nvmm_x86_vmx.c revision 1.19 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.19 2019/03/14 20:29:53 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.19 2019/03/14 20:29:53 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41
42 #include <uvm/uvm.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/pmap.h>
48 #include <x86/dbregs.h>
49 #include <x86/cpu_counter.h>
50 #include <machine/cpuvar.h>
51
52 #include <dev/nvmm/nvmm.h>
53 #include <dev/nvmm/nvmm_internal.h>
54 #include <dev/nvmm/x86/nvmm_x86.h>
55
56 int _vmx_vmxon(paddr_t *pa);
57 int _vmx_vmxoff(void);
58 int _vmx_invept(uint64_t op, void *desc);
59 int _vmx_invvpid(uint64_t op, void *desc);
60 int _vmx_vmread(uint64_t op, uint64_t *val);
61 int _vmx_vmwrite(uint64_t op, uint64_t val);
62 int _vmx_vmptrld(paddr_t *pa);
63 int _vmx_vmptrst(paddr_t *pa);
64 int _vmx_vmclear(paddr_t *pa);
65 int vmx_vmlaunch(uint64_t *gprs);
66 int vmx_vmresume(uint64_t *gprs);
67
68 #define vmx_vmxon(a) \
69 if (__predict_false(_vmx_vmxon(a) != 0)) { \
70 panic("%s: VMXON failed", __func__); \
71 }
72 #define vmx_vmxoff() \
73 if (__predict_false(_vmx_vmxoff() != 0)) { \
74 panic("%s: VMXOFF failed", __func__); \
75 }
76 #define vmx_invept(a, b) \
77 if (__predict_false(_vmx_invept(a, b) != 0)) { \
78 panic("%s: INVEPT failed", __func__); \
79 }
80 #define vmx_invvpid(a, b) \
81 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
82 panic("%s: INVVPID failed", __func__); \
83 }
84 #define vmx_vmread(a, b) \
85 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
86 panic("%s: VMREAD failed", __func__); \
87 }
88 #define vmx_vmwrite(a, b) \
89 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
90 panic("%s: VMWRITE failed", __func__); \
91 }
92 #define vmx_vmptrld(a) \
93 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
94 panic("%s: VMPTRLD failed", __func__); \
95 }
96 #define vmx_vmptrst(a) \
97 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
98 panic("%s: VMPTRST failed", __func__); \
99 }
100 #define vmx_vmclear(a) \
101 if (__predict_false(_vmx_vmclear(a) != 0)) { \
102 panic("%s: VMCLEAR failed", __func__); \
103 }
104
105 #define MSR_IA32_FEATURE_CONTROL 0x003A
106 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
107 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
108 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
109
110 #define MSR_IA32_VMX_BASIC 0x0480
111 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
112 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
113 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
114 #define IA32_VMX_BASIC_DUAL __BIT(49)
115 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
116 #define MEM_TYPE_UC 0
117 #define MEM_TYPE_WB 6
118 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
119 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
120
121 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
122 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
123 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
124 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
125 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
126
127 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
128 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
129 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
130 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
131
132 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
133 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
134 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
135 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
136
137 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
138 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
139 #define IA32_VMX_EPT_VPID_UC __BIT(8)
140 #define IA32_VMX_EPT_VPID_WB __BIT(14)
141 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
142 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
143 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
144 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
145 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
146 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
147 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
148 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
149 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
150
151 /* -------------------------------------------------------------------------- */
152
153 /* 16-bit control fields */
154 #define VMCS_VPID 0x00000000
155 #define VMCS_PIR_VECTOR 0x00000002
156 #define VMCS_EPTP_INDEX 0x00000004
157 /* 16-bit guest-state fields */
158 #define VMCS_GUEST_ES_SELECTOR 0x00000800
159 #define VMCS_GUEST_CS_SELECTOR 0x00000802
160 #define VMCS_GUEST_SS_SELECTOR 0x00000804
161 #define VMCS_GUEST_DS_SELECTOR 0x00000806
162 #define VMCS_GUEST_FS_SELECTOR 0x00000808
163 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
164 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
165 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
166 #define VMCS_GUEST_INTR_STATUS 0x00000810
167 #define VMCS_PML_INDEX 0x00000812
168 /* 16-bit host-state fields */
169 #define VMCS_HOST_ES_SELECTOR 0x00000C00
170 #define VMCS_HOST_CS_SELECTOR 0x00000C02
171 #define VMCS_HOST_SS_SELECTOR 0x00000C04
172 #define VMCS_HOST_DS_SELECTOR 0x00000C06
173 #define VMCS_HOST_FS_SELECTOR 0x00000C08
174 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
175 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
176 /* 64-bit control fields */
177 #define VMCS_IO_BITMAP_A 0x00002000
178 #define VMCS_IO_BITMAP_B 0x00002002
179 #define VMCS_MSR_BITMAP 0x00002004
180 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
181 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
182 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
183 #define VMCS_EXECUTIVE_VMCS 0x0000200C
184 #define VMCS_PML_ADDRESS 0x0000200E
185 #define VMCS_TSC_OFFSET 0x00002010
186 #define VMCS_VIRTUAL_APIC 0x00002012
187 #define VMCS_APIC_ACCESS 0x00002014
188 #define VMCS_PIR_DESC 0x00002016
189 #define VMCS_VM_CONTROL 0x00002018
190 #define VMCS_EPTP 0x0000201A
191 #define EPTP_TYPE __BITS(2,0)
192 #define EPTP_TYPE_UC 0
193 #define EPTP_TYPE_WB 6
194 #define EPTP_WALKLEN __BITS(5,3)
195 #define EPTP_FLAGS_AD __BIT(6)
196 #define EPTP_PHYSADDR __BITS(63,12)
197 #define VMCS_EOI_EXIT0 0x0000201C
198 #define VMCS_EOI_EXIT1 0x0000201E
199 #define VMCS_EOI_EXIT2 0x00002020
200 #define VMCS_EOI_EXIT3 0x00002022
201 #define VMCS_EPTP_LIST 0x00002024
202 #define VMCS_VMREAD_BITMAP 0x00002026
203 #define VMCS_VMWRITE_BITMAP 0x00002028
204 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
205 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
206 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
207 #define VMCS_TSC_MULTIPLIER 0x00002032
208 /* 64-bit read-only fields */
209 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
210 /* 64-bit guest-state fields */
211 #define VMCS_LINK_POINTER 0x00002800
212 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
213 #define VMCS_GUEST_IA32_PAT 0x00002804
214 #define VMCS_GUEST_IA32_EFER 0x00002806
215 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
216 #define VMCS_GUEST_PDPTE0 0x0000280A
217 #define VMCS_GUEST_PDPTE1 0x0000280C
218 #define VMCS_GUEST_PDPTE2 0x0000280E
219 #define VMCS_GUEST_PDPTE3 0x00002810
220 #define VMCS_GUEST_BNDCFGS 0x00002812
221 /* 64-bit host-state fields */
222 #define VMCS_HOST_IA32_PAT 0x00002C00
223 #define VMCS_HOST_IA32_EFER 0x00002C02
224 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
225 /* 32-bit control fields */
226 #define VMCS_PINBASED_CTLS 0x00004000
227 #define PIN_CTLS_INT_EXITING __BIT(0)
228 #define PIN_CTLS_NMI_EXITING __BIT(3)
229 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
230 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
231 #define PIN_CTLS_PROCESS_POSTEd_INTS __BIT(7)
232 #define VMCS_PROCBASED_CTLS 0x00004002
233 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
234 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
235 #define PROC_CTLS_HLT_EXITING __BIT(7)
236 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
237 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
238 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
239 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
240 #define PROC_CTLS_RCR3_EXITING __BIT(15)
241 #define PROC_CTLS_LCR3_EXITING __BIT(16)
242 #define PROC_CTLS_RCR8_EXITING __BIT(19)
243 #define PROC_CTLS_LCR8_EXITING __BIT(20)
244 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
245 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
246 #define PROC_CTLS_DR_EXITING __BIT(23)
247 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
248 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
249 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
250 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
251 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
252 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
253 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
254 #define VMCS_EXCEPTION_BITMAP 0x00004004
255 #define VMCS_PF_ERROR_MASK 0x00004006
256 #define VMCS_PF_ERROR_MATCH 0x00004008
257 #define VMCS_CR3_TARGET_COUNT 0x0000400A
258 #define VMCS_EXIT_CTLS 0x0000400C
259 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
260 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
261 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
262 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
263 #define EXIT_CTLS_SAVE_PAT __BIT(18)
264 #define EXIT_CTLS_LOAD_PAT __BIT(19)
265 #define EXIT_CTLS_SAVE_EFER __BIT(20)
266 #define EXIT_CTLS_LOAD_EFER __BIT(21)
267 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
268 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
269 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
270 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
271 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
272 #define VMCS_ENTRY_CTLS 0x00004012
273 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
274 #define ENTRY_CTLS_LONG_MODE __BIT(9)
275 #define ENTRY_CTLS_SMM __BIT(10)
276 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
277 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
278 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
279 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
280 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
281 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
282 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
283 #define VMCS_ENTRY_INTR_INFO 0x00004016
284 #define INTR_INFO_VECTOR __BITS(7,0)
285 #define INTR_INFO_TYPE __BITS(10,8)
286 #define INTR_TYPE_EXT_INT 0
287 #define INTR_TYPE_NMI 2
288 #define INTR_TYPE_HW_EXC 3
289 #define INTR_TYPE_SW_INT 4
290 #define INTR_TYPE_PRIV_SW_EXC 5
291 #define INTR_TYPE_SW_EXC 6
292 #define INTR_TYPE_OTHER 7
293 #define INTR_INFO_ERROR __BIT(11)
294 #define INTR_INFO_VALID __BIT(31)
295 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
296 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
297 #define VMCS_TPR_THRESHOLD 0x0000401C
298 #define VMCS_PROCBASED_CTLS2 0x0000401E
299 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
300 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
301 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
302 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
303 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
304 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
305 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
306 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
307 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
308 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
309 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
310 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
311 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
312 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
313 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
314 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
315 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
316 #define PROC_CTLS2_PML_ENABLE __BIT(17)
317 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
318 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
319 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
320 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
321 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
322 #define VMCS_PLE_GAP 0x00004020
323 #define VMCS_PLE_WINDOW 0x00004022
324 /* 32-bit read-only data fields */
325 #define VMCS_INSTRUCTION_ERROR 0x00004400
326 #define VMCS_EXIT_REASON 0x00004402
327 #define VMCS_EXIT_INTR_INFO 0x00004404
328 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
329 #define VMCS_IDT_VECTORING_INFO 0x00004408
330 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
331 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
332 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
333 /* 32-bit guest-state fields */
334 #define VMCS_GUEST_ES_LIMIT 0x00004800
335 #define VMCS_GUEST_CS_LIMIT 0x00004802
336 #define VMCS_GUEST_SS_LIMIT 0x00004804
337 #define VMCS_GUEST_DS_LIMIT 0x00004806
338 #define VMCS_GUEST_FS_LIMIT 0x00004808
339 #define VMCS_GUEST_GS_LIMIT 0x0000480A
340 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
341 #define VMCS_GUEST_TR_LIMIT 0x0000480E
342 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
343 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
344 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
345 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
346 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
347 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
348 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
349 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
350 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
351 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
352 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
353 #define INT_STATE_STI __BIT(0)
354 #define INT_STATE_MOVSS __BIT(1)
355 #define INT_STATE_SMI __BIT(2)
356 #define INT_STATE_NMI __BIT(3)
357 #define INT_STATE_ENCLAVE __BIT(4)
358 #define VMCS_GUEST_ACTIVITY 0x00004826
359 #define VMCS_GUEST_SMBASE 0x00004828
360 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
361 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
362 /* 32-bit host state fields */
363 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
364 /* Natural-Width control fields */
365 #define VMCS_CR0_MASK 0x00006000
366 #define VMCS_CR4_MASK 0x00006002
367 #define VMCS_CR0_SHADOW 0x00006004
368 #define VMCS_CR4_SHADOW 0x00006006
369 #define VMCS_CR3_TARGET0 0x00006008
370 #define VMCS_CR3_TARGET1 0x0000600A
371 #define VMCS_CR3_TARGET2 0x0000600C
372 #define VMCS_CR3_TARGET3 0x0000600E
373 /* Natural-Width read-only fields */
374 #define VMCS_EXIT_QUALIFICATION 0x00006400
375 #define VMCS_IO_RCX 0x00006402
376 #define VMCS_IO_RSI 0x00006404
377 #define VMCS_IO_RDI 0x00006406
378 #define VMCS_IO_RIP 0x00006408
379 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
380 /* Natural-Width guest-state fields */
381 #define VMCS_GUEST_CR0 0x00006800
382 #define VMCS_GUEST_CR3 0x00006802
383 #define VMCS_GUEST_CR4 0x00006804
384 #define VMCS_GUEST_ES_BASE 0x00006806
385 #define VMCS_GUEST_CS_BASE 0x00006808
386 #define VMCS_GUEST_SS_BASE 0x0000680A
387 #define VMCS_GUEST_DS_BASE 0x0000680C
388 #define VMCS_GUEST_FS_BASE 0x0000680E
389 #define VMCS_GUEST_GS_BASE 0x00006810
390 #define VMCS_GUEST_LDTR_BASE 0x00006812
391 #define VMCS_GUEST_TR_BASE 0x00006814
392 #define VMCS_GUEST_GDTR_BASE 0x00006816
393 #define VMCS_GUEST_IDTR_BASE 0x00006818
394 #define VMCS_GUEST_DR7 0x0000681A
395 #define VMCS_GUEST_RSP 0x0000681C
396 #define VMCS_GUEST_RIP 0x0000681E
397 #define VMCS_GUEST_RFLAGS 0x00006820
398 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
399 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
400 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
401 /* Natural-Width host-state fields */
402 #define VMCS_HOST_CR0 0x00006C00
403 #define VMCS_HOST_CR3 0x00006C02
404 #define VMCS_HOST_CR4 0x00006C04
405 #define VMCS_HOST_FS_BASE 0x00006C06
406 #define VMCS_HOST_GS_BASE 0x00006C08
407 #define VMCS_HOST_TR_BASE 0x00006C0A
408 #define VMCS_HOST_GDTR_BASE 0x00006C0C
409 #define VMCS_HOST_IDTR_BASE 0x00006C0E
410 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
411 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
412 #define VMCS_HOST_RSP 0x00006C14
413 #define VMCS_HOST_RIP 0x00006c16
414
415 /* VMX basic exit reasons. */
416 #define VMCS_EXITCODE_EXC_NMI 0
417 #define VMCS_EXITCODE_EXT_INT 1
418 #define VMCS_EXITCODE_SHUTDOWN 2
419 #define VMCS_EXITCODE_INIT 3
420 #define VMCS_EXITCODE_SIPI 4
421 #define VMCS_EXITCODE_SMI 5
422 #define VMCS_EXITCODE_OTHER_SMI 6
423 #define VMCS_EXITCODE_INT_WINDOW 7
424 #define VMCS_EXITCODE_NMI_WINDOW 8
425 #define VMCS_EXITCODE_TASK_SWITCH 9
426 #define VMCS_EXITCODE_CPUID 10
427 #define VMCS_EXITCODE_GETSEC 11
428 #define VMCS_EXITCODE_HLT 12
429 #define VMCS_EXITCODE_INVD 13
430 #define VMCS_EXITCODE_INVLPG 14
431 #define VMCS_EXITCODE_RDPMC 15
432 #define VMCS_EXITCODE_RDTSC 16
433 #define VMCS_EXITCODE_RSM 17
434 #define VMCS_EXITCODE_VMCALL 18
435 #define VMCS_EXITCODE_VMCLEAR 19
436 #define VMCS_EXITCODE_VMLAUNCH 20
437 #define VMCS_EXITCODE_VMPTRLD 21
438 #define VMCS_EXITCODE_VMPTRST 22
439 #define VMCS_EXITCODE_VMREAD 23
440 #define VMCS_EXITCODE_VMRESUME 24
441 #define VMCS_EXITCODE_VMWRITE 25
442 #define VMCS_EXITCODE_VMXOFF 26
443 #define VMCS_EXITCODE_VMXON 27
444 #define VMCS_EXITCODE_CR 28
445 #define VMCS_EXITCODE_DR 29
446 #define VMCS_EXITCODE_IO 30
447 #define VMCS_EXITCODE_RDMSR 31
448 #define VMCS_EXITCODE_WRMSR 32
449 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
450 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
451 #define VMCS_EXITCODE_MWAIT 36
452 #define VMCS_EXITCODE_TRAP_FLAG 37
453 #define VMCS_EXITCODE_MONITOR 39
454 #define VMCS_EXITCODE_PAUSE 40
455 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
456 #define VMCS_EXITCODE_TPR_BELOW 43
457 #define VMCS_EXITCODE_APIC_ACCESS 44
458 #define VMCS_EXITCODE_VEOI 45
459 #define VMCS_EXITCODE_GDTR_IDTR 46
460 #define VMCS_EXITCODE_LDTR_TR 47
461 #define VMCS_EXITCODE_EPT_VIOLATION 48
462 #define VMCS_EXITCODE_EPT_MISCONFIG 49
463 #define VMCS_EXITCODE_INVEPT 50
464 #define VMCS_EXITCODE_RDTSCP 51
465 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
466 #define VMCS_EXITCODE_INVVPID 53
467 #define VMCS_EXITCODE_WBINVD 54
468 #define VMCS_EXITCODE_XSETBV 55
469 #define VMCS_EXITCODE_APIC_WRITE 56
470 #define VMCS_EXITCODE_RDRAND 57
471 #define VMCS_EXITCODE_INVPCID 58
472 #define VMCS_EXITCODE_VMFUNC 59
473 #define VMCS_EXITCODE_ENCLS 60
474 #define VMCS_EXITCODE_RDSEED 61
475 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
476 #define VMCS_EXITCODE_XSAVES 63
477 #define VMCS_EXITCODE_XRSTORS 64
478
479 /* -------------------------------------------------------------------------- */
480
481 #define VMX_MSRLIST_STAR 0
482 #define VMX_MSRLIST_LSTAR 1
483 #define VMX_MSRLIST_CSTAR 2
484 #define VMX_MSRLIST_SFMASK 3
485 #define VMX_MSRLIST_KERNELGSBASE 4
486 #define VMX_MSRLIST_EXIT_NMSR 5
487 #define VMX_MSRLIST_L1DFLUSH 5
488
489 /* On entry, we may do +1 to include L1DFLUSH. */
490 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
491
492 struct vmxon {
493 uint32_t ident;
494 #define VMXON_IDENT_REVISION __BITS(30,0)
495
496 uint8_t data[PAGE_SIZE - 4];
497 } __packed;
498
499 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
500
501 struct vmxoncpu {
502 vaddr_t va;
503 paddr_t pa;
504 };
505
506 static struct vmxoncpu vmxoncpu[MAXCPUS];
507
508 struct vmcs {
509 uint32_t ident;
510 #define VMCS_IDENT_REVISION __BITS(30,0)
511 #define VMCS_IDENT_SHADOW __BIT(31)
512
513 uint32_t abort;
514 uint8_t data[PAGE_SIZE - 8];
515 } __packed;
516
517 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
518
519 struct msr_entry {
520 uint32_t msr;
521 uint32_t rsvd;
522 uint64_t val;
523 } __packed;
524
525 struct ept_desc {
526 uint64_t eptp;
527 uint64_t mbz;
528 } __packed;
529
530 struct vpid_desc {
531 uint64_t vpid;
532 uint64_t addr;
533 } __packed;
534
535 #define VPID_MAX 0xFFFF
536
537 /* Make sure we never run out of VPIDs. */
538 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
539
540 static uint64_t vmx_tlb_flush_op __read_mostly;
541 static uint64_t vmx_ept_flush_op __read_mostly;
542 static uint64_t vmx_eptp_type __read_mostly;
543
544 static uint64_t vmx_pinbased_ctls __read_mostly;
545 static uint64_t vmx_procbased_ctls __read_mostly;
546 static uint64_t vmx_procbased_ctls2 __read_mostly;
547 static uint64_t vmx_entry_ctls __read_mostly;
548 static uint64_t vmx_exit_ctls __read_mostly;
549
550 static uint64_t vmx_cr0_fixed0 __read_mostly;
551 static uint64_t vmx_cr0_fixed1 __read_mostly;
552 static uint64_t vmx_cr4_fixed0 __read_mostly;
553 static uint64_t vmx_cr4_fixed1 __read_mostly;
554
555 extern bool pmap_ept_has_ad;
556
557 #define VMX_PINBASED_CTLS_ONE \
558 (PIN_CTLS_INT_EXITING| \
559 PIN_CTLS_NMI_EXITING| \
560 PIN_CTLS_VIRTUAL_NMIS)
561
562 #define VMX_PINBASED_CTLS_ZERO 0
563
564 #define VMX_PROCBASED_CTLS_ONE \
565 (PROC_CTLS_USE_TSC_OFFSETTING| \
566 PROC_CTLS_HLT_EXITING| \
567 PROC_CTLS_MWAIT_EXITING | \
568 PROC_CTLS_RDPMC_EXITING | \
569 PROC_CTLS_RCR8_EXITING | \
570 PROC_CTLS_LCR8_EXITING | \
571 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
572 PROC_CTLS_USE_MSR_BITMAPS | \
573 PROC_CTLS_MONITOR_EXITING | \
574 PROC_CTLS_ACTIVATE_CTLS2)
575
576 #define VMX_PROCBASED_CTLS_ZERO \
577 (PROC_CTLS_RCR3_EXITING| \
578 PROC_CTLS_LCR3_EXITING)
579
580 #define VMX_PROCBASED_CTLS2_ONE \
581 (PROC_CTLS2_ENABLE_EPT| \
582 PROC_CTLS2_ENABLE_VPID| \
583 PROC_CTLS2_UNRESTRICTED_GUEST)
584
585 #define VMX_PROCBASED_CTLS2_ZERO 0
586
587 #define VMX_ENTRY_CTLS_ONE \
588 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
589 ENTRY_CTLS_LOAD_EFER| \
590 ENTRY_CTLS_LOAD_PAT)
591
592 #define VMX_ENTRY_CTLS_ZERO \
593 (ENTRY_CTLS_SMM| \
594 ENTRY_CTLS_DISABLE_DUAL)
595
596 #define VMX_EXIT_CTLS_ONE \
597 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
598 EXIT_CTLS_HOST_LONG_MODE| \
599 EXIT_CTLS_SAVE_PAT| \
600 EXIT_CTLS_LOAD_PAT| \
601 EXIT_CTLS_SAVE_EFER| \
602 EXIT_CTLS_LOAD_EFER)
603
604 #define VMX_EXIT_CTLS_ZERO 0
605
606 static uint8_t *vmx_asidmap __read_mostly;
607 static uint32_t vmx_maxasid __read_mostly;
608 static kmutex_t vmx_asidlock __cacheline_aligned;
609
610 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
611 static uint64_t vmx_xcr0_mask __read_mostly;
612
613 #define VMX_NCPUIDS 32
614
615 #define VMCS_NPAGES 1
616 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
617
618 #define MSRBM_NPAGES 1
619 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
620
621 #define EFER_TLB_FLUSH \
622 (EFER_NXE|EFER_LMA|EFER_LME)
623 #define CR0_TLB_FLUSH \
624 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
625 #define CR4_TLB_FLUSH \
626 (CR4_PGE|CR4_PAE|CR4_PSE)
627
628 /* -------------------------------------------------------------------------- */
629
630 struct vmx_machdata {
631 bool cpuidpresent[VMX_NCPUIDS];
632 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
633 volatile uint64_t mach_htlb_gen;
634 };
635
636 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
637 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
638 };
639
640 struct vmx_cpudata {
641 /* General */
642 uint64_t asid;
643 bool gtlb_want_flush;
644 uint64_t vcpu_htlb_gen;
645 kcpuset_t *htlb_want_flush;
646
647 /* VMCS */
648 struct vmcs *vmcs;
649 paddr_t vmcs_pa;
650 size_t vmcs_refcnt;
651 struct cpu_info *vmcs_ci;
652 bool vmcs_launched;
653
654 /* MSR bitmap */
655 uint8_t *msrbm;
656 paddr_t msrbm_pa;
657
658 /* Host state */
659 uint64_t hxcr0;
660 uint64_t star;
661 uint64_t lstar;
662 uint64_t cstar;
663 uint64_t sfmask;
664 uint64_t kernelgsbase;
665 bool ts_set;
666 struct xsave_header hfpu __aligned(64);
667
668 /* Event state */
669 bool int_window_exit;
670 bool nmi_window_exit;
671
672 /* Guest state */
673 struct msr_entry *gmsr;
674 paddr_t gmsr_pa;
675 uint64_t gmsr_misc_enable;
676 uint64_t gcr2;
677 uint64_t gcr8;
678 uint64_t gxcr0;
679 uint64_t gprs[NVMM_X64_NGPR];
680 uint64_t drs[NVMM_X64_NDR];
681 uint64_t tsc_offset;
682 struct xsave_header gfpu __aligned(64);
683 };
684
685 static const struct {
686 uint64_t selector;
687 uint64_t attrib;
688 uint64_t limit;
689 uint64_t base;
690 } vmx_guest_segs[NVMM_X64_NSEG] = {
691 [NVMM_X64_SEG_ES] = {
692 VMCS_GUEST_ES_SELECTOR,
693 VMCS_GUEST_ES_ACCESS_RIGHTS,
694 VMCS_GUEST_ES_LIMIT,
695 VMCS_GUEST_ES_BASE
696 },
697 [NVMM_X64_SEG_CS] = {
698 VMCS_GUEST_CS_SELECTOR,
699 VMCS_GUEST_CS_ACCESS_RIGHTS,
700 VMCS_GUEST_CS_LIMIT,
701 VMCS_GUEST_CS_BASE
702 },
703 [NVMM_X64_SEG_SS] = {
704 VMCS_GUEST_SS_SELECTOR,
705 VMCS_GUEST_SS_ACCESS_RIGHTS,
706 VMCS_GUEST_SS_LIMIT,
707 VMCS_GUEST_SS_BASE
708 },
709 [NVMM_X64_SEG_DS] = {
710 VMCS_GUEST_DS_SELECTOR,
711 VMCS_GUEST_DS_ACCESS_RIGHTS,
712 VMCS_GUEST_DS_LIMIT,
713 VMCS_GUEST_DS_BASE
714 },
715 [NVMM_X64_SEG_FS] = {
716 VMCS_GUEST_FS_SELECTOR,
717 VMCS_GUEST_FS_ACCESS_RIGHTS,
718 VMCS_GUEST_FS_LIMIT,
719 VMCS_GUEST_FS_BASE
720 },
721 [NVMM_X64_SEG_GS] = {
722 VMCS_GUEST_GS_SELECTOR,
723 VMCS_GUEST_GS_ACCESS_RIGHTS,
724 VMCS_GUEST_GS_LIMIT,
725 VMCS_GUEST_GS_BASE
726 },
727 [NVMM_X64_SEG_GDT] = {
728 0, /* doesn't exist */
729 0, /* doesn't exist */
730 VMCS_GUEST_GDTR_LIMIT,
731 VMCS_GUEST_GDTR_BASE
732 },
733 [NVMM_X64_SEG_IDT] = {
734 0, /* doesn't exist */
735 0, /* doesn't exist */
736 VMCS_GUEST_IDTR_LIMIT,
737 VMCS_GUEST_IDTR_BASE
738 },
739 [NVMM_X64_SEG_LDT] = {
740 VMCS_GUEST_LDTR_SELECTOR,
741 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
742 VMCS_GUEST_LDTR_LIMIT,
743 VMCS_GUEST_LDTR_BASE
744 },
745 [NVMM_X64_SEG_TR] = {
746 VMCS_GUEST_TR_SELECTOR,
747 VMCS_GUEST_TR_ACCESS_RIGHTS,
748 VMCS_GUEST_TR_LIMIT,
749 VMCS_GUEST_TR_BASE
750 }
751 };
752
753 /* -------------------------------------------------------------------------- */
754
755 static uint64_t
756 vmx_get_revision(void)
757 {
758 uint64_t msr;
759
760 msr = rdmsr(MSR_IA32_VMX_BASIC);
761 msr &= IA32_VMX_BASIC_IDENT;
762
763 return msr;
764 }
765
766 static void
767 vmx_vmclear_ipi(void *arg1, void *arg2)
768 {
769 paddr_t vmcs_pa = (paddr_t)arg1;
770 vmx_vmclear(&vmcs_pa);
771 }
772
773 static void
774 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
775 {
776 uint64_t xc;
777 int bound;
778
779 KASSERT(kpreempt_disabled());
780
781 bound = curlwp_bind();
782 kpreempt_enable();
783
784 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
785 xc_wait(xc);
786
787 kpreempt_disable();
788 curlwp_bindx(bound);
789 }
790
791 static void
792 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
793 {
794 struct vmx_cpudata *cpudata = vcpu->cpudata;
795 struct cpu_info *vmcs_ci;
796 paddr_t oldpa __diagused;
797
798 cpudata->vmcs_refcnt++;
799 if (cpudata->vmcs_refcnt > 1) {
800 #ifdef DIAGNOSTIC
801 KASSERT(kpreempt_disabled());
802 vmx_vmptrst(&oldpa);
803 KASSERT(oldpa == cpudata->vmcs_pa);
804 #endif
805 return;
806 }
807
808 vmcs_ci = cpudata->vmcs_ci;
809 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
810
811 kpreempt_disable();
812
813 if (vmcs_ci == NULL) {
814 /* This VMCS is loaded for the first time. */
815 vmx_vmclear(&cpudata->vmcs_pa);
816 cpudata->vmcs_launched = false;
817 } else if (vmcs_ci != curcpu()) {
818 /* This VMCS is active on a remote CPU. */
819 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
820 cpudata->vmcs_launched = false;
821 } else {
822 /* This VMCS is active on curcpu, nothing to do. */
823 }
824
825 vmx_vmptrld(&cpudata->vmcs_pa);
826 }
827
828 static void
829 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
830 {
831 struct vmx_cpudata *cpudata = vcpu->cpudata;
832 paddr_t oldpa __diagused;
833
834 KASSERT(kpreempt_disabled());
835 #ifdef DIAGNOSTIC
836 vmx_vmptrst(&oldpa);
837 KASSERT(oldpa == cpudata->vmcs_pa);
838 #endif
839 KASSERT(cpudata->vmcs_refcnt > 0);
840 cpudata->vmcs_refcnt--;
841
842 if (cpudata->vmcs_refcnt > 0) {
843 return;
844 }
845
846 cpudata->vmcs_ci = curcpu();
847 kpreempt_enable();
848 }
849
850 static void
851 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
852 {
853 struct vmx_cpudata *cpudata = vcpu->cpudata;
854 paddr_t oldpa __diagused;
855
856 KASSERT(kpreempt_disabled());
857 #ifdef DIAGNOSTIC
858 vmx_vmptrst(&oldpa);
859 KASSERT(oldpa == cpudata->vmcs_pa);
860 #endif
861 KASSERT(cpudata->vmcs_refcnt == 1);
862 cpudata->vmcs_refcnt--;
863
864 vmx_vmclear(&cpudata->vmcs_pa);
865 kpreempt_enable();
866 }
867
868 /* -------------------------------------------------------------------------- */
869
870 static void
871 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
872 {
873 struct vmx_cpudata *cpudata = vcpu->cpudata;
874 uint64_t ctls1;
875
876 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
877
878 if (nmi) {
879 // XXX INT_STATE_NMI?
880 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
881 cpudata->nmi_window_exit = true;
882 } else {
883 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
884 cpudata->int_window_exit = true;
885 }
886
887 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
888 }
889
890 static void
891 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
892 {
893 struct vmx_cpudata *cpudata = vcpu->cpudata;
894 uint64_t ctls1;
895
896 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
897
898 if (nmi) {
899 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
900 cpudata->nmi_window_exit = false;
901 } else {
902 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
903 cpudata->int_window_exit = false;
904 }
905
906 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
907 }
908
909 static inline int
910 vmx_event_has_error(uint64_t vector)
911 {
912 switch (vector) {
913 case 8: /* #DF */
914 case 10: /* #TS */
915 case 11: /* #NP */
916 case 12: /* #SS */
917 case 13: /* #GP */
918 case 14: /* #PF */
919 case 17: /* #AC */
920 case 30: /* #SX */
921 return 1;
922 default:
923 return 0;
924 }
925 }
926
927 static int
928 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
929 struct nvmm_event *event)
930 {
931 struct vmx_cpudata *cpudata = vcpu->cpudata;
932 int type = 0, err = 0, ret = 0;
933 uint64_t info, intstate, rflags;
934
935 if (event->vector >= 256) {
936 return EINVAL;
937 }
938
939 vmx_vmcs_enter(vcpu);
940
941 switch (event->type) {
942 case NVMM_EVENT_INTERRUPT_HW:
943 type = INTR_TYPE_EXT_INT;
944 if (event->vector == 2) {
945 type = INTR_TYPE_NMI;
946 }
947 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
948 if (type == INTR_TYPE_NMI) {
949 if (cpudata->nmi_window_exit) {
950 ret = EAGAIN;
951 goto out;
952 }
953 vmx_event_waitexit_enable(vcpu, true);
954 } else {
955 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
956 if ((rflags & PSL_I) == 0 ||
957 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
958 vmx_event_waitexit_enable(vcpu, false);
959 ret = EAGAIN;
960 goto out;
961 }
962 }
963 err = 0;
964 break;
965 case NVMM_EVENT_INTERRUPT_SW:
966 ret = EINVAL;
967 goto out;
968 case NVMM_EVENT_EXCEPTION:
969 if (event->vector == 2 || event->vector >= 32) {
970 ret = EINVAL;
971 goto out;
972 }
973 if (event->vector == 3 || event->vector == 0) {
974 ret = EINVAL;
975 goto out;
976 }
977 type = INTR_TYPE_HW_EXC;
978 err = vmx_event_has_error(event->vector);
979 break;
980 default:
981 ret = EAGAIN;
982 goto out;
983 }
984
985 info =
986 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
987 __SHIFTIN(type, INTR_INFO_TYPE) |
988 __SHIFTIN(err, INTR_INFO_ERROR) |
989 __SHIFTIN(1, INTR_INFO_VALID);
990 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
991 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
992
993 out:
994 vmx_vmcs_leave(vcpu);
995 return ret;
996 }
997
998 static void
999 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1000 {
1001 struct nvmm_event event;
1002 int ret __diagused;
1003
1004 event.type = NVMM_EVENT_EXCEPTION;
1005 event.vector = 6;
1006 event.u.error = 0;
1007
1008 ret = vmx_vcpu_inject(mach, vcpu, &event);
1009 KASSERT(ret == 0);
1010 }
1011
1012 static void
1013 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1014 {
1015 struct nvmm_event event;
1016 int ret __diagused;
1017
1018 event.type = NVMM_EVENT_EXCEPTION;
1019 event.vector = 13;
1020 event.u.error = 0;
1021
1022 ret = vmx_vcpu_inject(mach, vcpu, &event);
1023 KASSERT(ret == 0);
1024 }
1025
1026 static inline void
1027 vmx_inkernel_advance(void)
1028 {
1029 uint64_t rip, inslen, intstate;
1030
1031 /*
1032 * Maybe we should also apply single-stepping and debug exceptions.
1033 * Matters for guest-ring3, because it can execute 'cpuid' under a
1034 * debugger.
1035 */
1036 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1037 vmx_vmread(VMCS_GUEST_RIP, &rip);
1038 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1039 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1040 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1041 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1042 }
1043
1044 static void
1045 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1046 struct nvmm_exit *exit)
1047 {
1048 uint64_t qual;
1049
1050 vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
1051
1052 if ((qual & INTR_INFO_VALID) == 0) {
1053 goto error;
1054 }
1055 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1056 goto error;
1057 }
1058
1059 exit->reason = NVMM_EXIT_NONE;
1060 return;
1061
1062 error:
1063 exit->reason = NVMM_EXIT_INVALID;
1064 }
1065
1066 static void
1067 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1068 {
1069 struct vmx_cpudata *cpudata = vcpu->cpudata;
1070 uint64_t cr4;
1071
1072 switch (eax) {
1073 case 0x00000001:
1074 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1075
1076 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1077 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1078 CPUID_LOCAL_APIC_ID);
1079
1080 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1081 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1082
1083 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1084
1085 /* CPUID2_OSXSAVE depends on CR4. */
1086 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1087 if (!(cr4 & CR4_OSXSAVE)) {
1088 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1089 }
1090 break;
1091 case 0x00000005:
1092 case 0x00000006:
1093 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1094 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1095 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1096 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1097 break;
1098 case 0x00000007:
1099 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1100 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1101 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1102 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1103 break;
1104 case 0x0000000D:
1105 if (vmx_xcr0_mask == 0) {
1106 break;
1107 }
1108 switch (ecx) {
1109 case 0:
1110 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1111 if (cpudata->gxcr0 & XCR0_SSE) {
1112 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1113 } else {
1114 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1115 }
1116 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1117 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1118 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1119 break;
1120 case 1:
1121 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1122 break;
1123 }
1124 break;
1125 case 0x40000000:
1126 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1127 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1128 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1129 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1130 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1131 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1132 break;
1133 case 0x80000001:
1134 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1135 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1136 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1137 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1138 break;
1139 default:
1140 break;
1141 }
1142 }
1143
1144 static void
1145 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1146 struct nvmm_exit *exit)
1147 {
1148 struct vmx_machdata *machdata = mach->machdata;
1149 struct vmx_cpudata *cpudata = vcpu->cpudata;
1150 struct nvmm_x86_conf_cpuid *cpuid;
1151 uint64_t eax, ecx;
1152 u_int descs[4];
1153 size_t i;
1154
1155 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1156 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1157 x86_cpuid2(eax, ecx, descs);
1158
1159 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1160 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1161 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1162 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1163
1164 for (i = 0; i < VMX_NCPUIDS; i++) {
1165 cpuid = &machdata->cpuid[i];
1166 if (!machdata->cpuidpresent[i]) {
1167 continue;
1168 }
1169 if (cpuid->leaf != eax) {
1170 continue;
1171 }
1172
1173 /* del */
1174 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1175 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1176 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1177 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1178
1179 /* set */
1180 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1181 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1182 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1183 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1184
1185 break;
1186 }
1187
1188 /* Overwrite non-tunable leaves. */
1189 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1190
1191 vmx_inkernel_advance();
1192 exit->reason = NVMM_EXIT_NONE;
1193 }
1194
1195 static void
1196 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1197 struct nvmm_exit *exit)
1198 {
1199 struct vmx_cpudata *cpudata = vcpu->cpudata;
1200 uint64_t rflags;
1201
1202 if (cpudata->int_window_exit) {
1203 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1204 if (rflags & PSL_I) {
1205 vmx_event_waitexit_disable(vcpu, false);
1206 }
1207 }
1208
1209 vmx_inkernel_advance();
1210 exit->reason = NVMM_EXIT_HALTED;
1211 }
1212
1213 #define VMX_QUAL_CR_NUM __BITS(3,0)
1214 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1215 #define CR_TYPE_WRITE 0
1216 #define CR_TYPE_READ 1
1217 #define CR_TYPE_CLTS 2
1218 #define CR_TYPE_LMSW 3
1219 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1220 #define VMX_QUAL_CR_GPR __BITS(11,8)
1221 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1222
1223 static inline int
1224 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1225 {
1226 /* Bits set to 1 in fixed0 are fixed to 1. */
1227 if ((crval & fixed0) != fixed0) {
1228 return -1;
1229 }
1230 /* Bits set to 0 in fixed1 are fixed to 0. */
1231 if (crval & ~fixed1) {
1232 return -1;
1233 }
1234 return 0;
1235 }
1236
1237 static int
1238 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1239 uint64_t qual)
1240 {
1241 struct vmx_cpudata *cpudata = vcpu->cpudata;
1242 uint64_t type, gpr, cr0;
1243 uint64_t efer, ctls1;
1244
1245 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1246 if (type != CR_TYPE_WRITE) {
1247 return -1;
1248 }
1249
1250 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1251 KASSERT(gpr < 16);
1252
1253 if (gpr == NVMM_X64_GPR_RSP) {
1254 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1255 } else {
1256 gpr = cpudata->gprs[gpr];
1257 }
1258
1259 cr0 = gpr | CR0_NE | CR0_ET;
1260 cr0 &= ~(CR0_NW|CR0_CD);
1261
1262 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1263 return -1;
1264 }
1265
1266 /*
1267 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1268 * from CR3.
1269 */
1270
1271 if (cr0 & CR0_PG) {
1272 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1273 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1274 if (efer & EFER_LME) {
1275 ctls1 |= ENTRY_CTLS_LONG_MODE;
1276 efer |= EFER_LMA;
1277 } else {
1278 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1279 efer &= ~EFER_LMA;
1280 }
1281 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1282 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1283 }
1284
1285 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1286 vmx_inkernel_advance();
1287 return 0;
1288 }
1289
1290 static int
1291 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1292 uint64_t qual)
1293 {
1294 struct vmx_cpudata *cpudata = vcpu->cpudata;
1295 uint64_t type, gpr, cr4;
1296
1297 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1298 if (type != CR_TYPE_WRITE) {
1299 return -1;
1300 }
1301
1302 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1303 KASSERT(gpr < 16);
1304
1305 if (gpr == NVMM_X64_GPR_RSP) {
1306 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1307 } else {
1308 gpr = cpudata->gprs[gpr];
1309 }
1310
1311 cr4 = gpr | CR4_VMXE;
1312
1313 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1314 return -1;
1315 }
1316
1317 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1318 vmx_inkernel_advance();
1319 return 0;
1320 }
1321
1322 static int
1323 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1324 uint64_t qual)
1325 {
1326 struct vmx_cpudata *cpudata = vcpu->cpudata;
1327 uint64_t type, gpr;
1328 bool write;
1329
1330 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1331 if (type == CR_TYPE_WRITE) {
1332 write = true;
1333 } else if (type == CR_TYPE_READ) {
1334 write = false;
1335 } else {
1336 return -1;
1337 }
1338
1339 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1340 KASSERT(gpr < 16);
1341
1342 if (write) {
1343 if (gpr == NVMM_X64_GPR_RSP) {
1344 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1345 } else {
1346 cpudata->gcr8 = cpudata->gprs[gpr];
1347 }
1348 } else {
1349 if (gpr == NVMM_X64_GPR_RSP) {
1350 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1351 } else {
1352 cpudata->gprs[gpr] = cpudata->gcr8;
1353 }
1354 }
1355
1356 vmx_inkernel_advance();
1357 return 0;
1358 }
1359
1360 static void
1361 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1362 struct nvmm_exit *exit)
1363 {
1364 uint64_t qual;
1365 int ret;
1366
1367 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1368
1369 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1370 case 0:
1371 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1372 break;
1373 case 4:
1374 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1375 break;
1376 case 8:
1377 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1378 break;
1379 default:
1380 ret = -1;
1381 break;
1382 }
1383
1384 if (ret == -1) {
1385 vmx_inject_gp(mach, vcpu);
1386 }
1387
1388 exit->reason = NVMM_EXIT_NONE;
1389 }
1390
1391 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1392 #define IO_SIZE_8 0
1393 #define IO_SIZE_16 1
1394 #define IO_SIZE_32 3
1395 #define VMX_QUAL_IO_IN __BIT(3)
1396 #define VMX_QUAL_IO_STR __BIT(4)
1397 #define VMX_QUAL_IO_REP __BIT(5)
1398 #define VMX_QUAL_IO_DX __BIT(6)
1399 #define VMX_QUAL_IO_PORT __BITS(31,16)
1400
1401 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1402 #define IO_ADRSIZE_16 0
1403 #define IO_ADRSIZE_32 1
1404 #define IO_ADRSIZE_64 2
1405 #define VMX_INFO_IO_SEG __BITS(17,15)
1406
1407 static void
1408 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1409 struct nvmm_exit *exit)
1410 {
1411 uint64_t qual, info, inslen, rip;
1412
1413 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1414 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1415
1416 exit->reason = NVMM_EXIT_IO;
1417
1418 if (qual & VMX_QUAL_IO_IN) {
1419 exit->u.io.type = NVMM_EXIT_IO_IN;
1420 } else {
1421 exit->u.io.type = NVMM_EXIT_IO_OUT;
1422 }
1423
1424 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1425
1426 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1427 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1428
1429 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1430 exit->u.io.address_size = 8;
1431 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1432 exit->u.io.address_size = 4;
1433 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1434 exit->u.io.address_size = 2;
1435 }
1436
1437 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1438 exit->u.io.operand_size = 4;
1439 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1440 exit->u.io.operand_size = 2;
1441 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1442 exit->u.io.operand_size = 1;
1443 }
1444
1445 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1446 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1447
1448 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1449 exit->u.io.seg = NVMM_X64_SEG_ES;
1450 }
1451
1452 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1453 vmx_vmread(VMCS_GUEST_RIP, &rip);
1454 exit->u.io.npc = rip + inslen;
1455 }
1456
1457 static const uint64_t msr_ignore_list[] = {
1458 MSR_BIOS_SIGN,
1459 MSR_IA32_PLATFORM_ID
1460 };
1461
1462 static bool
1463 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1464 struct nvmm_exit *exit)
1465 {
1466 struct vmx_cpudata *cpudata = vcpu->cpudata;
1467 uint64_t val;
1468 size_t i;
1469
1470 switch (exit->u.msr.type) {
1471 case NVMM_EXIT_MSR_RDMSR:
1472 if (exit->u.msr.msr == MSR_CR_PAT) {
1473 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1474 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1475 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1476 goto handled;
1477 }
1478 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1479 val = cpudata->gmsr_misc_enable;
1480 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1481 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1482 goto handled;
1483 }
1484 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1485 if (msr_ignore_list[i] != exit->u.msr.msr)
1486 continue;
1487 val = 0;
1488 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1489 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1490 goto handled;
1491 }
1492 break;
1493 case NVMM_EXIT_MSR_WRMSR:
1494 if (exit->u.msr.msr == MSR_TSC) {
1495 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
1496 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1497 curcpu()->ci_data.cpu_cc_skew);
1498 goto handled;
1499 }
1500 if (exit->u.msr.msr == MSR_CR_PAT) {
1501 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1502 goto handled;
1503 }
1504 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1505 /* Don't care. */
1506 goto handled;
1507 }
1508 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1509 if (msr_ignore_list[i] != exit->u.msr.msr)
1510 continue;
1511 goto handled;
1512 }
1513 break;
1514 }
1515
1516 return false;
1517
1518 handled:
1519 vmx_inkernel_advance();
1520 return true;
1521 }
1522
1523 static void
1524 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1525 struct nvmm_exit *exit, bool rdmsr)
1526 {
1527 struct vmx_cpudata *cpudata = vcpu->cpudata;
1528 uint64_t inslen, rip;
1529
1530 if (rdmsr) {
1531 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1532 } else {
1533 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1534 }
1535
1536 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1537
1538 if (rdmsr) {
1539 exit->u.msr.val = 0;
1540 } else {
1541 uint64_t rdx, rax;
1542 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1543 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1544 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1545 }
1546
1547 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1548 exit->reason = NVMM_EXIT_NONE;
1549 return;
1550 }
1551
1552 exit->reason = NVMM_EXIT_MSR;
1553 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1554 vmx_vmread(VMCS_GUEST_RIP, &rip);
1555 exit->u.msr.npc = rip + inslen;
1556 }
1557
1558 static void
1559 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1560 struct nvmm_exit *exit)
1561 {
1562 struct vmx_cpudata *cpudata = vcpu->cpudata;
1563 uint16_t val;
1564
1565 exit->reason = NVMM_EXIT_NONE;
1566
1567 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1568 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1569
1570 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1571 goto error;
1572 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1573 goto error;
1574 } else if (__predict_false((val & XCR0_X87) == 0)) {
1575 goto error;
1576 }
1577
1578 cpudata->gxcr0 = val;
1579
1580 vmx_inkernel_advance();
1581 return;
1582
1583 error:
1584 vmx_inject_gp(mach, vcpu);
1585 }
1586
1587 #define VMX_EPT_VIOLATION_READ __BIT(0)
1588 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1589 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1590
1591 static void
1592 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1593 struct nvmm_exit *exit)
1594 {
1595 uint64_t perm;
1596 gpaddr_t gpa;
1597
1598 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1599
1600 exit->reason = NVMM_EXIT_MEMORY;
1601 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1602 if (perm & VMX_EPT_VIOLATION_WRITE)
1603 exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
1604 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1605 exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
1606 else
1607 exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
1608 exit->u.mem.gpa = gpa;
1609 exit->u.mem.inst_len = 0;
1610 }
1611
1612 /* -------------------------------------------------------------------------- */
1613
1614 static void
1615 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1616 {
1617 struct vmx_cpudata *cpudata = vcpu->cpudata;
1618
1619 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1620
1621 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1622 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1623
1624 if (vmx_xcr0_mask != 0) {
1625 cpudata->hxcr0 = rdxcr(0);
1626 wrxcr(0, cpudata->gxcr0);
1627 }
1628 }
1629
1630 static void
1631 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1632 {
1633 struct vmx_cpudata *cpudata = vcpu->cpudata;
1634
1635 if (vmx_xcr0_mask != 0) {
1636 cpudata->gxcr0 = rdxcr(0);
1637 wrxcr(0, cpudata->hxcr0);
1638 }
1639
1640 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1641 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1642
1643 if (cpudata->ts_set) {
1644 stts();
1645 }
1646 }
1647
1648 static void
1649 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1650 {
1651 struct vmx_cpudata *cpudata = vcpu->cpudata;
1652
1653 x86_dbregs_save(curlwp);
1654
1655 ldr7(0);
1656
1657 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1658 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1659 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1660 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1661 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1662 }
1663
1664 static void
1665 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1666 {
1667 struct vmx_cpudata *cpudata = vcpu->cpudata;
1668
1669 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1670 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1671 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1672 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1673 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1674
1675 x86_dbregs_restore(curlwp);
1676 }
1677
1678 static void
1679 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1680 {
1681 struct vmx_cpudata *cpudata = vcpu->cpudata;
1682
1683 /* This gets restored automatically by the CPU. */
1684 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1685 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1686 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1687
1688 /* Note: MSR_LSTAR is not static, because of SVS. */
1689 cpudata->lstar = rdmsr(MSR_LSTAR);
1690 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1691 }
1692
1693 static void
1694 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1695 {
1696 struct vmx_cpudata *cpudata = vcpu->cpudata;
1697
1698 wrmsr(MSR_STAR, cpudata->star);
1699 wrmsr(MSR_LSTAR, cpudata->lstar);
1700 wrmsr(MSR_CSTAR, cpudata->cstar);
1701 wrmsr(MSR_SFMASK, cpudata->sfmask);
1702 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1703 }
1704
1705 /* -------------------------------------------------------------------------- */
1706
1707 #define VMX_INVVPID_ADDRESS 0
1708 #define VMX_INVVPID_CONTEXT 1
1709 #define VMX_INVVPID_ALL 2
1710 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1711
1712 #define VMX_INVEPT_CONTEXT 1
1713 #define VMX_INVEPT_ALL 2
1714
1715 static inline void
1716 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1717 {
1718 struct vmx_cpudata *cpudata = vcpu->cpudata;
1719
1720 if (vcpu->hcpu_last != hcpu) {
1721 cpudata->gtlb_want_flush = true;
1722 }
1723 }
1724
1725 static inline void
1726 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1727 {
1728 struct vmx_cpudata *cpudata = vcpu->cpudata;
1729 struct ept_desc ept_desc;
1730
1731 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1732 return;
1733 }
1734
1735 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1736 ept_desc.mbz = 0;
1737 vmx_invept(vmx_ept_flush_op, &ept_desc);
1738 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1739 }
1740
1741 static inline uint64_t
1742 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1743 {
1744 struct ept_desc ept_desc;
1745 uint64_t machgen;
1746
1747 machgen = machdata->mach_htlb_gen;
1748 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1749 return machgen;
1750 }
1751
1752 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1753
1754 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1755 ept_desc.mbz = 0;
1756 vmx_invept(vmx_ept_flush_op, &ept_desc);
1757
1758 return machgen;
1759 }
1760
1761 static inline void
1762 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1763 {
1764 cpudata->vcpu_htlb_gen = machgen;
1765 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1766 }
1767
1768 static int
1769 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1770 struct nvmm_exit *exit)
1771 {
1772 struct vmx_machdata *machdata = mach->machdata;
1773 struct vmx_cpudata *cpudata = vcpu->cpudata;
1774 struct vpid_desc vpid_desc;
1775 struct cpu_info *ci;
1776 uint64_t exitcode;
1777 uint64_t intstate;
1778 uint64_t machgen;
1779 int hcpu, s, ret;
1780 bool launched;
1781
1782 vmx_vmcs_enter(vcpu);
1783 ci = curcpu();
1784 hcpu = cpu_number();
1785 launched = cpudata->vmcs_launched;
1786
1787 vmx_gtlb_catchup(vcpu, hcpu);
1788 vmx_htlb_catchup(vcpu, hcpu);
1789
1790 if (vcpu->hcpu_last != hcpu) {
1791 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1792 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1793 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1794 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1795 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1796 curcpu()->ci_data.cpu_cc_skew);
1797 vcpu->hcpu_last = hcpu;
1798 }
1799
1800 vmx_vcpu_guest_dbregs_enter(vcpu);
1801 vmx_vcpu_guest_misc_enter(vcpu);
1802
1803 while (1) {
1804 if (cpudata->gtlb_want_flush) {
1805 vpid_desc.vpid = cpudata->asid;
1806 vpid_desc.addr = 0;
1807 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1808 cpudata->gtlb_want_flush = false;
1809 }
1810
1811 s = splhigh();
1812 machgen = vmx_htlb_flush(machdata, cpudata);
1813 vmx_vcpu_guest_fpu_enter(vcpu);
1814 lcr2(cpudata->gcr2);
1815 if (launched) {
1816 ret = vmx_vmresume(cpudata->gprs);
1817 } else {
1818 ret = vmx_vmlaunch(cpudata->gprs);
1819 }
1820 cpudata->gcr2 = rcr2();
1821 vmx_vcpu_guest_fpu_leave(vcpu);
1822 vmx_htlb_flush_ack(cpudata, machgen);
1823 splx(s);
1824
1825 if (__predict_false(ret != 0)) {
1826 exit->reason = NVMM_EXIT_INVALID;
1827 break;
1828 }
1829
1830 launched = true;
1831
1832 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1833 exitcode &= __BITS(15,0);
1834
1835 switch (exitcode) {
1836 case VMCS_EXITCODE_EXC_NMI:
1837 vmx_exit_exc_nmi(mach, vcpu, exit);
1838 break;
1839 case VMCS_EXITCODE_EXT_INT:
1840 exit->reason = NVMM_EXIT_NONE;
1841 break;
1842 case VMCS_EXITCODE_CPUID:
1843 vmx_exit_cpuid(mach, vcpu, exit);
1844 break;
1845 case VMCS_EXITCODE_HLT:
1846 vmx_exit_hlt(mach, vcpu, exit);
1847 break;
1848 case VMCS_EXITCODE_CR:
1849 vmx_exit_cr(mach, vcpu, exit);
1850 break;
1851 case VMCS_EXITCODE_IO:
1852 vmx_exit_io(mach, vcpu, exit);
1853 break;
1854 case VMCS_EXITCODE_RDMSR:
1855 vmx_exit_msr(mach, vcpu, exit, true);
1856 break;
1857 case VMCS_EXITCODE_WRMSR:
1858 vmx_exit_msr(mach, vcpu, exit, false);
1859 break;
1860 case VMCS_EXITCODE_SHUTDOWN:
1861 exit->reason = NVMM_EXIT_SHUTDOWN;
1862 break;
1863 case VMCS_EXITCODE_MONITOR:
1864 exit->reason = NVMM_EXIT_MONITOR;
1865 break;
1866 case VMCS_EXITCODE_MWAIT:
1867 exit->reason = NVMM_EXIT_MWAIT;
1868 break;
1869 case VMCS_EXITCODE_XSETBV:
1870 vmx_exit_xsetbv(mach, vcpu, exit);
1871 break;
1872 case VMCS_EXITCODE_RDPMC:
1873 case VMCS_EXITCODE_RDTSCP:
1874 case VMCS_EXITCODE_INVVPID:
1875 case VMCS_EXITCODE_INVEPT:
1876 case VMCS_EXITCODE_VMCALL:
1877 case VMCS_EXITCODE_VMCLEAR:
1878 case VMCS_EXITCODE_VMLAUNCH:
1879 case VMCS_EXITCODE_VMPTRLD:
1880 case VMCS_EXITCODE_VMPTRST:
1881 case VMCS_EXITCODE_VMREAD:
1882 case VMCS_EXITCODE_VMRESUME:
1883 case VMCS_EXITCODE_VMWRITE:
1884 case VMCS_EXITCODE_VMXOFF:
1885 case VMCS_EXITCODE_VMXON:
1886 vmx_inject_ud(mach, vcpu);
1887 exit->reason = NVMM_EXIT_NONE;
1888 break;
1889 case VMCS_EXITCODE_EPT_VIOLATION:
1890 vmx_exit_epf(mach, vcpu, exit);
1891 break;
1892 case VMCS_EXITCODE_INT_WINDOW:
1893 vmx_event_waitexit_disable(vcpu, false);
1894 exit->reason = NVMM_EXIT_INT_READY;
1895 break;
1896 case VMCS_EXITCODE_NMI_WINDOW:
1897 vmx_event_waitexit_disable(vcpu, true);
1898 exit->reason = NVMM_EXIT_NMI_READY;
1899 break;
1900 default:
1901 exit->reason = NVMM_EXIT_INVALID;
1902 break;
1903 }
1904
1905 /* If no reason to return to userland, keep rolling. */
1906 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1907 break;
1908 }
1909 if (curcpu()->ci_data.cpu_softints != 0) {
1910 break;
1911 }
1912 if (curlwp->l_flag & LW_USERRET) {
1913 break;
1914 }
1915 if (exit->reason != NVMM_EXIT_NONE) {
1916 break;
1917 }
1918 }
1919
1920 cpudata->vmcs_launched = launched;
1921
1922 vmx_vcpu_guest_misc_leave(vcpu);
1923 vmx_vcpu_guest_dbregs_leave(vcpu);
1924
1925 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1926 vmx_vmread(VMCS_GUEST_RFLAGS,
1927 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1928 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1929 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1930 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1931 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1932 cpudata->int_window_exit;
1933 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1934 cpudata->nmi_window_exit;
1935
1936 vmx_vmcs_leave(vcpu);
1937
1938 return 0;
1939 }
1940
1941 /* -------------------------------------------------------------------------- */
1942
1943 static int
1944 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1945 {
1946 struct pglist pglist;
1947 paddr_t _pa;
1948 vaddr_t _va;
1949 size_t i;
1950 int ret;
1951
1952 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1953 &pglist, 1, 0);
1954 if (ret != 0)
1955 return ENOMEM;
1956 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1957 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1958 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1959 if (_va == 0)
1960 goto error;
1961
1962 for (i = 0; i < npages; i++) {
1963 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1964 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1965 }
1966 pmap_update(pmap_kernel());
1967
1968 memset((void *)_va, 0, npages * PAGE_SIZE);
1969
1970 *pa = _pa;
1971 *va = _va;
1972 return 0;
1973
1974 error:
1975 for (i = 0; i < npages; i++) {
1976 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1977 }
1978 return ENOMEM;
1979 }
1980
1981 static void
1982 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1983 {
1984 size_t i;
1985
1986 pmap_kremove(va, npages * PAGE_SIZE);
1987 pmap_update(pmap_kernel());
1988 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1989 for (i = 0; i < npages; i++) {
1990 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1991 }
1992 }
1993
1994 /* -------------------------------------------------------------------------- */
1995
1996 static void
1997 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1998 {
1999 uint64_t byte;
2000 uint8_t bitoff;
2001
2002 if (msr < 0x00002000) {
2003 /* Range 1 */
2004 byte = ((msr - 0x00000000) / 8) + 0;
2005 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2006 /* Range 2 */
2007 byte = ((msr - 0xC0000000) / 8) + 1024;
2008 } else {
2009 panic("%s: wrong range", __func__);
2010 }
2011
2012 bitoff = (msr & 0x7);
2013
2014 if (read) {
2015 bitmap[byte] &= ~__BIT(bitoff);
2016 }
2017 if (write) {
2018 bitmap[2048 + byte] &= ~__BIT(bitoff);
2019 }
2020 }
2021
2022 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2023 #define VMX_SEG_ATTRIB_S __BIT(4)
2024 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2025 #define VMX_SEG_ATTRIB_P __BIT(7)
2026 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2027 #define VMX_SEG_ATTRIB_L __BIT(13)
2028 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2029 #define VMX_SEG_ATTRIB_G __BIT(15)
2030 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2031
2032 static void
2033 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2034 {
2035 uint64_t attrib;
2036
2037 attrib =
2038 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2039 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2040 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2041 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2042 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2043 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2044 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2045 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2046 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2047
2048 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2049 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2050 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2051 }
2052 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2053 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2054 }
2055
2056 static void
2057 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2058 {
2059 uint64_t selector, base, limit, attrib = 0;
2060
2061 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2062 vmx_vmread(vmx_guest_segs[idx].selector, &selector);
2063 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2064 }
2065 vmx_vmread(vmx_guest_segs[idx].limit, &limit);
2066 vmx_vmread(vmx_guest_segs[idx].base, &base);
2067
2068 segs[idx].selector = selector;
2069 segs[idx].limit = limit;
2070 segs[idx].base = base;
2071 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2072 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2073 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2074 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2075 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2076 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2077 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2078 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2079 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2080 segs[idx].attrib.p = 0;
2081 }
2082 }
2083
2084 static inline bool
2085 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2086 {
2087 uint64_t cr0, cr3, cr4, efer;
2088
2089 if (flags & NVMM_X64_STATE_CRS) {
2090 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2091 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2092 return true;
2093 }
2094 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2095 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2096 return true;
2097 }
2098 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2099 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2100 return true;
2101 }
2102 }
2103
2104 if (flags & NVMM_X64_STATE_MSRS) {
2105 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2106 if ((efer ^
2107 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2108 return true;
2109 }
2110 }
2111
2112 return false;
2113 }
2114
2115 static void
2116 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2117 {
2118 const struct nvmm_x64_state *state = data;
2119 struct vmx_cpudata *cpudata = vcpu->cpudata;
2120 struct fxsave *fpustate;
2121 uint64_t ctls1, intstate;
2122
2123 vmx_vmcs_enter(vcpu);
2124
2125 if (vmx_state_tlb_flush(state, flags)) {
2126 cpudata->gtlb_want_flush = true;
2127 }
2128
2129 if (flags & NVMM_X64_STATE_SEGS) {
2130 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2131 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2132 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2133 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2134 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2135 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2136 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2137 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2138 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2139 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2140 }
2141
2142 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2143 if (flags & NVMM_X64_STATE_GPRS) {
2144 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2145
2146 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2147 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2148 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2149 }
2150
2151 if (flags & NVMM_X64_STATE_CRS) {
2152 /*
2153 * CR0_NE and CR4_VMXE are mandatory.
2154 */
2155 vmx_vmwrite(VMCS_GUEST_CR0,
2156 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2157 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2158 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2159 vmx_vmwrite(VMCS_GUEST_CR4,
2160 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2161 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2162
2163 if (vmx_xcr0_mask != 0) {
2164 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2165 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2166 cpudata->gxcr0 &= vmx_xcr0_mask;
2167 cpudata->gxcr0 |= XCR0_X87;
2168 }
2169 }
2170
2171 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2172 if (flags & NVMM_X64_STATE_DRS) {
2173 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2174
2175 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2176 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2177 }
2178
2179 if (flags & NVMM_X64_STATE_MSRS) {
2180 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2181 state->msrs[NVMM_X64_MSR_STAR];
2182 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2183 state->msrs[NVMM_X64_MSR_LSTAR];
2184 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2185 state->msrs[NVMM_X64_MSR_CSTAR];
2186 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2187 state->msrs[NVMM_X64_MSR_SFMASK];
2188 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2189 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2190
2191 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2192 state->msrs[NVMM_X64_MSR_EFER]);
2193 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2194 state->msrs[NVMM_X64_MSR_PAT]);
2195 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2196 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2197 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2198 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2199 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2200 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2201
2202 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2203 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2204 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2205 ctls1 |= ENTRY_CTLS_LONG_MODE;
2206 } else {
2207 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2208 }
2209 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2210 }
2211
2212 if (flags & NVMM_X64_STATE_MISC) {
2213 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2214 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2215 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2216 intstate |= INT_STATE_MOVSS;
2217 }
2218 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2219
2220 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2221 vmx_event_waitexit_enable(vcpu, false);
2222 } else {
2223 vmx_event_waitexit_disable(vcpu, false);
2224 }
2225
2226 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2227 vmx_event_waitexit_enable(vcpu, true);
2228 } else {
2229 vmx_event_waitexit_disable(vcpu, true);
2230 }
2231 }
2232
2233 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2234 if (flags & NVMM_X64_STATE_FPU) {
2235 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2236 sizeof(state->fpu));
2237
2238 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2239 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2240 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2241
2242 if (vmx_xcr0_mask != 0) {
2243 /* Reset XSTATE_BV, to force a reload. */
2244 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2245 }
2246 }
2247
2248 vmx_vmcs_leave(vcpu);
2249 }
2250
2251 static void
2252 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2253 {
2254 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2255 struct vmx_cpudata *cpudata = vcpu->cpudata;
2256 uint64_t intstate;
2257
2258 vmx_vmcs_enter(vcpu);
2259
2260 if (flags & NVMM_X64_STATE_SEGS) {
2261 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2262 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2263 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2264 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2265 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2266 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2267 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2268 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2269 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2270 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2271 }
2272
2273 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2274 if (flags & NVMM_X64_STATE_GPRS) {
2275 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2276
2277 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2278 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2279 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2280 }
2281
2282 if (flags & NVMM_X64_STATE_CRS) {
2283 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2284 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2285 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2286 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2287 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2288 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2289
2290 /* Hide VMXE. */
2291 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2292 }
2293
2294 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2295 if (flags & NVMM_X64_STATE_DRS) {
2296 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2297
2298 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2299 }
2300
2301 if (flags & NVMM_X64_STATE_MSRS) {
2302 state->msrs[NVMM_X64_MSR_STAR] =
2303 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2304 state->msrs[NVMM_X64_MSR_LSTAR] =
2305 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2306 state->msrs[NVMM_X64_MSR_CSTAR] =
2307 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2308 state->msrs[NVMM_X64_MSR_SFMASK] =
2309 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2310 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2311 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2312
2313 vmx_vmread(VMCS_GUEST_IA32_EFER,
2314 &state->msrs[NVMM_X64_MSR_EFER]);
2315 vmx_vmread(VMCS_GUEST_IA32_PAT,
2316 &state->msrs[NVMM_X64_MSR_PAT]);
2317 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2318 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2319 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2320 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2321 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2322 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2323 }
2324
2325 if (flags & NVMM_X64_STATE_MISC) {
2326 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2327 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2328 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2329
2330 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2331 cpudata->int_window_exit;
2332 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2333 cpudata->nmi_window_exit;
2334 }
2335
2336 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2337 if (flags & NVMM_X64_STATE_FPU) {
2338 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2339 sizeof(state->fpu));
2340 }
2341
2342 vmx_vmcs_leave(vcpu);
2343 }
2344
2345 /* -------------------------------------------------------------------------- */
2346
2347 static void
2348 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2349 {
2350 struct vmx_cpudata *cpudata = vcpu->cpudata;
2351 size_t i, oct, bit;
2352
2353 mutex_enter(&vmx_asidlock);
2354
2355 for (i = 0; i < vmx_maxasid; i++) {
2356 oct = i / 8;
2357 bit = i % 8;
2358
2359 if (vmx_asidmap[oct] & __BIT(bit)) {
2360 continue;
2361 }
2362
2363 cpudata->asid = i;
2364
2365 vmx_asidmap[oct] |= __BIT(bit);
2366 vmx_vmwrite(VMCS_VPID, i);
2367 mutex_exit(&vmx_asidlock);
2368 return;
2369 }
2370
2371 mutex_exit(&vmx_asidlock);
2372
2373 panic("%s: impossible", __func__);
2374 }
2375
2376 static void
2377 vmx_asid_free(struct nvmm_cpu *vcpu)
2378 {
2379 size_t oct, bit;
2380 uint64_t asid;
2381
2382 vmx_vmread(VMCS_VPID, &asid);
2383
2384 oct = asid / 8;
2385 bit = asid % 8;
2386
2387 mutex_enter(&vmx_asidlock);
2388 vmx_asidmap[oct] &= ~__BIT(bit);
2389 mutex_exit(&vmx_asidlock);
2390 }
2391
2392 static void
2393 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2394 {
2395 struct vmx_cpudata *cpudata = vcpu->cpudata;
2396 struct vmcs *vmcs = cpudata->vmcs;
2397 struct msr_entry *gmsr = cpudata->gmsr;
2398 extern uint8_t vmx_resume_rip;
2399 uint64_t rev, eptp;
2400
2401 rev = vmx_get_revision();
2402
2403 memset(vmcs, 0, VMCS_SIZE);
2404 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2405 vmcs->abort = 0;
2406
2407 vmx_vmcs_enter(vcpu);
2408
2409 /* No link pointer. */
2410 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2411
2412 /* Install the CTLSs. */
2413 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2414 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2415 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2416 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2417 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2418
2419 /* Allow direct access to certain MSRs. */
2420 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2421 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2422 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2423 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2424 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2425 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2426 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2427 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2428 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2429 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2430 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2431 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2432 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2433 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2434 true, false);
2435 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2436
2437 /*
2438 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2439 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2440 */
2441 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2442 gmsr[VMX_MSRLIST_STAR].val = 0;
2443 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2444 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2445 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2446 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2447 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2448 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2449 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2450 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2451 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2452 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2453 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2454 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2455 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2456 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2457
2458 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2459 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2460 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2461
2462 /* Force CR4_VMXE to zero. */
2463 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2464
2465 /* Set the Host state for resuming. */
2466 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2467 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2468 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2469 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2470 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2471 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2472 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2473 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2474 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2475 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2476 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2477 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2478 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2479 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2480
2481 /* Generate ASID. */
2482 vmx_asid_alloc(vcpu);
2483
2484 /* Enable Extended Paging, 4-Level. */
2485 eptp =
2486 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2487 __SHIFTIN(4-1, EPTP_WALKLEN) |
2488 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2489 mach->vm->vm_map.pmap->pm_pdirpa[0];
2490 vmx_vmwrite(VMCS_EPTP, eptp);
2491
2492 /* Init IA32_MISC_ENABLE. */
2493 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2494 cpudata->gmsr_misc_enable &=
2495 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2496 cpudata->gmsr_misc_enable |=
2497 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2498
2499 /* Init XSAVE header. */
2500 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2501 cpudata->gfpu.xsh_xcomp_bv = 0;
2502
2503 /* Set guest TSC to zero, more or less. */
2504 cpudata->tsc_offset = -cpu_counter();
2505
2506 /* These MSRs are static. */
2507 cpudata->star = rdmsr(MSR_STAR);
2508 cpudata->cstar = rdmsr(MSR_CSTAR);
2509 cpudata->sfmask = rdmsr(MSR_SFMASK);
2510
2511 /* Install the RESET state. */
2512 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2513
2514 vmx_vmcs_leave(vcpu);
2515 }
2516
2517 static int
2518 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2519 {
2520 struct vmx_cpudata *cpudata;
2521 int error;
2522
2523 /* Allocate the VMX cpudata. */
2524 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2525 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2526 UVM_KMF_WIRED|UVM_KMF_ZERO);
2527 vcpu->cpudata = cpudata;
2528
2529 /* VMCS */
2530 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2531 VMCS_NPAGES);
2532 if (error)
2533 goto error;
2534
2535 /* MSR Bitmap */
2536 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2537 MSRBM_NPAGES);
2538 if (error)
2539 goto error;
2540
2541 /* Guest MSR List */
2542 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2543 if (error)
2544 goto error;
2545
2546 kcpuset_create(&cpudata->htlb_want_flush, true);
2547
2548 /* Init the VCPU info. */
2549 vmx_vcpu_init(mach, vcpu);
2550
2551 return 0;
2552
2553 error:
2554 if (cpudata->vmcs_pa) {
2555 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2556 VMCS_NPAGES);
2557 }
2558 if (cpudata->msrbm_pa) {
2559 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2560 MSRBM_NPAGES);
2561 }
2562 if (cpudata->gmsr_pa) {
2563 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2564 }
2565
2566 kmem_free(cpudata, sizeof(*cpudata));
2567 return error;
2568 }
2569
2570 static void
2571 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2572 {
2573 struct vmx_cpudata *cpudata = vcpu->cpudata;
2574
2575 vmx_vmcs_enter(vcpu);
2576 vmx_asid_free(vcpu);
2577 vmx_vmcs_destroy(vcpu);
2578
2579 kcpuset_destroy(cpudata->htlb_want_flush);
2580
2581 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2582 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2583 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2584 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2585 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2586 }
2587
2588 /* -------------------------------------------------------------------------- */
2589
2590 static void
2591 vmx_tlb_flush(struct pmap *pm)
2592 {
2593 struct nvmm_machine *mach = pm->pm_data;
2594 struct vmx_machdata *machdata = mach->machdata;
2595
2596 atomic_inc_64(&machdata->mach_htlb_gen);
2597
2598 /* Generates IPIs, which cause #VMEXITs. */
2599 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2600 }
2601
2602 static void
2603 vmx_machine_create(struct nvmm_machine *mach)
2604 {
2605 struct pmap *pmap = mach->vm->vm_map.pmap;
2606 struct vmx_machdata *machdata;
2607
2608 /* Convert to EPT. */
2609 pmap_ept_transform(pmap);
2610
2611 /* Fill in pmap info. */
2612 pmap->pm_data = (void *)mach;
2613 pmap->pm_tlb_flush = vmx_tlb_flush;
2614
2615 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2616 mach->machdata = machdata;
2617
2618 /* Start with an hTLB flush everywhere. */
2619 machdata->mach_htlb_gen = 1;
2620 }
2621
2622 static void
2623 vmx_machine_destroy(struct nvmm_machine *mach)
2624 {
2625 struct vmx_machdata *machdata = mach->machdata;
2626
2627 kmem_free(machdata, sizeof(struct vmx_machdata));
2628 }
2629
2630 static int
2631 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2632 {
2633 struct nvmm_x86_conf_cpuid *cpuid = data;
2634 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2635 size_t i;
2636
2637 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2638 return EINVAL;
2639 }
2640
2641 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2642 (cpuid->set.ebx & cpuid->del.ebx) ||
2643 (cpuid->set.ecx & cpuid->del.ecx) ||
2644 (cpuid->set.edx & cpuid->del.edx))) {
2645 return EINVAL;
2646 }
2647
2648 /* If already here, replace. */
2649 for (i = 0; i < VMX_NCPUIDS; i++) {
2650 if (!machdata->cpuidpresent[i]) {
2651 continue;
2652 }
2653 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2654 memcpy(&machdata->cpuid[i], cpuid,
2655 sizeof(struct nvmm_x86_conf_cpuid));
2656 return 0;
2657 }
2658 }
2659
2660 /* Not here, insert. */
2661 for (i = 0; i < VMX_NCPUIDS; i++) {
2662 if (!machdata->cpuidpresent[i]) {
2663 machdata->cpuidpresent[i] = true;
2664 memcpy(&machdata->cpuid[i], cpuid,
2665 sizeof(struct nvmm_x86_conf_cpuid));
2666 return 0;
2667 }
2668 }
2669
2670 return ENOBUFS;
2671 }
2672
2673 /* -------------------------------------------------------------------------- */
2674
2675 static int
2676 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2677 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2678 {
2679 uint64_t basic, val, true_val;
2680 bool one_allowed, zero_allowed, has_true;
2681 size_t i;
2682
2683 basic = rdmsr(MSR_IA32_VMX_BASIC);
2684 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2685
2686 val = rdmsr(msr_ctls);
2687 if (has_true) {
2688 true_val = rdmsr(msr_true_ctls);
2689 } else {
2690 true_val = val;
2691 }
2692
2693 #define ONE_ALLOWED(msrval, bitoff) \
2694 ((msrval & __BIT(32 + bitoff)) != 0)
2695 #define ZERO_ALLOWED(msrval, bitoff) \
2696 ((msrval & __BIT(bitoff)) == 0)
2697
2698 for (i = 0; i < 32; i++) {
2699 one_allowed = ONE_ALLOWED(true_val, i);
2700 zero_allowed = ZERO_ALLOWED(true_val, i);
2701
2702 if (zero_allowed && !one_allowed) {
2703 if (set_one & __BIT(i))
2704 return -1;
2705 *res &= ~__BIT(i);
2706 } else if (one_allowed && !zero_allowed) {
2707 if (set_zero & __BIT(i))
2708 return -1;
2709 *res |= __BIT(i);
2710 } else {
2711 if (set_zero & __BIT(i)) {
2712 *res &= ~__BIT(i);
2713 } else if (set_one & __BIT(i)) {
2714 *res |= __BIT(i);
2715 } else if (!has_true) {
2716 *res &= ~__BIT(i);
2717 } else if (ZERO_ALLOWED(val, i)) {
2718 *res &= ~__BIT(i);
2719 } else if (ONE_ALLOWED(val, i)) {
2720 *res |= __BIT(i);
2721 } else {
2722 return -1;
2723 }
2724 }
2725 }
2726
2727 return 0;
2728 }
2729
2730 static bool
2731 vmx_ident(void)
2732 {
2733 uint64_t msr;
2734 int ret;
2735
2736 if (!(cpu_feature[1] & CPUID2_VMX)) {
2737 return false;
2738 }
2739
2740 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2741 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2742 return false;
2743 }
2744
2745 msr = rdmsr(MSR_IA32_VMX_BASIC);
2746 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2747 return false;
2748 }
2749 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2750 return false;
2751 }
2752
2753 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2754 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2755 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2756 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2757 if (ret == -1) {
2758 return false;
2759 }
2760
2761 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2762 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2763 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2764 if (ret == -1) {
2765 return false;
2766 }
2767
2768 /* Init the CTLSs right now, and check for errors. */
2769 ret = vmx_init_ctls(
2770 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2771 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2772 &vmx_pinbased_ctls);
2773 if (ret == -1) {
2774 return false;
2775 }
2776 ret = vmx_init_ctls(
2777 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2778 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2779 &vmx_procbased_ctls);
2780 if (ret == -1) {
2781 return false;
2782 }
2783 ret = vmx_init_ctls(
2784 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2785 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2786 &vmx_procbased_ctls2);
2787 if (ret == -1) {
2788 return false;
2789 }
2790 ret = vmx_init_ctls(
2791 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2792 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2793 &vmx_entry_ctls);
2794 if (ret == -1) {
2795 return false;
2796 }
2797 ret = vmx_init_ctls(
2798 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2799 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2800 &vmx_exit_ctls);
2801 if (ret == -1) {
2802 return false;
2803 }
2804
2805 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2806 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2807 return false;
2808 }
2809 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2810 return false;
2811 }
2812 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2813 return false;
2814 }
2815 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2816 pmap_ept_has_ad = true;
2817 } else {
2818 pmap_ept_has_ad = false;
2819 }
2820 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2821 return false;
2822 }
2823
2824 return true;
2825 }
2826
2827 static void
2828 vmx_init_asid(uint32_t maxasid)
2829 {
2830 size_t allocsz;
2831
2832 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2833
2834 vmx_maxasid = maxasid;
2835 allocsz = roundup(maxasid, 8) / 8;
2836 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2837
2838 /* ASID 0 is reserved for the host. */
2839 vmx_asidmap[0] |= __BIT(0);
2840 }
2841
2842 static void
2843 vmx_change_cpu(void *arg1, void *arg2)
2844 {
2845 struct cpu_info *ci = curcpu();
2846 bool enable = (bool)arg1;
2847 uint64_t cr4;
2848
2849 if (!enable) {
2850 vmx_vmxoff();
2851 }
2852
2853 cr4 = rcr4();
2854 if (enable) {
2855 cr4 |= CR4_VMXE;
2856 } else {
2857 cr4 &= ~CR4_VMXE;
2858 }
2859 lcr4(cr4);
2860
2861 if (enable) {
2862 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2863 }
2864 }
2865
2866 static void
2867 vmx_init_l1tf(void)
2868 {
2869 u_int descs[4];
2870 uint64_t msr;
2871
2872 if (cpuid_level < 7) {
2873 return;
2874 }
2875
2876 x86_cpuid(7, descs);
2877
2878 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2879 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2880 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2881 /* No mitigation needed. */
2882 return;
2883 }
2884 }
2885
2886 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2887 /* Enable hardware mitigation. */
2888 vmx_msrlist_entry_nmsr += 1;
2889 }
2890 }
2891
2892 static void
2893 vmx_init(void)
2894 {
2895 CPU_INFO_ITERATOR cii;
2896 struct cpu_info *ci;
2897 uint64_t xc, msr;
2898 struct vmxon *vmxon;
2899 uint32_t revision;
2900 paddr_t pa;
2901 vaddr_t va;
2902 int error;
2903
2904 /* Init the ASID bitmap (VPID). */
2905 vmx_init_asid(VPID_MAX);
2906
2907 /* Init the XCR0 mask. */
2908 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2909
2910 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2911 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2912 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2913 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2914 } else {
2915 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2916 }
2917 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2918 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2919 } else {
2920 vmx_ept_flush_op = VMX_INVEPT_ALL;
2921 }
2922 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2923 vmx_eptp_type = EPTP_TYPE_WB;
2924 } else {
2925 vmx_eptp_type = EPTP_TYPE_UC;
2926 }
2927
2928 /* Init the L1TF mitigation. */
2929 vmx_init_l1tf();
2930
2931 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2932 revision = vmx_get_revision();
2933
2934 for (CPU_INFO_FOREACH(cii, ci)) {
2935 error = vmx_memalloc(&pa, &va, 1);
2936 if (error) {
2937 panic("%s: out of memory", __func__);
2938 }
2939 vmxoncpu[cpu_index(ci)].pa = pa;
2940 vmxoncpu[cpu_index(ci)].va = va;
2941
2942 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2943 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2944 }
2945
2946 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2947 xc_wait(xc);
2948 }
2949
2950 static void
2951 vmx_fini_asid(void)
2952 {
2953 size_t allocsz;
2954
2955 allocsz = roundup(vmx_maxasid, 8) / 8;
2956 kmem_free(vmx_asidmap, allocsz);
2957
2958 mutex_destroy(&vmx_asidlock);
2959 }
2960
2961 static void
2962 vmx_fini(void)
2963 {
2964 uint64_t xc;
2965 size_t i;
2966
2967 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2968 xc_wait(xc);
2969
2970 for (i = 0; i < MAXCPUS; i++) {
2971 if (vmxoncpu[i].pa != 0)
2972 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2973 }
2974
2975 vmx_fini_asid();
2976 }
2977
2978 static void
2979 vmx_capability(struct nvmm_capability *cap)
2980 {
2981 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2982 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2983 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2984 }
2985
2986 const struct nvmm_impl nvmm_x86_vmx = {
2987 .ident = vmx_ident,
2988 .init = vmx_init,
2989 .fini = vmx_fini,
2990 .capability = vmx_capability,
2991 .conf_max = NVMM_X86_NCONF,
2992 .conf_sizes = vmx_conf_sizes,
2993 .state_size = sizeof(struct nvmm_x64_state),
2994 .machine_create = vmx_machine_create,
2995 .machine_destroy = vmx_machine_destroy,
2996 .machine_configure = vmx_machine_configure,
2997 .vcpu_create = vmx_vcpu_create,
2998 .vcpu_destroy = vmx_vcpu_destroy,
2999 .vcpu_setstate = vmx_vcpu_setstate,
3000 .vcpu_getstate = vmx_vcpu_getstate,
3001 .vcpu_inject = vmx_vcpu_inject,
3002 .vcpu_run = vmx_vcpu_run
3003 };
3004