Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.2
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.2 2019/02/14 09:37:31 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.2 2019/02/14 09:37:31 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 
     42 #include <uvm/uvm.h>
     43 #include <uvm/uvm_page.h>
     44 
     45 #include <x86/cputypes.h>
     46 #include <x86/specialreg.h>
     47 #include <x86/pmap.h>
     48 #include <x86/dbregs.h>
     49 #include <machine/cpuvar.h>
     50 
     51 #include <dev/nvmm/nvmm.h>
     52 #include <dev/nvmm/nvmm_internal.h>
     53 #include <dev/nvmm/x86/nvmm_x86.h>
     54 
     55 int _vmx_vmxon(paddr_t *pa);
     56 int _vmx_vmxoff(void);
     57 int _vmx_invept(uint64_t op, void *desc);
     58 int _vmx_invvpid(uint64_t op, void *desc);
     59 int _vmx_vmread(uint64_t op, uint64_t *val);
     60 int _vmx_vmwrite(uint64_t op, uint64_t val);
     61 int _vmx_vmptrld(paddr_t *pa);
     62 int _vmx_vmptrst(paddr_t *pa);
     63 int _vmx_vmclear(paddr_t *pa);
     64 int vmx_vmlaunch(uint64_t *gprs);
     65 int vmx_vmresume(uint64_t *gprs);
     66 
     67 #define vmx_vmxon(a) \
     68 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     69 		panic("%s: VMXON failed", __func__); \
     70 	}
     71 #define vmx_vmxoff() \
     72 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     73 		panic("%s: VMXOFF failed", __func__); \
     74 	}
     75 #define vmx_invept(a, b) \
     76 	if (__predict_false(_vmx_invept(a, b) != 0)) { \
     77 		panic("%s: INVEPT failed", __func__); \
     78 	}
     79 #define vmx_invvpid(a, b) \
     80 	if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
     81 		panic("%s: INVVPID failed", __func__); \
     82 	}
     83 #define vmx_vmread(a, b) \
     84 	if (__predict_false(_vmx_vmread(a, b) != 0)) { \
     85 		panic("%s: VMREAD failed", __func__); \
     86 	}
     87 #define vmx_vmwrite(a, b) \
     88 	if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
     89 		panic("%s: VMWRITE failed", __func__); \
     90 	}
     91 #define vmx_vmptrld(a) \
     92 	if (__predict_false(_vmx_vmptrld(a) != 0)) { \
     93 		panic("%s: VMPTRLD failed", __func__); \
     94 	}
     95 #define vmx_vmptrst(a) \
     96 	if (__predict_false(_vmx_vmptrst(a) != 0)) { \
     97 		panic("%s: VMPTRST failed", __func__); \
     98 	}
     99 #define vmx_vmclear(a) \
    100 	if (__predict_false(_vmx_vmclear(a) != 0)) { \
    101 		panic("%s: VMCLEAR failed", __func__); \
    102 	}
    103 
    104 #define MSR_IA32_FEATURE_CONTROL	0x003A
    105 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    106 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    107 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    108 
    109 #define MSR_IA32_VMX_BASIC		0x0480
    110 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    111 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    112 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    113 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    114 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    115 #define			MEM_TYPE_UC		0
    116 #define			MEM_TYPE_WB		6
    117 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    118 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    119 
    120 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    121 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    122 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    123 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    124 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    125 
    126 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    127 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    128 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    129 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    130 
    131 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    132 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    133 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    134 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    135 
    136 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    137 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    138 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    139 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    140 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    141 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    142 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    143 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    144 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    145 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    146 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    147 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    148 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    149 
    150 /* -------------------------------------------------------------------------- */
    151 
    152 /* 16-bit control fields */
    153 #define VMCS_VPID				0x00000000
    154 #define VMCS_PIR_VECTOR				0x00000002
    155 #define VMCS_EPTP_INDEX				0x00000004
    156 /* 16-bit guest-state fields */
    157 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    158 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    159 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    160 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    161 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    162 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    163 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    164 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    165 #define VMCS_GUEST_INTR_STATUS			0x00000810
    166 #define VMCS_PML_INDEX				0x00000812
    167 /* 16-bit host-state fields */
    168 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    169 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    170 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    171 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    172 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    173 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    174 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    175 /* 64-bit control fields */
    176 #define VMCS_IO_BITMAP_A			0x00002000
    177 #define VMCS_IO_BITMAP_B			0x00002002
    178 #define VMCS_MSR_BITMAP				0x00002004
    179 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    180 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    181 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    182 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    183 #define VMCS_PML_ADDRESS			0x0000200E
    184 #define VMCS_TSC_OFFSET				0x00002010
    185 #define VMCS_VIRTUAL_APIC			0x00002012
    186 #define VMCS_APIC_ACCESS			0x00002014
    187 #define VMCS_PIR_DESC				0x00002016
    188 #define VMCS_VM_CONTROL				0x00002018
    189 #define VMCS_EPTP				0x0000201A
    190 #define		EPTP_TYPE			__BITS(2,0)
    191 #define			EPTP_TYPE_UC		0
    192 #define			EPTP_TYPE_WB		6
    193 #define		EPTP_WALKLEN			__BITS(5,3)
    194 #define		EPTP_FLAGS_AD			__BIT(6)
    195 #define		EPTP_PHYSADDR			__BITS(63,12)
    196 #define VMCS_EOI_EXIT0				0x0000201C
    197 #define VMCS_EOI_EXIT1				0x0000201E
    198 #define VMCS_EOI_EXIT2				0x00002020
    199 #define VMCS_EOI_EXIT3				0x00002022
    200 #define VMCS_EPTP_LIST				0x00002024
    201 #define VMCS_VMREAD_BITMAP			0x00002026
    202 #define VMCS_VMWRITE_BITMAP			0x00002028
    203 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    204 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    205 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    206 #define VMCS_TSC_MULTIPLIER			0x00002032
    207 /* 64-bit read-only fields */
    208 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    209 /* 64-bit guest-state fields */
    210 #define VMCS_LINK_POINTER			0x00002800
    211 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    212 #define VMCS_GUEST_IA32_PAT			0x00002804
    213 #define VMCS_GUEST_IA32_EFER			0x00002806
    214 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    215 #define VMCS_GUEST_PDPTE0			0x0000280A
    216 #define VMCS_GUEST_PDPTE1			0x0000280C
    217 #define VMCS_GUEST_PDPTE2			0x0000280E
    218 #define VMCS_GUEST_PDPTE3			0x00002810
    219 #define VMCS_GUEST_BNDCFGS			0x00002812
    220 /* 64-bit host-state fields */
    221 #define VMCS_HOST_IA32_PAT			0x00002C00
    222 #define VMCS_HOST_IA32_EFER			0x00002C02
    223 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    224 /* 32-bit control fields */
    225 #define VMCS_PINBASED_CTLS			0x00004000
    226 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    227 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    228 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    229 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    230 #define		PIN_CTLS_PROCESS_POSTEd_INTS	__BIT(7)
    231 #define VMCS_PROCBASED_CTLS			0x00004002
    232 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    233 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    234 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    235 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    236 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    237 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    238 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    239 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    240 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    241 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    242 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    243 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    244 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    245 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    246 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    247 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    248 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    249 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    250 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    251 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    252 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    253 #define VMCS_EXCEPTION_BITMAP			0x00004004
    254 #define VMCS_PF_ERROR_MASK			0x00004006
    255 #define VMCS_PF_ERROR_MATCH			0x00004008
    256 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    257 #define VMCS_EXIT_CTLS				0x0000400C
    258 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    259 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    260 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    261 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    262 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    263 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    264 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    265 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    266 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    267 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    268 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    269 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    270 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    271 #define VMCS_ENTRY_CTLS				0x00004012
    272 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    273 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    274 #define		ENTRY_CTLS_SMM			__BIT(10)
    275 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    276 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    277 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    278 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    279 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    280 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    281 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    282 #define VMCS_ENTRY_INTR_INFO			0x00004016
    283 #define		INTR_INFO_VECTOR		__BITS(7,0)
    284 #define		INTR_INFO_TYPE_EXT_INT		(0 << 8)
    285 #define		INTR_INFO_TYPE_NMI		(2 << 8)
    286 #define		INTR_INFO_TYPE_HW_EXC		(3 << 8)
    287 #define		INTR_INFO_TYPE_SW_INT		(4 << 8)
    288 #define		INTR_INFO_TYPE_PRIV_SW_EXC	(5 << 8)
    289 #define		INTR_INFO_TYPE_SW_EXC		(6 << 8)
    290 #define		INTR_INFO_TYPE_OTHER		(7 << 8)
    291 #define		INTR_INFO_ERROR			__BIT(11)
    292 #define		INTR_INFO_VALID			__BIT(31)
    293 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    294 #define VMCS_ENTRY_INST_LENGTH			0x0000401A
    295 #define VMCS_TPR_THRESHOLD			0x0000401C
    296 #define VMCS_PROCBASED_CTLS2			0x0000401E
    297 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    298 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    299 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    300 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    301 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    302 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    303 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    304 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    305 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    306 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    307 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    308 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    309 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    310 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    311 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    312 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    313 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    314 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    315 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    316 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    317 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    318 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    319 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    320 #define VMCS_PLE_GAP				0x00004020
    321 #define VMCS_PLE_WINDOW				0x00004022
    322 /* 32-bit read-only data fields */
    323 #define VMCS_INSTRUCTION_ERROR			0x00004400
    324 #define VMCS_EXIT_REASON			0x00004402
    325 #define VMCS_EXIT_INTR_INFO			0x00004404
    326 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    327 #define VMCS_IDT_VECTORING_INFO			0x00004408
    328 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    329 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    330 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    331 /* 32-bit guest-state fields */
    332 #define VMCS_GUEST_ES_LIMIT			0x00004800
    333 #define VMCS_GUEST_CS_LIMIT			0x00004802
    334 #define VMCS_GUEST_SS_LIMIT			0x00004804
    335 #define VMCS_GUEST_DS_LIMIT			0x00004806
    336 #define VMCS_GUEST_FS_LIMIT			0x00004808
    337 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    338 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    339 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    340 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    341 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    342 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    343 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    344 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    345 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    346 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    347 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    348 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    349 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    350 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    351 #define		INT_STATE_STI			__BIT(0)
    352 #define		INT_STATE_MOVSS			__BIT(1)
    353 #define		INT_STATE_SMI			__BIT(2)
    354 #define		INT_STATE_NMI			__BIT(3)
    355 #define		INT_STATE_ENCLAVE		__BIT(4)
    356 #define VMCS_GUEST_ACTIVITY			0x00004826
    357 #define VMCS_GUEST_SMBASE			0x00004828
    358 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    359 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    360 /* 32-bit host state fields */
    361 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    362 /* Natural-Width control fields */
    363 #define VMCS_CR0_MASK				0x00006000
    364 #define VMCS_CR4_MASK				0x00006002
    365 #define VMCS_CR0_SHADOW				0x00006004
    366 #define VMCS_CR4_SHADOW				0x00006006
    367 #define VMCS_CR3_TARGET0			0x00006008
    368 #define VMCS_CR3_TARGET1			0x0000600A
    369 #define VMCS_CR3_TARGET2			0x0000600C
    370 #define VMCS_CR3_TARGET3			0x0000600E
    371 /* Natural-Width read-only fields */
    372 #define VMCS_EXIT_QUALIFICATION			0x00006400
    373 #define VMCS_IO_RCX				0x00006402
    374 #define VMCS_IO_RSI				0x00006404
    375 #define VMCS_IO_RDI				0x00006406
    376 #define VMCS_IO_RIP				0x00006408
    377 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    378 /* Natural-Width guest-state fields */
    379 #define VMCS_GUEST_CR0				0x00006800
    380 #define VMCS_GUEST_CR3				0x00006802
    381 #define VMCS_GUEST_CR4				0x00006804
    382 #define VMCS_GUEST_ES_BASE			0x00006806
    383 #define VMCS_GUEST_CS_BASE			0x00006808
    384 #define VMCS_GUEST_SS_BASE			0x0000680A
    385 #define VMCS_GUEST_DS_BASE			0x0000680C
    386 #define VMCS_GUEST_FS_BASE			0x0000680E
    387 #define VMCS_GUEST_GS_BASE			0x00006810
    388 #define VMCS_GUEST_LDTR_BASE			0x00006812
    389 #define VMCS_GUEST_TR_BASE			0x00006814
    390 #define VMCS_GUEST_GDTR_BASE			0x00006816
    391 #define VMCS_GUEST_IDTR_BASE			0x00006818
    392 #define VMCS_GUEST_DR7				0x0000681A
    393 #define VMCS_GUEST_RSP				0x0000681C
    394 #define VMCS_GUEST_RIP				0x0000681E
    395 #define VMCS_GUEST_RFLAGS			0x00006820
    396 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    397 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    398 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    399 /* Natural-Width host-state fields */
    400 #define VMCS_HOST_CR0				0x00006C00
    401 #define VMCS_HOST_CR3				0x00006C02
    402 #define VMCS_HOST_CR4				0x00006C04
    403 #define VMCS_HOST_FS_BASE			0x00006C06
    404 #define VMCS_HOST_GS_BASE			0x00006C08
    405 #define VMCS_HOST_TR_BASE			0x00006C0A
    406 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    407 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    408 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    409 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    410 #define VMCS_HOST_RSP				0x00006C14
    411 #define VMCS_HOST_RIP				0x00006c16
    412 
    413 /* VMX basic exit reasons. */
    414 #define VMCS_EXITCODE_EXC_NMI			0
    415 #define VMCS_EXITCODE_EXT_INT			1
    416 #define VMCS_EXITCODE_SHUTDOWN			2
    417 #define VMCS_EXITCODE_INIT			3
    418 #define VMCS_EXITCODE_SIPI			4
    419 #define VMCS_EXITCODE_SMI			5
    420 #define VMCS_EXITCODE_OTHER_SMI			6
    421 #define VMCS_EXITCODE_INT_WINDOW		7
    422 #define VMCS_EXITCODE_NMI_WINDOW		8
    423 #define VMCS_EXITCODE_TASK_SWITCH		9
    424 #define VMCS_EXITCODE_CPUID			10
    425 #define VMCS_EXITCODE_GETSEC			11
    426 #define VMCS_EXITCODE_HLT			12
    427 #define VMCS_EXITCODE_INVD			13
    428 #define VMCS_EXITCODE_INVLPG			14
    429 #define VMCS_EXITCODE_RDPMC			15
    430 #define VMCS_EXITCODE_RDTSC			16
    431 #define VMCS_EXITCODE_RSM			17
    432 #define VMCS_EXITCODE_VMCALL			18
    433 #define VMCS_EXITCODE_VMCLEAR			19
    434 #define VMCS_EXITCODE_VMLAUNCH			20
    435 #define VMCS_EXITCODE_VMPTRLD			21
    436 #define VMCS_EXITCODE_VMPTRST			22
    437 #define VMCS_EXITCODE_VMREAD			23
    438 #define VMCS_EXITCODE_VMRESUME			24
    439 #define VMCS_EXITCODE_VMWRITE			25
    440 #define VMCS_EXITCODE_VMXOFF			26
    441 #define VMCS_EXITCODE_VMXON			27
    442 #define VMCS_EXITCODE_CR			28
    443 #define VMCS_EXITCODE_DR			29
    444 #define VMCS_EXITCODE_IO			30
    445 #define VMCS_EXITCODE_RDMSR			31
    446 #define VMCS_EXITCODE_WRMSR			32
    447 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    448 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    449 #define VMCS_EXITCODE_MWAIT			36
    450 #define VMCS_EXITCODE_TRAP_FLAG			37
    451 #define VMCS_EXITCODE_MONITOR			39
    452 #define VMCS_EXITCODE_PAUSE			40
    453 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    454 #define VMCS_EXITCODE_TPR_BELOW			43
    455 #define VMCS_EXITCODE_APIC_ACCESS		44
    456 #define VMCS_EXITCODE_VEOI			45
    457 #define VMCS_EXITCODE_GDTR_IDTR			46
    458 #define VMCS_EXITCODE_LDTR_TR			47
    459 #define VMCS_EXITCODE_EPT_VIOLATION		48
    460 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    461 #define VMCS_EXITCODE_INVEPT			50
    462 #define VMCS_EXITCODE_RDTSCP			51
    463 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    464 #define VMCS_EXITCODE_INVVPID			53
    465 #define VMCS_EXITCODE_WBINVD			54
    466 #define VMCS_EXITCODE_XSETBV			55
    467 #define VMCS_EXITCODE_APIC_WRITE		56
    468 #define VMCS_EXITCODE_RDRAND			57
    469 #define VMCS_EXITCODE_INVPCID			58
    470 #define VMCS_EXITCODE_VMFUNC			59
    471 #define VMCS_EXITCODE_ENCLS			60
    472 #define VMCS_EXITCODE_RDSEED			61
    473 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    474 #define VMCS_EXITCODE_XSAVES			63
    475 #define VMCS_EXITCODE_XRSTORS			64
    476 
    477 /* -------------------------------------------------------------------------- */
    478 
    479 #define VMX_MSRLIST_STAR		0
    480 #define VMX_MSRLIST_LSTAR		1
    481 #define VMX_MSRLIST_CSTAR		2
    482 #define VMX_MSRLIST_SFMASK		3
    483 #define VMX_MSRLIST_KERNELGSBASE	4
    484 #define VMX_MSRLIST_EXIT_NMSR		5
    485 #define VMX_MSRLIST_L1DFLUSH		5
    486 
    487 /* On entry, we may do +1 to include L1DFLUSH. */
    488 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    489 
    490 struct vmxon {
    491 	uint32_t ident;
    492 #define VMXON_IDENT_REVISION	__BITS(30,0)
    493 
    494 	uint8_t data[PAGE_SIZE - 4];
    495 } __packed;
    496 
    497 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    498 
    499 struct vmxoncpu {
    500 	vaddr_t va;
    501 	paddr_t pa;
    502 };
    503 
    504 static struct vmxoncpu vmxoncpu[MAXCPUS];
    505 
    506 struct vmcs {
    507 	uint32_t ident;
    508 #define VMCS_IDENT_REVISION	__BITS(30,0)
    509 #define VMCS_IDENT_SHADOW	__BIT(31)
    510 
    511 	uint32_t abort;
    512 	uint8_t data[PAGE_SIZE - 8];
    513 } __packed;
    514 
    515 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    516 
    517 struct msr_entry {
    518 	uint32_t msr;
    519 	uint32_t rsvd;
    520 	uint64_t val;
    521 } __packed;
    522 
    523 struct ept_desc {
    524 	uint64_t eptp;
    525 	uint64_t mbz;
    526 } __packed;
    527 
    528 struct vpid_desc {
    529 	uint64_t vpid;
    530 	uint64_t addr;
    531 } __packed;
    532 
    533 #define VPID_MAX	0xFFFF
    534 
    535 /* Make sure we never run out of VPIDs. */
    536 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    537 
    538 static uint64_t vmx_tlb_flush_op __read_mostly;
    539 static uint64_t vmx_ept_flush_op __read_mostly;
    540 static uint64_t vmx_eptp_type __read_mostly;
    541 
    542 static uint64_t vmx_pinbased_ctls __read_mostly;
    543 static uint64_t vmx_procbased_ctls __read_mostly;
    544 static uint64_t vmx_procbased_ctls2 __read_mostly;
    545 static uint64_t vmx_entry_ctls __read_mostly;
    546 static uint64_t vmx_exit_ctls __read_mostly;
    547 
    548 static uint64_t vmx_cr0_fixed0 __read_mostly;
    549 static uint64_t vmx_cr0_fixed1 __read_mostly;
    550 static uint64_t vmx_cr4_fixed0 __read_mostly;
    551 static uint64_t vmx_cr4_fixed1 __read_mostly;
    552 
    553 #define VMX_PINBASED_CTLS_ONE	\
    554 	(PIN_CTLS_INT_EXITING| \
    555 	 PIN_CTLS_NMI_EXITING| \
    556 	 PIN_CTLS_VIRTUAL_NMIS)
    557 
    558 #define VMX_PINBASED_CTLS_ZERO	0
    559 
    560 #define VMX_PROCBASED_CTLS_ONE	\
    561 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    562 	 PROC_CTLS_HLT_EXITING| \
    563 	 PROC_CTLS_MWAIT_EXITING | \
    564 	 PROC_CTLS_RDPMC_EXITING | \
    565 	 PROC_CTLS_RCR8_EXITING | \
    566 	 PROC_CTLS_LCR8_EXITING | \
    567 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    568 	 PROC_CTLS_USE_MSR_BITMAPS | \
    569 	 PROC_CTLS_MONITOR_EXITING | \
    570 	 PROC_CTLS_ACTIVATE_CTLS2)
    571 
    572 #define VMX_PROCBASED_CTLS_ZERO	\
    573 	(PROC_CTLS_RCR3_EXITING| \
    574 	 PROC_CTLS_LCR3_EXITING)
    575 
    576 #define VMX_PROCBASED_CTLS2_ONE	\
    577 	(PROC_CTLS2_ENABLE_EPT| \
    578 	 PROC_CTLS2_ENABLE_VPID| \
    579 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    580 
    581 #define VMX_PROCBASED_CTLS2_ZERO	0
    582 
    583 #define VMX_ENTRY_CTLS_ONE	\
    584 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    585 	 ENTRY_CTLS_LOAD_EFER| \
    586 	 ENTRY_CTLS_LOAD_PAT)
    587 
    588 #define VMX_ENTRY_CTLS_ZERO	\
    589 	(ENTRY_CTLS_SMM| \
    590 	 ENTRY_CTLS_DISABLE_DUAL)
    591 
    592 #define VMX_EXIT_CTLS_ONE	\
    593 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    594 	 EXIT_CTLS_HOST_LONG_MODE| \
    595 	 EXIT_CTLS_SAVE_PAT| \
    596 	 EXIT_CTLS_LOAD_PAT| \
    597 	 EXIT_CTLS_SAVE_EFER| \
    598 	 EXIT_CTLS_LOAD_EFER)
    599 
    600 #define VMX_EXIT_CTLS_ZERO	0
    601 
    602 static uint8_t *vmx_asidmap __read_mostly;
    603 static uint32_t vmx_maxasid __read_mostly;
    604 static kmutex_t vmx_asidlock __cacheline_aligned;
    605 
    606 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    607 static uint64_t vmx_xcr0_mask __read_mostly;
    608 
    609 #define VMX_NCPUIDS	32
    610 
    611 #define VMCS_NPAGES	1
    612 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    613 
    614 #define MSRBM_NPAGES	1
    615 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    616 
    617 #define EFER_TLB_FLUSH \
    618 	(EFER_NXE|EFER_LMA|EFER_LME)
    619 #define CR0_TLB_FLUSH \
    620 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    621 #define CR4_TLB_FLUSH \
    622 	(CR4_PGE|CR4_PAE|CR4_PSE)
    623 
    624 /* -------------------------------------------------------------------------- */
    625 
    626 struct vmx_machdata {
    627 	bool cpuidpresent[VMX_NCPUIDS];
    628 	struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
    629 	kcpuset_t *ept_want_flush;
    630 };
    631 
    632 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
    633 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    634 };
    635 
    636 struct vmx_cpudata {
    637 	/* General */
    638 	uint64_t asid;
    639 	bool tlb_want_flush;
    640 
    641 	/* VMCS */
    642 	struct vmcs *vmcs;
    643 	paddr_t vmcs_pa;
    644 	size_t vmcs_refcnt;
    645 
    646 	/* MSR bitmap */
    647 	uint8_t *msrbm;
    648 	paddr_t msrbm_pa;
    649 
    650 	/* Host state */
    651 	uint64_t hxcr0;
    652 	uint64_t star;
    653 	uint64_t lstar;
    654 	uint64_t cstar;
    655 	uint64_t sfmask;
    656 	uint64_t kernelgsbase;
    657 	bool ts_set;
    658 	struct xsave_header hfpu __aligned(64);
    659 
    660 	/* Event state */
    661 	bool int_window_exit;
    662 	bool nmi_window_exit;
    663 
    664 	/* Guest state */
    665 	struct msr_entry *gmsr;
    666 	paddr_t gmsr_pa;
    667 	uint64_t gcr2;
    668 	uint64_t gcr8;
    669 	uint64_t gxcr0;
    670 	uint64_t gprs[NVMM_X64_NGPR];
    671 	uint64_t drs[NVMM_X64_NDR];
    672 	uint64_t tsc_offset;
    673 	struct xsave_header gfpu __aligned(64);
    674 };
    675 
    676 static const struct {
    677 	uint64_t selector;
    678 	uint64_t attrib;
    679 	uint64_t limit;
    680 	uint64_t base;
    681 } vmx_guest_segs[NVMM_X64_NSEG] = {
    682 	[NVMM_X64_SEG_ES] = {
    683 		VMCS_GUEST_ES_SELECTOR,
    684 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    685 		VMCS_GUEST_ES_LIMIT,
    686 		VMCS_GUEST_ES_BASE
    687 	},
    688 	[NVMM_X64_SEG_CS] = {
    689 		VMCS_GUEST_CS_SELECTOR,
    690 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    691 		VMCS_GUEST_CS_LIMIT,
    692 		VMCS_GUEST_CS_BASE
    693 	},
    694 	[NVMM_X64_SEG_SS] = {
    695 		VMCS_GUEST_SS_SELECTOR,
    696 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    697 		VMCS_GUEST_SS_LIMIT,
    698 		VMCS_GUEST_SS_BASE
    699 	},
    700 	[NVMM_X64_SEG_DS] = {
    701 		VMCS_GUEST_DS_SELECTOR,
    702 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    703 		VMCS_GUEST_DS_LIMIT,
    704 		VMCS_GUEST_DS_BASE
    705 	},
    706 	[NVMM_X64_SEG_FS] = {
    707 		VMCS_GUEST_FS_SELECTOR,
    708 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    709 		VMCS_GUEST_FS_LIMIT,
    710 		VMCS_GUEST_FS_BASE
    711 	},
    712 	[NVMM_X64_SEG_GS] = {
    713 		VMCS_GUEST_GS_SELECTOR,
    714 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    715 		VMCS_GUEST_GS_LIMIT,
    716 		VMCS_GUEST_GS_BASE
    717 	},
    718 	[NVMM_X64_SEG_GDT] = {
    719 		0, /* doesn't exist */
    720 		0, /* doesn't exist */
    721 		VMCS_GUEST_GDTR_LIMIT,
    722 		VMCS_GUEST_GDTR_BASE
    723 	},
    724 	[NVMM_X64_SEG_IDT] = {
    725 		0, /* doesn't exist */
    726 		0, /* doesn't exist */
    727 		VMCS_GUEST_IDTR_LIMIT,
    728 		VMCS_GUEST_IDTR_BASE
    729 	},
    730 	[NVMM_X64_SEG_LDT] = {
    731 		VMCS_GUEST_LDTR_SELECTOR,
    732 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    733 		VMCS_GUEST_LDTR_LIMIT,
    734 		VMCS_GUEST_LDTR_BASE
    735 	},
    736 	[NVMM_X64_SEG_TR] = {
    737 		VMCS_GUEST_TR_SELECTOR,
    738 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    739 		VMCS_GUEST_TR_LIMIT,
    740 		VMCS_GUEST_TR_BASE
    741 	}
    742 };
    743 
    744 /* -------------------------------------------------------------------------- */
    745 
    746 static uint64_t
    747 vmx_get_revision(void)
    748 {
    749 	uint64_t msr;
    750 
    751 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    752 	msr &= IA32_VMX_BASIC_IDENT;
    753 
    754 	return msr;
    755 }
    756 
    757 static void
    758 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    759 {
    760 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    761 	paddr_t oldpa __diagused;
    762 
    763 	cpudata->vmcs_refcnt++;
    764 	if (cpudata->vmcs_refcnt > 1) {
    765 #ifdef DIAGNOSTIC
    766 		KASSERT(kpreempt_disabled());
    767 		vmx_vmptrst(&oldpa);
    768 		KASSERT(oldpa == cpudata->vmcs_pa);
    769 #endif
    770 		return;
    771 	}
    772 
    773 	kpreempt_disable();
    774 
    775 #ifdef DIAGNOSTIC
    776 	vmx_vmptrst(&oldpa);
    777 	KASSERT(oldpa == 0xFFFFFFFFFFFFFFFF);
    778 #endif
    779 
    780 	vmx_vmptrld(&cpudata->vmcs_pa);
    781 }
    782 
    783 static void
    784 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    785 {
    786 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    787 	paddr_t oldpa __diagused;
    788 
    789 	KASSERT(kpreempt_disabled());
    790 	KASSERT(cpudata->vmcs_refcnt > 0);
    791 	cpudata->vmcs_refcnt--;
    792 
    793 	if (cpudata->vmcs_refcnt > 0) {
    794 #ifdef DIAGNOSTIC
    795 		vmx_vmptrst(&oldpa);
    796 		KASSERT(oldpa == cpudata->vmcs_pa);
    797 #endif
    798 		return;
    799 	}
    800 
    801 	vmx_vmclear(&cpudata->vmcs_pa);
    802 	kpreempt_enable();
    803 }
    804 
    805 /* -------------------------------------------------------------------------- */
    806 
    807 static void
    808 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    809 {
    810 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    811 	uint64_t ctls1;
    812 
    813 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    814 
    815 	if (nmi) {
    816 		// XXX INT_STATE_NMI?
    817 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    818 		cpudata->nmi_window_exit = true;
    819 	} else {
    820 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    821 		cpudata->int_window_exit = true;
    822 	}
    823 
    824 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    825 }
    826 
    827 static void
    828 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    829 {
    830 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    831 	uint64_t ctls1;
    832 
    833 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    834 
    835 	if (nmi) {
    836 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    837 		cpudata->nmi_window_exit = false;
    838 	} else {
    839 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    840 		cpudata->int_window_exit = false;
    841 	}
    842 
    843 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    844 }
    845 
    846 static inline int
    847 vmx_event_has_error(uint64_t vector)
    848 {
    849 	switch (vector) {
    850 	case 8:		/* #DF */
    851 	case 10:	/* #TS */
    852 	case 11:	/* #NP */
    853 	case 12:	/* #SS */
    854 	case 13:	/* #GP */
    855 	case 14:	/* #PF */
    856 	case 17:	/* #AC */
    857 	case 30:	/* #SX */
    858 		return 1;
    859 	default:
    860 		return 0;
    861 	}
    862 }
    863 
    864 static int
    865 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    866     struct nvmm_event *event)
    867 {
    868 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    869 	int type = 0, err = 0, ret = 0;
    870 	uint64_t info, intstate, rflags;
    871 
    872 	if (event->vector >= 256) {
    873 		return EINVAL;
    874 	}
    875 
    876 	vmx_vmcs_enter(vcpu);
    877 
    878 	switch (event->type) {
    879 	case NVMM_EVENT_INTERRUPT_HW:
    880 		type = INTR_INFO_TYPE_EXT_INT;
    881 		if (event->vector == 2) {
    882 			type = INTR_INFO_TYPE_NMI;
    883 		}
    884 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    885 		if (type == INTR_INFO_TYPE_NMI) {
    886 			if (cpudata->nmi_window_exit) {
    887 				ret = EAGAIN;
    888 				goto out;
    889 			}
    890 			vmx_event_waitexit_enable(vcpu, true);
    891 		} else {
    892 			vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
    893 			if ((rflags & PSL_I) == 0 ||
    894 			    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
    895 				vmx_event_waitexit_enable(vcpu, false);
    896 				ret = EAGAIN;
    897 				goto out;
    898 			}
    899 		}
    900 		err = 0;
    901 		break;
    902 	case NVMM_EVENT_INTERRUPT_SW:
    903 		ret = EINVAL;
    904 		goto out;
    905 	case NVMM_EVENT_EXCEPTION:
    906 		if (event->vector == 2 || event->vector >= 32) {
    907 			ret = EINVAL;
    908 			goto out;
    909 		}
    910 		if (event->vector == 3 || event->vector == 0) {
    911 			ret = EINVAL;
    912 			goto out;
    913 		}
    914 		type = INTR_INFO_TYPE_HW_EXC;
    915 		err = vmx_event_has_error(event->vector);
    916 		break;
    917 	default:
    918 		ret = EAGAIN;
    919 		goto out;
    920 	}
    921 
    922 	info =
    923 	    __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
    924 	    type |
    925 	    __SHIFTIN(err, INTR_INFO_ERROR) |
    926 	    __SHIFTIN(1, INTR_INFO_VALID);
    927 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
    928 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
    929 
    930 out:
    931 	vmx_vmcs_leave(vcpu);
    932 	return ret;
    933 }
    934 
    935 static void
    936 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    937 {
    938 	struct nvmm_event event;
    939 	int ret __diagused;
    940 
    941 	event.type = NVMM_EVENT_EXCEPTION;
    942 	event.vector = 6;
    943 	event.u.error = 0;
    944 
    945 	ret = vmx_vcpu_inject(mach, vcpu, &event);
    946 	KASSERT(ret == 0);
    947 }
    948 
    949 static void
    950 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
    951 {
    952 	struct nvmm_event event;
    953 	int ret __diagused;
    954 
    955 	event.type = NVMM_EVENT_EXCEPTION;
    956 	event.vector = 13;
    957 	event.u.error = 0;
    958 
    959 	ret = vmx_vcpu_inject(mach, vcpu, &event);
    960 	KASSERT(ret == 0);
    961 }
    962 
    963 static inline void
    964 vmx_inkernel_advance(void)
    965 {
    966 	uint64_t rip, inslen, intstate;
    967 
    968 	/*
    969 	 * Maybe we should also apply single-stepping and debug exceptions.
    970 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
    971 	 * debugger.
    972 	 */
    973 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
    974 	vmx_vmread(VMCS_GUEST_RIP, &rip);
    975 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
    976 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    977 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
    978 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
    979 }
    980 
    981 static void
    982 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
    983 {
    984 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    985 
    986 	switch (eax) {
    987 	case 0x00000001:
    988 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
    989 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
    990 		    CPUID_LOCAL_APIC_ID);
    991 		cpudata->gprs[NVMM_X64_GPR_RCX] &=
    992 		    ~(CPUID2_VMX|CPUID2_SMX|CPUID2_EST|CPUID2_TM2|CPUID2_PDCM|
    993 		      CPUID2_PCID|CPUID2_DEADLINE);
    994 		cpudata->gprs[NVMM_X64_GPR_RDX] &=
    995 		    ~(CPUID_DS|CPUID_ACPI|CPUID_TM);
    996 		break;
    997 	case 0x00000005:
    998 	case 0x00000006:
    999 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1000 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1001 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1002 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1003 		break;
   1004 	case 0x00000007:
   1005 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_SEF_INVPCID;
   1006 		cpudata->gprs[NVMM_X64_GPR_RDX] &=
   1007 		    ~(CPUID_SEF_IBRS|CPUID_SEF_STIBP|CPUID_SEF_L1D_FLUSH|
   1008 		      CPUID_SEF_SSBD);
   1009 		break;
   1010 	case 0x0000000D:
   1011 		if (ecx != 0 || vmx_xcr0_mask == 0) {
   1012 			break;
   1013 		}
   1014 		cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1015 		if (cpudata->gxcr0 & XCR0_SSE) {
   1016 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1017 		} else {
   1018 			cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1019 		}
   1020 		cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1021 		cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
   1022 		cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1023 		break;
   1024 	case 0x40000000:
   1025 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1026 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1027 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1028 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1029 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1030 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1031 		break;
   1032 	case 0x80000001:
   1033 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~CPUID_RDTSCP;
   1034 		break;
   1035 	default:
   1036 		break;
   1037 	}
   1038 }
   1039 
   1040 static void
   1041 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1042     struct nvmm_exit *exit)
   1043 {
   1044 	struct vmx_machdata *machdata = mach->machdata;
   1045 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1046 	struct nvmm_x86_conf_cpuid *cpuid;
   1047 	uint64_t eax, ecx;
   1048 	u_int descs[4];
   1049 	size_t i;
   1050 
   1051 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1052 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1053 	x86_cpuid2(eax, ecx, descs);
   1054 
   1055 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1056 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1057 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1058 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1059 
   1060 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1061 		cpuid = &machdata->cpuid[i];
   1062 		if (!machdata->cpuidpresent[i]) {
   1063 			continue;
   1064 		}
   1065 		if (cpuid->leaf != eax) {
   1066 			continue;
   1067 		}
   1068 
   1069 		/* del */
   1070 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
   1071 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
   1072 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
   1073 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
   1074 
   1075 		/* set */
   1076 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
   1077 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
   1078 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
   1079 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
   1080 
   1081 		break;
   1082 	}
   1083 
   1084 	/* Overwrite non-tunable leaves. */
   1085 	vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
   1086 
   1087 	vmx_inkernel_advance();
   1088 	exit->reason = NVMM_EXIT_NONE;
   1089 }
   1090 
   1091 static void
   1092 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1093     struct nvmm_exit *exit)
   1094 {
   1095 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1096 	uint64_t rflags;
   1097 
   1098 	if (cpudata->int_window_exit) {
   1099 		vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
   1100 		if (rflags & PSL_I) {
   1101 			vmx_event_waitexit_disable(vcpu, false);
   1102 		}
   1103 	}
   1104 
   1105 	vmx_inkernel_advance();
   1106 	exit->reason = NVMM_EXIT_HALTED;
   1107 }
   1108 
   1109 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1110 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1111 #define		CR_TYPE_WRITE	0
   1112 #define		CR_TYPE_READ	1
   1113 #define		CR_TYPE_CLTS	2
   1114 #define		CR_TYPE_LMSW	3
   1115 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1116 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1117 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1118 
   1119 static inline int
   1120 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1121 {
   1122 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1123 	if ((crval & fixed0) != fixed0) {
   1124 		return -1;
   1125 	}
   1126 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1127 	if (crval & ~fixed1) {
   1128 		return -1;
   1129 	}
   1130 	return 0;
   1131 }
   1132 
   1133 static int
   1134 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1135     uint64_t qual)
   1136 {
   1137 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1138 	uint64_t type, gpr, cr0;
   1139 
   1140 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1141 	if (type != CR_TYPE_WRITE) {
   1142 		return -1;
   1143 	}
   1144 
   1145 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1146 	KASSERT(gpr < 16);
   1147 
   1148 	if (gpr == NVMM_X64_GPR_RSP) {
   1149 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1150 	} else {
   1151 		gpr = cpudata->gprs[gpr];
   1152 	}
   1153 
   1154 	cr0 = gpr | CR0_NE | CR0_ET;
   1155 	cr0 &= ~(CR0_NW|CR0_CD);
   1156 
   1157 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1158 		return -1;
   1159 	}
   1160 
   1161 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1162 	vmx_inkernel_advance();
   1163 	return 0;
   1164 }
   1165 
   1166 static int
   1167 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1168     uint64_t qual)
   1169 {
   1170 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1171 	uint64_t type, gpr, cr4;
   1172 
   1173 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1174 	if (type != CR_TYPE_WRITE) {
   1175 		return -1;
   1176 	}
   1177 
   1178 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1179 	KASSERT(gpr < 16);
   1180 
   1181 	if (gpr == NVMM_X64_GPR_RSP) {
   1182 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1183 	} else {
   1184 		gpr = cpudata->gprs[gpr];
   1185 	}
   1186 
   1187 	cr4 = gpr | CR4_VMXE;
   1188 
   1189 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1190 		return -1;
   1191 	}
   1192 
   1193 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1194 	vmx_inkernel_advance();
   1195 	return 0;
   1196 }
   1197 
   1198 static int
   1199 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1200     uint64_t qual)
   1201 {
   1202 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1203 	uint64_t type, gpr;
   1204 	bool write;
   1205 
   1206 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1207 	if (type == CR_TYPE_WRITE) {
   1208 		write = true;
   1209 	} else if (type == CR_TYPE_READ) {
   1210 		write = false;
   1211 	} else {
   1212 		return -1;
   1213 	}
   1214 
   1215 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1216 	KASSERT(gpr < 16);
   1217 
   1218 	if (write) {
   1219 		if (gpr == NVMM_X64_GPR_RSP) {
   1220 			vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
   1221 		} else {
   1222 			cpudata->gcr8 = cpudata->gprs[gpr];
   1223 		}
   1224 	} else {
   1225 		if (gpr == NVMM_X64_GPR_RSP) {
   1226 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1227 		} else {
   1228 			cpudata->gprs[gpr] = cpudata->gcr8;
   1229 		}
   1230 	}
   1231 
   1232 	vmx_inkernel_advance();
   1233 	return 0;
   1234 }
   1235 
   1236 static void
   1237 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1238     struct nvmm_exit *exit)
   1239 {
   1240 	uint64_t qual;
   1241 	int ret;
   1242 
   1243 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1244 
   1245 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1246 	case 0:
   1247 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1248 		break;
   1249 	case 4:
   1250 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1251 		break;
   1252 	case 8:
   1253 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
   1254 		break;
   1255 	default:
   1256 		ret = -1;
   1257 		break;
   1258 	}
   1259 
   1260 	if (ret == -1) {
   1261 		vmx_inject_gp(mach, vcpu);
   1262 	}
   1263 
   1264 	exit->reason = NVMM_EXIT_NONE;
   1265 }
   1266 
   1267 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1268 #define		IO_SIZE_8	0
   1269 #define		IO_SIZE_16	1
   1270 #define		IO_SIZE_32	3
   1271 #define VMX_QUAL_IO_IN		__BIT(3)
   1272 #define VMX_QUAL_IO_STR		__BIT(4)
   1273 #define VMX_QUAL_IO_REP		__BIT(5)
   1274 #define VMX_QUAL_IO_DX		__BIT(6)
   1275 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1276 
   1277 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1278 #define		IO_ADRSIZE_16	0
   1279 #define		IO_ADRSIZE_32	1
   1280 #define		IO_ADRSIZE_64	2
   1281 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1282 
   1283 static const int seg_to_nvmm[] = {
   1284 	[0] = NVMM_X64_SEG_ES,
   1285 	[1] = NVMM_X64_SEG_CS,
   1286 	[2] = NVMM_X64_SEG_SS,
   1287 	[3] = NVMM_X64_SEG_DS,
   1288 	[4] = NVMM_X64_SEG_FS,
   1289 	[5] = NVMM_X64_SEG_GS
   1290 };
   1291 
   1292 static void
   1293 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1294     struct nvmm_exit *exit)
   1295 {
   1296 	uint64_t qual, info, inslen, rip;
   1297 
   1298 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1299 	vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
   1300 
   1301 	exit->reason = NVMM_EXIT_IO;
   1302 
   1303 	if (qual & VMX_QUAL_IO_IN) {
   1304 		exit->u.io.type = NVMM_EXIT_IO_IN;
   1305 	} else {
   1306 		exit->u.io.type = NVMM_EXIT_IO_OUT;
   1307 	}
   1308 
   1309 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1310 
   1311 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1312 	exit->u.io.seg = seg_to_nvmm[__SHIFTOUT(info, VMX_INFO_IO_SEG)];
   1313 
   1314 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1315 		exit->u.io.address_size = 8;
   1316 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1317 		exit->u.io.address_size = 4;
   1318 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1319 		exit->u.io.address_size = 2;
   1320 	}
   1321 
   1322 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1323 		exit->u.io.operand_size = 4;
   1324 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1325 		exit->u.io.operand_size = 2;
   1326 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1327 		exit->u.io.operand_size = 1;
   1328 	}
   1329 
   1330 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1331 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1332 
   1333 	if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
   1334 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1335 	}
   1336 
   1337 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1338 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1339 	exit->u.io.npc = rip + inslen;
   1340 }
   1341 
   1342 static const uint64_t msr_ignore_list[] = {
   1343 	MSR_BIOS_SIGN,
   1344 	MSR_IA32_PLATFORM_ID
   1345 };
   1346 
   1347 static bool
   1348 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1349     struct nvmm_exit *exit)
   1350 {
   1351 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1352 	uint64_t val;
   1353 	size_t i;
   1354 
   1355 	switch (exit->u.msr.type) {
   1356 	case NVMM_EXIT_MSR_RDMSR:
   1357 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1358 			vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
   1359 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1360 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1361 			goto handled;
   1362 		}
   1363 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1364 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1365 				continue;
   1366 			val = 0;
   1367 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1368 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1369 			goto handled;
   1370 		}
   1371 		break;
   1372 	case NVMM_EXIT_MSR_WRMSR:
   1373 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1374 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
   1375 			goto handled;
   1376 		}
   1377 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1378 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1379 				continue;
   1380 			goto handled;
   1381 		}
   1382 		break;
   1383 	}
   1384 
   1385 	return false;
   1386 
   1387 handled:
   1388 	vmx_inkernel_advance();
   1389 	return true;
   1390 }
   1391 
   1392 static void
   1393 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1394     struct nvmm_exit *exit, bool rdmsr)
   1395 {
   1396 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1397 	uint64_t inslen, rip;
   1398 
   1399 	if (rdmsr) {
   1400 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1401 	} else {
   1402 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1403 	}
   1404 
   1405 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1406 
   1407 	if (rdmsr) {
   1408 		exit->u.msr.val = 0;
   1409 	} else {
   1410 		uint64_t rdx, rax;
   1411 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1412 		rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1413 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1414 	}
   1415 
   1416 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1417 		exit->reason = NVMM_EXIT_NONE;
   1418 		return;
   1419 	}
   1420 
   1421 	exit->reason = NVMM_EXIT_MSR;
   1422 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1423 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1424 	exit->u.msr.npc = rip + inslen;
   1425 }
   1426 
   1427 static void
   1428 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1429     struct nvmm_exit *exit)
   1430 {
   1431 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1432 	uint16_t val;
   1433 	uint64_t ss;
   1434 
   1435 	exit->reason = NVMM_EXIT_NONE;
   1436 
   1437 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1438 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1439 
   1440 	vmx_vmread(VMCS_GUEST_SS_SELECTOR, &ss);
   1441 
   1442 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1443 		goto error;
   1444 	} else if (__predict_false((ss & SEL_UPL) != 0)) {
   1445 		goto error;
   1446 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1447 		goto error;
   1448 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1449 		goto error;
   1450 	}
   1451 
   1452 	cpudata->gxcr0 = val;
   1453 
   1454 	vmx_inkernel_advance();
   1455 	return;
   1456 
   1457 error:
   1458 	vmx_inject_gp(mach, vcpu);
   1459 }
   1460 
   1461 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1462 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1463 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1464 
   1465 static void
   1466 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1467     struct nvmm_exit *exit)
   1468 {
   1469 	uint64_t perm;
   1470 	gpaddr_t gpa;
   1471 	int error;
   1472 
   1473 	vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
   1474 
   1475 	error = uvm_fault(&mach->vm->vm_map, gpa, VM_PROT_ALL);
   1476 
   1477 	if (error) {
   1478 		exit->reason = NVMM_EXIT_MEMORY;
   1479 		vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
   1480 		if (perm & VMX_EPT_VIOLATION_WRITE)
   1481 			exit->u.mem.perm = NVMM_EXIT_MEMORY_WRITE;
   1482 		else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1483 			exit->u.mem.perm = NVMM_EXIT_MEMORY_EXEC;
   1484 		else
   1485 			exit->u.mem.perm = NVMM_EXIT_MEMORY_READ;
   1486 		exit->u.mem.gpa = gpa;
   1487 		exit->u.mem.inst_len = 0;
   1488 	} else {
   1489 		exit->reason = NVMM_EXIT_NONE;
   1490 	}
   1491 }
   1492 
   1493 static void
   1494 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1495 {
   1496 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1497 
   1498 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1499 
   1500 	fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
   1501 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1502 
   1503 	if (vmx_xcr0_mask != 0) {
   1504 		cpudata->hxcr0 = rdxcr(0);
   1505 		wrxcr(0, cpudata->gxcr0);
   1506 	}
   1507 }
   1508 
   1509 static void
   1510 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1511 {
   1512 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1513 
   1514 	if (vmx_xcr0_mask != 0) {
   1515 		cpudata->gxcr0 = rdxcr(0);
   1516 		wrxcr(0, cpudata->hxcr0);
   1517 	}
   1518 
   1519 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1520 	fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
   1521 
   1522 	if (cpudata->ts_set) {
   1523 		stts();
   1524 	}
   1525 }
   1526 
   1527 static void
   1528 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1529 {
   1530 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1531 
   1532 	x86_dbregs_save(curlwp);
   1533 
   1534 	ldr7(0);
   1535 
   1536 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1537 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1538 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1539 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1540 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1541 }
   1542 
   1543 static void
   1544 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1545 {
   1546 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1547 
   1548 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1549 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1550 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1551 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1552 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1553 
   1554 	x86_dbregs_restore(curlwp);
   1555 }
   1556 
   1557 static void
   1558 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1559 {
   1560 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1561 
   1562 	/* This gets restored automatically by the CPU. */
   1563 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1564 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1565 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1566 
   1567 	/* Note: MSR_LSTAR is not static, because of SVS. */
   1568 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1569 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1570 }
   1571 
   1572 static void
   1573 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1574 {
   1575 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1576 
   1577 	wrmsr(MSR_STAR, cpudata->star);
   1578 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1579 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1580 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1581 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1582 }
   1583 
   1584 #define VMX_INVVPID_ADDRESS		0
   1585 #define VMX_INVVPID_CONTEXT		1
   1586 #define VMX_INVVPID_ALL			2
   1587 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1588 
   1589 #define VMX_INVEPT_CONTEXT		1
   1590 #define VMX_INVEPT_ALL			2
   1591 
   1592 static int
   1593 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1594     struct nvmm_exit *exit)
   1595 {
   1596 	struct vmx_machdata *machdata = mach->machdata;
   1597 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1598 	bool tlb_need_flush = false;
   1599 	struct vpid_desc vpid_desc;
   1600 	struct ept_desc ept_desc;
   1601 	struct cpu_info *ci;
   1602 	uint64_t exitcode;
   1603 	uint64_t intstate;
   1604 	int hcpu, s, ret;
   1605 	bool launched = false;
   1606 
   1607 	vmx_vmcs_enter(vcpu);
   1608 	ci = curcpu();
   1609 	hcpu = cpu_number();
   1610 
   1611 	if (__predict_false(kcpuset_isset(machdata->ept_want_flush, hcpu))) {
   1612 		vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1613 		ept_desc.mbz = 0;
   1614 		vmx_invept(vmx_ept_flush_op, &ept_desc);
   1615 		kcpuset_clear(machdata->ept_want_flush, hcpu);
   1616 	}
   1617 
   1618 	if (vcpu->hcpu_last != hcpu) {
   1619 		tlb_need_flush = true;
   1620 	}
   1621 
   1622 	if (vcpu->hcpu_last != hcpu) {
   1623 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   1624 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   1625 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   1626 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   1627 		vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
   1628 		    curcpu()->ci_data.cpu_cc_skew);
   1629 		vcpu->hcpu_last = hcpu;
   1630 	}
   1631 
   1632 	vmx_vcpu_guest_dbregs_enter(vcpu);
   1633 	vmx_vcpu_guest_misc_enter(vcpu);
   1634 
   1635 	while (1) {
   1636 		if (cpudata->tlb_want_flush || tlb_need_flush) {
   1637 			vpid_desc.vpid = cpudata->asid;
   1638 			vpid_desc.addr = 0;
   1639 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   1640 			cpudata->tlb_want_flush = false;
   1641 			tlb_need_flush = false;
   1642 		}
   1643 
   1644 		s = splhigh();
   1645 		vmx_vcpu_guest_fpu_enter(vcpu);
   1646 		lcr2(cpudata->gcr2);
   1647 		if (launched) {
   1648 			ret = vmx_vmresume(cpudata->gprs);
   1649 		} else {
   1650 			ret = vmx_vmlaunch(cpudata->gprs);
   1651 		}
   1652 		cpudata->gcr2 = rcr2();
   1653 		vmx_vcpu_guest_fpu_leave(vcpu);
   1654 		splx(s);
   1655 
   1656 		if (__predict_false(ret != 0)) {
   1657 			exit->reason = NVMM_EXIT_INVALID;
   1658 			break;
   1659 		}
   1660 
   1661 		launched = true;
   1662 
   1663 		vmx_vmread(VMCS_EXIT_REASON, &exitcode);
   1664 		exitcode &= __BITS(15,0);
   1665 
   1666 		switch (exitcode) {
   1667 		case VMCS_EXITCODE_EXT_INT:
   1668 			exit->reason = NVMM_EXIT_NONE;
   1669 			break;
   1670 		case VMCS_EXITCODE_CPUID:
   1671 			vmx_exit_cpuid(mach, vcpu, exit);
   1672 			break;
   1673 		case VMCS_EXITCODE_HLT:
   1674 			vmx_exit_hlt(mach, vcpu, exit);
   1675 			break;
   1676 		case VMCS_EXITCODE_CR:
   1677 			vmx_exit_cr(mach, vcpu, exit);
   1678 			break;
   1679 		case VMCS_EXITCODE_IO:
   1680 			vmx_exit_io(mach, vcpu, exit);
   1681 			break;
   1682 		case VMCS_EXITCODE_RDMSR:
   1683 			vmx_exit_msr(mach, vcpu, exit, true);
   1684 			break;
   1685 		case VMCS_EXITCODE_WRMSR:
   1686 			vmx_exit_msr(mach, vcpu, exit, false);
   1687 			break;
   1688 		case VMCS_EXITCODE_SHUTDOWN:
   1689 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1690 			break;
   1691 		case VMCS_EXITCODE_MONITOR:
   1692 			exit->reason = NVMM_EXIT_MONITOR;
   1693 			break;
   1694 		case VMCS_EXITCODE_MWAIT:
   1695 			exit->reason = NVMM_EXIT_MWAIT;
   1696 			break;
   1697 		case VMCS_EXITCODE_XSETBV:
   1698 			vmx_exit_xsetbv(mach, vcpu, exit);
   1699 			break;
   1700 		case VMCS_EXITCODE_RDPMC:
   1701 		case VMCS_EXITCODE_RDTSCP:
   1702 		case VMCS_EXITCODE_INVVPID:
   1703 		case VMCS_EXITCODE_INVEPT:
   1704 		case VMCS_EXITCODE_VMCALL:
   1705 		case VMCS_EXITCODE_VMCLEAR:
   1706 		case VMCS_EXITCODE_VMLAUNCH:
   1707 		case VMCS_EXITCODE_VMPTRLD:
   1708 		case VMCS_EXITCODE_VMPTRST:
   1709 		case VMCS_EXITCODE_VMREAD:
   1710 		case VMCS_EXITCODE_VMRESUME:
   1711 		case VMCS_EXITCODE_VMWRITE:
   1712 		case VMCS_EXITCODE_VMXOFF:
   1713 		case VMCS_EXITCODE_VMXON:
   1714 			vmx_inject_ud(mach, vcpu);
   1715 			exit->reason = NVMM_EXIT_NONE;
   1716 			break;
   1717 		case VMCS_EXITCODE_EPT_VIOLATION:
   1718 			vmx_exit_epf(mach, vcpu, exit);
   1719 			break;
   1720 		case VMCS_EXITCODE_INT_WINDOW:
   1721 			vmx_event_waitexit_disable(vcpu, false);
   1722 			exit->reason = NVMM_EXIT_INT_READY;
   1723 			break;
   1724 		case VMCS_EXITCODE_NMI_WINDOW:
   1725 			vmx_event_waitexit_disable(vcpu, true);
   1726 			exit->reason = NVMM_EXIT_NMI_READY;
   1727 			break;
   1728 		default:
   1729 			exit->reason = NVMM_EXIT_INVALID;
   1730 			break;
   1731 		}
   1732 
   1733 		/* If no reason to return to userland, keep rolling. */
   1734 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1735 			break;
   1736 		}
   1737 		if (curcpu()->ci_data.cpu_softints != 0) {
   1738 			break;
   1739 		}
   1740 		if (curlwp->l_flag & LW_USERRET) {
   1741 			break;
   1742 		}
   1743 		if (exit->reason != NVMM_EXIT_NONE) {
   1744 			break;
   1745 		}
   1746 	}
   1747 
   1748 	vmx_vcpu_guest_misc_leave(vcpu);
   1749 	vmx_vcpu_guest_dbregs_leave(vcpu);
   1750 
   1751 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
   1752 	vmx_vmread(VMCS_GUEST_RFLAGS,
   1753 	    &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
   1754 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1755 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1756 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   1757 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1758 	    cpudata->int_window_exit;
   1759 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1760 	    cpudata->nmi_window_exit;
   1761 
   1762 	vmx_vmcs_leave(vcpu);
   1763 
   1764 	return 0;
   1765 }
   1766 
   1767 /* -------------------------------------------------------------------------- */
   1768 
   1769 static int
   1770 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1771 {
   1772 	struct pglist pglist;
   1773 	paddr_t _pa;
   1774 	vaddr_t _va;
   1775 	size_t i;
   1776 	int ret;
   1777 
   1778 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1779 	    &pglist, 1, 0);
   1780 	if (ret != 0)
   1781 		return ENOMEM;
   1782 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1783 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1784 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1785 	if (_va == 0)
   1786 		goto error;
   1787 
   1788 	for (i = 0; i < npages; i++) {
   1789 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1790 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1791 	}
   1792 	pmap_update(pmap_kernel());
   1793 
   1794 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1795 
   1796 	*pa = _pa;
   1797 	*va = _va;
   1798 	return 0;
   1799 
   1800 error:
   1801 	for (i = 0; i < npages; i++) {
   1802 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1803 	}
   1804 	return ENOMEM;
   1805 }
   1806 
   1807 static void
   1808 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1809 {
   1810 	size_t i;
   1811 
   1812 	pmap_kremove(va, npages * PAGE_SIZE);
   1813 	pmap_update(pmap_kernel());
   1814 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1815 	for (i = 0; i < npages; i++) {
   1816 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1817 	}
   1818 }
   1819 
   1820 /* -------------------------------------------------------------------------- */
   1821 
   1822 static void
   1823 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   1824 {
   1825 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1826 	size_t i, oct, bit;
   1827 
   1828 	mutex_enter(&vmx_asidlock);
   1829 
   1830 	for (i = 0; i < vmx_maxasid; i++) {
   1831 		oct = i / 8;
   1832 		bit = i % 8;
   1833 
   1834 		if (vmx_asidmap[oct] & __BIT(bit)) {
   1835 			continue;
   1836 		}
   1837 
   1838 		cpudata->asid = i;
   1839 
   1840 		vmx_asidmap[oct] |= __BIT(bit);
   1841 		vmx_vmwrite(VMCS_VPID, i);
   1842 		mutex_exit(&vmx_asidlock);
   1843 		return;
   1844 	}
   1845 
   1846 	mutex_exit(&vmx_asidlock);
   1847 
   1848 	panic("%s: impossible", __func__);
   1849 }
   1850 
   1851 static void
   1852 vmx_asid_free(struct nvmm_cpu *vcpu)
   1853 {
   1854 	size_t oct, bit;
   1855 	uint64_t asid;
   1856 
   1857 	vmx_vmread(VMCS_VPID, &asid);
   1858 
   1859 	oct = asid / 8;
   1860 	bit = asid % 8;
   1861 
   1862 	mutex_enter(&vmx_asidlock);
   1863 	vmx_asidmap[oct] &= ~__BIT(bit);
   1864 	mutex_exit(&vmx_asidlock);
   1865 }
   1866 
   1867 static void
   1868 vmx_init_asid(uint32_t maxasid)
   1869 {
   1870 	size_t allocsz;
   1871 
   1872 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   1873 
   1874 	vmx_maxasid = maxasid;
   1875 	allocsz = roundup(maxasid, 8) / 8;
   1876 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   1877 
   1878 	/* ASID 0 is reserved for the host. */
   1879 	vmx_asidmap[0] |= __BIT(0);
   1880 }
   1881 
   1882 static void
   1883 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1884 {
   1885 	uint64_t byte;
   1886 	uint8_t bitoff;
   1887 
   1888 	if (msr < 0x00002000) {
   1889 		/* Range 1 */
   1890 		byte = ((msr - 0x00000000) / 8) + 0;
   1891 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   1892 		/* Range 2 */
   1893 		byte = ((msr - 0xC0000000) / 8) + 1024;
   1894 	} else {
   1895 		panic("%s: wrong range", __func__);
   1896 	}
   1897 
   1898 	bitoff = (msr & 0x7);
   1899 
   1900 	if (read) {
   1901 		bitmap[byte] &= ~__BIT(bitoff);
   1902 	}
   1903 	if (write) {
   1904 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   1905 	}
   1906 }
   1907 
   1908 static void
   1909 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1910 {
   1911 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1912 	struct vmcs *vmcs = cpudata->vmcs;
   1913 	struct msr_entry *gmsr = cpudata->gmsr;
   1914 	extern uint8_t vmx_resume_rip;
   1915 	uint64_t rev, eptp;
   1916 
   1917 	rev = vmx_get_revision();
   1918 
   1919 	memset(vmcs, 0, VMCS_SIZE);
   1920 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   1921 	vmcs->abort = 0;
   1922 
   1923 	vmx_vmcs_enter(vcpu);
   1924 
   1925 	/* No link pointer. */
   1926 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   1927 
   1928 	/* Install the CTLSs. */
   1929 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   1930 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   1931 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   1932 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   1933 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   1934 
   1935 	/* Allow direct access to certain MSRs. */
   1936 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   1937 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   1938 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   1939 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   1940 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   1941 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   1942 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   1943 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   1944 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   1945 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   1946 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   1947 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   1948 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   1949 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   1950 	    true, false);
   1951 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   1952 
   1953 	/*
   1954 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   1955 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   1956 	 */
   1957 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   1958 	gmsr[VMX_MSRLIST_STAR].val = 0;
   1959 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   1960 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   1961 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   1962 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   1963 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   1964 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   1965 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   1966 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   1967 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   1968 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   1969 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   1970 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   1971 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   1972 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   1973 
   1974 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   1975 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD);
   1976 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   1977 
   1978 	/* Force CR4_VMXE to zero. */
   1979 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   1980 
   1981 	/* Set the Host state for resuming. */
   1982 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   1983 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   1984 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   1985 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   1986 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   1987 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   1988 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   1989 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   1990 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   1991 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   1992 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   1993 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   1994 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   1995 	vmx_vmwrite(VMCS_HOST_CR0, rcr0());
   1996 
   1997 	/* Generate ASID. */
   1998 	vmx_asid_alloc(vcpu);
   1999 
   2000 	/* Enable Extended Paging, 4-Level. */
   2001 	eptp =
   2002 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2003 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2004 	    EPTP_FLAGS_AD |
   2005 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2006 	vmx_vmwrite(VMCS_EPTP, eptp);
   2007 
   2008 	/* Must always be set. */
   2009 	vmx_vmwrite(VMCS_GUEST_CR4, CR4_VMXE);
   2010 	vmx_vmwrite(VMCS_GUEST_CR0, CR0_NE);
   2011 	cpudata->gxcr0 = XCR0_X87;
   2012 
   2013 	/* Init XSAVE header. */
   2014 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2015 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2016 
   2017 	/* Bluntly hide the host TSC. */
   2018 	cpudata->tsc_offset = rdtsc();
   2019 
   2020 	/* These MSRs are static. */
   2021 	cpudata->star = rdmsr(MSR_STAR);
   2022 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2023 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2024 
   2025 	vmx_vmcs_leave(vcpu);
   2026 }
   2027 
   2028 static int
   2029 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2030 {
   2031 	struct vmx_cpudata *cpudata;
   2032 	int error;
   2033 
   2034 	/* Allocate the VMX cpudata. */
   2035 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2036 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2037 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2038 	vcpu->cpudata = cpudata;
   2039 
   2040 	/* VMCS */
   2041 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2042 	    VMCS_NPAGES);
   2043 	if (error)
   2044 		goto error;
   2045 
   2046 	/* MSR Bitmap */
   2047 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2048 	    MSRBM_NPAGES);
   2049 	if (error)
   2050 		goto error;
   2051 
   2052 	/* Guest MSR List */
   2053 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2054 	if (error)
   2055 		goto error;
   2056 
   2057 	/* Init the VCPU info. */
   2058 	vmx_vcpu_init(mach, vcpu);
   2059 
   2060 	return 0;
   2061 
   2062 error:
   2063 	if (cpudata->vmcs_pa) {
   2064 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2065 		    VMCS_NPAGES);
   2066 	}
   2067 	if (cpudata->msrbm_pa) {
   2068 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2069 		    MSRBM_NPAGES);
   2070 	}
   2071 	if (cpudata->gmsr_pa) {
   2072 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2073 	}
   2074 
   2075 	kmem_free(cpudata, sizeof(*cpudata));
   2076 	return error;
   2077 }
   2078 
   2079 static void
   2080 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2081 {
   2082 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2083 
   2084 	vmx_vmcs_enter(vcpu);
   2085 	vmx_asid_free(vcpu);
   2086 	vmx_vmcs_leave(vcpu);
   2087 
   2088 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2089 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2090 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2091 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2092 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2093 }
   2094 
   2095 #define VMX_SEG_ATTRIB_TYPE		__BITS(4,0)
   2096 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2097 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2098 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2099 #define VMX_SEG_ATTRIB_LONG		__BIT(13)
   2100 #define VMX_SEG_ATTRIB_DEF32		__BIT(14)
   2101 #define VMX_SEG_ATTRIB_GRAN		__BIT(15)
   2102 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2103 
   2104 static void
   2105 vmx_vcpu_setstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2106 {
   2107 	uint64_t attrib;
   2108 
   2109 	attrib =
   2110 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2111 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2112 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2113 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2114 	    __SHIFTIN(segs[idx].attrib.lng, VMX_SEG_ATTRIB_LONG) |
   2115 	    __SHIFTIN(segs[idx].attrib.def32, VMX_SEG_ATTRIB_DEF32) |
   2116 	    __SHIFTIN(segs[idx].attrib.gran, VMX_SEG_ATTRIB_GRAN) |
   2117 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2118 
   2119 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2120 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2121 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2122 	}
   2123 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2124 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2125 }
   2126 
   2127 static void
   2128 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2129 {
   2130 	uint64_t attrib = 0;
   2131 
   2132 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2133 		vmx_vmread(vmx_guest_segs[idx].selector, &segs[idx].selector);
   2134 		vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
   2135 	}
   2136 	vmx_vmread(vmx_guest_segs[idx].limit, &segs[idx].limit);
   2137 	vmx_vmread(vmx_guest_segs[idx].base, &segs[idx].base);
   2138 
   2139 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2140 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2141 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2142 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2143 	segs[idx].attrib.lng = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_LONG);
   2144 	segs[idx].attrib.def32 = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF32);
   2145 	segs[idx].attrib.gran = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_GRAN);
   2146 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2147 		segs[idx].attrib.p = 0;
   2148 	}
   2149 }
   2150 
   2151 static inline bool
   2152 vmx_state_tlb_flush(struct nvmm_x64_state *state, uint64_t flags)
   2153 {
   2154 	uint64_t cr0, cr3, cr4, efer;
   2155 
   2156 	if (flags & NVMM_X64_STATE_CRS) {
   2157 		vmx_vmread(VMCS_GUEST_CR0, &cr0);
   2158 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2159 			return true;
   2160 		}
   2161 		vmx_vmread(VMCS_GUEST_CR3, &cr3);
   2162 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2163 			return true;
   2164 		}
   2165 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   2166 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2167 			return true;
   2168 		}
   2169 	}
   2170 
   2171 	if (flags & NVMM_X64_STATE_MSRS) {
   2172 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   2173 		if ((efer ^
   2174 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2175 			return true;
   2176 		}
   2177 	}
   2178 
   2179 	return false;
   2180 }
   2181 
   2182 static void
   2183 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2184 {
   2185 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2186 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2187 	struct fxsave *fpustate;
   2188 	uint64_t ctls1, intstate;
   2189 
   2190 	vmx_vmcs_enter(vcpu);
   2191 
   2192 	if (vmx_state_tlb_flush(state, flags)) {
   2193 		cpudata->tlb_want_flush = true;
   2194 	}
   2195 
   2196 	if (flags & NVMM_X64_STATE_SEGS) {
   2197 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2198 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2199 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2200 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2201 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2202 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2203 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2204 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2205 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2206 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2207 	}
   2208 
   2209 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2210 	if (flags & NVMM_X64_STATE_GPRS) {
   2211 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2212 
   2213 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2214 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2215 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2216 	}
   2217 
   2218 	if (flags & NVMM_X64_STATE_CRS) {
   2219 		/* These bits are mandatory. */
   2220 		state->crs[NVMM_X64_CR_CR4] |= CR4_VMXE;
   2221 		state->crs[NVMM_X64_CR_CR0] |= CR0_NE;
   2222 
   2223 		vmx_vmwrite(VMCS_GUEST_CR0, state->crs[NVMM_X64_CR_CR0]);
   2224 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2225 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2226 		vmx_vmwrite(VMCS_GUEST_CR4, state->crs[NVMM_X64_CR_CR4]);
   2227 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2228 
   2229 		if (vmx_xcr0_mask != 0) {
   2230 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2231 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2232 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2233 			cpudata->gxcr0 |= XCR0_X87;
   2234 		}
   2235 	}
   2236 
   2237 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2238 	if (flags & NVMM_X64_STATE_DRS) {
   2239 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2240 
   2241 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2242 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2243 	}
   2244 
   2245 	if (flags & NVMM_X64_STATE_MSRS) {
   2246 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2247 		    state->msrs[NVMM_X64_MSR_STAR];
   2248 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2249 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2250 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2251 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2252 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2253 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2254 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2255 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2256 
   2257 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2258 		    state->msrs[NVMM_X64_MSR_EFER]);
   2259 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2260 		    state->msrs[NVMM_X64_MSR_PAT]);
   2261 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2262 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2263 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2264 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2265 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2266 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2267 
   2268 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2269 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   2270 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2271 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2272 		} else {
   2273 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2274 		}
   2275 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2276 	}
   2277 
   2278 	if (flags & NVMM_X64_STATE_MISC) {
   2279 		// XXX CPL? not sure
   2280 
   2281 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2282 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2283 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   2284 			intstate |= INT_STATE_MOVSS;
   2285 		}
   2286 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2287 
   2288 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   2289 			vmx_event_waitexit_enable(vcpu, false);
   2290 		} else {
   2291 			vmx_event_waitexit_disable(vcpu, false);
   2292 		}
   2293 
   2294 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   2295 			vmx_event_waitexit_enable(vcpu, true);
   2296 		} else {
   2297 			vmx_event_waitexit_disable(vcpu, true);
   2298 		}
   2299 	}
   2300 
   2301 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2302 	if (flags & NVMM_X64_STATE_FPU) {
   2303 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2304 		    sizeof(state->fpu));
   2305 
   2306 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2307 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2308 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2309 
   2310 		if (vmx_xcr0_mask != 0) {
   2311 			/* Reset XSTATE_BV, to force a reload. */
   2312 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2313 		}
   2314 	}
   2315 
   2316 	vmx_vmcs_leave(vcpu);
   2317 }
   2318 
   2319 static void
   2320 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2321 {
   2322 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2323 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2324 	uint64_t intstate;
   2325 
   2326 	vmx_vmcs_enter(vcpu);
   2327 
   2328 	if (flags & NVMM_X64_STATE_SEGS) {
   2329 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2330 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2331 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2332 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2333 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2334 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2335 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2336 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2337 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2338 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2339 	}
   2340 
   2341 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2342 	if (flags & NVMM_X64_STATE_GPRS) {
   2343 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2344 
   2345 		vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
   2346 		vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
   2347 		vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
   2348 	}
   2349 
   2350 	if (flags & NVMM_X64_STATE_CRS) {
   2351 		vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
   2352 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2353 		vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
   2354 		vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
   2355 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2356 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2357 
   2358 		/* Hide VMXE. */
   2359 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2360 	}
   2361 
   2362 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2363 	if (flags & NVMM_X64_STATE_DRS) {
   2364 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2365 
   2366 		vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
   2367 	}
   2368 
   2369 	if (flags & NVMM_X64_STATE_MSRS) {
   2370 		state->msrs[NVMM_X64_MSR_STAR] =
   2371 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2372 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2373 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2374 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2375 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2376 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2377 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2378 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2379 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2380 
   2381 		vmx_vmread(VMCS_GUEST_IA32_EFER,
   2382 		    &state->msrs[NVMM_X64_MSR_EFER]);
   2383 		vmx_vmread(VMCS_GUEST_IA32_PAT,
   2384 		    &state->msrs[NVMM_X64_MSR_PAT]);
   2385 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
   2386 		    &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2387 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
   2388 		    &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2389 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
   2390 		    &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2391 	}
   2392 
   2393 	if (flags & NVMM_X64_STATE_MISC) {
   2394 		// XXX CPL? not sure
   2395 
   2396 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2397 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   2398 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2399 
   2400 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   2401 		    cpudata->int_window_exit;
   2402 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   2403 		    cpudata->nmi_window_exit;
   2404 	}
   2405 
   2406 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2407 	if (flags & NVMM_X64_STATE_FPU) {
   2408 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2409 		    sizeof(state->fpu));
   2410 	}
   2411 
   2412 	vmx_vmcs_leave(vcpu);
   2413 }
   2414 
   2415 /* -------------------------------------------------------------------------- */
   2416 
   2417 static void
   2418 vmx_tlb_flush(struct pmap *pm)
   2419 {
   2420 	struct nvmm_machine *mach = pm->pm_data;
   2421 	struct vmx_machdata *machdata = mach->machdata;
   2422 	struct nvmm_cpu *vcpu;
   2423 	int error;
   2424 	size_t i;
   2425 
   2426 	kcpuset_atomicly_merge(machdata->ept_want_flush, kcpuset_running);
   2427 
   2428 	/*
   2429 	 * Not as dumb as it seems. We want to make sure that when we leave
   2430 	 * this function, each VCPU got halted at some point, and possibly
   2431 	 * resumed with the updated kcpuset.
   2432 	 */
   2433 	for (i = 0; i < NVMM_MAX_VCPUS; i++) {
   2434 		error = nvmm_vcpu_get(mach, i, &vcpu);
   2435 		if (error)
   2436 			continue;
   2437 		nvmm_vcpu_put(vcpu);
   2438 	}
   2439 }
   2440 
   2441 static void
   2442 vmx_machine_create(struct nvmm_machine *mach)
   2443 {
   2444 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2445 	struct vmx_machdata *machdata;
   2446 
   2447 	/* Convert to EPT. */
   2448 	pmap_ept_transform(pmap);
   2449 
   2450 	/* Fill in pmap info. */
   2451 	pmap->pm_data = (void *)mach;
   2452 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2453 
   2454 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2455 	kcpuset_create(&machdata->ept_want_flush, true);
   2456 	mach->machdata = machdata;
   2457 
   2458 	/* Start with an EPT flush everywhere. */
   2459 	kcpuset_copy(machdata->ept_want_flush, kcpuset_running);
   2460 }
   2461 
   2462 static void
   2463 vmx_machine_destroy(struct nvmm_machine *mach)
   2464 {
   2465 	struct vmx_machdata *machdata = mach->machdata;
   2466 
   2467 	kcpuset_destroy(machdata->ept_want_flush);
   2468 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2469 }
   2470 
   2471 static int
   2472 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2473 {
   2474 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2475 	struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
   2476 	size_t i;
   2477 
   2478 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2479 		return EINVAL;
   2480 	}
   2481 
   2482 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2483 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2484 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2485 	    (cpuid->set.edx & cpuid->del.edx))) {
   2486 		return EINVAL;
   2487 	}
   2488 
   2489 	/* If already here, replace. */
   2490 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2491 		if (!machdata->cpuidpresent[i]) {
   2492 			continue;
   2493 		}
   2494 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2495 			memcpy(&machdata->cpuid[i], cpuid,
   2496 			    sizeof(struct nvmm_x86_conf_cpuid));
   2497 			return 0;
   2498 		}
   2499 	}
   2500 
   2501 	/* Not here, insert. */
   2502 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2503 		if (!machdata->cpuidpresent[i]) {
   2504 			machdata->cpuidpresent[i] = true;
   2505 			memcpy(&machdata->cpuid[i], cpuid,
   2506 			    sizeof(struct nvmm_x86_conf_cpuid));
   2507 			return 0;
   2508 		}
   2509 	}
   2510 
   2511 	return ENOBUFS;
   2512 }
   2513 
   2514 /* -------------------------------------------------------------------------- */
   2515 
   2516 static int
   2517 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   2518     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   2519 {
   2520 	uint64_t basic, val, true_val;
   2521 	bool one_allowed, zero_allowed, has_true;
   2522 	size_t i;
   2523 
   2524 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   2525 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   2526 
   2527 	val = rdmsr(msr_ctls);
   2528 	if (has_true) {
   2529 		true_val = rdmsr(msr_true_ctls);
   2530 	} else {
   2531 		true_val = val;
   2532 	}
   2533 
   2534 #define ONE_ALLOWED(msrval, bitoff) \
   2535 	((msrval & __BIT(32 + bitoff)) != 0)
   2536 #define ZERO_ALLOWED(msrval, bitoff) \
   2537 	((msrval & __BIT(bitoff)) == 0)
   2538 
   2539 	for (i = 0; i < 32; i++) {
   2540 		one_allowed = ONE_ALLOWED(true_val, i);
   2541 		zero_allowed = ZERO_ALLOWED(true_val, i);
   2542 
   2543 		if (zero_allowed && !one_allowed) {
   2544 			if (set_one & __BIT(i))
   2545 				return -1;
   2546 			*res &= ~__BIT(i);
   2547 		} else if (one_allowed && !zero_allowed) {
   2548 			if (set_zero & __BIT(i))
   2549 				return -1;
   2550 			*res |= __BIT(i);
   2551 		} else {
   2552 			if (set_zero & __BIT(i)) {
   2553 				*res &= ~__BIT(i);
   2554 			} else if (set_one & __BIT(i)) {
   2555 				*res |= __BIT(i);
   2556 			} else if (!has_true) {
   2557 				*res &= ~__BIT(i);
   2558 			} else if (ZERO_ALLOWED(val, i)) {
   2559 				*res &= ~__BIT(i);
   2560 			} else if (ONE_ALLOWED(val, i)) {
   2561 				*res |= __BIT(i);
   2562 			} else {
   2563 				return -1;
   2564 			}
   2565 		}
   2566 	}
   2567 
   2568 	return 0;
   2569 }
   2570 
   2571 static bool
   2572 vmx_ident(void)
   2573 {
   2574 	uint64_t msr;
   2575 	int ret;
   2576 
   2577 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   2578 		return false;
   2579 	}
   2580 
   2581 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   2582 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   2583 		return false;
   2584 	}
   2585 
   2586 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   2587 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   2588 		return false;
   2589 	}
   2590 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   2591 		return false;
   2592 	}
   2593 
   2594 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2595 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   2596 		return false;
   2597 	}
   2598 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   2599 		return false;
   2600 	}
   2601 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   2602 		return false;
   2603 	}
   2604 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) == 0) {
   2605 		return false;
   2606 	}
   2607 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   2608 		return false;
   2609 	}
   2610 
   2611 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   2612 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   2613 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   2614 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   2615 	if (ret == -1) {
   2616 		return false;
   2617 	}
   2618 
   2619 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   2620 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   2621 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   2622 	if (ret == -1) {
   2623 		return false;
   2624 	}
   2625 
   2626 	/* Init the CTLSs right now, and check for errors. */
   2627 	ret = vmx_init_ctls(
   2628 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   2629 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   2630 	    &vmx_pinbased_ctls);
   2631 	if (ret == -1) {
   2632 		return false;
   2633 	}
   2634 	ret = vmx_init_ctls(
   2635 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   2636 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   2637 	    &vmx_procbased_ctls);
   2638 	if (ret == -1) {
   2639 		return false;
   2640 	}
   2641 	ret = vmx_init_ctls(
   2642 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   2643 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   2644 	    &vmx_procbased_ctls2);
   2645 	if (ret == -1) {
   2646 		return false;
   2647 	}
   2648 	ret = vmx_init_ctls(
   2649 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   2650 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   2651 	    &vmx_entry_ctls);
   2652 	if (ret == -1) {
   2653 		return false;
   2654 	}
   2655 	ret = vmx_init_ctls(
   2656 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   2657 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   2658 	    &vmx_exit_ctls);
   2659 	if (ret == -1) {
   2660 		return false;
   2661 	}
   2662 
   2663 	return true;
   2664 }
   2665 
   2666 static void
   2667 vmx_change_cpu(void *arg1, void *arg2)
   2668 {
   2669 	struct cpu_info *ci = curcpu();
   2670 	bool enable = (bool)arg1;
   2671 	uint64_t cr4;
   2672 
   2673 	if (!enable) {
   2674 		vmx_vmxoff();
   2675 	}
   2676 
   2677 	cr4 = rcr4();
   2678 	if (enable) {
   2679 		cr4 |= CR4_VMXE;
   2680 	} else {
   2681 		cr4 &= ~CR4_VMXE;
   2682 	}
   2683 	lcr4(cr4);
   2684 
   2685 	if (enable) {
   2686 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   2687 	}
   2688 }
   2689 
   2690 static void
   2691 vmx_init_l1tf(void)
   2692 {
   2693 	u_int descs[4];
   2694 	uint64_t msr;
   2695 
   2696 	if (cpuid_level < 7) {
   2697 		return;
   2698 	}
   2699 
   2700 	x86_cpuid(7, descs);
   2701 
   2702 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   2703 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   2704 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   2705 			/* No mitigation needed. */
   2706 			return;
   2707 		}
   2708 	}
   2709 
   2710 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   2711 		/* Enable hardware mitigation. */
   2712 		vmx_msrlist_entry_nmsr += 1;
   2713 	}
   2714 }
   2715 
   2716 static void
   2717 vmx_init(void)
   2718 {
   2719 	CPU_INFO_ITERATOR cii;
   2720 	struct cpu_info *ci;
   2721 	uint64_t xc, msr;
   2722 	struct vmxon *vmxon;
   2723 	uint32_t revision;
   2724 	paddr_t pa;
   2725 	vaddr_t va;
   2726 	int error;
   2727 
   2728 	/* Init the ASID bitmap (VPID). */
   2729 	vmx_init_asid(VPID_MAX);
   2730 
   2731 	/* Init the XCR0 mask. */
   2732 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   2733 
   2734 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   2735 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2736 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   2737 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   2738 	} else {
   2739 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   2740 	}
   2741 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   2742 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   2743 	} else {
   2744 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   2745 	}
   2746 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   2747 		vmx_eptp_type = EPTP_TYPE_WB;
   2748 	} else {
   2749 		vmx_eptp_type = EPTP_TYPE_UC;
   2750 	}
   2751 
   2752 	/* Init the L1TF mitigation. */
   2753 	vmx_init_l1tf();
   2754 
   2755 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   2756 	revision = vmx_get_revision();
   2757 
   2758 	for (CPU_INFO_FOREACH(cii, ci)) {
   2759 		error = vmx_memalloc(&pa, &va, 1);
   2760 		if (error) {
   2761 			panic("%s: out of memory", __func__);
   2762 		}
   2763 		vmxoncpu[cpu_index(ci)].pa = pa;
   2764 		vmxoncpu[cpu_index(ci)].va = va;
   2765 
   2766 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   2767 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   2768 	}
   2769 
   2770 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   2771 	xc_wait(xc);
   2772 }
   2773 
   2774 static void
   2775 vmx_fini_asid(void)
   2776 {
   2777 	size_t allocsz;
   2778 
   2779 	allocsz = roundup(vmx_maxasid, 8) / 8;
   2780 	kmem_free(vmx_asidmap, allocsz);
   2781 
   2782 	mutex_destroy(&vmx_asidlock);
   2783 }
   2784 
   2785 static void
   2786 vmx_fini(void)
   2787 {
   2788 	uint64_t xc;
   2789 	size_t i;
   2790 
   2791 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   2792 	xc_wait(xc);
   2793 
   2794 	for (i = 0; i < MAXCPUS; i++) {
   2795 		if (vmxoncpu[i].pa != 0)
   2796 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   2797 	}
   2798 
   2799 	vmx_fini_asid();
   2800 }
   2801 
   2802 static void
   2803 vmx_capability(struct nvmm_capability *cap)
   2804 {
   2805 	cap->u.x86.xcr0_mask = vmx_xcr0_mask;
   2806 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2807 	cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
   2808 }
   2809 
   2810 const struct nvmm_impl nvmm_x86_vmx = {
   2811 	.ident = vmx_ident,
   2812 	.init = vmx_init,
   2813 	.fini = vmx_fini,
   2814 	.capability = vmx_capability,
   2815 	.conf_max = NVMM_X86_NCONF,
   2816 	.conf_sizes = vmx_conf_sizes,
   2817 	.state_size = sizeof(struct nvmm_x64_state),
   2818 	.machine_create = vmx_machine_create,
   2819 	.machine_destroy = vmx_machine_destroy,
   2820 	.machine_configure = vmx_machine_configure,
   2821 	.vcpu_create = vmx_vcpu_create,
   2822 	.vcpu_destroy = vmx_vcpu_destroy,
   2823 	.vcpu_setstate = vmx_vcpu_setstate,
   2824 	.vcpu_getstate = vmx_vcpu_getstate,
   2825 	.vcpu_inject = vmx_vcpu_inject,
   2826 	.vcpu_run = vmx_vcpu_run
   2827 };
   2828