nvmm_x86_vmx.c revision 1.17 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.17 2019/03/07 15:06:37 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.17 2019/03/07 15:06:37 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int _vmx_vmxon(paddr_t *pa);
57 int _vmx_vmxoff(void);
58 int _vmx_invept(uint64_t op, void *desc);
59 int _vmx_invvpid(uint64_t op, void *desc);
60 int _vmx_vmread(uint64_t op, uint64_t *val);
61 int _vmx_vmwrite(uint64_t op, uint64_t val);
62 int _vmx_vmptrld(paddr_t *pa);
63 int _vmx_vmptrst(paddr_t *pa);
64 int _vmx_vmclear(paddr_t *pa);
65 int vmx_vmlaunch(uint64_t *gprs);
66 int vmx_vmresume(uint64_t *gprs);
67
68 #define vmx_vmxon(a) \
69 if (__predict_false(_vmx_vmxon(a) != 0)) { \
70 panic("%s: VMXON failed", __func__); \
71 }
72 #define vmx_vmxoff() \
73 if (__predict_false(_vmx_vmxoff() != 0)) { \
74 panic("%s: VMXOFF failed", __func__); \
75 }
76 #define vmx_invept(a, b) \
77 if (__predict_false(_vmx_invept(a, b) != 0)) { \
78 panic("%s: INVEPT failed", __func__); \
79 }
80 #define vmx_invvpid(a, b) \
81 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
82 panic("%s: INVVPID failed", __func__); \
83 }
84 #define vmx_vmread(a, b) \
85 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
86 panic("%s: VMREAD failed", __func__); \
87 }
88 #define vmx_vmwrite(a, b) \
89 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
90 panic("%s: VMWRITE failed", __func__); \
91 }
92 #define vmx_vmptrld(a) \
93 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
94 panic("%s: VMPTRLD failed", __func__); \
95 }
96 #define vmx_vmptrst(a) \
97 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
98 panic("%s: VMPTRST failed", __func__); \
99 }
100 #define vmx_vmclear(a) \
101 if (__predict_false(_vmx_vmclear(a) != 0)) { \
102 panic("%s: VMCLEAR failed", __func__); \
103 }
104
105 #define MSR_IA32_FEATURE_CONTROL 0x003A
106 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
107 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
108 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
109
110 #define MSR_IA32_VMX_BASIC 0x0480
111 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
112 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
113 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
114 #define IA32_VMX_BASIC_DUAL __BIT(49)
115 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
116 #define MEM_TYPE_UC 0
117 #define MEM_TYPE_WB 6
118 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
119 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
120
121 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
122 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
123 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
124 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
125 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
126
127 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
128 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
129 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
130 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
131
132 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
133 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
134 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
135 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
136
137 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
138 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
139 #define IA32_VMX_EPT_VPID_UC __BIT(8)
140 #define IA32_VMX_EPT_VPID_WB __BIT(14)
141 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
142 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
143 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
144 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
145 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
146 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
147 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
148 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
149 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
150
151 /* -------------------------------------------------------------------------- */
152
153 /* 16-bit control fields */
154 #define VMCS_VPID 0x00000000
155 #define VMCS_PIR_VECTOR 0x00000002
156 #define VMCS_EPTP_INDEX 0x00000004
157 /* 16-bit guest-state fields */
158 #define VMCS_GUEST_ES_SELECTOR 0x00000800
159 #define VMCS_GUEST_CS_SELECTOR 0x00000802
160 #define VMCS_GUEST_SS_SELECTOR 0x00000804
161 #define VMCS_GUEST_DS_SELECTOR 0x00000806
162 #define VMCS_GUEST_FS_SELECTOR 0x00000808
163 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
164 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
165 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
166 #define VMCS_GUEST_INTR_STATUS 0x00000810
167 #define VMCS_PML_INDEX 0x00000812
168 /* 16-bit host-state fields */
169 #define VMCS_HOST_ES_SELECTOR 0x00000C00
170 #define VMCS_HOST_CS_SELECTOR 0x00000C02
171 #define VMCS_HOST_SS_SELECTOR 0x00000C04
172 #define VMCS_HOST_DS_SELECTOR 0x00000C06
173 #define VMCS_HOST_FS_SELECTOR 0x00000C08
174 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
175 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
176 /* 64-bit control fields */
177 #define VMCS_IO_BITMAP_A 0x00002000
178 #define VMCS_IO_BITMAP_B 0x00002002
179 #define VMCS_MSR_BITMAP 0x00002004
180 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
181 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
182 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
183 #define VMCS_EXECUTIVE_VMCS 0x0000200C
184 #define VMCS_PML_ADDRESS 0x0000200E
185 #define VMCS_TSC_OFFSET 0x00002010
186 #define VMCS_VIRTUAL_APIC 0x00002012
187 #define VMCS_APIC_ACCESS 0x00002014
188 #define VMCS_PIR_DESC 0x00002016
189 #define VMCS_VM_CONTROL 0x00002018
190 #define VMCS_EPTP 0x0000201A
191 #define EPTP_TYPE __BITS(2,0)
192 #define EPTP_TYPE_UC 0
193 #define EPTP_TYPE_WB 6
194 #define EPTP_WALKLEN __BITS(5,3)
195 #define EPTP_FLAGS_AD __BIT(6)
196 #define EPTP_PHYSADDR __BITS(63,12)
197 #define VMCS_EOI_EXIT0 0x0000201C
198 #define VMCS_EOI_EXIT1 0x0000201E
199 #define VMCS_EOI_EXIT2 0x00002020
200 #define VMCS_EOI_EXIT3 0x00002022
201 #define VMCS_EPTP_LIST 0x00002024
202 #define VMCS_VMREAD_BITMAP 0x00002026
203 #define VMCS_VMWRITE_BITMAP 0x00002028
204 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
205 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
206 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
207 #define VMCS_TSC_MULTIPLIER 0x00002032
208 /* 64-bit read-only fields */
209 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
210 /* 64-bit guest-state fields */
211 #define VMCS_LINK_POINTER 0x00002800
212 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
213 #define VMCS_GUEST_IA32_PAT 0x00002804
214 #define VMCS_GUEST_IA32_EFER 0x00002806
215 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
216 #define VMCS_GUEST_PDPTE0 0x0000280A
217 #define VMCS_GUEST_PDPTE1 0x0000280C
218 #define VMCS_GUEST_PDPTE2 0x0000280E
219 #define VMCS_GUEST_PDPTE3 0x00002810
220 #define VMCS_GUEST_BNDCFGS 0x00002812
221 /* 64-bit host-state fields */
222 #define VMCS_HOST_IA32_PAT 0x00002C00
223 #define VMCS_HOST_IA32_EFER 0x00002C02
224 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
225 /* 32-bit control fields */
226 #define VMCS_PINBASED_CTLS 0x00004000
227 #define PIN_CTLS_INT_EXITING __BIT(0)
228 #define PIN_CTLS_NMI_EXITING __BIT(3)
229 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
230 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
231 #define PIN_CTLS_PROCESS_POSTEd_INTS __BIT(7)
232 #define VMCS_PROCBASED_CTLS 0x00004002
233 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
234 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
235 #define PROC_CTLS_HLT_EXITING __BIT(7)
236 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
237 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
238 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
239 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
240 #define PROC_CTLS_RCR3_EXITING __BIT(15)
241 #define PROC_CTLS_LCR3_EXITING __BIT(16)
242 #define PROC_CTLS_RCR8_EXITING __BIT(19)
243 #define PROC_CTLS_LCR8_EXITING __BIT(20)
244 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
245 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
246 #define PROC_CTLS_DR_EXITING __BIT(23)
247 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
248 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
249 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
250 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
251 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
252 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
253 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
254 #define VMCS_EXCEPTION_BITMAP 0x00004004
255 #define VMCS_PF_ERROR_MASK 0x00004006
256 #define VMCS_PF_ERROR_MATCH 0x00004008
257 #define VMCS_CR3_TARGET_COUNT 0x0000400A
258 #define VMCS_EXIT_CTLS 0x0000400C
259 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
260 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
261 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
262 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
263 #define EXIT_CTLS_SAVE_PAT __BIT(18)
264 #define EXIT_CTLS_LOAD_PAT __BIT(19)
265 #define EXIT_CTLS_SAVE_EFER __BIT(20)
266 #define EXIT_CTLS_LOAD_EFER __BIT(21)
267 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
268 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
269 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
270 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
271 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
272 #define VMCS_ENTRY_CTLS 0x00004012
273 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
274 #define ENTRY_CTLS_LONG_MODE __BIT(9)
275 #define ENTRY_CTLS_SMM __BIT(10)
276 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
277 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
278 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
279 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
280 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
281 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
282 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
283 #define VMCS_ENTRY_INTR_INFO 0x00004016
284 #define INTR_INFO_VECTOR __BITS(7,0)
285 #define INTR_INFO_TYPE __BITS(10,8)
286 #define INTR_TYPE_EXT_INT 0
287 #define INTR_TYPE_NMI 2
288 #define INTR_TYPE_HW_EXC 3
289 #define INTR_TYPE_SW_INT 4
290 #define INTR_TYPE_PRIV_SW_EXC 5
291 #define INTR_TYPE_SW_EXC 6
292 #define INTR_TYPE_OTHER 7
293 #define INTR_INFO_ERROR __BIT(11)
294 #define INTR_INFO_VALID __BIT(31)
295 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
296 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
297 #define VMCS_TPR_THRESHOLD 0x0000401C
298 #define VMCS_PROCBASED_CTLS2 0x0000401E
299 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
300 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
301 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
302 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
303 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
304 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
305 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
306 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
307 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
308 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
309 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
310 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
311 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
312 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
313 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
314 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
315 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
316 #define PROC_CTLS2_PML_ENABLE __BIT(17)
317 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
318 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
319 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
320 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
321 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
322 #define VMCS_PLE_GAP 0x00004020
323 #define VMCS_PLE_WINDOW 0x00004022
324 /* 32-bit read-only data fields */
325 #define VMCS_INSTRUCTION_ERROR 0x00004400
326 #define VMCS_EXIT_REASON 0x00004402
327 #define VMCS_EXIT_INTR_INFO 0x00004404
328 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
329 #define VMCS_IDT_VECTORING_INFO 0x00004408
330 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
331 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
332 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
333 /* 32-bit guest-state fields */
334 #define VMCS_GUEST_ES_LIMIT 0x00004800
335 #define VMCS_GUEST_CS_LIMIT 0x00004802
336 #define VMCS_GUEST_SS_LIMIT 0x00004804
337 #define VMCS_GUEST_DS_LIMIT 0x00004806
338 #define VMCS_GUEST_FS_LIMIT 0x00004808
339 #define VMCS_GUEST_GS_LIMIT 0x0000480A
340 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
341 #define VMCS_GUEST_TR_LIMIT 0x0000480E
342 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
343 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
344 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
345 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
346 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
347 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
348 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
349 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
350 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
351 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
352 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
353 #define INT_STATE_STI __BIT(0)
354 #define INT_STATE_MOVSS __BIT(1)
355 #define INT_STATE_SMI __BIT(2)
356 #define INT_STATE_NMI __BIT(3)
357 #define INT_STATE_ENCLAVE __BIT(4)
358 #define VMCS_GUEST_ACTIVITY 0x00004826
359 #define VMCS_GUEST_SMBASE 0x00004828
360 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
361 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
362 /* 32-bit host state fields */
363 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
364 /* Natural-Width control fields */
365 #define VMCS_CR0_MASK 0x00006000
366 #define VMCS_CR4_MASK 0x00006002
367 #define VMCS_CR0_SHADOW 0x00006004
368 #define VMCS_CR4_SHADOW 0x00006006
369 #define VMCS_CR3_TARGET0 0x00006008
370 #define VMCS_CR3_TARGET1 0x0000600A
371 #define VMCS_CR3_TARGET2 0x0000600C
372 #define VMCS_CR3_TARGET3 0x0000600E
373 /* Natural-Width read-only fields */
374 #define VMCS_EXIT_QUALIFICATION 0x00006400
375 #define VMCS_IO_RCX 0x00006402
376 #define VMCS_IO_RSI 0x00006404
377 #define VMCS_IO_RDI 0x00006406
378 #define VMCS_IO_RIP 0x00006408
379 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
380 /* Natural-Width guest-state fields */
381 #define VMCS_GUEST_CR0 0x00006800
382 #define VMCS_GUEST_CR3 0x00006802
383 #define VMCS_GUEST_CR4 0x00006804
384 #define VMCS_GUEST_ES_BASE 0x00006806
385 #define VMCS_GUEST_CS_BASE 0x00006808
386 #define VMCS_GUEST_SS_BASE 0x0000680A
387 #define VMCS_GUEST_DS_BASE 0x0000680C
388 #define VMCS_GUEST_FS_BASE 0x0000680E
389 #define VMCS_GUEST_GS_BASE 0x00006810
390 #define VMCS_GUEST_LDTR_BASE 0x00006812
391 #define VMCS_GUEST_TR_BASE 0x00006814
392 #define VMCS_GUEST_GDTR_BASE 0x00006816
393 #define VMCS_GUEST_IDTR_BASE 0x00006818
394 #define VMCS_GUEST_DR7 0x0000681A
395 #define VMCS_GUEST_RSP 0x0000681C
396 #define VMCS_GUEST_RIP 0x0000681E
397 #define VMCS_GUEST_RFLAGS 0x00006820
398 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
399 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
400 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
401 /* Natural-Width host-state fields */
402 #define VMCS_HOST_CR0 0x00006C00
403 #define VMCS_HOST_CR3 0x00006C02
404 #define VMCS_HOST_CR4 0x00006C04
405 #define VMCS_HOST_FS_BASE 0x00006C06
406 #define VMCS_HOST_GS_BASE 0x00006C08
407 #define VMCS_HOST_TR_BASE 0x00006C0A
408 #define VMCS_HOST_GDTR_BASE 0x00006C0C
409 #define VMCS_HOST_IDTR_BASE 0x00006C0E
410 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
411 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
412 #define VMCS_HOST_RSP 0x00006C14
413 #define VMCS_HOST_RIP 0x00006c16
414
415 /* VMX basic exit reasons. */
416 #define VMCS_EXITCODE_EXC_NMI 0
417 #define VMCS_EXITCODE_EXT_INT 1
418 #define VMCS_EXITCODE_SHUTDOWN 2
419 #define VMCS_EXITCODE_INIT 3
420 #define VMCS_EXITCODE_SIPI 4
421 #define VMCS_EXITCODE_SMI 5
422 #define VMCS_EXITCODE_OTHER_SMI 6
423 #define VMCS_EXITCODE_INT_WINDOW 7
424 #define VMCS_EXITCODE_NMI_WINDOW 8
425 #define VMCS_EXITCODE_TASK_SWITCH 9
426 #define VMCS_EXITCODE_CPUID 10
427 #define VMCS_EXITCODE_GETSEC 11
428 #define VMCS_EXITCODE_HLT 12
429 #define VMCS_EXITCODE_INVD 13
430 #define VMCS_EXITCODE_INVLPG 14
431 #define VMCS_EXITCODE_RDPMC 15
432 #define VMCS_EXITCODE_RDTSC 16
433 #define VMCS_EXITCODE_RSM 17
434 #define VMCS_EXITCODE_VMCALL 18
435 #define VMCS_EXITCODE_VMCLEAR 19
436 #define VMCS_EXITCODE_VMLAUNCH 20
437 #define VMCS_EXITCODE_VMPTRLD 21
438 #define VMCS_EXITCODE_VMPTRST 22
439 #define VMCS_EXITCODE_VMREAD 23
440 #define VMCS_EXITCODE_VMRESUME 24
441 #define VMCS_EXITCODE_VMWRITE 25
442 #define VMCS_EXITCODE_VMXOFF 26
443 #define VMCS_EXITCODE_VMXON 27
444 #define VMCS_EXITCODE_CR 28
445 #define VMCS_EXITCODE_DR 29
446 #define VMCS_EXITCODE_IO 30
447 #define VMCS_EXITCODE_RDMSR 31
448 #define VMCS_EXITCODE_WRMSR 32
449 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
450 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
451 #define VMCS_EXITCODE_MWAIT 36
452 #define VMCS_EXITCODE_TRAP_FLAG 37
453 #define VMCS_EXITCODE_MONITOR 39
454 #define VMCS_EXITCODE_PAUSE 40
455 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
456 #define VMCS_EXITCODE_TPR_BELOW 43
457 #define VMCS_EXITCODE_APIC_ACCESS 44
458 #define VMCS_EXITCODE_VEOI 45
459 #define VMCS_EXITCODE_GDTR_IDTR 46
460 #define VMCS_EXITCODE_LDTR_TR 47
461 #define VMCS_EXITCODE_EPT_VIOLATION 48
462 #define VMCS_EXITCODE_EPT_MISCONFIG 49
463 #define VMCS_EXITCODE_INVEPT 50
464 #define VMCS_EXITCODE_RDTSCP 51
465 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
466 #define VMCS_EXITCODE_INVVPID 53
467 #define VMCS_EXITCODE_WBINVD 54
468 #define VMCS_EXITCODE_XSETBV 55
469 #define VMCS_EXITCODE_APIC_WRITE 56
470 #define VMCS_EXITCODE_RDRAND 57
471 #define VMCS_EXITCODE_INVPCID 58
472 #define VMCS_EXITCODE_VMFUNC 59
473 #define VMCS_EXITCODE_ENCLS 60
474 #define VMCS_EXITCODE_RDSEED 61
475 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
476 #define VMCS_EXITCODE_XSAVES 63
477 #define VMCS_EXITCODE_XRSTORS 64
478
479 /* -------------------------------------------------------------------------- */
480
481 #define VMX_MSRLIST_STAR 0
482 #define VMX_MSRLIST_LSTAR 1
483 #define VMX_MSRLIST_CSTAR 2
484 #define VMX_MSRLIST_SFMASK 3
485 #define VMX_MSRLIST_KERNELGSBASE 4
486 #define VMX_MSRLIST_EXIT_NMSR 5
487 #define VMX_MSRLIST_L1DFLUSH 5
488
489 /* On entry, we may do +1 to include L1DFLUSH. */
490 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
491
492 struct vmxon {
493 uint32_t ident;
494 #define VMXON_IDENT_REVISION __BITS(30,0)
495
496 uint8_t data[PAGE_SIZE - 4];
497 } __packed;
498
499 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
500
501 struct vmxoncpu {
502 vaddr_t va;
503 paddr_t pa;
504 };
505
506 static struct vmxoncpu vmxoncpu[MAXCPUS];
507
508 struct vmcs {
509 uint32_t ident;
510 #define VMCS_IDENT_REVISION __BITS(30,0)
511 #define VMCS_IDENT_SHADOW __BIT(31)
512
513 uint32_t abort;
514 uint8_t data[PAGE_SIZE - 8];
515 } __packed;
516
517 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
518
519 struct msr_entry {
520 uint32_t msr;
521 uint32_t rsvd;
522 uint64_t val;
523 } __packed;
524
525 struct ept_desc {
526 uint64_t eptp;
527 uint64_t mbz;
528 } __packed;
529
530 struct vpid_desc {
531 uint64_t vpid;
532 uint64_t addr;
533 } __packed;
534
535 #define VPID_MAX 0xFFFF
536
537 /* Make sure we never run out of VPIDs. */
538 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
539
540 static uint64_t vmx_tlb_flush_op __read_mostly;
541 static uint64_t vmx_ept_flush_op __read_mostly;
542 static uint64_t vmx_eptp_type __read_mostly;
543
544 static uint64_t vmx_pinbased_ctls __read_mostly;
545 static uint64_t vmx_procbased_ctls __read_mostly;
546 static uint64_t vmx_procbased_ctls2 __read_mostly;
547 static uint64_t vmx_entry_ctls __read_mostly;
548 static uint64_t vmx_exit_ctls __read_mostly;
549
550 static uint64_t vmx_cr0_fixed0 __read_mostly;
551 static uint64_t vmx_cr0_fixed1 __read_mostly;
552 static uint64_t vmx_cr4_fixed0 __read_mostly;
553 static uint64_t vmx_cr4_fixed1 __read_mostly;
554
555 extern bool pmap_ept_has_ad;
556
557 #define VMX_PINBASED_CTLS_ONE \
558 (PIN_CTLS_INT_EXITING| \
559 PIN_CTLS_NMI_EXITING| \
560 PIN_CTLS_VIRTUAL_NMIS)
561
562 #define VMX_PINBASED_CTLS_ZERO 0
563
564 #define VMX_PROCBASED_CTLS_ONE \
565 (PROC_CTLS_USE_TSC_OFFSETTING| \
566 PROC_CTLS_HLT_EXITING| \
567 PROC_CTLS_MWAIT_EXITING | \
568 PROC_CTLS_RDPMC_EXITING | \
569 PROC_CTLS_RCR8_EXITING | \
570 PROC_CTLS_LCR8_EXITING | \
571 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
572 PROC_CTLS_USE_MSR_BITMAPS | \
573 PROC_CTLS_MONITOR_EXITING | \
574 PROC_CTLS_ACTIVATE_CTLS2)
575
576 #define VMX_PROCBASED_CTLS_ZERO \
577 (PROC_CTLS_RCR3_EXITING| \
578 PROC_CTLS_LCR3_EXITING)
579
580 #define VMX_PROCBASED_CTLS2_ONE \
581 (PROC_CTLS2_ENABLE_EPT| \
582 PROC_CTLS2_ENABLE_VPID| \
583 PROC_CTLS2_UNRESTRICTED_GUEST)
584
585 #define VMX_PROCBASED_CTLS2_ZERO 0
586
587 #define VMX_ENTRY_CTLS_ONE \
588 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
589 ENTRY_CTLS_LOAD_EFER| \
590 ENTRY_CTLS_LOAD_PAT)
591
592 #define VMX_ENTRY_CTLS_ZERO \
593 (ENTRY_CTLS_SMM| \
594 ENTRY_CTLS_DISABLE_DUAL)
595
596 #define VMX_EXIT_CTLS_ONE \
597 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
598 EXIT_CTLS_HOST_LONG_MODE| \
599 EXIT_CTLS_SAVE_PAT| \
600 EXIT_CTLS_LOAD_PAT| \
601 EXIT_CTLS_SAVE_EFER| \
602 EXIT_CTLS_LOAD_EFER)
603
604 #define VMX_EXIT_CTLS_ZERO 0
605
606 static uint8_t *vmx_asidmap __read_mostly;
607 static uint32_t vmx_maxasid __read_mostly;
608 static kmutex_t vmx_asidlock __cacheline_aligned;
609
610 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
611 static uint64_t vmx_xcr0_mask __read_mostly;
612
613 #define VMX_NCPUIDS 32
614
615 #define VMCS_NPAGES 1
616 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
617
618 #define MSRBM_NPAGES 1
619 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
620
621 #define EFER_TLB_FLUSH \
622 (EFER_NXE|EFER_LMA|EFER_LME)
623 #define CR0_TLB_FLUSH \
624 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
625 #define CR4_TLB_FLUSH \
626 (CR4_PGE|CR4_PAE|CR4_PSE)
627
628 /* -------------------------------------------------------------------------- */
629
630 struct vmx_machdata {
631 bool cpuidpresent[VMX_NCPUIDS];
632 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
633 volatile uint64_t mach_htlb_gen;
634 };
635
636 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
637 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
638 };
639
640 struct vmx_cpudata {
641 /* General */
642 uint64_t asid;
643 bool gtlb_want_flush;
644 uint64_t vcpu_htlb_gen;
645 kcpuset_t *htlb_want_flush;
646
647 /* VMCS */
648 struct vmcs *vmcs;
649 paddr_t vmcs_pa;
650 size_t vmcs_refcnt;
651
652 /* MSR bitmap */
653 uint8_t *msrbm;
654 paddr_t msrbm_pa;
655
656 /* Host state */
657 uint64_t hxcr0;
658 uint64_t star;
659 uint64_t lstar;
660 uint64_t cstar;
661 uint64_t sfmask;
662 uint64_t kernelgsbase;
663 bool ts_set;
664 struct xsave_header hfpu __aligned(64);
665
666 /* Event state */
667 bool int_window_exit;
668 bool nmi_window_exit;
669
670 /* Guest state */
671 struct msr_entry *gmsr;
672 paddr_t gmsr_pa;
673 uint64_t gmsr_misc_enable;
674 uint64_t gcr2;
675 uint64_t gcr8;
676 uint64_t gxcr0;
677 uint64_t gprs[NVMM_X64_NGPR];
678 uint64_t drs[NVMM_X64_NDR];
679 uint64_t tsc_offset;
680 struct xsave_header gfpu __aligned(64);
681 };
682
683 static const struct {
684 uint64_t selector;
685 uint64_t attrib;
686 uint64_t limit;
687 uint64_t base;
688 } vmx_guest_segs[NVMM_X64_NSEG] = {
689 [NVMM_X64_SEG_ES] = {
690 VMCS_GUEST_ES_SELECTOR,
691 VMCS_GUEST_ES_ACCESS_RIGHTS,
692 VMCS_GUEST_ES_LIMIT,
693 VMCS_GUEST_ES_BASE
694 },
695 [NVMM_X64_SEG_CS] = {
696 VMCS_GUEST_CS_SELECTOR,
697 VMCS_GUEST_CS_ACCESS_RIGHTS,
698 VMCS_GUEST_CS_LIMIT,
699 VMCS_GUEST_CS_BASE
700 },
701 [NVMM_X64_SEG_SS] = {
702 VMCS_GUEST_SS_SELECTOR,
703 VMCS_GUEST_SS_ACCESS_RIGHTS,
704 VMCS_GUEST_SS_LIMIT,
705 VMCS_GUEST_SS_BASE
706 },
707 [NVMM_X64_SEG_DS] = {
708 VMCS_GUEST_DS_SELECTOR,
709 VMCS_GUEST_DS_ACCESS_RIGHTS,
710 VMCS_GUEST_DS_LIMIT,
711 VMCS_GUEST_DS_BASE
712 },
713 [NVMM_X64_SEG_FS] = {
714 VMCS_GUEST_FS_SELECTOR,
715 VMCS_GUEST_FS_ACCESS_RIGHTS,
716 VMCS_GUEST_FS_LIMIT,
717 VMCS_GUEST_FS_BASE
718 },
719 [NVMM_X64_SEG_GS] = {
720 VMCS_GUEST_GS_SELECTOR,
721 VMCS_GUEST_GS_ACCESS_RIGHTS,
722 VMCS_GUEST_GS_LIMIT,
723 VMCS_GUEST_GS_BASE
724 },
725 [NVMM_X64_SEG_GDT] = {
726 0, /* doesn't exist */
727 0, /* doesn't exist */
728 VMCS_GUEST_GDTR_LIMIT,
729 VMCS_GUEST_GDTR_BASE
730 },
731 [NVMM_X64_SEG_IDT] = {
732 0, /* doesn't exist */
733 0, /* doesn't exist */
734 VMCS_GUEST_IDTR_LIMIT,
735 VMCS_GUEST_IDTR_BASE
736 },
737 [NVMM_X64_SEG_LDT] = {
738 VMCS_GUEST_LDTR_SELECTOR,
739 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
740 VMCS_GUEST_LDTR_LIMIT,
741 VMCS_GUEST_LDTR_BASE
742 },
743 [NVMM_X64_SEG_TR] = {
744 VMCS_GUEST_TR_SELECTOR,
745 VMCS_GUEST_TR_ACCESS_RIGHTS,
746 VMCS_GUEST_TR_LIMIT,
747 VMCS_GUEST_TR_BASE
748 }
749 };
750
751 /* -------------------------------------------------------------------------- */
752
753 static uint64_t
754 vmx_get_revision(void)
755 {
756 uint64_t msr;
757
758 msr = rdmsr(MSR_IA32_VMX_BASIC);
759 msr &= IA32_VMX_BASIC_IDENT;
760
761 return msr;
762 }
763
764 static void
765 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
766 {
767 struct vmx_cpudata *cpudata = vcpu->cpudata;
768 paddr_t oldpa __diagused;
769
770 cpudata->vmcs_refcnt++;
771 if (cpudata->vmcs_refcnt > 1) {
772 #ifdef DIAGNOSTIC
773 KASSERT(kpreempt_disabled());
774 vmx_vmptrst(&oldpa);
775 KASSERT(oldpa == cpudata->vmcs_pa);
776 #endif
777 return;
778 }
779
780 kpreempt_disable();
781
782 #ifdef DIAGNOSTIC
783 vmx_vmptrst(&oldpa);
784 KASSERT(oldpa == 0xFFFFFFFFFFFFFFFF);
785 #endif
786
787 vmx_vmptrld(&cpudata->vmcs_pa);
788 }
789
790 static void
791 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
792 {
793 struct vmx_cpudata *cpudata = vcpu->cpudata;
794 paddr_t oldpa __diagused;
795
796 KASSERT(kpreempt_disabled());
797 KASSERT(cpudata->vmcs_refcnt > 0);
798 cpudata->vmcs_refcnt--;
799
800 if (cpudata->vmcs_refcnt > 0) {
801 #ifdef DIAGNOSTIC
802 vmx_vmptrst(&oldpa);
803 KASSERT(oldpa == cpudata->vmcs_pa);
804 #endif
805 return;
806 }
807
808 vmx_vmclear(&cpudata->vmcs_pa);
809 kpreempt_enable();
810 }
811
812 /* -------------------------------------------------------------------------- */
813
814 static void
815 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
816 {
817 struct vmx_cpudata *cpudata = vcpu->cpudata;
818 uint64_t ctls1;
819
820 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
821
822 if (nmi) {
823 // XXX INT_STATE_NMI?
824 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
825 cpudata->nmi_window_exit = true;
826 } else {
827 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
828 cpudata->int_window_exit = true;
829 }
830
831 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
832 }
833
834 static void
835 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
836 {
837 struct vmx_cpudata *cpudata = vcpu->cpudata;
838 uint64_t ctls1;
839
840 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
841
842 if (nmi) {
843 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
844 cpudata->nmi_window_exit = false;
845 } else {
846 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
847 cpudata->int_window_exit = false;
848 }
849
850 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
851 }
852
853 static inline int
854 vmx_event_has_error(uint64_t vector)
855 {
856 switch (vector) {
857 case 8: /* #DF */
858 case 10: /* #TS */
859 case 11: /* #NP */
860 case 12: /* #SS */
861 case 13: /* #GP */
862 case 14: /* #PF */
863 case 17: /* #AC */
864 case 30: /* #SX */
865 return 1;
866 default:
867 return 0;
868 }
869 }
870
871 static int
872 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
873 struct nvmm_event *event)
874 {
875 struct vmx_cpudata *cpudata = vcpu->cpudata;
876 int type = 0, err = 0, ret = 0;
877 uint64_t info, intstate, rflags;
878
879 if (event->vector >= 256) {
880 return EINVAL;
881 }
882
883 vmx_vmcs_enter(vcpu);
884
885 switch (event->type) {
886 case NVMM_EVENT_INTERRUPT_HW:
887 type = INTR_TYPE_EXT_INT;
888 if (event->vector == 2) {
889 type = INTR_TYPE_NMI;
890 }
891 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
892 if (type == INTR_TYPE_NMI) {
893 if (cpudata->nmi_window_exit) {
894 ret = EAGAIN;
895 goto out;
896 }
897 vmx_event_waitexit_enable(vcpu, true);
898 } else {
899 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
900 if ((rflags & PSL_I) == 0 ||
901 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
902 vmx_event_waitexit_enable(vcpu, false);
903 ret = EAGAIN;
904 goto out;
905 }
906 }
907 err = 0;
908 break;
909 case NVMM_EVENT_INTERRUPT_SW:
910 ret = EINVAL;
911 goto out;
912 case NVMM_EVENT_EXCEPTION:
913 if (event->vector == 2 || event->vector >= 32) {
914 ret = EINVAL;
915 goto out;
916 }
917 if (event->vector == 3 || event->vector == 0) {
918 ret = EINVAL;
919 goto out;
920 }
921 type = INTR_TYPE_HW_EXC;
922 err = vmx_event_has_error(event->vector);
923 break;
924 default:
925 ret = EAGAIN;
926 goto out;
927 }
928
929 info =
930 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
931 __SHIFTIN(type, INTR_INFO_TYPE) |
932 __SHIFTIN(err, INTR_INFO_ERROR) |
933 __SHIFTIN(1, INTR_INFO_VALID);
934 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
935 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
936
937 out:
938 vmx_vmcs_leave(vcpu);
939 return ret;
940 }
941
942 static void
943 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
944 {
945 struct nvmm_event event;
946 int ret __diagused;
947
948 event.type = NVMM_EVENT_EXCEPTION;
949 event.vector = 6;
950 event.u.error = 0;
951
952 ret = vmx_vcpu_inject(mach, vcpu, &event);
953 KASSERT(ret == 0);
954 }
955
956 static void
957 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
958 {
959 struct nvmm_event event;
960 int ret __diagused;
961
962 event.type = NVMM_EVENT_EXCEPTION;
963 event.vector = 13;
964 event.u.error = 0;
965
966 ret = vmx_vcpu_inject(mach, vcpu, &event);
967 KASSERT(ret == 0);
968 }
969
970 static inline void
971 vmx_inkernel_advance(void)
972 {
973 uint64_t rip, inslen, intstate;
974
975 /*
976 * Maybe we should also apply single-stepping and debug exceptions.
977 * Matters for guest-ring3, because it can execute 'cpuid' under a
978 * debugger.
979 */
980 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
981 vmx_vmread(VMCS_GUEST_RIP, &rip);
982 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
983 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
984 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
985 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
986 }
987
988 static void
989 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
990 struct nvmm_exit *exit)
991 {
992 uint64_t qual;
993
994 vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
995
996 if ((qual & INTR_INFO_VALID) == 0) {
997 goto error;
998 }
999 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1000 goto error;
1001 }
1002
1003 exit->reason = NVMM_EXIT_NONE;
1004 return;
1005
1006 error:
1007 exit->reason = NVMM_EXIT_INVALID;
1008 }
1009
1010 static void
1011 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1012 {
1013 struct vmx_cpudata *cpudata = vcpu->cpudata;
1014 uint64_t cr4;
1015
1016 switch (eax) {
1017 case 0x00000001:
1018 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1019
1020 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1021 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1022 CPUID_LOCAL_APIC_ID);
1023
1024 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1025 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1026
1027 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1028
1029 /* CPUID2_OSXSAVE depends on CR4. */
1030 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1031 if (!(cr4 & CR4_OSXSAVE)) {
1032 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1033 }
1034 break;
1035 case 0x00000005:
1036 case 0x00000006:
1037 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1038 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1039 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1040 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1041 break;
1042 case 0x00000007:
1043 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1044 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1045 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1046 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1047 break;
1048 case 0x0000000D:
1049 if (vmx_xcr0_mask == 0) {
1050 break;
1051 }
1052 switch (ecx) {
1053 case 0:
1054 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1055 if (cpudata->gxcr0 & XCR0_SSE) {
1056 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1057 } else {
1058 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1059 }
1060 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1061 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1062 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1063 break;
1064 case 1:
1065 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1066 break;
1067 }
1068 break;
1069 case 0x40000000:
1070 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1071 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1072 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1073 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1074 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1075 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1076 break;
1077 case 0x80000001:
1078 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1079 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1080 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1081 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1082 break;
1083 default:
1084 break;
1085 }
1086 }
1087
1088 static void
1089 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1090 struct nvmm_exit *exit)
1091 {
1092 struct vmx_machdata *machdata = mach->machdata;
1093 struct vmx_cpudata *cpudata = vcpu->cpudata;
1094 struct nvmm_x86_conf_cpuid *cpuid;
1095 uint64_t eax, ecx;
1096 u_int descs[4];
1097 size_t i;
1098
1099 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1100 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1101 x86_cpuid2(eax, ecx, descs);
1102
1103 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1104 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1105 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1106 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1107
1108 for (i = 0; i < VMX_NCPUIDS; i++) {
1109 cpuid = &machdata->cpuid[i];
1110 if (!machdata->cpuidpresent[i]) {
1111 continue;
1112 }
1113 if (cpuid->leaf != eax) {
1114 continue;
1115 }
1116
1117 /* del */
1118 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1119 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1120 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1121 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1122
1123 /* set */
1124 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1125 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1126 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1127 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1128
1129 break;
1130 }
1131
1132 /* Overwrite non-tunable leaves. */
1133 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1134
1135 vmx_inkernel_advance();
1136 exit->reason = NVMM_EXIT_NONE;
1137 }
1138
1139 static void
1140 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1141 struct nvmm_exit *exit)
1142 {
1143 struct vmx_cpudata *cpudata = vcpu->cpudata;
1144 uint64_t rflags;
1145
1146 if (cpudata->int_window_exit) {
1147 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1148 if (rflags & PSL_I) {
1149 vmx_event_waitexit_disable(vcpu, false);
1150 }
1151 }
1152
1153 vmx_inkernel_advance();
1154 exit->reason = NVMM_EXIT_HALTED;
1155 }
1156
1157 #define VMX_QUAL_CR_NUM __BITS(3,0)
1158 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1159 #define CR_TYPE_WRITE 0
1160 #define CR_TYPE_READ 1
1161 #define CR_TYPE_CLTS 2
1162 #define CR_TYPE_LMSW 3
1163 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1164 #define VMX_QUAL_CR_GPR __BITS(11,8)
1165 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1166
1167 static inline int
1168 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1169 {
1170 /* Bits set to 1 in fixed0 are fixed to 1. */
1171 if ((crval & fixed0) != fixed0) {
1172 return -1;
1173 }
1174 /* Bits set to 0 in fixed1 are fixed to 0. */
1175 if (crval & ~fixed1) {
1176 return -1;
1177 }
1178 return 0;
1179 }
1180
1181 static int
1182 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1183 uint64_t qual)
1184 {
1185 struct vmx_cpudata *cpudata = vcpu->cpudata;
1186 uint64_t type, gpr, cr0;
1187 uint64_t efer, ctls1;
1188
1189 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1190 if (type != CR_TYPE_WRITE) {
1191 return -1;
1192 }
1193
1194 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1195 KASSERT(gpr < 16);
1196
1197 if (gpr == NVMM_X64_GPR_RSP) {
1198 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1199 } else {
1200 gpr = cpudata->gprs[gpr];
1201 }
1202
1203 cr0 = gpr | CR0_NE | CR0_ET;
1204 cr0 &= ~(CR0_NW|CR0_CD);
1205
1206 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1207 return -1;
1208 }
1209
1210 /*
1211 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1212 * from CR3.
1213 */
1214
1215 if (cr0 & CR0_PG) {
1216 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1217 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1218 if (efer & EFER_LME) {
1219 ctls1 |= ENTRY_CTLS_LONG_MODE;
1220 efer |= EFER_LMA;
1221 } else {
1222 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1223 efer &= ~EFER_LMA;
1224 }
1225 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1226 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1227 }
1228
1229 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1230 vmx_inkernel_advance();
1231 return 0;
1232 }
1233
1234 static int
1235 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1236 uint64_t qual)
1237 {
1238 struct vmx_cpudata *cpudata = vcpu->cpudata;
1239 uint64_t type, gpr, cr4;
1240
1241 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1242 if (type != CR_TYPE_WRITE) {
1243 return -1;
1244 }
1245
1246 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1247 KASSERT(gpr < 16);
1248
1249 if (gpr == NVMM_X64_GPR_RSP) {
1250 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1251 } else {
1252 gpr = cpudata->gprs[gpr];
1253 }
1254
1255 cr4 = gpr | CR4_VMXE;
1256
1257 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1258 return -1;
1259 }
1260
1261 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1262 vmx_inkernel_advance();
1263 return 0;
1264 }
1265
1266 static int
1267 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1268 uint64_t qual)
1269 {
1270 struct vmx_cpudata *cpudata = vcpu->cpudata;
1271 uint64_t type, gpr;
1272 bool write;
1273
1274 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1275 if (type == CR_TYPE_WRITE) {
1276 write = true;
1277 } else if (type == CR_TYPE_READ) {
1278 write = false;
1279 } else {
1280 return -1;
1281 }
1282
1283 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1284 KASSERT(gpr < 16);
1285
1286 if (write) {
1287 if (gpr == NVMM_X64_GPR_RSP) {
1288 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1289 } else {
1290 cpudata->gcr8 = cpudata->gprs[gpr];
1291 }
1292 } else {
1293 if (gpr == NVMM_X64_GPR_RSP) {
1294 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1295 } else {
1296 cpudata->gprs[gpr] = cpudata->gcr8;
1297 }
1298 }
1299
1300 vmx_inkernel_advance();
1301 return 0;
1302 }
1303
1304 static void
1305 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1306 struct nvmm_exit *exit)
1307 {
1308 uint64_t qual;
1309 int ret;
1310
1311 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1312
1313 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1314 case 0:
1315 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1316 break;
1317 case 4:
1318 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1319 break;
1320 case 8:
1321 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1322 break;
1323 default:
1324 ret = -1;
1325 break;
1326 }
1327
1328 if (ret == -1) {
1329 vmx_inject_gp(mach, vcpu);
1330 }
1331
1332 exit->reason = NVMM_EXIT_NONE;
1333 }
1334
1335 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1336 #define IO_SIZE_8 0
1337 #define IO_SIZE_16 1
1338 #define IO_SIZE_32 3
1339 #define VMX_QUAL_IO_IN __BIT(3)
1340 #define VMX_QUAL_IO_STR __BIT(4)
1341 #define VMX_QUAL_IO_REP __BIT(5)
1342 #define VMX_QUAL_IO_DX __BIT(6)
1343 #define VMX_QUAL_IO_PORT __BITS(31,16)
1344
1345 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1346 #define IO_ADRSIZE_16 0
1347 #define IO_ADRSIZE_32 1
1348 #define IO_ADRSIZE_64 2
1349 #define VMX_INFO_IO_SEG __BITS(17,15)
1350
1351 static void
1352 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1353 struct nvmm_exit *exit)
1354 {
1355 uint64_t qual, info, inslen, rip;
1356
1357 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1358 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1359
1360 exit->reason = NVMM_EXIT_IO;
1361
1362 if (qual & VMX_QUAL_IO_IN) {
1363 exit->u.io.type = NVMM_EXIT_IO_IN;
1364 } else {
1365 exit->u.io.type = NVMM_EXIT_IO_OUT;
1366 }
1367
1368 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1369
1370 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1371 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1372
1373 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1374 exit->u.io.address_size = 8;
1375 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1376 exit->u.io.address_size = 4;
1377 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1378 exit->u.io.address_size = 2;
1379 }
1380
1381 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1382 exit->u.io.operand_size = 4;
1383 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1384 exit->u.io.operand_size = 2;
1385 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1386 exit->u.io.operand_size = 1;
1387 }
1388
1389 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1390 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1391
1392 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1393 exit->u.io.seg = NVMM_X64_SEG_ES;
1394 }
1395
1396 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1397 vmx_vmread(VMCS_GUEST_RIP, &rip);
1398 exit->u.io.npc = rip + inslen;
1399 }
1400
1401 static const uint64_t msr_ignore_list[] = {
1402 MSR_BIOS_SIGN,
1403 MSR_IA32_PLATFORM_ID
1404 };
1405
1406 static bool
1407 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1408 struct nvmm_exit *exit)
1409 {
1410 struct vmx_cpudata *cpudata = vcpu->cpudata;
1411 uint64_t val;
1412 size_t i;
1413
1414 switch (exit->u.msr.type) {
1415 case NVMM_EXIT_MSR_RDMSR:
1416 if (exit->u.msr.msr == MSR_CR_PAT) {
1417 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1418 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1419 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1420 goto handled;
1421 }
1422 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1423 val = cpudata->gmsr_misc_enable;
1424 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1425 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1426 goto handled;
1427 }
1428 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1429 if (msr_ignore_list[i] != exit->u.msr.msr)
1430 continue;
1431 val = 0;
1432 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1433 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1434 goto handled;
1435 }
1436 break;
1437 case NVMM_EXIT_MSR_WRMSR:
1438 if (exit->u.msr.msr == MSR_TSC) {
1439 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
1440 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1441 curcpu()->ci_data.cpu_cc_skew);
1442 goto handled;
1443 }
1444 if (exit->u.msr.msr == MSR_CR_PAT) {
1445 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1446 goto handled;
1447 }
1448 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1449 /* Don't care. */
1450 goto handled;
1451 }
1452 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1453 if (msr_ignore_list[i] != exit->u.msr.msr)
1454 continue;
1455 goto handled;
1456 }
1457 break;
1458 }
1459
1460 return false;
1461
1462 handled:
1463 vmx_inkernel_advance();
1464 return true;
1465 }
1466
1467 static void
1468 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1469 struct nvmm_exit *exit, bool rdmsr)
1470 {
1471 struct vmx_cpudata *cpudata = vcpu->cpudata;
1472 uint64_t inslen, rip;
1473
1474 if (rdmsr) {
1475 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1476 } else {
1477 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1478 }
1479
1480 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1481
1482 if (rdmsr) {
1483 exit->u.msr.val = 0;
1484 } else {
1485 uint64_t rdx, rax;
1486 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1487 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1488 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1489 }
1490
1491 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1492 exit->reason = NVMM_EXIT_NONE;
1493 return;
1494 }
1495
1496 exit->reason = NVMM_EXIT_MSR;
1497 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1498 vmx_vmread(VMCS_GUEST_RIP, &rip);
1499 exit->u.msr.npc = rip + inslen;
1500 }
1501
1502 static void
1503 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1504 struct nvmm_exit *exit)
1505 {
1506 struct vmx_cpudata *cpudata = vcpu->cpudata;
1507 uint16_t val;
1508
1509 exit->reason = NVMM_EXIT_NONE;
1510
1511 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1512 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1513
1514 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1515 goto error;
1516 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1517 goto error;
1518 } else if (__predict_false((val & XCR0_X87) == 0)) {
1519 goto error;
1520 }
1521
1522 cpudata->gxcr0 = val;
1523
1524 vmx_inkernel_advance();
1525 return;
1526
1527 error:
1528 vmx_inject_gp(mach, vcpu);
1529 }
1530
1531 #define VMX_EPT_VIOLATION_READ __BIT(0)
1532 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1533 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1534
1535 static void
1536 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1537 struct nvmm_exit *exit)
1538 {
1539 uint64_t perm;
1540 gpaddr_t gpa;
1541
1542 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1543
1544 exit->reason = NVMM_EXIT_MEMORY;
1545 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1546 if (perm & VMX_EPT_VIOLATION_WRITE)
1547 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1548 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1549 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1550 else
1551 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1552 exit->u.mem.gpa = gpa;
1553 exit->u.mem.inst_len = 0;
1554 }
1555
1556 /* -------------------------------------------------------------------------- */
1557
1558 static void
1559 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1560 {
1561 struct vmx_cpudata *cpudata = vcpu->cpudata;
1562
1563 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1564
1565 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1566 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1567
1568 if (vmx_xcr0_mask != 0) {
1569 cpudata->hxcr0 = rdxcr(0);
1570 wrxcr(0, cpudata->gxcr0);
1571 }
1572 }
1573
1574 static void
1575 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1576 {
1577 struct vmx_cpudata *cpudata = vcpu->cpudata;
1578
1579 if (vmx_xcr0_mask != 0) {
1580 cpudata->gxcr0 = rdxcr(0);
1581 wrxcr(0, cpudata->hxcr0);
1582 }
1583
1584 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1585 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1586
1587 if (cpudata->ts_set) {
1588 stts();
1589 }
1590 }
1591
1592 static void
1593 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1594 {
1595 struct vmx_cpudata *cpudata = vcpu->cpudata;
1596
1597 x86_dbregs_save(curlwp);
1598
1599 ldr7(0);
1600
1601 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1602 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1603 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1604 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1605 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1606 }
1607
1608 static void
1609 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1610 {
1611 struct vmx_cpudata *cpudata = vcpu->cpudata;
1612
1613 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1614 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1615 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1616 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1617 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1618
1619 x86_dbregs_restore(curlwp);
1620 }
1621
1622 static void
1623 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1624 {
1625 struct vmx_cpudata *cpudata = vcpu->cpudata;
1626
1627 /* This gets restored automatically by the CPU. */
1628 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1629 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1630 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1631
1632 /* Note: MSR_LSTAR is not static, because of SVS. */
1633 cpudata->lstar = rdmsr(MSR_LSTAR);
1634 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1635 }
1636
1637 static void
1638 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1639 {
1640 struct vmx_cpudata *cpudata = vcpu->cpudata;
1641
1642 wrmsr(MSR_STAR, cpudata->star);
1643 wrmsr(MSR_LSTAR, cpudata->lstar);
1644 wrmsr(MSR_CSTAR, cpudata->cstar);
1645 wrmsr(MSR_SFMASK, cpudata->sfmask);
1646 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1647 }
1648
1649 /* -------------------------------------------------------------------------- */
1650
1651 #define VMX_INVVPID_ADDRESS 0
1652 #define VMX_INVVPID_CONTEXT 1
1653 #define VMX_INVVPID_ALL 2
1654 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1655
1656 #define VMX_INVEPT_CONTEXT 1
1657 #define VMX_INVEPT_ALL 2
1658
1659 static inline void
1660 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1661 {
1662 struct vmx_cpudata *cpudata = vcpu->cpudata;
1663
1664 if (vcpu->hcpu_last != hcpu) {
1665 cpudata->gtlb_want_flush = true;
1666 }
1667 }
1668
1669 static inline void
1670 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1671 {
1672 struct vmx_cpudata *cpudata = vcpu->cpudata;
1673 struct ept_desc ept_desc;
1674
1675 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1676 return;
1677 }
1678
1679 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1680 ept_desc.mbz = 0;
1681 vmx_invept(vmx_ept_flush_op, &ept_desc);
1682 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1683 }
1684
1685 static inline uint64_t
1686 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1687 {
1688 struct ept_desc ept_desc;
1689 uint64_t machgen;
1690
1691 machgen = machdata->mach_htlb_gen;
1692 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1693 return machgen;
1694 }
1695
1696 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1697
1698 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1699 ept_desc.mbz = 0;
1700 vmx_invept(vmx_ept_flush_op, &ept_desc);
1701
1702 return machgen;
1703 }
1704
1705 static inline void
1706 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1707 {
1708 cpudata->vcpu_htlb_gen = machgen;
1709 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1710 }
1711
1712 static int
1713 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1714 struct nvmm_exit *exit)
1715 {
1716 struct vmx_machdata *machdata = mach->machdata;
1717 struct vmx_cpudata *cpudata = vcpu->cpudata;
1718 struct vpid_desc vpid_desc;
1719 struct cpu_info *ci;
1720 uint64_t exitcode;
1721 uint64_t intstate;
1722 uint64_t machgen;
1723 int hcpu, s, ret;
1724 bool launched = false;
1725
1726 vmx_vmcs_enter(vcpu);
1727 ci = curcpu();
1728 hcpu = cpu_number();
1729
1730 vmx_gtlb_catchup(vcpu, hcpu);
1731 vmx_htlb_catchup(vcpu, hcpu);
1732
1733 if (vcpu->hcpu_last != hcpu) {
1734 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1735 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1736 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1737 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1738 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1739 curcpu()->ci_data.cpu_cc_skew);
1740 vcpu->hcpu_last = hcpu;
1741 }
1742
1743 vmx_vcpu_guest_dbregs_enter(vcpu);
1744 vmx_vcpu_guest_misc_enter(vcpu);
1745
1746 while (1) {
1747 if (cpudata->gtlb_want_flush) {
1748 vpid_desc.vpid = cpudata->asid;
1749 vpid_desc.addr = 0;
1750 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1751 cpudata->gtlb_want_flush = false;
1752 }
1753
1754 s = splhigh();
1755 machgen = vmx_htlb_flush(machdata, cpudata);
1756 vmx_vcpu_guest_fpu_enter(vcpu);
1757 lcr2(cpudata->gcr2);
1758 if (launched) {
1759 ret = vmx_vmresume(cpudata->gprs);
1760 } else {
1761 ret = vmx_vmlaunch(cpudata->gprs);
1762 }
1763 cpudata->gcr2 = rcr2();
1764 vmx_vcpu_guest_fpu_leave(vcpu);
1765 vmx_htlb_flush_ack(cpudata, machgen);
1766 splx(s);
1767
1768 if (__predict_false(ret != 0)) {
1769 exit->reason = NVMM_EXIT_INVALID;
1770 break;
1771 }
1772
1773 launched = true;
1774
1775 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1776 exitcode &= __BITS(15,0);
1777
1778 switch (exitcode) {
1779 case VMCS_EXITCODE_EXC_NMI:
1780 vmx_exit_exc_nmi(mach, vcpu, exit);
1781 break;
1782 case VMCS_EXITCODE_EXT_INT:
1783 exit->reason = NVMM_EXIT_NONE;
1784 break;
1785 case VMCS_EXITCODE_CPUID:
1786 vmx_exit_cpuid(mach, vcpu, exit);
1787 break;
1788 case VMCS_EXITCODE_HLT:
1789 vmx_exit_hlt(mach, vcpu, exit);
1790 break;
1791 case VMCS_EXITCODE_CR:
1792 vmx_exit_cr(mach, vcpu, exit);
1793 break;
1794 case VMCS_EXITCODE_IO:
1795 vmx_exit_io(mach, vcpu, exit);
1796 break;
1797 case VMCS_EXITCODE_RDMSR:
1798 vmx_exit_msr(mach, vcpu, exit, true);
1799 break;
1800 case VMCS_EXITCODE_WRMSR:
1801 vmx_exit_msr(mach, vcpu, exit, false);
1802 break;
1803 case VMCS_EXITCODE_SHUTDOWN:
1804 exit->reason = NVMM_EXIT_SHUTDOWN;
1805 break;
1806 case VMCS_EXITCODE_MONITOR:
1807 exit->reason = NVMM_EXIT_MONITOR;
1808 break;
1809 case VMCS_EXITCODE_MWAIT:
1810 exit->reason = NVMM_EXIT_MWAIT;
1811 break;
1812 case VMCS_EXITCODE_XSETBV:
1813 vmx_exit_xsetbv(mach, vcpu, exit);
1814 break;
1815 case VMCS_EXITCODE_RDPMC:
1816 case VMCS_EXITCODE_RDTSCP:
1817 case VMCS_EXITCODE_INVVPID:
1818 case VMCS_EXITCODE_INVEPT:
1819 case VMCS_EXITCODE_VMCALL:
1820 case VMCS_EXITCODE_VMCLEAR:
1821 case VMCS_EXITCODE_VMLAUNCH:
1822 case VMCS_EXITCODE_VMPTRLD:
1823 case VMCS_EXITCODE_VMPTRST:
1824 case VMCS_EXITCODE_VMREAD:
1825 case VMCS_EXITCODE_VMRESUME:
1826 case VMCS_EXITCODE_VMWRITE:
1827 case VMCS_EXITCODE_VMXOFF:
1828 case VMCS_EXITCODE_VMXON:
1829 vmx_inject_ud(mach, vcpu);
1830 exit->reason = NVMM_EXIT_NONE;
1831 break;
1832 case VMCS_EXITCODE_EPT_VIOLATION:
1833 vmx_exit_epf(mach, vcpu, exit);
1834 break;
1835 case VMCS_EXITCODE_INT_WINDOW:
1836 vmx_event_waitexit_disable(vcpu, false);
1837 exit->reason = NVMM_EXIT_INT_READY;
1838 break;
1839 case VMCS_EXITCODE_NMI_WINDOW:
1840 vmx_event_waitexit_disable(vcpu, true);
1841 exit->reason = NVMM_EXIT_NMI_READY;
1842 break;
1843 default:
1844 exit->reason = NVMM_EXIT_INVALID;
1845 break;
1846 }
1847
1848 /* If no reason to return to userland, keep rolling. */
1849 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1850 break;
1851 }
1852 if (curcpu()->ci_data.cpu_softints != 0) {
1853 break;
1854 }
1855 if (curlwp->l_flag & LW_USERRET) {
1856 break;
1857 }
1858 if (exit->reason != NVMM_EXIT_NONE) {
1859 break;
1860 }
1861 }
1862
1863 vmx_vcpu_guest_misc_leave(vcpu);
1864 vmx_vcpu_guest_dbregs_leave(vcpu);
1865
1866 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1867 vmx_vmread(VMCS_GUEST_RFLAGS,
1868 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1869 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1870 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1871 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1872 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1873 cpudata->int_window_exit;
1874 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1875 cpudata->nmi_window_exit;
1876
1877 vmx_vmcs_leave(vcpu);
1878
1879 return 0;
1880 }
1881
1882 /* -------------------------------------------------------------------------- */
1883
1884 static int
1885 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1886 {
1887 struct pglist pglist;
1888 paddr_t _pa;
1889 vaddr_t _va;
1890 size_t i;
1891 int ret;
1892
1893 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1894 &pglist, 1, 0);
1895 if (ret != 0)
1896 return ENOMEM;
1897 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1898 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1899 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1900 if (_va == 0)
1901 goto error;
1902
1903 for (i = 0; i < npages; i++) {
1904 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1905 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1906 }
1907 pmap_update(pmap_kernel());
1908
1909 memset((void *)_va, 0, npages * PAGE_SIZE);
1910
1911 *pa = _pa;
1912 *va = _va;
1913 return 0;
1914
1915 error:
1916 for (i = 0; i < npages; i++) {
1917 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1918 }
1919 return ENOMEM;
1920 }
1921
1922 static void
1923 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1924 {
1925 size_t i;
1926
1927 pmap_kremove(va, npages * PAGE_SIZE);
1928 pmap_update(pmap_kernel());
1929 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1930 for (i = 0; i < npages; i++) {
1931 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1932 }
1933 }
1934
1935 /* -------------------------------------------------------------------------- */
1936
1937 static void
1938 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1939 {
1940 uint64_t byte;
1941 uint8_t bitoff;
1942
1943 if (msr < 0x00002000) {
1944 /* Range 1 */
1945 byte = ((msr - 0x00000000) / 8) + 0;
1946 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1947 /* Range 2 */
1948 byte = ((msr - 0xC0000000) / 8) + 1024;
1949 } else {
1950 panic("%s: wrong range", __func__);
1951 }
1952
1953 bitoff = (msr & 0x7);
1954
1955 if (read) {
1956 bitmap[byte] &= ~__BIT(bitoff);
1957 }
1958 if (write) {
1959 bitmap[2048 + byte] &= ~__BIT(bitoff);
1960 }
1961 }
1962
1963 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
1964 #define VMX_SEG_ATTRIB_S __BIT(4)
1965 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
1966 #define VMX_SEG_ATTRIB_P __BIT(7)
1967 #define VMX_SEG_ATTRIB_AVL __BIT(12)
1968 #define VMX_SEG_ATTRIB_L __BIT(13)
1969 #define VMX_SEG_ATTRIB_DEF __BIT(14)
1970 #define VMX_SEG_ATTRIB_G __BIT(15)
1971 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
1972
1973 static void
1974 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
1975 {
1976 uint64_t attrib;
1977
1978 attrib =
1979 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
1980 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
1981 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
1982 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
1983 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
1984 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
1985 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
1986 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
1987 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
1988
1989 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
1990 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
1991 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
1992 }
1993 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
1994 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
1995 }
1996
1997 static void
1998 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
1999 {
2000 uint64_t selector, base, limit, attrib = 0;
2001
2002 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2003 vmx_vmread(vmx_guest_segs[idx].selector, &selector);
2004 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2005 }
2006 vmx_vmread(vmx_guest_segs[idx].limit, &limit);
2007 vmx_vmread(vmx_guest_segs[idx].base, &base);
2008
2009 segs[idx].selector = selector;
2010 segs[idx].limit = limit;
2011 segs[idx].base = base;
2012 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2013 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2014 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2015 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2016 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2017 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2018 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2019 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2020 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2021 segs[idx].attrib.p = 0;
2022 }
2023 }
2024
2025 static inline bool
2026 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2027 {
2028 uint64_t cr0, cr3, cr4, efer;
2029
2030 if (flags & NVMM_X64_STATE_CRS) {
2031 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2032 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2033 return true;
2034 }
2035 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2036 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2037 return true;
2038 }
2039 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2040 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2041 return true;
2042 }
2043 }
2044
2045 if (flags & NVMM_X64_STATE_MSRS) {
2046 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2047 if ((efer ^
2048 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2049 return true;
2050 }
2051 }
2052
2053 return false;
2054 }
2055
2056 static void
2057 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2058 {
2059 const struct nvmm_x64_state *state = data;
2060 struct vmx_cpudata *cpudata = vcpu->cpudata;
2061 struct fxsave *fpustate;
2062 uint64_t ctls1, intstate;
2063
2064 vmx_vmcs_enter(vcpu);
2065
2066 if (vmx_state_tlb_flush(state, flags)) {
2067 cpudata->gtlb_want_flush = true;
2068 }
2069
2070 if (flags & NVMM_X64_STATE_SEGS) {
2071 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2072 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2073 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2074 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2075 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2076 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2077 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2078 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2079 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2080 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2081 }
2082
2083 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2084 if (flags & NVMM_X64_STATE_GPRS) {
2085 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2086
2087 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2088 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2089 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2090 }
2091
2092 if (flags & NVMM_X64_STATE_CRS) {
2093 /*
2094 * CR0_NE and CR4_VMXE are mandatory.
2095 */
2096 vmx_vmwrite(VMCS_GUEST_CR0,
2097 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2098 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2099 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2100 vmx_vmwrite(VMCS_GUEST_CR4,
2101 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2102 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2103
2104 if (vmx_xcr0_mask != 0) {
2105 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2106 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2107 cpudata->gxcr0 &= vmx_xcr0_mask;
2108 cpudata->gxcr0 |= XCR0_X87;
2109 }
2110 }
2111
2112 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2113 if (flags & NVMM_X64_STATE_DRS) {
2114 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2115
2116 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2117 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2118 }
2119
2120 if (flags & NVMM_X64_STATE_MSRS) {
2121 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2122 state->msrs[NVMM_X64_MSR_STAR];
2123 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2124 state->msrs[NVMM_X64_MSR_LSTAR];
2125 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2126 state->msrs[NVMM_X64_MSR_CSTAR];
2127 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2128 state->msrs[NVMM_X64_MSR_SFMASK];
2129 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2130 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2131
2132 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2133 state->msrs[NVMM_X64_MSR_EFER]);
2134 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2135 state->msrs[NVMM_X64_MSR_PAT]);
2136 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2137 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2138 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2139 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2140 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2141 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2142
2143 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2144 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2145 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2146 ctls1 |= ENTRY_CTLS_LONG_MODE;
2147 } else {
2148 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2149 }
2150 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2151 }
2152
2153 if (flags & NVMM_X64_STATE_MISC) {
2154 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2155 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2156 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2157 intstate |= INT_STATE_MOVSS;
2158 }
2159 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2160
2161 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2162 vmx_event_waitexit_enable(vcpu, false);
2163 } else {
2164 vmx_event_waitexit_disable(vcpu, false);
2165 }
2166
2167 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2168 vmx_event_waitexit_enable(vcpu, true);
2169 } else {
2170 vmx_event_waitexit_disable(vcpu, true);
2171 }
2172 }
2173
2174 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2175 if (flags & NVMM_X64_STATE_FPU) {
2176 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2177 sizeof(state->fpu));
2178
2179 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2180 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2181 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2182
2183 if (vmx_xcr0_mask != 0) {
2184 /* Reset XSTATE_BV, to force a reload. */
2185 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2186 }
2187 }
2188
2189 vmx_vmcs_leave(vcpu);
2190 }
2191
2192 static void
2193 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2194 {
2195 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2196 struct vmx_cpudata *cpudata = vcpu->cpudata;
2197 uint64_t intstate;
2198
2199 vmx_vmcs_enter(vcpu);
2200
2201 if (flags & NVMM_X64_STATE_SEGS) {
2202 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2203 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2204 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2205 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2206 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2207 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2208 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2209 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2210 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2211 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2212 }
2213
2214 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2215 if (flags & NVMM_X64_STATE_GPRS) {
2216 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2217
2218 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2219 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2220 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2221 }
2222
2223 if (flags & NVMM_X64_STATE_CRS) {
2224 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2225 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2226 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2227 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2228 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2229 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2230
2231 /* Hide VMXE. */
2232 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2233 }
2234
2235 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2236 if (flags & NVMM_X64_STATE_DRS) {
2237 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2238
2239 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2240 }
2241
2242 if (flags & NVMM_X64_STATE_MSRS) {
2243 state->msrs[NVMM_X64_MSR_STAR] =
2244 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2245 state->msrs[NVMM_X64_MSR_LSTAR] =
2246 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2247 state->msrs[NVMM_X64_MSR_CSTAR] =
2248 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2249 state->msrs[NVMM_X64_MSR_SFMASK] =
2250 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2251 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2252 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2253
2254 vmx_vmread(VMCS_GUEST_IA32_EFER,
2255 &state->msrs[NVMM_X64_MSR_EFER]);
2256 vmx_vmread(VMCS_GUEST_IA32_PAT,
2257 &state->msrs[NVMM_X64_MSR_PAT]);
2258 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2259 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2260 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2261 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2262 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2263 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2264 }
2265
2266 if (flags & NVMM_X64_STATE_MISC) {
2267 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2268 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2269 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2270
2271 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2272 cpudata->int_window_exit;
2273 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2274 cpudata->nmi_window_exit;
2275 }
2276
2277 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2278 if (flags & NVMM_X64_STATE_FPU) {
2279 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2280 sizeof(state->fpu));
2281 }
2282
2283 vmx_vmcs_leave(vcpu);
2284 }
2285
2286 /* -------------------------------------------------------------------------- */
2287
2288 static void
2289 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2290 {
2291 struct vmx_cpudata *cpudata = vcpu->cpudata;
2292 size_t i, oct, bit;
2293
2294 mutex_enter(&vmx_asidlock);
2295
2296 for (i = 0; i < vmx_maxasid; i++) {
2297 oct = i / 8;
2298 bit = i % 8;
2299
2300 if (vmx_asidmap[oct] & __BIT(bit)) {
2301 continue;
2302 }
2303
2304 cpudata->asid = i;
2305
2306 vmx_asidmap[oct] |= __BIT(bit);
2307 vmx_vmwrite(VMCS_VPID, i);
2308 mutex_exit(&vmx_asidlock);
2309 return;
2310 }
2311
2312 mutex_exit(&vmx_asidlock);
2313
2314 panic("%s: impossible", __func__);
2315 }
2316
2317 static void
2318 vmx_asid_free(struct nvmm_cpu *vcpu)
2319 {
2320 size_t oct, bit;
2321 uint64_t asid;
2322
2323 vmx_vmread(VMCS_VPID, &asid);
2324
2325 oct = asid / 8;
2326 bit = asid % 8;
2327
2328 mutex_enter(&vmx_asidlock);
2329 vmx_asidmap[oct] &= ~__BIT(bit);
2330 mutex_exit(&vmx_asidlock);
2331 }
2332
2333 static void
2334 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2335 {
2336 struct vmx_cpudata *cpudata = vcpu->cpudata;
2337 struct vmcs *vmcs = cpudata->vmcs;
2338 struct msr_entry *gmsr = cpudata->gmsr;
2339 extern uint8_t vmx_resume_rip;
2340 uint64_t rev, eptp;
2341
2342 rev = vmx_get_revision();
2343
2344 memset(vmcs, 0, VMCS_SIZE);
2345 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2346 vmcs->abort = 0;
2347
2348 vmx_vmcs_enter(vcpu);
2349
2350 /* No link pointer. */
2351 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2352
2353 /* Install the CTLSs. */
2354 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2355 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2356 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2357 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2358 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2359
2360 /* Allow direct access to certain MSRs. */
2361 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2362 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2363 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2364 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2365 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2366 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2367 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2368 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2369 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2370 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2371 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2372 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2373 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2374 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2375 true, false);
2376 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2377
2378 /*
2379 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2380 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2381 */
2382 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2383 gmsr[VMX_MSRLIST_STAR].val = 0;
2384 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2385 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2386 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2387 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2388 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2389 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2390 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2391 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2392 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2393 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2394 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2395 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2396 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2397 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2398
2399 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2400 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2401 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2402
2403 /* Force CR4_VMXE to zero. */
2404 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2405
2406 /* Set the Host state for resuming. */
2407 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2408 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2409 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2410 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2411 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2412 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2413 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2414 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2415 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2416 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2417 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2418 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2419 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2420 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2421
2422 /* Generate ASID. */
2423 vmx_asid_alloc(vcpu);
2424
2425 /* Enable Extended Paging, 4-Level. */
2426 eptp =
2427 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2428 __SHIFTIN(4-1, EPTP_WALKLEN) |
2429 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2430 mach->vm->vm_map.pmap->pm_pdirpa[0];
2431 vmx_vmwrite(VMCS_EPTP, eptp);
2432
2433 /* Init IA32_MISC_ENABLE. */
2434 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2435 cpudata->gmsr_misc_enable &=
2436 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2437 cpudata->gmsr_misc_enable |=
2438 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2439
2440 /* Init XSAVE header. */
2441 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2442 cpudata->gfpu.xsh_xcomp_bv = 0;
2443
2444 /* Set guest TSC to zero, more or less. */
2445 cpudata->tsc_offset = -cpu_counter();
2446
2447 /* These MSRs are static. */
2448 cpudata->star = rdmsr(MSR_STAR);
2449 cpudata->cstar = rdmsr(MSR_CSTAR);
2450 cpudata->sfmask = rdmsr(MSR_SFMASK);
2451
2452 /* Install the RESET state. */
2453 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2454
2455 vmx_vmcs_leave(vcpu);
2456 }
2457
2458 static int
2459 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2460 {
2461 struct vmx_cpudata *cpudata;
2462 int error;
2463
2464 /* Allocate the VMX cpudata. */
2465 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2466 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2467 UVM_KMF_WIRED|UVM_KMF_ZERO);
2468 vcpu->cpudata = cpudata;
2469
2470 /* VMCS */
2471 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2472 VMCS_NPAGES);
2473 if (error)
2474 goto error;
2475
2476 /* MSR Bitmap */
2477 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2478 MSRBM_NPAGES);
2479 if (error)
2480 goto error;
2481
2482 /* Guest MSR List */
2483 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2484 if (error)
2485 goto error;
2486
2487 kcpuset_create(&cpudata->htlb_want_flush, true);
2488
2489 /* Init the VCPU info. */
2490 vmx_vcpu_init(mach, vcpu);
2491
2492 return 0;
2493
2494 error:
2495 if (cpudata->vmcs_pa) {
2496 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2497 VMCS_NPAGES);
2498 }
2499 if (cpudata->msrbm_pa) {
2500 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2501 MSRBM_NPAGES);
2502 }
2503 if (cpudata->gmsr_pa) {
2504 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2505 }
2506
2507 kmem_free(cpudata, sizeof(*cpudata));
2508 return error;
2509 }
2510
2511 static void
2512 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2513 {
2514 struct vmx_cpudata *cpudata = vcpu->cpudata;
2515
2516 vmx_vmcs_enter(vcpu);
2517 vmx_asid_free(vcpu);
2518 vmx_vmcs_leave(vcpu);
2519
2520 kcpuset_destroy(cpudata->htlb_want_flush);
2521
2522 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2523 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2524 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2525 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2526 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2527 }
2528
2529 /* -------------------------------------------------------------------------- */
2530
2531 static void
2532 vmx_tlb_flush(struct pmap *pm)
2533 {
2534 struct nvmm_machine *mach = pm->pm_data;
2535 struct vmx_machdata *machdata = mach->machdata;
2536
2537 atomic_inc_64(&machdata->mach_htlb_gen);
2538
2539 /* Generates IPIs, which cause #VMEXITs. */
2540 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2541 }
2542
2543 static void
2544 vmx_machine_create(struct nvmm_machine *mach)
2545 {
2546 struct pmap *pmap = mach->vm->vm_map.pmap;
2547 struct vmx_machdata *machdata;
2548
2549 /* Convert to EPT. */
2550 pmap_ept_transform(pmap);
2551
2552 /* Fill in pmap info. */
2553 pmap->pm_data = (void *)mach;
2554 pmap->pm_tlb_flush = vmx_tlb_flush;
2555
2556 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2557 mach->machdata = machdata;
2558
2559 /* Start with an hTLB flush everywhere. */
2560 machdata->mach_htlb_gen = 1;
2561 }
2562
2563 static void
2564 vmx_machine_destroy(struct nvmm_machine *mach)
2565 {
2566 struct vmx_machdata *machdata = mach->machdata;
2567
2568 kmem_free(machdata, sizeof(struct vmx_machdata));
2569 }
2570
2571 static int
2572 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2573 {
2574 struct nvmm_x86_conf_cpuid *cpuid = data;
2575 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2576 size_t i;
2577
2578 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2579 return EINVAL;
2580 }
2581
2582 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2583 (cpuid->set.ebx & cpuid->del.ebx) ||
2584 (cpuid->set.ecx & cpuid->del.ecx) ||
2585 (cpuid->set.edx & cpuid->del.edx))) {
2586 return EINVAL;
2587 }
2588
2589 /* If already here, replace. */
2590 for (i = 0; i < VMX_NCPUIDS; i++) {
2591 if (!machdata->cpuidpresent[i]) {
2592 continue;
2593 }
2594 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2595 memcpy(&machdata->cpuid[i], cpuid,
2596 sizeof(struct nvmm_x86_conf_cpuid));
2597 return 0;
2598 }
2599 }
2600
2601 /* Not here, insert. */
2602 for (i = 0; i < VMX_NCPUIDS; i++) {
2603 if (!machdata->cpuidpresent[i]) {
2604 machdata->cpuidpresent[i] = true;
2605 memcpy(&machdata->cpuid[i], cpuid,
2606 sizeof(struct nvmm_x86_conf_cpuid));
2607 return 0;
2608 }
2609 }
2610
2611 return ENOBUFS;
2612 }
2613
2614 /* -------------------------------------------------------------------------- */
2615
2616 static int
2617 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2618 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2619 {
2620 uint64_t basic, val, true_val;
2621 bool one_allowed, zero_allowed, has_true;
2622 size_t i;
2623
2624 basic = rdmsr(MSR_IA32_VMX_BASIC);
2625 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2626
2627 val = rdmsr(msr_ctls);
2628 if (has_true) {
2629 true_val = rdmsr(msr_true_ctls);
2630 } else {
2631 true_val = val;
2632 }
2633
2634 #define ONE_ALLOWED(msrval, bitoff) \
2635 ((msrval & __BIT(32 + bitoff)) != 0)
2636 #define ZERO_ALLOWED(msrval, bitoff) \
2637 ((msrval & __BIT(bitoff)) == 0)
2638
2639 for (i = 0; i < 32; i++) {
2640 one_allowed = ONE_ALLOWED(true_val, i);
2641 zero_allowed = ZERO_ALLOWED(true_val, i);
2642
2643 if (zero_allowed && !one_allowed) {
2644 if (set_one & __BIT(i))
2645 return -1;
2646 *res &= ~__BIT(i);
2647 } else if (one_allowed && !zero_allowed) {
2648 if (set_zero & __BIT(i))
2649 return -1;
2650 *res |= __BIT(i);
2651 } else {
2652 if (set_zero & __BIT(i)) {
2653 *res &= ~__BIT(i);
2654 } else if (set_one & __BIT(i)) {
2655 *res |= __BIT(i);
2656 } else if (!has_true) {
2657 *res &= ~__BIT(i);
2658 } else if (ZERO_ALLOWED(val, i)) {
2659 *res &= ~__BIT(i);
2660 } else if (ONE_ALLOWED(val, i)) {
2661 *res |= __BIT(i);
2662 } else {
2663 return -1;
2664 }
2665 }
2666 }
2667
2668 return 0;
2669 }
2670
2671 static bool
2672 vmx_ident(void)
2673 {
2674 uint64_t msr;
2675 int ret;
2676
2677 if (!(cpu_feature[1] & CPUID2_VMX)) {
2678 return false;
2679 }
2680
2681 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2682 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2683 return false;
2684 }
2685
2686 msr = rdmsr(MSR_IA32_VMX_BASIC);
2687 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2688 return false;
2689 }
2690 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2691 return false;
2692 }
2693
2694 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2695 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2696 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2697 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2698 if (ret == -1) {
2699 return false;
2700 }
2701
2702 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2703 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2704 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2705 if (ret == -1) {
2706 return false;
2707 }
2708
2709 /* Init the CTLSs right now, and check for errors. */
2710 ret = vmx_init_ctls(
2711 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2712 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2713 &vmx_pinbased_ctls);
2714 if (ret == -1) {
2715 return false;
2716 }
2717 ret = vmx_init_ctls(
2718 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2719 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2720 &vmx_procbased_ctls);
2721 if (ret == -1) {
2722 return false;
2723 }
2724 ret = vmx_init_ctls(
2725 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2726 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2727 &vmx_procbased_ctls2);
2728 if (ret == -1) {
2729 return false;
2730 }
2731 ret = vmx_init_ctls(
2732 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2733 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2734 &vmx_entry_ctls);
2735 if (ret == -1) {
2736 return false;
2737 }
2738 ret = vmx_init_ctls(
2739 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2740 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2741 &vmx_exit_ctls);
2742 if (ret == -1) {
2743 return false;
2744 }
2745
2746 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2747 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2748 return false;
2749 }
2750 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2751 return false;
2752 }
2753 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2754 return false;
2755 }
2756 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2757 pmap_ept_has_ad = true;
2758 } else {
2759 pmap_ept_has_ad = false;
2760 }
2761 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2762 return false;
2763 }
2764
2765 return true;
2766 }
2767
2768 static void
2769 vmx_init_asid(uint32_t maxasid)
2770 {
2771 size_t allocsz;
2772
2773 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2774
2775 vmx_maxasid = maxasid;
2776 allocsz = roundup(maxasid, 8) / 8;
2777 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2778
2779 /* ASID 0 is reserved for the host. */
2780 vmx_asidmap[0] |= __BIT(0);
2781 }
2782
2783 static void
2784 vmx_change_cpu(void *arg1, void *arg2)
2785 {
2786 struct cpu_info *ci = curcpu();
2787 bool enable = (bool)arg1;
2788 uint64_t cr4;
2789
2790 if (!enable) {
2791 vmx_vmxoff();
2792 }
2793
2794 cr4 = rcr4();
2795 if (enable) {
2796 cr4 |= CR4_VMXE;
2797 } else {
2798 cr4 &= ~CR4_VMXE;
2799 }
2800 lcr4(cr4);
2801
2802 if (enable) {
2803 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2804 }
2805 }
2806
2807 static void
2808 vmx_init_l1tf(void)
2809 {
2810 u_int descs[4];
2811 uint64_t msr;
2812
2813 if (cpuid_level < 7) {
2814 return;
2815 }
2816
2817 x86_cpuid(7, descs);
2818
2819 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2820 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2821 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2822 /* No mitigation needed. */
2823 return;
2824 }
2825 }
2826
2827 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2828 /* Enable hardware mitigation. */
2829 vmx_msrlist_entry_nmsr += 1;
2830 }
2831 }
2832
2833 static void
2834 vmx_init(void)
2835 {
2836 CPU_INFO_ITERATOR cii;
2837 struct cpu_info *ci;
2838 uint64_t xc, msr;
2839 struct vmxon *vmxon;
2840 uint32_t revision;
2841 paddr_t pa;
2842 vaddr_t va;
2843 int error;
2844
2845 /* Init the ASID bitmap (VPID). */
2846 vmx_init_asid(VPID_MAX);
2847
2848 /* Init the XCR0 mask. */
2849 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2850
2851 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2852 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2853 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2854 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2855 } else {
2856 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2857 }
2858 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2859 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2860 } else {
2861 vmx_ept_flush_op = VMX_INVEPT_ALL;
2862 }
2863 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2864 vmx_eptp_type = EPTP_TYPE_WB;
2865 } else {
2866 vmx_eptp_type = EPTP_TYPE_UC;
2867 }
2868
2869 /* Init the L1TF mitigation. */
2870 vmx_init_l1tf();
2871
2872 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2873 revision = vmx_get_revision();
2874
2875 for (CPU_INFO_FOREACH(cii, ci)) {
2876 error = vmx_memalloc(&pa, &va, 1);
2877 if (error) {
2878 panic("%s: out of memory", __func__);
2879 }
2880 vmxoncpu[cpu_index(ci)].pa = pa;
2881 vmxoncpu[cpu_index(ci)].va = va;
2882
2883 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2884 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2885 }
2886
2887 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2888 xc_wait(xc);
2889 }
2890
2891 static void
2892 vmx_fini_asid(void)
2893 {
2894 size_t allocsz;
2895
2896 allocsz = roundup(vmx_maxasid, 8) / 8;
2897 kmem_free(vmx_asidmap, allocsz);
2898
2899 mutex_destroy(&vmx_asidlock);
2900 }
2901
2902 static void
2903 vmx_fini(void)
2904 {
2905 uint64_t xc;
2906 size_t i;
2907
2908 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2909 xc_wait(xc);
2910
2911 for (i = 0; i < MAXCPUS; i++) {
2912 if (vmxoncpu[i].pa != 0)
2913 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2914 }
2915
2916 vmx_fini_asid();
2917 }
2918
2919 static void
2920 vmx_capability(struct nvmm_capability *cap)
2921 {
2922 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2923 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2924 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2925 }
2926
2927 const struct nvmm_impl nvmm_x86_vmx = {
2928 .ident = vmx_ident,
2929 .init = vmx_init,
2930 .fini = vmx_fini,
2931 .capability = vmx_capability,
2932 .conf_max = NVMM_X86_NCONF,
2933 .conf_sizes = vmx_conf_sizes,
2934 .state_size = sizeof(struct nvmm_x64_state),
2935 .machine_create = vmx_machine_create,
2936 .machine_destroy = vmx_machine_destroy,
2937 .machine_configure = vmx_machine_configure,
2938 .vcpu_create = vmx_vcpu_create,
2939 .vcpu_destroy = vmx_vcpu_destroy,
2940 .vcpu_setstate = vmx_vcpu_setstate,
2941 .vcpu_getstate = vmx_vcpu_getstate,
2942 .vcpu_inject = vmx_vcpu_inject,
2943 .vcpu_run = vmx_vcpu_run
2944 };
2945