msr)
1411 continue;
1412 val = 0;
1413 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1414 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1415 goto handled;
1416 }
1417 break;
1418 case NVMM_EXIT_MSR_WRMSR:
1419 if (exit->u.msr.msr == MSR_TSC) {
1420 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
1421 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1422 curcpu()->ci_data.cpu_cc_skew);
1423 goto handled;
1424 }
1425 if (exit->u.msr.msr == MSR_CR_PAT) {
1426 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1427 goto handled;
1428 }
1429 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1430 /* Don't care. */
1431 goto handled;
1432 }
1433 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1434 if (msr_ignore_list[i] != exit->u.msr.msr)
1435 continue;
1436 goto handled;
1437 }
1438 break;
1439 }
1440
1441 return false;
1442
1443 handled:
1444 vmx_inkernel_advance();
1445 return true;
1446 }
1447
1448 static void
1449 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1450 struct nvmm_exit *exit, bool rdmsr)
1451 {
1452 struct vmx_cpudata *cpudata = vcpu->cpudata;
1453 uint64_t inslen, rip;
1454
1455 if (rdmsr) {
1456 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1457 } else {
1458 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1459 }
1460
1461 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1462
1463 if (rdmsr) {
1464 exit->u.msr.val = 0;
1465 } else {
1466 uint64_t rdx, rax;
1467 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1468 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1469 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1470 }
1471
1472 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1473 exit->reason = NVMM_EXIT_NONE;
1474 return;
1475 }
1476
1477 exit->reason = NVMM_EXIT_MSR;
1478 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1479 vmx_vmread(VMCS_GUEST_RIP, &rip);
1480 exit->u.msr.npc = rip + inslen;
1481 }
1482
1483 static void
1484 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1485 struct nvmm_exit *exit)
1486 {
1487 struct vmx_cpudata *cpudata = vcpu->cpudata;
1488 uint16_t val;
1489
1490 exit->reason = NVMM_EXIT_NONE;
1491
1492 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1493 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1494
1495 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1496 goto error;
1497 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1498 goto error;
1499 } else if (__predict_false((val & XCR0_X87) == 0)) {
1500 goto error;
1501 }
1502
1503 cpudata->gxcr0 = val;
1504
1505 vmx_inkernel_advance();
1506 return;
1507
1508 error:
1509 vmx_inject_gp(mach, vcpu);
1510 }
1511
1512 #define VMX_EPT_VIOLATION_READ __BIT(0)
1513 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1514 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1515
1516 static void
1517 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1518 struct nvmm_exit *exit)
1519 {
1520 uint64_t perm;
1521 gpaddr_t gpa;
1522
1523 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1524
1525 exit->reason = NVMM_EXIT_MEMORY;
1526 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1527 if (perm & VMX_EPT_VIOLATION_WRITE)
1528 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1529 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1530 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1531 else
1532 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1533 exit->u.mem.gpa = gpa;
1534 exit->u.mem.inst_len = 0;
1535 }
1536
1537 /* -------------------------------------------------------------------------- */
1538
1539 static void
1540 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1541 {
1542 struct vmx_cpudata *cpudata = vcpu->cpudata;
1543
1544 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1545
1546 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1547 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1548
1549 if (vmx_xcr0_mask != 0) {
1550 cpudata->hxcr0 = rdxcr(0);
1551 wrxcr(0, cpudata->gxcr0);
1552 }
1553 }
1554
1555 static void
1556 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1557 {
1558 struct vmx_cpudata *cpudata = vcpu->cpudata;
1559
1560 if (vmx_xcr0_mask != 0) {
1561 cpudata->gxcr0 = rdxcr(0);
1562 wrxcr(0, cpudata->hxcr0);
1563 }
1564
1565 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1566 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1567
1568 if (cpudata->ts_set) {
1569 stts();
1570 }
1571 }
1572
1573 static void
1574 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1575 {
1576 struct vmx_cpudata *cpudata = vcpu->cpudata;
1577
1578 x86_dbregs_save(curlwp);
1579
1580 ldr7(0);
1581
1582 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1583 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1584 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1585 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1586 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1587 }
1588
1589 static void
1590 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1591 {
1592 struct vmx_cpudata *cpudata = vcpu->cpudata;
1593
1594 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1595 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1596 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1597 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1598 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1599
1600 x86_dbregs_restore(curlwp);
1601 }
1602
1603 static void
1604 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1605 {
1606 struct vmx_cpudata *cpudata = vcpu->cpudata;
1607
1608 /* This gets restored automatically by the CPU. */
1609 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1610 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1611 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1612
1613 /* Note: MSR_LSTAR is not static, because of SVS. */
1614 cpudata->lstar = rdmsr(MSR_LSTAR);
1615 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1616 }
1617
1618 static void
1619 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1620 {
1621 struct vmx_cpudata *cpudata = vcpu->cpudata;
1622
1623 wrmsr(MSR_STAR, cpudata->star);
1624 wrmsr(MSR_LSTAR, cpudata->lstar);
1625 wrmsr(MSR_CSTAR, cpudata->cstar);
1626 wrmsr(MSR_SFMASK, cpudata->sfmask);
1627 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1628 }
1629
1630 /* -------------------------------------------------------------------------- */
1631
1632 #define VMX_INVVPID_ADDRESS 0
1633 #define VMX_INVVPID_CONTEXT 1
1634 #define VMX_INVVPID_ALL 2
1635 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1636
1637 #define VMX_INVEPT_CONTEXT 1
1638 #define VMX_INVEPT_ALL 2
1639
1640 static inline void
1641 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1642 {
1643 struct vmx_cpudata *cpudata = vcpu->cpudata;
1644
1645 if (vcpu->hcpu_last != hcpu) {
1646 cpudata->gtlb_want_flush = true;
1647 }
1648 }
1649
1650 static inline void
1651 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1652 {
1653 struct vmx_cpudata *cpudata = vcpu->cpudata;
1654 struct ept_desc ept_desc;
1655
1656 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1657 return;
1658 }
1659
1660 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1661 ept_desc.mbz = 0;
1662 vmx_invept(vmx_ept_flush_op, &ept_desc);
1663 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1664 }
1665
1666 static inline uint64_t
1667 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1668 {
1669 struct ept_desc ept_desc;
1670 uint64_t machgen;
1671
1672 machgen = machdata->mach_htlb_gen;
1673 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1674 return machgen;
1675 }
1676
1677 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1678
1679 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1680 ept_desc.mbz = 0;
1681 vmx_invept(vmx_ept_flush_op, &ept_desc);
1682
1683 return machgen;
1684 }
1685
1686 static inline void
1687 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1688 {
1689 cpudata->vcpu_htlb_gen = machgen;
1690 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1691 }
1692
1693 static int
1694 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1695 struct nvmm_exit *exit)
1696 {
1697 struct vmx_machdata *machdata = mach->machdata;
1698 struct vmx_cpudata *cpudata = vcpu->cpudata;
1699 struct vpid_desc vpid_desc;
1700 struct cpu_info *ci;
1701 uint64_t exitcode;
1702 uint64_t intstate;
1703 uint64_t machgen;
1704 int hcpu, s, ret;
1705 bool launched = false;
1706
1707 vmx_vmcs_enter(vcpu);
1708 ci = curcpu();
1709 hcpu = cpu_number();
1710
1711 vmx_gtlb_catchup(vcpu, hcpu);
1712 vmx_htlb_catchup(vcpu, hcpu);
1713
1714 if (vcpu->hcpu_last != hcpu) {
1715 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1716 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1717 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1718 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1719 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1720 curcpu()->ci_data.cpu_cc_skew);
1721 vcpu->hcpu_last = hcpu;
1722 }
1723
1724 vmx_vcpu_guest_dbregs_enter(vcpu);
1725 vmx_vcpu_guest_misc_enter(vcpu);
1726
1727 while (1) {
1728 if (cpudata->gtlb_want_flush) {
1729 vpid_desc.vpid = cpudata->asid;
1730 vpid_desc.addr = 0;
1731 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1732 cpudata->gtlb_want_flush = false;
1733 }
1734
1735 s = splhigh();
1736 machgen = vmx_htlb_flush(machdata, cpudata);
1737 vmx_vcpu_guest_fpu_enter(vcpu);
1738 lcr2(cpudata->gcr2);
1739 if (launched) {
1740 ret = vmx_vmresume(cpudata->gprs);
1741 } else {
1742 ret = vmx_vmlaunch(cpudata->gprs);
1743 }
1744 cpudata->gcr2 = rcr2();
1745 vmx_vcpu_guest_fpu_leave(vcpu);
1746 vmx_htlb_flush_ack(cpudata, machgen);
1747 splx(s);
1748
1749 if (__predict_false(ret != 0)) {
1750 exit->reason = NVMM_EXIT_INVALID;
1751 break;
1752 }
1753
1754 launched = true;
1755
1756 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1757 exitcode &= __BITS(15,0);
1758
1759 switch (exitcode) {
1760 case VMCS_EXITCODE_EXT_INT:
1761 exit->reason = NVMM_EXIT_NONE;
1762 break;
1763 case VMCS_EXITCODE_CPUID:
1764 vmx_exit_cpuid(mach, vcpu, exit);
1765 break;
1766 case VMCS_EXITCODE_HLT:
1767 vmx_exit_hlt(mach, vcpu, exit);
1768 break;
1769 case VMCS_EXITCODE_CR:
1770 vmx_exit_cr(mach, vcpu, exit);
1771 break;
1772 case VMCS_EXITCODE_IO:
1773 vmx_exit_io(mach, vcpu, exit);
1774 break;
1775 case VMCS_EXITCODE_RDMSR:
1776 vmx_exit_msr(mach, vcpu, exit, true);
1777 break;
1778 case VMCS_EXITCODE_WRMSR:
1779 vmx_exit_msr(mach, vcpu, exit, false);
1780 break;
1781 case VMCS_EXITCODE_SHUTDOWN:
1782 exit->reason = NVMM_EXIT_SHUTDOWN;
1783 break;
1784 case VMCS_EXITCODE_MONITOR:
1785 exit->reason = NVMM_EXIT_MONITOR;
1786 break;
1787 case VMCS_EXITCODE_MWAIT:
1788 exit->reason = NVMM_EXIT_MWAIT;
1789 break;
1790 case VMCS_EXITCODE_XSETBV:
1791 vmx_exit_xsetbv(mach, vcpu, exit);
1792 break;
1793 case VMCS_EXITCODE_RDPMC:
1794 case VMCS_EXITCODE_RDTSCP:
1795 case VMCS_EXITCODE_INVVPID:
1796 case VMCS_EXITCODE_INVEPT:
1797 case VMCS_EXITCODE_VMCALL:
1798 case VMCS_EXITCODE_VMCLEAR:
1799 case VMCS_EXITCODE_VMLAUNCH:
1800 case VMCS_EXITCODE_VMPTRLD:
1801 case VMCS_EXITCODE_VMPTRST:
1802 case VMCS_EXITCODE_VMREAD:
1803 case VMCS_EXITCODE_VMRESUME:
1804 case VMCS_EXITCODE_VMWRITE:
1805 case VMCS_EXITCODE_VMXOFF:
1806 case VMCS_EXITCODE_VMXON:
1807 vmx_inject_ud(mach, vcpu);
1808 exit->reason = NVMM_EXIT_NONE;
1809 break;
1810 case VMCS_EXITCODE_EPT_VIOLATION:
1811 vmx_exit_epf(mach, vcpu, exit);
1812 break;
1813 case VMCS_EXITCODE_INT_WINDOW:
1814 vmx_event_waitexit_disable(vcpu, false);
1815 exit->reason = NVMM_EXIT_INT_READY;
1816 break;
1817 case VMCS_EXITCODE_NMI_WINDOW:
1818 vmx_event_waitexit_disable(vcpu, true);
1819 exit->reason = NVMM_EXIT_NMI_READY;
1820 break;
1821 default:
1822 exit->reason = NVMM_EXIT_INVALID;
1823 break;
1824 }
1825
1826 /* If no reason to return to userland, keep rolling. */
1827 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1828 break;
1829 }
1830 if (curcpu()->ci_data.cpu_softints != 0) {
1831 break;
1832 }
1833 if (curlwp->l_flag & LW_USERRET) {
1834 break;
1835 }
1836 if (exit->reason != NVMM_EXIT_NONE) {
1837 break;
1838 }
1839 }
1840
1841 vmx_vcpu_guest_misc_leave(vcpu);
1842 vmx_vcpu_guest_dbregs_leave(vcpu);
1843
1844 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1845 vmx_vmread(VMCS_GUEST_RFLAGS,
1846 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1847 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1848 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1849 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1850 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1851 cpudata->int_window_exit;
1852 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1853 cpudata->nmi_window_exit;
1854
1855 vmx_vmcs_leave(vcpu);
1856
1857 return 0;
1858 }
1859
1860 /* -------------------------------------------------------------------------- */
1861
1862 static int
1863 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1864 {
1865 struct pglist pglist;
1866 paddr_t _pa;
1867 vaddr_t _va;
1868 size_t i;
1869 int ret;
1870
1871 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1872 &pglist, 1, 0);
1873 if (ret != 0)
1874 return ENOMEM;
1875 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1876 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1877 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1878 if (_va == 0)
1879 goto error;
1880
1881 for (i = 0; i < npages; i++) {
1882 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1883 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1884 }
1885 pmap_update(pmap_kernel());
1886
1887 memset((void *)_va, 0, npages * PAGE_SIZE);
1888
1889 *pa = _pa;
1890 *va = _va;
1891 return 0;
1892
1893 error:
1894 for (i = 0; i < npages; i++) {
1895 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1896 }
1897 return ENOMEM;
1898 }
1899
1900 static void
1901 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1902 {
1903 size_t i;
1904
1905 pmap_kremove(va, npages * PAGE_SIZE);
1906 pmap_update(pmap_kernel());
1907 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1908 for (i = 0; i < npages; i++) {
1909 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1910 }
1911 }
1912
1913 /* -------------------------------------------------------------------------- */
1914
1915 static void
1916 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1917 {
1918 uint64_t byte;
1919 uint8_t bitoff;
1920
1921 if (msr < 0x00002000) {
1922 /* Range 1 */
1923 byte = ((msr - 0x00000000) / 8) + 0;
1924 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1925 /* Range 2 */
1926 byte = ((msr - 0xC0000000) / 8) + 1024;
1927 } else {
1928 panic("%s: wrong range", __func__);
1929 }
1930
1931 bitoff = (msr & 0x7);
1932
1933 if (read) {
1934 bitmap[byte] &= ~__BIT(bitoff);
1935 }
1936 if (write) {
1937 bitmap[2048 + byte] &= ~__BIT(bitoff);
1938 }
1939 }
1940
1941 #define VMX_SEG_ATTRIB_TYPE __BITS(4,0)
1942 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
1943 #define VMX_SEG_ATTRIB_P __BIT(7)
1944 #define VMX_SEG_ATTRIB_AVL __BIT(12)
1945 #define VMX_SEG_ATTRIB_LONG __BIT(13)
1946 #define VMX_SEG_ATTRIB_DEF32 __BIT(14)
1947 #define VMX_SEG_ATTRIB_GRAN __BIT(15)
1948 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
1949
1950 static void
1951 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
1952 {
1953 uint64_t attrib;
1954
1955 attrib =
1956 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
1957 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
1958 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
1959 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
1960 __SHIFTIN(segs[idx].attrib.lng, VMX_SEG_ATTRIB_LONG) |
1961 __SHIFTIN(segs[idx].attrib.def32, VMX_SEG_ATTRIB_DEF32) |
1962 __SHIFTIN(segs[idx].attrib.gran, VMX_SEG_ATTRIB_GRAN) |
1963 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
1964
1965 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
1966 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
1967 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
1968 }
1969 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
1970 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
1971 }
1972
1973 static void
1974 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
1975 {
1976 uint64_t attrib = 0;
1977
1978 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
1979 vmx_vmread(vmx_guest_segs[idx].selector, &segs[idx].selector);
1980 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
1981 }
1982 vmx_vmread(vmx_guest_segs[idx].limit, &segs[idx].limit);
1983 vmx_vmread(vmx_guest_segs[idx].base, &segs[idx].base);
1984
1985 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
1986 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
1987 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
1988 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
1989 segs[idx].attrib.lng = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_LONG);
1990 segs[idx].attrib.def32 = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF32);
1991 segs[idx].attrib.gran = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_GRAN);
1992 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
1993 segs[idx].attrib.p = 0;
1994 }
1995 }
1996
1997 static inline bool
1998 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
1999 {
2000 uint64_t cr0, cr3, cr4, efer;
2001
2002 if (flags & NVMM_X64_STATE_CRS) {
2003 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2004 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2005 return true;
2006 }
2007 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2008 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2009 return true;
2010 }
2011 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2012 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2013 return true;
2014 }
2015 }
2016
2017 if (flags & NVMM_X64_STATE_MSRS) {
2018 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2019 if ((efer ^
2020 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2021 return true;
2022 }
2023 }
2024
2025 return false;
2026 }
2027
2028 static void
2029 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2030 {
2031 const struct nvmm_x64_state *state = data;
2032 struct vmx_cpudata *cpudata = vcpu->cpudata;
2033 struct fxsave *fpustate;
2034 uint64_t ctls1, intstate;
2035
2036 vmx_vmcs_enter(vcpu);
2037
2038 if (vmx_state_tlb_flush(state, flags)) {
2039 cpudata->gtlb_want_flush = true;
2040 }
2041
2042 if (flags & NVMM_X64_STATE_SEGS) {
2043 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2044 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2045 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2046 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2047 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2048 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2049 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2050 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2051 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2052 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2053 }
2054
2055 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2056 if (flags & NVMM_X64_STATE_GPRS) {
2057 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2058
2059 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2060 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2061 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2062 }
2063
2064 if (flags & NVMM_X64_STATE_CRS) {
2065 /*
2066 * CR0_NE and CR4_VMXE are mandatory.
2067 */
2068 vmx_vmwrite(VMCS_GUEST_CR0,
2069 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2070 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2071 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2072 vmx_vmwrite(VMCS_GUEST_CR4,
2073 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2074 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2075
2076 if (vmx_xcr0_mask != 0) {
2077 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2078 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2079 cpudata->gxcr0 &= vmx_xcr0_mask;
2080 cpudata->gxcr0 |= XCR0_X87;
2081 }
2082 }
2083
2084 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2085 if (flags & NVMM_X64_STATE_DRS) {
2086 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2087
2088 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2089 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2090 }
2091
2092 if (flags & NVMM_X64_STATE_MSRS) {
2093 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2094 state->msrs[NVMM_X64_MSR_STAR];
2095 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2096 state->msrs[NVMM_X64_MSR_LSTAR];
2097 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2098 state->msrs[NVMM_X64_MSR_CSTAR];
2099 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2100 state->msrs[NVMM_X64_MSR_SFMASK];
2101 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2102 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2103
2104 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2105 state->msrs[NVMM_X64_MSR_EFER]);
2106 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2107 state->msrs[NVMM_X64_MSR_PAT]);
2108 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2109 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2110 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2111 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2112 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2113 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2114
2115 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2116 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2117 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2118 ctls1 |= ENTRY_CTLS_LONG_MODE;
2119 } else {
2120 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2121 }
2122 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2123 }
2124
2125 if (flags & NVMM_X64_STATE_MISC) {
2126 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2127 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2128 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2129 intstate |= INT_STATE_MOVSS;
2130 }
2131 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2132
2133 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2134 vmx_event_waitexit_enable(vcpu, false);
2135 } else {
2136 vmx_event_waitexit_disable(vcpu, false);
2137 }
2138
2139 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2140 vmx_event_waitexit_enable(vcpu, true);
2141 } else {
2142 vmx_event_waitexit_disable(vcpu, true);
2143 }
2144 }
2145
2146 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2147 if (flags & NVMM_X64_STATE_FPU) {
2148 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2149 sizeof(state->fpu));
2150
2151 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2152 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2153 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2154
2155 if (vmx_xcr0_mask != 0) {
2156 /* Reset XSTATE_BV, to force a reload. */
2157 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2158 }
2159 }
2160
2161 vmx_vmcs_leave(vcpu);
2162 }
2163
2164 static void
2165 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2166 {
2167 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2168 struct vmx_cpudata *cpudata = vcpu->cpudata;
2169 uint64_t intstate;
2170
2171 vmx_vmcs_enter(vcpu);
2172
2173 if (flags & NVMM_X64_STATE_SEGS) {
2174 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2175 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2176 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2177 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2178 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2179 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2180 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2181 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2182 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2183 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2184 }
2185
2186 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2187 if (flags & NVMM_X64_STATE_GPRS) {
2188 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2189
2190 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2191 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2192 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2193 }
2194
2195 if (flags & NVMM_X64_STATE_CRS) {
2196 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2197 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2198 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2199 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2200 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2201 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2202
2203 /* Hide VMXE. */
2204 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2205 }
2206
2207 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2208 if (flags & NVMM_X64_STATE_DRS) {
2209 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2210
2211 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2212 }
2213
2214 if (flags & NVMM_X64_STATE_MSRS) {
2215 state->msrs[NVMM_X64_MSR_STAR] =
2216 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2217 state->msrs[NVMM_X64_MSR_LSTAR] =
2218 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2219 state->msrs[NVMM_X64_MSR_CSTAR] =
2220 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2221 state->msrs[NVMM_X64_MSR_SFMASK] =
2222 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2223 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2224 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2225
2226 vmx_vmread(VMCS_GUEST_IA32_EFER,
2227 &state->msrs[NVMM_X64_MSR_EFER]);
2228 vmx_vmread(VMCS_GUEST_IA32_PAT,
2229 &state->msrs[NVMM_X64_MSR_PAT]);
2230 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2231 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2232 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2233 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2234 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2235 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2236 }
2237
2238 if (flags & NVMM_X64_STATE_MISC) {
2239 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2240 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2241 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2242
2243 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2244 cpudata->int_window_exit;
2245 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2246 cpudata->nmi_window_exit;
2247 }
2248
2249 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2250 if (flags & NVMM_X64_STATE_FPU) {
2251 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2252 sizeof(state->fpu));
2253 }
2254
2255 vmx_vmcs_leave(vcpu);
2256 }
2257
2258 /* -------------------------------------------------------------------------- */
2259
2260 static void
2261 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2262 {
2263 struct vmx_cpudata *cpudata = vcpu->cpudata;
2264 size_t i, oct, bit;
2265
2266 mutex_enter(&vmx_asidlock);
2267
2268 for (i = 0; i < vmx_maxasid; i++) {
2269 oct = i / 8;
2270 bit = i % 8;
2271
2272 if (vmx_asidmap[oct] & __BIT(bit)) {
2273 continue;
2274 }
2275
2276 cpudata->asid = i;
2277
2278 vmx_asidmap[oct] |= __BIT(bit);
2279 vmx_vmwrite(VMCS_VPID, i);
2280 mutex_exit(&vmx_asidlock);
2281 return;
2282 }
2283
2284 mutex_exit(&vmx_asidlock);
2285
2286 panic("%s: impossible", __func__);
2287 }
2288
2289 static void
2290 vmx_asid_free(struct nvmm_cpu *vcpu)
2291 {
2292 size_t oct, bit;
2293 uint64_t asid;
2294
2295 vmx_vmread(VMCS_VPID, &asid);
2296
2297 oct = asid / 8;
2298 bit = asid % 8;
2299
2300 mutex_enter(&vmx_asidlock);
2301 vmx_asidmap[oct] &= ~__BIT(bit);
2302 mutex_exit(&vmx_asidlock);
2303 }
2304
2305 static void
2306 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2307 {
2308 struct vmx_cpudata *cpudata = vcpu->cpudata;
2309 struct vmcs *vmcs = cpudata->vmcs;
2310 struct msr_entry *gmsr = cpudata->gmsr;
2311 extern uint8_t vmx_resume_rip;
2312 uint64_t rev, eptp;
2313
2314 rev = vmx_get_revision();
2315
2316 memset(vmcs, 0, VMCS_SIZE);
2317 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2318 vmcs->abort = 0;
2319
2320 vmx_vmcs_enter(vcpu);
2321
2322 /* No link pointer. */
2323 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2324
2325 /* Install the CTLSs. */
2326 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2327 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2328 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2329 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2330 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2331
2332 /* Allow direct access to certain MSRs. */
2333 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2334 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2335 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2336 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2337 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2338 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2339 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2340 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2341 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2342 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2343 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2344 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2345 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2346 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2347 true, false);
2348 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2349
2350 /*
2351 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2352 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2353 */
2354 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2355 gmsr[VMX_MSRLIST_STAR].val = 0;
2356 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2357 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2358 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2359 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2360 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2361 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2362 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2363 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2364 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2365 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2366 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2367 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2368 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2369 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2370
2371 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2372 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2373 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2374
2375 /* Force CR4_VMXE to zero. */
2376 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2377
2378 /* Set the Host state for resuming. */
2379 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2380 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2381 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2382 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2383 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2384 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2385 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2386 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2387 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2388 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2389 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2390 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2391 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2392 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2393
2394 /* Generate ASID. */
2395 vmx_asid_alloc(vcpu);
2396
2397 /* Enable Extended Paging, 4-Level. */
2398 eptp =
2399 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2400 __SHIFTIN(4-1, EPTP_WALKLEN) |
2401 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2402 mach->vm->vm_map.pmap->pm_pdirpa[0];
2403 vmx_vmwrite(VMCS_EPTP, eptp);
2404
2405 /* Init IA32_MISC_ENABLE. */
2406 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2407 cpudata->gmsr_misc_enable &=
2408 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2409 cpudata->gmsr_misc_enable |=
2410 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2411
2412 /* Init XSAVE header. */
2413 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2414 cpudata->gfpu.xsh_xcomp_bv = 0;
2415
2416 /* Set guest TSC to zero, more or less. */
2417 cpudata->tsc_offset = -cpu_counter();
2418
2419 /* These MSRs are static. */
2420 cpudata->star = rdmsr(MSR_STAR);
2421 cpudata->cstar = rdmsr(MSR_CSTAR);
2422 cpudata->sfmask = rdmsr(MSR_SFMASK);
2423
2424 /* Install the RESET state. */
2425 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2426
2427 vmx_vmcs_leave(vcpu);
2428 }
2429
2430 static int
2431 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2432 {
2433 struct vmx_cpudata *cpudata;
2434 int error;
2435
2436 /* Allocate the VMX cpudata. */
2437 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2438 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2439 UVM_KMF_WIRED|UVM_KMF_ZERO);
2440 vcpu->cpudata = cpudata;
2441
2442 /* VMCS */
2443 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2444 VMCS_NPAGES);
2445 if (error)
2446 goto error;
2447
2448 /* MSR Bitmap */
2449 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2450 MSRBM_NPAGES);
2451 if (error)
2452 goto error;
2453
2454 /* Guest MSR List */
2455 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2456 if (error)
2457 goto error;
2458
2459 kcpuset_create(&cpudata->htlb_want_flush, true);
2460
2461 /* Init the VCPU info. */
2462 vmx_vcpu_init(mach, vcpu);
2463
2464 return 0;
2465
2466 error:
2467 if (cpudata->vmcs_pa) {
2468 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2469 VMCS_NPAGES);
2470 }
2471 if (cpudata->msrbm_pa) {
2472 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2473 MSRBM_NPAGES);
2474 }
2475 if (cpudata->gmsr_pa) {
2476 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2477 }
2478
2479 kmem_free(cpudata, sizeof(*cpudata));
2480 return error;
2481 }
2482
2483 static void
2484 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2485 {
2486 struct vmx_cpudata *cpudata = vcpu->cpudata;
2487
2488 vmx_vmcs_enter(vcpu);
2489 vmx_asid_free(vcpu);
2490 vmx_vmcs_leave(vcpu);
2491
2492 kcpuset_destroy(cpudata->htlb_want_flush);
2493
2494 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2495 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2496 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2497 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2498 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2499 }
2500
2501 /* -------------------------------------------------------------------------- */
2502
2503 static void
2504 vmx_tlb_flush(struct pmap *pm)
2505 {
2506 struct nvmm_machine *mach = pm->pm_data;
2507 struct vmx_machdata *machdata = mach->machdata;
2508
2509 atomic_inc_64(&machdata->mach_htlb_gen);
2510
2511 /* Generates IPIs, which cause #VMEXITs. */
2512 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2513 }
2514
2515 static void
2516 vmx_machine_create(struct nvmm_machine *mach)
2517 {
2518 struct pmap *pmap = mach->vm->vm_map.pmap;
2519 struct vmx_machdata *machdata;
2520
2521 /* Convert to EPT. */
2522 pmap_ept_transform(pmap);
2523
2524 /* Fill in pmap info. */
2525 pmap->pm_data = (void *)mach;
2526 pmap->pm_tlb_flush = vmx_tlb_flush;
2527
2528 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2529 mach->machdata = machdata;
2530
2531 /* Start with an hTLB flush everywhere. */
2532 machdata->mach_htlb_gen = 1;
2533 }
2534
2535 static void
2536 vmx_machine_destroy(struct nvmm_machine *mach)
2537 {
2538 struct vmx_machdata *machdata = mach->machdata;
2539
2540 kmem_free(machdata, sizeof(struct vmx_machdata));
2541 }
2542
2543 static int
2544 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2545 {
2546 struct nvmm_x86_conf_cpuid *cpuid = data;
2547 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2548 size_t i;
2549
2550 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2551 return EINVAL;
2552 }
2553
2554 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2555 (cpuid->set.ebx & cpuid->del.ebx) ||
2556 (cpuid->set.ecx & cpuid->del.ecx) ||
2557 (cpuid->set.edx & cpuid->del.edx))) {
2558 return EINVAL;
2559 }
2560
2561 /* If already here, replace. */
2562 for (i = 0; i < VMX_NCPUIDS; i++) {
2563 if (!machdata->cpuidpresent[i]) {
2564 continue;
2565 }
2566 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2567 memcpy(&machdata->cpuid[i], cpuid,
2568 sizeof(struct nvmm_x86_conf_cpuid));
2569 return 0;
2570 }
2571 }
2572
2573 /* Not here, insert. */
2574 for (i = 0; i < VMX_NCPUIDS; i++) {
2575 if (!machdata->cpuidpresent[i]) {
2576 machdata->cpuidpresent[i] = true;
2577 memcpy(&machdata->cpuid[i], cpuid,
2578 sizeof(struct nvmm_x86_conf_cpuid));
2579 return 0;
2580 }
2581 }
2582
2583 return ENOBUFS;
2584 }
2585
2586 /* -------------------------------------------------------------------------- */
2587
2588 static int
2589 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2590 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2591 {
2592 uint64_t basic, val, true_val;
2593 bool one_allowed, zero_allowed, has_true;
2594 size_t i;
2595
2596 basic = rdmsr(MSR_IA32_VMX_BASIC);
2597 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2598
2599 val = rdmsr(msr_ctls);
2600 if (has_true) {
2601 true_val = rdmsr(msr_true_ctls);
2602 } else {
2603 true_val = val;
2604 }
2605
2606 #define ONE_ALLOWED(msrval, bitoff) \
2607 ((msrval & __BIT(32 + bitoff)) != 0)
2608 #define ZERO_ALLOWED(msrval, bitoff) \
2609 ((msrval & __BIT(bitoff)) == 0)
2610
2611 for (i = 0; i < 32; i++) {
2612 one_allowed = ONE_ALLOWED(true_val, i);
2613 zero_allowed = ZERO_ALLOWED(true_val, i);
2614
2615 if (zero_allowed && !one_allowed) {
2616 if (set_one & __BIT(i))
2617 return -1;
2618 *res &= ~__BIT(i);
2619 } else if (one_allowed && !zero_allowed) {
2620 if (set_zero & __BIT(i))
2621 return -1;
2622 *res |= __BIT(i);
2623 } else {
2624 if (set_zero & __BIT(i)) {
2625 *res &= ~__BIT(i);
2626 } else if (set_one & __BIT(i)) {
2627 *res |= __BIT(i);
2628 } else if (!has_true) {
2629 *res &= ~__BIT(i);
2630 } else if (ZERO_ALLOWED(val, i)) {
2631 *res &= ~__BIT(i);
2632 } else if (ONE_ALLOWED(val, i)) {
2633 *res |= __BIT(i);
2634 } else {
2635 return -1;
2636 }
2637 }
2638 }
2639
2640 return 0;
2641 }
2642
2643 static bool
2644 vmx_ident(void)
2645 {
2646 uint64_t msr;
2647 int ret;
2648
2649 if (!(cpu_feature[1] & CPUID2_VMX)) {
2650 return false;
2651 }
2652
2653 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2654 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2655 return false;
2656 }
2657
2658 msr = rdmsr(MSR_IA32_VMX_BASIC);
2659 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2660 return false;
2661 }
2662 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2663 return false;
2664 }
2665
2666 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2667 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2668 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2669 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2670 if (ret == -1) {
2671 return false;
2672 }
2673
2674 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2675 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2676 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2677 if (ret == -1) {
2678 return false;
2679 }
2680
2681 /* Init the CTLSs right now, and check for errors. */
2682 ret = vmx_init_ctls(
2683 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2684 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2685 &vmx_pinbased_ctls);
2686 if (ret == -1) {
2687 return false;
2688 }
2689 ret = vmx_init_ctls(
2690 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2691 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2692 &vmx_procbased_ctls);
2693 if (ret == -1) {
2694 return false;
2695 }
2696 ret = vmx_init_ctls(
2697 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2698 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2699 &vmx_procbased_ctls2);
2700 if (ret == -1) {
2701 return false;
2702 }
2703 ret = vmx_init_ctls(
2704 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2705 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2706 &vmx_entry_ctls);
2707 if (ret == -1) {
2708 return false;
2709 }
2710 ret = vmx_init_ctls(
2711 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2712 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2713 &vmx_exit_ctls);
2714 if (ret == -1) {
2715 return false;
2716 }
2717
2718 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2719 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2720 return false;
2721 }
2722 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2723 return false;
2724 }
2725 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2726 return false;
2727 }
2728 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2729 pmap_ept_has_ad = true;
2730 } else {
2731 pmap_ept_has_ad = false;
2732 }
2733 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2734 return false;
2735 }
2736
2737 return true;
2738 }
2739
2740 static void
2741 vmx_init_asid(uint32_t maxasid)
2742 {
2743 size_t allocsz;
2744
2745 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2746
2747 vmx_maxasid = maxasid;
2748 allocsz = roundup(maxasid, 8) / 8;
2749 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2750
2751 /* ASID 0 is reserved for the host. */
2752 vmx_asidmap[0] |= __BIT(0);
2753 }
2754
2755 static void
2756 vmx_change_cpu(void *arg1, void *arg2)
2757 {
2758 struct cpu_info *ci = curcpu();
2759 bool enable = (bool)arg1;
2760 uint64_t cr4;
2761
2762 if (!enable) {
2763 vmx_vmxoff();
2764 }
2765
2766 cr4 = rcr4();
2767 if (enable) {
2768 cr4 |= CR4_VMXE;
2769 } else {
2770 cr4 &= ~CR4_VMXE;
2771 }
2772 lcr4(cr4);
2773
2774 if (enable) {
2775 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2776 }
2777 }
2778
2779 static void
2780 vmx_init_l1tf(void)
2781 {
2782 u_int descs[4];
2783 uint64_t msr;
2784
2785 if (cpuid_level < 7) {
2786 return;
2787 }
2788
2789 x86_cpuid(7, descs);
2790
2791 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2792 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2793 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2794 /* No mitigation needed. */
2795 return;
2796 }
2797 }
2798
2799 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2800 /* Enable hardware mitigation. */
2801 vmx_msrlist_entry_nmsr += 1;
2802 }
2803 }
2804
2805 static void
2806 vmx_init(void)
2807 {
2808 CPU_INFO_ITERATOR cii;
2809 struct cpu_info *ci;
2810 uint64_t xc, msr;
2811 struct vmxon *vmxon;
2812 uint32_t revision;
2813 paddr_t pa;
2814 vaddr_t va;
2815 int error;
2816
2817 /* Init the ASID bitmap (VPID). */
2818 vmx_init_asid(VPID_MAX);
2819
2820 /* Init the XCR0 mask. */
2821 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2822
2823 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2824 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2825 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2826 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2827 } else {
2828 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2829 }
2830 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2831 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2832 } else {
2833 vmx_ept_flush_op = VMX_INVEPT_ALL;
2834 }
2835 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2836 vmx_eptp_type = EPTP_TYPE_WB;
2837 } else {
2838 vmx_eptp_type = EPTP_TYPE_UC;
2839 }
2840
2841 /* Init the L1TF mitigation. */
2842 vmx_init_l1tf();
2843
2844 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2845 revision = vmx_get_revision();
2846
2847 for (CPU_INFO_FOREACH(cii, ci)) {
2848 error = vmx_memalloc(&pa, &va, 1);
2849 if (error) {
2850 panic("%s: out of memory", __func__);
2851 }
2852 vmxoncpu[cpu_index(ci)].pa = pa;
2853 vmxoncpu[cpu_index(ci)].va = va;
2854
2855 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2856 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2857 }
2858
2859 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2860 xc_wait(xc);
2861 }
2862
2863 static void
2864 vmx_fini_asid(void)
2865 {
2866 size_t allocsz;
2867
2868 allocsz = roundup(vmx_maxasid, 8) / 8;
2869 kmem_free(vmx_asidmap, allocsz);
2870
2871 mutex_destroy(&vmx_asidlock);
2872 }
2873
2874 static void
2875 vmx_fini(void)
2876 {
2877 uint64_t xc;
2878 size_t i;
2879
2880 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2881 xc_wait(xc);
2882
2883 for (i = 0; i < MAXCPUS; i++) {
2884 if (vmxoncpu[i].pa != 0)
2885 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2886 }
2887
2888 vmx_fini_asid();
2889 }
2890
2891 static void
2892 vmx_capability(struct nvmm_capability *cap)
2893 {
2894 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2895 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2896 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2897 }
2898
2899 const struct nvmm_impl nvmm_x86_vmx = {
2900 .ident = vmx_ident,
2901 .init = vmx_init,
2902 .fini = vmx_fini,
2903 .capability = vmx_capability,
2904 .conf_max = NVMM_X86_NCONF,
2905 .conf_sizes = vmx_conf_sizes,
2906 .state_size = sizeof(struct nvmm_x64_state),
2907 .machine_create = vmx_machine_create,
2908 .machine_destroy = vmx_machine_destroy,
2909 .machine_configure = vmx_machine_configure,
2910 .vcpu_create = vmx_vcpu_create,
2911 .vcpu_destroy = vmx_vcpu_destroy,
2912 .vcpu_setstate = vmx_vcpu_setstate,
2913 .vcpu_getstate = vmx_vcpu_getstate,
2914 .vcpu_inject = vmx_vcpu_inject,
2915 .vcpu_run = vmx_vcpu_run
2916 };
2917