Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.20
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.20 2019/03/21 20:21:41 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.20 2019/03/21 20:21:41 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int _vmx_vmxon(paddr_t *pa);
     58 int _vmx_vmxoff(void);
     59 int _vmx_invept(uint64_t op, void *desc);
     60 int _vmx_invvpid(uint64_t op, void *desc);
     61 int _vmx_vmread(uint64_t op, uint64_t *val);
     62 int _vmx_vmwrite(uint64_t op, uint64_t val);
     63 int _vmx_vmptrld(paddr_t *pa);
     64 int _vmx_vmptrst(paddr_t *pa);
     65 int _vmx_vmclear(paddr_t *pa);
     66 int vmx_vmlaunch(uint64_t *gprs);
     67 int vmx_vmresume(uint64_t *gprs);
     68 
     69 #define vmx_vmxon(a) \
     70 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     71 		panic("%s: VMXON failed", __func__); \
     72 	}
     73 #define vmx_vmxoff() \
     74 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     75 		panic("%s: VMXOFF failed", __func__); \
     76 	}
     77 #define vmx_invept(a, b) \
     78 	if (__predict_false(_vmx_invept(a, b) != 0)) { \
     79 		panic("%s: INVEPT failed", __func__); \
     80 	}
     81 #define vmx_invvpid(a, b) \
     82 	if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
     83 		panic("%s: INVVPID failed", __func__); \
     84 	}
     85 #define vmx_vmread(a, b) \
     86 	if (__predict_false(_vmx_vmread(a, b) != 0)) { \
     87 		panic("%s: VMREAD failed", __func__); \
     88 	}
     89 #define vmx_vmwrite(a, b) \
     90 	if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
     91 		panic("%s: VMWRITE failed", __func__); \
     92 	}
     93 #define vmx_vmptrld(a) \
     94 	if (__predict_false(_vmx_vmptrld(a) != 0)) { \
     95 		panic("%s: VMPTRLD failed", __func__); \
     96 	}
     97 #define vmx_vmptrst(a) \
     98 	if (__predict_false(_vmx_vmptrst(a) != 0)) { \
     99 		panic("%s: VMPTRST failed", __func__); \
    100 	}
    101 #define vmx_vmclear(a) \
    102 	if (__predict_false(_vmx_vmclear(a) != 0)) { \
    103 		panic("%s: VMCLEAR failed", __func__); \
    104 	}
    105 
    106 #define MSR_IA32_FEATURE_CONTROL	0x003A
    107 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    108 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    109 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    110 
    111 #define MSR_IA32_VMX_BASIC		0x0480
    112 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    113 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    114 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    115 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    116 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    117 #define			MEM_TYPE_UC		0
    118 #define			MEM_TYPE_WB		6
    119 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    120 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    121 
    122 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    123 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    124 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    125 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    126 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    127 
    128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    132 
    133 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    134 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    135 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    136 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    137 
    138 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    139 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    140 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    141 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    142 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    143 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    144 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    145 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    146 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    147 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    148 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    149 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    150 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    151 
    152 /* -------------------------------------------------------------------------- */
    153 
    154 /* 16-bit control fields */
    155 #define VMCS_VPID				0x00000000
    156 #define VMCS_PIR_VECTOR				0x00000002
    157 #define VMCS_EPTP_INDEX				0x00000004
    158 /* 16-bit guest-state fields */
    159 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    160 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    161 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    162 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    163 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    164 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    165 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    166 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    167 #define VMCS_GUEST_INTR_STATUS			0x00000810
    168 #define VMCS_PML_INDEX				0x00000812
    169 /* 16-bit host-state fields */
    170 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    171 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    172 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    173 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    174 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    175 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    176 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    177 /* 64-bit control fields */
    178 #define VMCS_IO_BITMAP_A			0x00002000
    179 #define VMCS_IO_BITMAP_B			0x00002002
    180 #define VMCS_MSR_BITMAP				0x00002004
    181 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    182 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    184 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    185 #define VMCS_PML_ADDRESS			0x0000200E
    186 #define VMCS_TSC_OFFSET				0x00002010
    187 #define VMCS_VIRTUAL_APIC			0x00002012
    188 #define VMCS_APIC_ACCESS			0x00002014
    189 #define VMCS_PIR_DESC				0x00002016
    190 #define VMCS_VM_CONTROL				0x00002018
    191 #define VMCS_EPTP				0x0000201A
    192 #define		EPTP_TYPE			__BITS(2,0)
    193 #define			EPTP_TYPE_UC		0
    194 #define			EPTP_TYPE_WB		6
    195 #define		EPTP_WALKLEN			__BITS(5,3)
    196 #define		EPTP_FLAGS_AD			__BIT(6)
    197 #define		EPTP_PHYSADDR			__BITS(63,12)
    198 #define VMCS_EOI_EXIT0				0x0000201C
    199 #define VMCS_EOI_EXIT1				0x0000201E
    200 #define VMCS_EOI_EXIT2				0x00002020
    201 #define VMCS_EOI_EXIT3				0x00002022
    202 #define VMCS_EPTP_LIST				0x00002024
    203 #define VMCS_VMREAD_BITMAP			0x00002026
    204 #define VMCS_VMWRITE_BITMAP			0x00002028
    205 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    206 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    207 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    208 #define VMCS_TSC_MULTIPLIER			0x00002032
    209 /* 64-bit read-only fields */
    210 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    211 /* 64-bit guest-state fields */
    212 #define VMCS_LINK_POINTER			0x00002800
    213 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    214 #define VMCS_GUEST_IA32_PAT			0x00002804
    215 #define VMCS_GUEST_IA32_EFER			0x00002806
    216 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    217 #define VMCS_GUEST_PDPTE0			0x0000280A
    218 #define VMCS_GUEST_PDPTE1			0x0000280C
    219 #define VMCS_GUEST_PDPTE2			0x0000280E
    220 #define VMCS_GUEST_PDPTE3			0x00002810
    221 #define VMCS_GUEST_BNDCFGS			0x00002812
    222 /* 64-bit host-state fields */
    223 #define VMCS_HOST_IA32_PAT			0x00002C00
    224 #define VMCS_HOST_IA32_EFER			0x00002C02
    225 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    226 /* 32-bit control fields */
    227 #define VMCS_PINBASED_CTLS			0x00004000
    228 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    229 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    230 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    231 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    232 #define		PIN_CTLS_PROCESS_POSTEd_INTS	__BIT(7)
    233 #define VMCS_PROCBASED_CTLS			0x00004002
    234 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    235 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    236 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    237 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    238 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    239 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    240 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    241 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    242 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    243 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    244 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    245 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    246 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    247 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    248 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    249 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    250 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    251 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    252 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    253 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    254 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    255 #define VMCS_EXCEPTION_BITMAP			0x00004004
    256 #define VMCS_PF_ERROR_MASK			0x00004006
    257 #define VMCS_PF_ERROR_MATCH			0x00004008
    258 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    259 #define VMCS_EXIT_CTLS				0x0000400C
    260 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    261 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    262 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    263 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    264 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    265 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    266 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    267 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    268 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    269 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    270 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    271 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    272 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    273 #define VMCS_ENTRY_CTLS				0x00004012
    274 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    275 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    276 #define		ENTRY_CTLS_SMM			__BIT(10)
    277 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    278 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    279 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    280 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    281 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    282 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    283 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    284 #define VMCS_ENTRY_INTR_INFO			0x00004016
    285 #define		INTR_INFO_VECTOR		__BITS(7,0)
    286 #define		INTR_INFO_TYPE			__BITS(10,8)
    287 #define			INTR_TYPE_EXT_INT	0
    288 #define			INTR_TYPE_NMI		2
    289 #define			INTR_TYPE_HW_EXC	3
    290 #define			INTR_TYPE_SW_INT	4
    291 #define			INTR_TYPE_PRIV_SW_EXC	5
    292 #define			INTR_TYPE_SW_EXC	6
    293 #define			INTR_TYPE_OTHER		7
    294 #define		INTR_INFO_ERROR			__BIT(11)
    295 #define		INTR_INFO_VALID			__BIT(31)
    296 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    297 #define VMCS_ENTRY_INST_LENGTH			0x0000401A
    298 #define VMCS_TPR_THRESHOLD			0x0000401C
    299 #define VMCS_PROCBASED_CTLS2			0x0000401E
    300 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    301 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    302 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    303 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    304 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    305 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    306 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    307 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    308 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    309 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    310 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    311 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    312 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    313 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    314 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    315 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    316 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    317 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    318 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    319 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    320 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    321 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    322 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    323 #define VMCS_PLE_GAP				0x00004020
    324 #define VMCS_PLE_WINDOW				0x00004022
    325 /* 32-bit read-only data fields */
    326 #define VMCS_INSTRUCTION_ERROR			0x00004400
    327 #define VMCS_EXIT_REASON			0x00004402
    328 #define VMCS_EXIT_INTR_INFO			0x00004404
    329 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    330 #define VMCS_IDT_VECTORING_INFO			0x00004408
    331 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    332 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    333 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    334 /* 32-bit guest-state fields */
    335 #define VMCS_GUEST_ES_LIMIT			0x00004800
    336 #define VMCS_GUEST_CS_LIMIT			0x00004802
    337 #define VMCS_GUEST_SS_LIMIT			0x00004804
    338 #define VMCS_GUEST_DS_LIMIT			0x00004806
    339 #define VMCS_GUEST_FS_LIMIT			0x00004808
    340 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    341 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    342 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    343 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    344 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    345 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    346 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    347 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    348 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    349 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    350 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    351 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    352 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    353 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    354 #define		INT_STATE_STI			__BIT(0)
    355 #define		INT_STATE_MOVSS			__BIT(1)
    356 #define		INT_STATE_SMI			__BIT(2)
    357 #define		INT_STATE_NMI			__BIT(3)
    358 #define		INT_STATE_ENCLAVE		__BIT(4)
    359 #define VMCS_GUEST_ACTIVITY			0x00004826
    360 #define VMCS_GUEST_SMBASE			0x00004828
    361 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    362 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    363 /* 32-bit host state fields */
    364 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    365 /* Natural-Width control fields */
    366 #define VMCS_CR0_MASK				0x00006000
    367 #define VMCS_CR4_MASK				0x00006002
    368 #define VMCS_CR0_SHADOW				0x00006004
    369 #define VMCS_CR4_SHADOW				0x00006006
    370 #define VMCS_CR3_TARGET0			0x00006008
    371 #define VMCS_CR3_TARGET1			0x0000600A
    372 #define VMCS_CR3_TARGET2			0x0000600C
    373 #define VMCS_CR3_TARGET3			0x0000600E
    374 /* Natural-Width read-only fields */
    375 #define VMCS_EXIT_QUALIFICATION			0x00006400
    376 #define VMCS_IO_RCX				0x00006402
    377 #define VMCS_IO_RSI				0x00006404
    378 #define VMCS_IO_RDI				0x00006406
    379 #define VMCS_IO_RIP				0x00006408
    380 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    381 /* Natural-Width guest-state fields */
    382 #define VMCS_GUEST_CR0				0x00006800
    383 #define VMCS_GUEST_CR3				0x00006802
    384 #define VMCS_GUEST_CR4				0x00006804
    385 #define VMCS_GUEST_ES_BASE			0x00006806
    386 #define VMCS_GUEST_CS_BASE			0x00006808
    387 #define VMCS_GUEST_SS_BASE			0x0000680A
    388 #define VMCS_GUEST_DS_BASE			0x0000680C
    389 #define VMCS_GUEST_FS_BASE			0x0000680E
    390 #define VMCS_GUEST_GS_BASE			0x00006810
    391 #define VMCS_GUEST_LDTR_BASE			0x00006812
    392 #define VMCS_GUEST_TR_BASE			0x00006814
    393 #define VMCS_GUEST_GDTR_BASE			0x00006816
    394 #define VMCS_GUEST_IDTR_BASE			0x00006818
    395 #define VMCS_GUEST_DR7				0x0000681A
    396 #define VMCS_GUEST_RSP				0x0000681C
    397 #define VMCS_GUEST_RIP				0x0000681E
    398 #define VMCS_GUEST_RFLAGS			0x00006820
    399 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    400 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    401 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    402 /* Natural-Width host-state fields */
    403 #define VMCS_HOST_CR0				0x00006C00
    404 #define VMCS_HOST_CR3				0x00006C02
    405 #define VMCS_HOST_CR4				0x00006C04
    406 #define VMCS_HOST_FS_BASE			0x00006C06
    407 #define VMCS_HOST_GS_BASE			0x00006C08
    408 #define VMCS_HOST_TR_BASE			0x00006C0A
    409 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    410 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    411 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    412 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    413 #define VMCS_HOST_RSP				0x00006C14
    414 #define VMCS_HOST_RIP				0x00006c16
    415 
    416 /* VMX basic exit reasons. */
    417 #define VMCS_EXITCODE_EXC_NMI			0
    418 #define VMCS_EXITCODE_EXT_INT			1
    419 #define VMCS_EXITCODE_SHUTDOWN			2
    420 #define VMCS_EXITCODE_INIT			3
    421 #define VMCS_EXITCODE_SIPI			4
    422 #define VMCS_EXITCODE_SMI			5
    423 #define VMCS_EXITCODE_OTHER_SMI			6
    424 #define VMCS_EXITCODE_INT_WINDOW		7
    425 #define VMCS_EXITCODE_NMI_WINDOW		8
    426 #define VMCS_EXITCODE_TASK_SWITCH		9
    427 #define VMCS_EXITCODE_CPUID			10
    428 #define VMCS_EXITCODE_GETSEC			11
    429 #define VMCS_EXITCODE_HLT			12
    430 #define VMCS_EXITCODE_INVD			13
    431 #define VMCS_EXITCODE_INVLPG			14
    432 #define VMCS_EXITCODE_RDPMC			15
    433 #define VMCS_EXITCODE_RDTSC			16
    434 #define VMCS_EXITCODE_RSM			17
    435 #define VMCS_EXITCODE_VMCALL			18
    436 #define VMCS_EXITCODE_VMCLEAR			19
    437 #define VMCS_EXITCODE_VMLAUNCH			20
    438 #define VMCS_EXITCODE_VMPTRLD			21
    439 #define VMCS_EXITCODE_VMPTRST			22
    440 #define VMCS_EXITCODE_VMREAD			23
    441 #define VMCS_EXITCODE_VMRESUME			24
    442 #define VMCS_EXITCODE_VMWRITE			25
    443 #define VMCS_EXITCODE_VMXOFF			26
    444 #define VMCS_EXITCODE_VMXON			27
    445 #define VMCS_EXITCODE_CR			28
    446 #define VMCS_EXITCODE_DR			29
    447 #define VMCS_EXITCODE_IO			30
    448 #define VMCS_EXITCODE_RDMSR			31
    449 #define VMCS_EXITCODE_WRMSR			32
    450 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    451 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    452 #define VMCS_EXITCODE_MWAIT			36
    453 #define VMCS_EXITCODE_TRAP_FLAG			37
    454 #define VMCS_EXITCODE_MONITOR			39
    455 #define VMCS_EXITCODE_PAUSE			40
    456 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    457 #define VMCS_EXITCODE_TPR_BELOW			43
    458 #define VMCS_EXITCODE_APIC_ACCESS		44
    459 #define VMCS_EXITCODE_VEOI			45
    460 #define VMCS_EXITCODE_GDTR_IDTR			46
    461 #define VMCS_EXITCODE_LDTR_TR			47
    462 #define VMCS_EXITCODE_EPT_VIOLATION		48
    463 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    464 #define VMCS_EXITCODE_INVEPT			50
    465 #define VMCS_EXITCODE_RDTSCP			51
    466 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    467 #define VMCS_EXITCODE_INVVPID			53
    468 #define VMCS_EXITCODE_WBINVD			54
    469 #define VMCS_EXITCODE_XSETBV			55
    470 #define VMCS_EXITCODE_APIC_WRITE		56
    471 #define VMCS_EXITCODE_RDRAND			57
    472 #define VMCS_EXITCODE_INVPCID			58
    473 #define VMCS_EXITCODE_VMFUNC			59
    474 #define VMCS_EXITCODE_ENCLS			60
    475 #define VMCS_EXITCODE_RDSEED			61
    476 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    477 #define VMCS_EXITCODE_XSAVES			63
    478 #define VMCS_EXITCODE_XRSTORS			64
    479 
    480 /* -------------------------------------------------------------------------- */
    481 
    482 #define VMX_MSRLIST_STAR		0
    483 #define VMX_MSRLIST_LSTAR		1
    484 #define VMX_MSRLIST_CSTAR		2
    485 #define VMX_MSRLIST_SFMASK		3
    486 #define VMX_MSRLIST_KERNELGSBASE	4
    487 #define VMX_MSRLIST_EXIT_NMSR		5
    488 #define VMX_MSRLIST_L1DFLUSH		5
    489 
    490 /* On entry, we may do +1 to include L1DFLUSH. */
    491 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    492 
    493 struct vmxon {
    494 	uint32_t ident;
    495 #define VMXON_IDENT_REVISION	__BITS(30,0)
    496 
    497 	uint8_t data[PAGE_SIZE - 4];
    498 } __packed;
    499 
    500 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    501 
    502 struct vmxoncpu {
    503 	vaddr_t va;
    504 	paddr_t pa;
    505 };
    506 
    507 static struct vmxoncpu vmxoncpu[MAXCPUS];
    508 
    509 struct vmcs {
    510 	uint32_t ident;
    511 #define VMCS_IDENT_REVISION	__BITS(30,0)
    512 #define VMCS_IDENT_SHADOW	__BIT(31)
    513 
    514 	uint32_t abort;
    515 	uint8_t data[PAGE_SIZE - 8];
    516 } __packed;
    517 
    518 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    519 
    520 struct msr_entry {
    521 	uint32_t msr;
    522 	uint32_t rsvd;
    523 	uint64_t val;
    524 } __packed;
    525 
    526 struct ept_desc {
    527 	uint64_t eptp;
    528 	uint64_t mbz;
    529 } __packed;
    530 
    531 struct vpid_desc {
    532 	uint64_t vpid;
    533 	uint64_t addr;
    534 } __packed;
    535 
    536 #define VPID_MAX	0xFFFF
    537 
    538 /* Make sure we never run out of VPIDs. */
    539 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    540 
    541 static uint64_t vmx_tlb_flush_op __read_mostly;
    542 static uint64_t vmx_ept_flush_op __read_mostly;
    543 static uint64_t vmx_eptp_type __read_mostly;
    544 
    545 static uint64_t vmx_pinbased_ctls __read_mostly;
    546 static uint64_t vmx_procbased_ctls __read_mostly;
    547 static uint64_t vmx_procbased_ctls2 __read_mostly;
    548 static uint64_t vmx_entry_ctls __read_mostly;
    549 static uint64_t vmx_exit_ctls __read_mostly;
    550 
    551 static uint64_t vmx_cr0_fixed0 __read_mostly;
    552 static uint64_t vmx_cr0_fixed1 __read_mostly;
    553 static uint64_t vmx_cr4_fixed0 __read_mostly;
    554 static uint64_t vmx_cr4_fixed1 __read_mostly;
    555 
    556 extern bool pmap_ept_has_ad;
    557 
    558 #define VMX_PINBASED_CTLS_ONE	\
    559 	(PIN_CTLS_INT_EXITING| \
    560 	 PIN_CTLS_NMI_EXITING| \
    561 	 PIN_CTLS_VIRTUAL_NMIS)
    562 
    563 #define VMX_PINBASED_CTLS_ZERO	0
    564 
    565 #define VMX_PROCBASED_CTLS_ONE	\
    566 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    567 	 PROC_CTLS_HLT_EXITING| \
    568 	 PROC_CTLS_MWAIT_EXITING | \
    569 	 PROC_CTLS_RDPMC_EXITING | \
    570 	 PROC_CTLS_RCR8_EXITING | \
    571 	 PROC_CTLS_LCR8_EXITING | \
    572 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    573 	 PROC_CTLS_USE_MSR_BITMAPS | \
    574 	 PROC_CTLS_MONITOR_EXITING | \
    575 	 PROC_CTLS_ACTIVATE_CTLS2)
    576 
    577 #define VMX_PROCBASED_CTLS_ZERO	\
    578 	(PROC_CTLS_RCR3_EXITING| \
    579 	 PROC_CTLS_LCR3_EXITING)
    580 
    581 #define VMX_PROCBASED_CTLS2_ONE	\
    582 	(PROC_CTLS2_ENABLE_EPT| \
    583 	 PROC_CTLS2_ENABLE_VPID| \
    584 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    585 
    586 #define VMX_PROCBASED_CTLS2_ZERO	0
    587 
    588 #define VMX_ENTRY_CTLS_ONE	\
    589 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    590 	 ENTRY_CTLS_LOAD_EFER| \
    591 	 ENTRY_CTLS_LOAD_PAT)
    592 
    593 #define VMX_ENTRY_CTLS_ZERO	\
    594 	(ENTRY_CTLS_SMM| \
    595 	 ENTRY_CTLS_DISABLE_DUAL)
    596 
    597 #define VMX_EXIT_CTLS_ONE	\
    598 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    599 	 EXIT_CTLS_HOST_LONG_MODE| \
    600 	 EXIT_CTLS_SAVE_PAT| \
    601 	 EXIT_CTLS_LOAD_PAT| \
    602 	 EXIT_CTLS_SAVE_EFER| \
    603 	 EXIT_CTLS_LOAD_EFER)
    604 
    605 #define VMX_EXIT_CTLS_ZERO	0
    606 
    607 static uint8_t *vmx_asidmap __read_mostly;
    608 static uint32_t vmx_maxasid __read_mostly;
    609 static kmutex_t vmx_asidlock __cacheline_aligned;
    610 
    611 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    612 static uint64_t vmx_xcr0_mask __read_mostly;
    613 
    614 #define VMX_NCPUIDS	32
    615 
    616 #define VMCS_NPAGES	1
    617 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    618 
    619 #define MSRBM_NPAGES	1
    620 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    621 
    622 #define EFER_TLB_FLUSH \
    623 	(EFER_NXE|EFER_LMA|EFER_LME)
    624 #define CR0_TLB_FLUSH \
    625 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    626 #define CR4_TLB_FLUSH \
    627 	(CR4_PGE|CR4_PAE|CR4_PSE)
    628 
    629 /* -------------------------------------------------------------------------- */
    630 
    631 struct vmx_machdata {
    632 	bool cpuidpresent[VMX_NCPUIDS];
    633 	struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
    634 	volatile uint64_t mach_htlb_gen;
    635 };
    636 
    637 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
    638 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    639 };
    640 
    641 struct vmx_cpudata {
    642 	/* General */
    643 	uint64_t asid;
    644 	bool gtlb_want_flush;
    645 	uint64_t vcpu_htlb_gen;
    646 	kcpuset_t *htlb_want_flush;
    647 
    648 	/* VMCS */
    649 	struct vmcs *vmcs;
    650 	paddr_t vmcs_pa;
    651 	size_t vmcs_refcnt;
    652 	struct cpu_info *vmcs_ci;
    653 	bool vmcs_launched;
    654 
    655 	/* MSR bitmap */
    656 	uint8_t *msrbm;
    657 	paddr_t msrbm_pa;
    658 
    659 	/* Host state */
    660 	uint64_t hxcr0;
    661 	uint64_t star;
    662 	uint64_t lstar;
    663 	uint64_t cstar;
    664 	uint64_t sfmask;
    665 	uint64_t kernelgsbase;
    666 	bool ts_set;
    667 	struct xsave_header hfpu __aligned(64);
    668 
    669 	/* Event state */
    670 	bool int_window_exit;
    671 	bool nmi_window_exit;
    672 
    673 	/* Guest state */
    674 	struct msr_entry *gmsr;
    675 	paddr_t gmsr_pa;
    676 	uint64_t gmsr_misc_enable;
    677 	uint64_t gcr2;
    678 	uint64_t gcr8;
    679 	uint64_t gxcr0;
    680 	uint64_t gprs[NVMM_X64_NGPR];
    681 	uint64_t drs[NVMM_X64_NDR];
    682 	uint64_t tsc_offset;
    683 	struct xsave_header gfpu __aligned(64);
    684 };
    685 
    686 static const struct {
    687 	uint64_t selector;
    688 	uint64_t attrib;
    689 	uint64_t limit;
    690 	uint64_t base;
    691 } vmx_guest_segs[NVMM_X64_NSEG] = {
    692 	[NVMM_X64_SEG_ES] = {
    693 		VMCS_GUEST_ES_SELECTOR,
    694 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    695 		VMCS_GUEST_ES_LIMIT,
    696 		VMCS_GUEST_ES_BASE
    697 	},
    698 	[NVMM_X64_SEG_CS] = {
    699 		VMCS_GUEST_CS_SELECTOR,
    700 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    701 		VMCS_GUEST_CS_LIMIT,
    702 		VMCS_GUEST_CS_BASE
    703 	},
    704 	[NVMM_X64_SEG_SS] = {
    705 		VMCS_GUEST_SS_SELECTOR,
    706 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    707 		VMCS_GUEST_SS_LIMIT,
    708 		VMCS_GUEST_SS_BASE
    709 	},
    710 	[NVMM_X64_SEG_DS] = {
    711 		VMCS_GUEST_DS_SELECTOR,
    712 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    713 		VMCS_GUEST_DS_LIMIT,
    714 		VMCS_GUEST_DS_BASE
    715 	},
    716 	[NVMM_X64_SEG_FS] = {
    717 		VMCS_GUEST_FS_SELECTOR,
    718 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    719 		VMCS_GUEST_FS_LIMIT,
    720 		VMCS_GUEST_FS_BASE
    721 	},
    722 	[NVMM_X64_SEG_GS] = {
    723 		VMCS_GUEST_GS_SELECTOR,
    724 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    725 		VMCS_GUEST_GS_LIMIT,
    726 		VMCS_GUEST_GS_BASE
    727 	},
    728 	[NVMM_X64_SEG_GDT] = {
    729 		0, /* doesn't exist */
    730 		0, /* doesn't exist */
    731 		VMCS_GUEST_GDTR_LIMIT,
    732 		VMCS_GUEST_GDTR_BASE
    733 	},
    734 	[NVMM_X64_SEG_IDT] = {
    735 		0, /* doesn't exist */
    736 		0, /* doesn't exist */
    737 		VMCS_GUEST_IDTR_LIMIT,
    738 		VMCS_GUEST_IDTR_BASE
    739 	},
    740 	[NVMM_X64_SEG_LDT] = {
    741 		VMCS_GUEST_LDTR_SELECTOR,
    742 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    743 		VMCS_GUEST_LDTR_LIMIT,
    744 		VMCS_GUEST_LDTR_BASE
    745 	},
    746 	[NVMM_X64_SEG_TR] = {
    747 		VMCS_GUEST_TR_SELECTOR,
    748 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    749 		VMCS_GUEST_TR_LIMIT,
    750 		VMCS_GUEST_TR_BASE
    751 	}
    752 };
    753 
    754 /* -------------------------------------------------------------------------- */
    755 
    756 static uint64_t
    757 vmx_get_revision(void)
    758 {
    759 	uint64_t msr;
    760 
    761 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    762 	msr &= IA32_VMX_BASIC_IDENT;
    763 
    764 	return msr;
    765 }
    766 
    767 static void
    768 vmx_vmclear_ipi(void *arg1, void *arg2)
    769 {
    770 	paddr_t vmcs_pa = (paddr_t)arg1;
    771 	vmx_vmclear(&vmcs_pa);
    772 }
    773 
    774 static void
    775 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    776 {
    777 	uint64_t xc;
    778 	int bound;
    779 
    780 	KASSERT(kpreempt_disabled());
    781 
    782 	bound = curlwp_bind();
    783 	kpreempt_enable();
    784 
    785 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    786 	xc_wait(xc);
    787 
    788 	kpreempt_disable();
    789 	curlwp_bindx(bound);
    790 }
    791 
    792 static void
    793 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    794 {
    795 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    796 	struct cpu_info *vmcs_ci;
    797 	paddr_t oldpa __diagused;
    798 
    799 	cpudata->vmcs_refcnt++;
    800 	if (cpudata->vmcs_refcnt > 1) {
    801 #ifdef DIAGNOSTIC
    802 		KASSERT(kpreempt_disabled());
    803 		vmx_vmptrst(&oldpa);
    804 		KASSERT(oldpa == cpudata->vmcs_pa);
    805 #endif
    806 		return;
    807 	}
    808 
    809 	vmcs_ci = cpudata->vmcs_ci;
    810 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    811 
    812 	kpreempt_disable();
    813 
    814 	if (vmcs_ci == NULL) {
    815 		/* This VMCS is loaded for the first time. */
    816 		vmx_vmclear(&cpudata->vmcs_pa);
    817 		cpudata->vmcs_launched = false;
    818 	} else if (vmcs_ci != curcpu()) {
    819 		/* This VMCS is active on a remote CPU. */
    820 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    821 		cpudata->vmcs_launched = false;
    822 	} else {
    823 		/* This VMCS is active on curcpu, nothing to do. */
    824 	}
    825 
    826 	vmx_vmptrld(&cpudata->vmcs_pa);
    827 }
    828 
    829 static void
    830 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    831 {
    832 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    833 	paddr_t oldpa __diagused;
    834 
    835 	KASSERT(kpreempt_disabled());
    836 #ifdef DIAGNOSTIC
    837 	vmx_vmptrst(&oldpa);
    838 	KASSERT(oldpa == cpudata->vmcs_pa);
    839 #endif
    840 	KASSERT(cpudata->vmcs_refcnt > 0);
    841 	cpudata->vmcs_refcnt--;
    842 
    843 	if (cpudata->vmcs_refcnt > 0) {
    844 		return;
    845 	}
    846 
    847 	cpudata->vmcs_ci = curcpu();
    848 	kpreempt_enable();
    849 }
    850 
    851 static void
    852 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    853 {
    854 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    855 	paddr_t oldpa __diagused;
    856 
    857 	KASSERT(kpreempt_disabled());
    858 #ifdef DIAGNOSTIC
    859 	vmx_vmptrst(&oldpa);
    860 	KASSERT(oldpa == cpudata->vmcs_pa);
    861 #endif
    862 	KASSERT(cpudata->vmcs_refcnt == 1);
    863 	cpudata->vmcs_refcnt--;
    864 
    865 	vmx_vmclear(&cpudata->vmcs_pa);
    866 	kpreempt_enable();
    867 }
    868 
    869 /* -------------------------------------------------------------------------- */
    870 
    871 static void
    872 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    873 {
    874 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    875 	uint64_t ctls1;
    876 
    877 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    878 
    879 	if (nmi) {
    880 		// XXX INT_STATE_NMI?
    881 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    882 		cpudata->nmi_window_exit = true;
    883 	} else {
    884 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    885 		cpudata->int_window_exit = true;
    886 	}
    887 
    888 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    889 }
    890 
    891 static void
    892 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    893 {
    894 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    895 	uint64_t ctls1;
    896 
    897 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    898 
    899 	if (nmi) {
    900 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    901 		cpudata->nmi_window_exit = false;
    902 	} else {
    903 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    904 		cpudata->int_window_exit = false;
    905 	}
    906 
    907 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    908 }
    909 
    910 static inline int
    911 vmx_event_has_error(uint64_t vector)
    912 {
    913 	switch (vector) {
    914 	case 8:		/* #DF */
    915 	case 10:	/* #TS */
    916 	case 11:	/* #NP */
    917 	case 12:	/* #SS */
    918 	case 13:	/* #GP */
    919 	case 14:	/* #PF */
    920 	case 17:	/* #AC */
    921 	case 30:	/* #SX */
    922 		return 1;
    923 	default:
    924 		return 0;
    925 	}
    926 }
    927 
    928 static int
    929 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    930     struct nvmm_event *event)
    931 {
    932 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    933 	int type = 0, err = 0, ret = 0;
    934 	uint64_t info, intstate, rflags;
    935 
    936 	if (event->vector >= 256) {
    937 		return EINVAL;
    938 	}
    939 
    940 	vmx_vmcs_enter(vcpu);
    941 
    942 	switch (event->type) {
    943 	case NVMM_EVENT_INTERRUPT_HW:
    944 		type = INTR_TYPE_EXT_INT;
    945 		if (event->vector == 2) {
    946 			type = INTR_TYPE_NMI;
    947 		}
    948 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    949 		if (type == INTR_TYPE_NMI) {
    950 			if (cpudata->nmi_window_exit) {
    951 				ret = EAGAIN;
    952 				goto out;
    953 			}
    954 			vmx_event_waitexit_enable(vcpu, true);
    955 		} else {
    956 			vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
    957 			if ((rflags & PSL_I) == 0 ||
    958 			    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
    959 				vmx_event_waitexit_enable(vcpu, false);
    960 				ret = EAGAIN;
    961 				goto out;
    962 			}
    963 		}
    964 		err = 0;
    965 		break;
    966 	case NVMM_EVENT_INTERRUPT_SW:
    967 		ret = EINVAL;
    968 		goto out;
    969 	case NVMM_EVENT_EXCEPTION:
    970 		if (event->vector == 2 || event->vector >= 32) {
    971 			ret = EINVAL;
    972 			goto out;
    973 		}
    974 		if (event->vector == 3 || event->vector == 0) {
    975 			ret = EINVAL;
    976 			goto out;
    977 		}
    978 		type = INTR_TYPE_HW_EXC;
    979 		err = vmx_event_has_error(event->vector);
    980 		break;
    981 	default:
    982 		ret = EAGAIN;
    983 		goto out;
    984 	}
    985 
    986 	info =
    987 	    __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
    988 	    __SHIFTIN(type, INTR_INFO_TYPE) |
    989 	    __SHIFTIN(err, INTR_INFO_ERROR) |
    990 	    __SHIFTIN(1, INTR_INFO_VALID);
    991 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
    992 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
    993 
    994 out:
    995 	vmx_vmcs_leave(vcpu);
    996 	return ret;
    997 }
    998 
    999 static void
   1000 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1001 {
   1002 	struct nvmm_event event;
   1003 	int ret __diagused;
   1004 
   1005 	event.type = NVMM_EVENT_EXCEPTION;
   1006 	event.vector = 6;
   1007 	event.u.error = 0;
   1008 
   1009 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1010 	KASSERT(ret == 0);
   1011 }
   1012 
   1013 static void
   1014 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1015 {
   1016 	struct nvmm_event event;
   1017 	int ret __diagused;
   1018 
   1019 	event.type = NVMM_EVENT_EXCEPTION;
   1020 	event.vector = 13;
   1021 	event.u.error = 0;
   1022 
   1023 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1024 	KASSERT(ret == 0);
   1025 }
   1026 
   1027 static inline void
   1028 vmx_inkernel_advance(void)
   1029 {
   1030 	uint64_t rip, inslen, intstate;
   1031 
   1032 	/*
   1033 	 * Maybe we should also apply single-stepping and debug exceptions.
   1034 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1035 	 * debugger.
   1036 	 */
   1037 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1038 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1039 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1040 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1041 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1042 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1043 }
   1044 
   1045 static void
   1046 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1047     struct nvmm_exit *exit)
   1048 {
   1049 	uint64_t qual;
   1050 
   1051 	vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
   1052 
   1053 	if ((qual & INTR_INFO_VALID) == 0) {
   1054 		goto error;
   1055 	}
   1056 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1057 		goto error;
   1058 	}
   1059 
   1060 	exit->reason = NVMM_EXIT_NONE;
   1061 	return;
   1062 
   1063 error:
   1064 	exit->reason = NVMM_EXIT_INVALID;
   1065 }
   1066 
   1067 static void
   1068 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
   1069 {
   1070 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1071 	uint64_t cr4;
   1072 
   1073 	switch (eax) {
   1074 	case 0x00000001:
   1075 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1076 
   1077 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1078 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1079 		    CPUID_LOCAL_APIC_ID);
   1080 
   1081 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1082 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1083 
   1084 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1085 
   1086 		/* CPUID2_OSXSAVE depends on CR4. */
   1087 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   1088 		if (!(cr4 & CR4_OSXSAVE)) {
   1089 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1090 		}
   1091 		break;
   1092 	case 0x00000005:
   1093 	case 0x00000006:
   1094 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1095 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1096 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1097 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1098 		break;
   1099 	case 0x00000007:
   1100 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
   1101 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1102 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1103 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1104 		break;
   1105 	case 0x0000000D:
   1106 		if (vmx_xcr0_mask == 0) {
   1107 			break;
   1108 		}
   1109 		switch (ecx) {
   1110 		case 0:
   1111 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1112 			if (cpudata->gxcr0 & XCR0_SSE) {
   1113 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1114 			} else {
   1115 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1116 			}
   1117 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1118 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
   1119 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1120 			break;
   1121 		case 1:
   1122 			cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
   1123 			break;
   1124 		}
   1125 		break;
   1126 	case 0x40000000:
   1127 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1128 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1129 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1130 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1131 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1132 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1133 		break;
   1134 	case 0x80000001:
   1135 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1136 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1137 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1138 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1139 		break;
   1140 	default:
   1141 		break;
   1142 	}
   1143 }
   1144 
   1145 static void
   1146 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1147     struct nvmm_exit *exit)
   1148 {
   1149 	struct vmx_machdata *machdata = mach->machdata;
   1150 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1151 	struct nvmm_x86_conf_cpuid *cpuid;
   1152 	uint64_t eax, ecx;
   1153 	u_int descs[4];
   1154 	size_t i;
   1155 
   1156 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1157 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1158 	x86_cpuid2(eax, ecx, descs);
   1159 
   1160 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1161 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1162 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1163 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1164 
   1165 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1166 		cpuid = &machdata->cpuid[i];
   1167 		if (!machdata->cpuidpresent[i]) {
   1168 			continue;
   1169 		}
   1170 		if (cpuid->leaf != eax) {
   1171 			continue;
   1172 		}
   1173 
   1174 		/* del */
   1175 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
   1176 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
   1177 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
   1178 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
   1179 
   1180 		/* set */
   1181 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
   1182 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
   1183 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
   1184 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
   1185 
   1186 		break;
   1187 	}
   1188 
   1189 	/* Overwrite non-tunable leaves. */
   1190 	vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
   1191 
   1192 	vmx_inkernel_advance();
   1193 	exit->reason = NVMM_EXIT_NONE;
   1194 }
   1195 
   1196 static void
   1197 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1198     struct nvmm_exit *exit)
   1199 {
   1200 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1201 	uint64_t rflags;
   1202 
   1203 	if (cpudata->int_window_exit) {
   1204 		vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
   1205 		if (rflags & PSL_I) {
   1206 			vmx_event_waitexit_disable(vcpu, false);
   1207 		}
   1208 	}
   1209 
   1210 	vmx_inkernel_advance();
   1211 	exit->reason = NVMM_EXIT_HALTED;
   1212 }
   1213 
   1214 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1215 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1216 #define		CR_TYPE_WRITE	0
   1217 #define		CR_TYPE_READ	1
   1218 #define		CR_TYPE_CLTS	2
   1219 #define		CR_TYPE_LMSW	3
   1220 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1221 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1222 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1223 
   1224 static inline int
   1225 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1226 {
   1227 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1228 	if ((crval & fixed0) != fixed0) {
   1229 		return -1;
   1230 	}
   1231 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1232 	if (crval & ~fixed1) {
   1233 		return -1;
   1234 	}
   1235 	return 0;
   1236 }
   1237 
   1238 static int
   1239 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1240     uint64_t qual)
   1241 {
   1242 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1243 	uint64_t type, gpr, cr0;
   1244 	uint64_t efer, ctls1;
   1245 
   1246 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1247 	if (type != CR_TYPE_WRITE) {
   1248 		return -1;
   1249 	}
   1250 
   1251 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1252 	KASSERT(gpr < 16);
   1253 
   1254 	if (gpr == NVMM_X64_GPR_RSP) {
   1255 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1256 	} else {
   1257 		gpr = cpudata->gprs[gpr];
   1258 	}
   1259 
   1260 	cr0 = gpr | CR0_NE | CR0_ET;
   1261 	cr0 &= ~(CR0_NW|CR0_CD);
   1262 
   1263 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1264 		return -1;
   1265 	}
   1266 
   1267 	/*
   1268 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1269 	 * from CR3.
   1270 	 */
   1271 
   1272 	if (cr0 & CR0_PG) {
   1273 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   1274 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   1275 		if (efer & EFER_LME) {
   1276 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1277 			efer |= EFER_LMA;
   1278 		} else {
   1279 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1280 			efer &= ~EFER_LMA;
   1281 		}
   1282 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1283 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1284 	}
   1285 
   1286 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1287 	vmx_inkernel_advance();
   1288 	return 0;
   1289 }
   1290 
   1291 static int
   1292 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1293     uint64_t qual)
   1294 {
   1295 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1296 	uint64_t type, gpr, cr4;
   1297 
   1298 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1299 	if (type != CR_TYPE_WRITE) {
   1300 		return -1;
   1301 	}
   1302 
   1303 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1304 	KASSERT(gpr < 16);
   1305 
   1306 	if (gpr == NVMM_X64_GPR_RSP) {
   1307 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1308 	} else {
   1309 		gpr = cpudata->gprs[gpr];
   1310 	}
   1311 
   1312 	cr4 = gpr | CR4_VMXE;
   1313 
   1314 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1315 		return -1;
   1316 	}
   1317 
   1318 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1319 	vmx_inkernel_advance();
   1320 	return 0;
   1321 }
   1322 
   1323 static int
   1324 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1325     uint64_t qual)
   1326 {
   1327 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1328 	uint64_t type, gpr;
   1329 	bool write;
   1330 
   1331 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1332 	if (type == CR_TYPE_WRITE) {
   1333 		write = true;
   1334 	} else if (type == CR_TYPE_READ) {
   1335 		write = false;
   1336 	} else {
   1337 		return -1;
   1338 	}
   1339 
   1340 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1341 	KASSERT(gpr < 16);
   1342 
   1343 	if (write) {
   1344 		if (gpr == NVMM_X64_GPR_RSP) {
   1345 			vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
   1346 		} else {
   1347 			cpudata->gcr8 = cpudata->gprs[gpr];
   1348 		}
   1349 	} else {
   1350 		if (gpr == NVMM_X64_GPR_RSP) {
   1351 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1352 		} else {
   1353 			cpudata->gprs[gpr] = cpudata->gcr8;
   1354 		}
   1355 	}
   1356 
   1357 	vmx_inkernel_advance();
   1358 	return 0;
   1359 }
   1360 
   1361 static void
   1362 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1363     struct nvmm_exit *exit)
   1364 {
   1365 	uint64_t qual;
   1366 	int ret;
   1367 
   1368 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1369 
   1370 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1371 	case 0:
   1372 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1373 		break;
   1374 	case 4:
   1375 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1376 		break;
   1377 	case 8:
   1378 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
   1379 		break;
   1380 	default:
   1381 		ret = -1;
   1382 		break;
   1383 	}
   1384 
   1385 	if (ret == -1) {
   1386 		vmx_inject_gp(mach, vcpu);
   1387 	}
   1388 
   1389 	exit->reason = NVMM_EXIT_NONE;
   1390 }
   1391 
   1392 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1393 #define		IO_SIZE_8	0
   1394 #define		IO_SIZE_16	1
   1395 #define		IO_SIZE_32	3
   1396 #define VMX_QUAL_IO_IN		__BIT(3)
   1397 #define VMX_QUAL_IO_STR		__BIT(4)
   1398 #define VMX_QUAL_IO_REP		__BIT(5)
   1399 #define VMX_QUAL_IO_DX		__BIT(6)
   1400 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1401 
   1402 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1403 #define		IO_ADRSIZE_16	0
   1404 #define		IO_ADRSIZE_32	1
   1405 #define		IO_ADRSIZE_64	2
   1406 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1407 
   1408 static void
   1409 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1410     struct nvmm_exit *exit)
   1411 {
   1412 	uint64_t qual, info, inslen, rip;
   1413 
   1414 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1415 	vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
   1416 
   1417 	exit->reason = NVMM_EXIT_IO;
   1418 
   1419 	if (qual & VMX_QUAL_IO_IN) {
   1420 		exit->u.io.type = NVMM_EXIT_IO_IN;
   1421 	} else {
   1422 		exit->u.io.type = NVMM_EXIT_IO_OUT;
   1423 	}
   1424 
   1425 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1426 
   1427 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1428 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1429 
   1430 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1431 		exit->u.io.address_size = 8;
   1432 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1433 		exit->u.io.address_size = 4;
   1434 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1435 		exit->u.io.address_size = 2;
   1436 	}
   1437 
   1438 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1439 		exit->u.io.operand_size = 4;
   1440 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1441 		exit->u.io.operand_size = 2;
   1442 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1443 		exit->u.io.operand_size = 1;
   1444 	}
   1445 
   1446 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1447 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1448 
   1449 	if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
   1450 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1451 	}
   1452 
   1453 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1454 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1455 	exit->u.io.npc = rip + inslen;
   1456 }
   1457 
   1458 static const uint64_t msr_ignore_list[] = {
   1459 	MSR_BIOS_SIGN,
   1460 	MSR_IA32_PLATFORM_ID
   1461 };
   1462 
   1463 static bool
   1464 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1465     struct nvmm_exit *exit)
   1466 {
   1467 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1468 	uint64_t val;
   1469 	size_t i;
   1470 
   1471 	switch (exit->u.msr.type) {
   1472 	case NVMM_EXIT_MSR_RDMSR:
   1473 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1474 			vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
   1475 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1476 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1477 			goto handled;
   1478 		}
   1479 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1480 			val = cpudata->gmsr_misc_enable;
   1481 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1482 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1483 			goto handled;
   1484 		}
   1485 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1486 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1487 				continue;
   1488 			val = 0;
   1489 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1490 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1491 			goto handled;
   1492 		}
   1493 		break;
   1494 	case NVMM_EXIT_MSR_WRMSR:
   1495 		if (exit->u.msr.msr == MSR_TSC) {
   1496 			cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
   1497 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
   1498 			    curcpu()->ci_data.cpu_cc_skew);
   1499 			goto handled;
   1500 		}
   1501 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1502 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
   1503 			goto handled;
   1504 		}
   1505 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1506 			/* Don't care. */
   1507 			goto handled;
   1508 		}
   1509 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1510 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1511 				continue;
   1512 			goto handled;
   1513 		}
   1514 		break;
   1515 	}
   1516 
   1517 	return false;
   1518 
   1519 handled:
   1520 	vmx_inkernel_advance();
   1521 	return true;
   1522 }
   1523 
   1524 static void
   1525 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1526     struct nvmm_exit *exit, bool rdmsr)
   1527 {
   1528 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1529 	uint64_t inslen, rip;
   1530 
   1531 	if (rdmsr) {
   1532 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1533 	} else {
   1534 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1535 	}
   1536 
   1537 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1538 
   1539 	if (rdmsr) {
   1540 		exit->u.msr.val = 0;
   1541 	} else {
   1542 		uint64_t rdx, rax;
   1543 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1544 		rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1545 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1546 	}
   1547 
   1548 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1549 		exit->reason = NVMM_EXIT_NONE;
   1550 		return;
   1551 	}
   1552 
   1553 	exit->reason = NVMM_EXIT_MSR;
   1554 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1555 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1556 	exit->u.msr.npc = rip + inslen;
   1557 }
   1558 
   1559 static void
   1560 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1561     struct nvmm_exit *exit)
   1562 {
   1563 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1564 	uint16_t val;
   1565 
   1566 	exit->reason = NVMM_EXIT_NONE;
   1567 
   1568 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1569 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1570 
   1571 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1572 		goto error;
   1573 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1574 		goto error;
   1575 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1576 		goto error;
   1577 	}
   1578 
   1579 	cpudata->gxcr0 = val;
   1580 
   1581 	vmx_inkernel_advance();
   1582 	return;
   1583 
   1584 error:
   1585 	vmx_inject_gp(mach, vcpu);
   1586 }
   1587 
   1588 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1589 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1590 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1591 
   1592 static void
   1593 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1594     struct nvmm_exit *exit)
   1595 {
   1596 	uint64_t perm;
   1597 	gpaddr_t gpa;
   1598 
   1599 	vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
   1600 
   1601 	exit->reason = NVMM_EXIT_MEMORY;
   1602 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
   1603 	if (perm & VMX_EPT_VIOLATION_WRITE)
   1604 		exit->u.mem.prot = PROT_WRITE;
   1605 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1606 		exit->u.mem.prot = PROT_EXEC;
   1607 	else
   1608 		exit->u.mem.prot = PROT_READ;
   1609 	exit->u.mem.gpa = gpa;
   1610 	exit->u.mem.inst_len = 0;
   1611 }
   1612 
   1613 /* -------------------------------------------------------------------------- */
   1614 
   1615 static void
   1616 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1617 {
   1618 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1619 
   1620 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1621 
   1622 	fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
   1623 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1624 
   1625 	if (vmx_xcr0_mask != 0) {
   1626 		cpudata->hxcr0 = rdxcr(0);
   1627 		wrxcr(0, cpudata->gxcr0);
   1628 	}
   1629 }
   1630 
   1631 static void
   1632 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1633 {
   1634 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1635 
   1636 	if (vmx_xcr0_mask != 0) {
   1637 		cpudata->gxcr0 = rdxcr(0);
   1638 		wrxcr(0, cpudata->hxcr0);
   1639 	}
   1640 
   1641 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1642 	fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
   1643 
   1644 	if (cpudata->ts_set) {
   1645 		stts();
   1646 	}
   1647 }
   1648 
   1649 static void
   1650 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1651 {
   1652 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1653 
   1654 	x86_dbregs_save(curlwp);
   1655 
   1656 	ldr7(0);
   1657 
   1658 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1659 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1660 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1661 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1662 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1663 }
   1664 
   1665 static void
   1666 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1667 {
   1668 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1669 
   1670 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1671 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1672 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1673 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1674 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1675 
   1676 	x86_dbregs_restore(curlwp);
   1677 }
   1678 
   1679 static void
   1680 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1681 {
   1682 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1683 
   1684 	/* This gets restored automatically by the CPU. */
   1685 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1686 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1687 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1688 
   1689 	/* Note: MSR_LSTAR is not static, because of SVS. */
   1690 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1691 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1692 }
   1693 
   1694 static void
   1695 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1696 {
   1697 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1698 
   1699 	wrmsr(MSR_STAR, cpudata->star);
   1700 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1701 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1702 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1703 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1704 }
   1705 
   1706 /* -------------------------------------------------------------------------- */
   1707 
   1708 #define VMX_INVVPID_ADDRESS		0
   1709 #define VMX_INVVPID_CONTEXT		1
   1710 #define VMX_INVVPID_ALL			2
   1711 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1712 
   1713 #define VMX_INVEPT_CONTEXT		1
   1714 #define VMX_INVEPT_ALL			2
   1715 
   1716 static inline void
   1717 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1718 {
   1719 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1720 
   1721 	if (vcpu->hcpu_last != hcpu) {
   1722 		cpudata->gtlb_want_flush = true;
   1723 	}
   1724 }
   1725 
   1726 static inline void
   1727 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1728 {
   1729 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1730 	struct ept_desc ept_desc;
   1731 
   1732 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   1733 		return;
   1734 	}
   1735 
   1736 	vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1737 	ept_desc.mbz = 0;
   1738 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1739 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   1740 }
   1741 
   1742 static inline uint64_t
   1743 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   1744 {
   1745 	struct ept_desc ept_desc;
   1746 	uint64_t machgen;
   1747 
   1748 	machgen = machdata->mach_htlb_gen;
   1749 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1750 		return machgen;
   1751 	}
   1752 
   1753 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   1754 
   1755 	vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1756 	ept_desc.mbz = 0;
   1757 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1758 
   1759 	return machgen;
   1760 }
   1761 
   1762 static inline void
   1763 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   1764 {
   1765 	cpudata->vcpu_htlb_gen = machgen;
   1766 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   1767 }
   1768 
   1769 static int
   1770 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1771     struct nvmm_exit *exit)
   1772 {
   1773 	struct vmx_machdata *machdata = mach->machdata;
   1774 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1775 	struct vpid_desc vpid_desc;
   1776 	struct cpu_info *ci;
   1777 	uint64_t exitcode;
   1778 	uint64_t intstate;
   1779 	uint64_t machgen;
   1780 	int hcpu, s, ret;
   1781 	bool launched;
   1782 
   1783 	vmx_vmcs_enter(vcpu);
   1784 	ci = curcpu();
   1785 	hcpu = cpu_number();
   1786 	launched = cpudata->vmcs_launched;
   1787 
   1788 	vmx_gtlb_catchup(vcpu, hcpu);
   1789 	vmx_htlb_catchup(vcpu, hcpu);
   1790 
   1791 	if (vcpu->hcpu_last != hcpu) {
   1792 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   1793 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   1794 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   1795 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   1796 		vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
   1797 		    curcpu()->ci_data.cpu_cc_skew);
   1798 		vcpu->hcpu_last = hcpu;
   1799 	}
   1800 
   1801 	vmx_vcpu_guest_dbregs_enter(vcpu);
   1802 	vmx_vcpu_guest_misc_enter(vcpu);
   1803 
   1804 	while (1) {
   1805 		if (cpudata->gtlb_want_flush) {
   1806 			vpid_desc.vpid = cpudata->asid;
   1807 			vpid_desc.addr = 0;
   1808 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   1809 			cpudata->gtlb_want_flush = false;
   1810 		}
   1811 
   1812 		s = splhigh();
   1813 		machgen = vmx_htlb_flush(machdata, cpudata);
   1814 		vmx_vcpu_guest_fpu_enter(vcpu);
   1815 		lcr2(cpudata->gcr2);
   1816 		if (launched) {
   1817 			ret = vmx_vmresume(cpudata->gprs);
   1818 		} else {
   1819 			ret = vmx_vmlaunch(cpudata->gprs);
   1820 		}
   1821 		cpudata->gcr2 = rcr2();
   1822 		vmx_vcpu_guest_fpu_leave(vcpu);
   1823 		vmx_htlb_flush_ack(cpudata, machgen);
   1824 		splx(s);
   1825 
   1826 		if (__predict_false(ret != 0)) {
   1827 			exit->reason = NVMM_EXIT_INVALID;
   1828 			break;
   1829 		}
   1830 
   1831 		launched = true;
   1832 
   1833 		vmx_vmread(VMCS_EXIT_REASON, &exitcode);
   1834 		exitcode &= __BITS(15,0);
   1835 
   1836 		switch (exitcode) {
   1837 		case VMCS_EXITCODE_EXC_NMI:
   1838 			vmx_exit_exc_nmi(mach, vcpu, exit);
   1839 			break;
   1840 		case VMCS_EXITCODE_EXT_INT:
   1841 			exit->reason = NVMM_EXIT_NONE;
   1842 			break;
   1843 		case VMCS_EXITCODE_CPUID:
   1844 			vmx_exit_cpuid(mach, vcpu, exit);
   1845 			break;
   1846 		case VMCS_EXITCODE_HLT:
   1847 			vmx_exit_hlt(mach, vcpu, exit);
   1848 			break;
   1849 		case VMCS_EXITCODE_CR:
   1850 			vmx_exit_cr(mach, vcpu, exit);
   1851 			break;
   1852 		case VMCS_EXITCODE_IO:
   1853 			vmx_exit_io(mach, vcpu, exit);
   1854 			break;
   1855 		case VMCS_EXITCODE_RDMSR:
   1856 			vmx_exit_msr(mach, vcpu, exit, true);
   1857 			break;
   1858 		case VMCS_EXITCODE_WRMSR:
   1859 			vmx_exit_msr(mach, vcpu, exit, false);
   1860 			break;
   1861 		case VMCS_EXITCODE_SHUTDOWN:
   1862 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1863 			break;
   1864 		case VMCS_EXITCODE_MONITOR:
   1865 			exit->reason = NVMM_EXIT_MONITOR;
   1866 			break;
   1867 		case VMCS_EXITCODE_MWAIT:
   1868 			exit->reason = NVMM_EXIT_MWAIT;
   1869 			break;
   1870 		case VMCS_EXITCODE_XSETBV:
   1871 			vmx_exit_xsetbv(mach, vcpu, exit);
   1872 			break;
   1873 		case VMCS_EXITCODE_RDPMC:
   1874 		case VMCS_EXITCODE_RDTSCP:
   1875 		case VMCS_EXITCODE_INVVPID:
   1876 		case VMCS_EXITCODE_INVEPT:
   1877 		case VMCS_EXITCODE_VMCALL:
   1878 		case VMCS_EXITCODE_VMCLEAR:
   1879 		case VMCS_EXITCODE_VMLAUNCH:
   1880 		case VMCS_EXITCODE_VMPTRLD:
   1881 		case VMCS_EXITCODE_VMPTRST:
   1882 		case VMCS_EXITCODE_VMREAD:
   1883 		case VMCS_EXITCODE_VMRESUME:
   1884 		case VMCS_EXITCODE_VMWRITE:
   1885 		case VMCS_EXITCODE_VMXOFF:
   1886 		case VMCS_EXITCODE_VMXON:
   1887 			vmx_inject_ud(mach, vcpu);
   1888 			exit->reason = NVMM_EXIT_NONE;
   1889 			break;
   1890 		case VMCS_EXITCODE_EPT_VIOLATION:
   1891 			vmx_exit_epf(mach, vcpu, exit);
   1892 			break;
   1893 		case VMCS_EXITCODE_INT_WINDOW:
   1894 			vmx_event_waitexit_disable(vcpu, false);
   1895 			exit->reason = NVMM_EXIT_INT_READY;
   1896 			break;
   1897 		case VMCS_EXITCODE_NMI_WINDOW:
   1898 			vmx_event_waitexit_disable(vcpu, true);
   1899 			exit->reason = NVMM_EXIT_NMI_READY;
   1900 			break;
   1901 		default:
   1902 			exit->reason = NVMM_EXIT_INVALID;
   1903 			break;
   1904 		}
   1905 
   1906 		/* If no reason to return to userland, keep rolling. */
   1907 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1908 			break;
   1909 		}
   1910 		if (curcpu()->ci_data.cpu_softints != 0) {
   1911 			break;
   1912 		}
   1913 		if (curlwp->l_flag & LW_USERRET) {
   1914 			break;
   1915 		}
   1916 		if (exit->reason != NVMM_EXIT_NONE) {
   1917 			break;
   1918 		}
   1919 	}
   1920 
   1921 	cpudata->vmcs_launched = launched;
   1922 
   1923 	vmx_vcpu_guest_misc_leave(vcpu);
   1924 	vmx_vcpu_guest_dbregs_leave(vcpu);
   1925 
   1926 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
   1927 	vmx_vmread(VMCS_GUEST_RFLAGS,
   1928 	    &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
   1929 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1930 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1931 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   1932 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1933 	    cpudata->int_window_exit;
   1934 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1935 	    cpudata->nmi_window_exit;
   1936 
   1937 	vmx_vmcs_leave(vcpu);
   1938 
   1939 	return 0;
   1940 }
   1941 
   1942 /* -------------------------------------------------------------------------- */
   1943 
   1944 static int
   1945 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1946 {
   1947 	struct pglist pglist;
   1948 	paddr_t _pa;
   1949 	vaddr_t _va;
   1950 	size_t i;
   1951 	int ret;
   1952 
   1953 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1954 	    &pglist, 1, 0);
   1955 	if (ret != 0)
   1956 		return ENOMEM;
   1957 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1958 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1959 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1960 	if (_va == 0)
   1961 		goto error;
   1962 
   1963 	for (i = 0; i < npages; i++) {
   1964 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1965 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1966 	}
   1967 	pmap_update(pmap_kernel());
   1968 
   1969 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1970 
   1971 	*pa = _pa;
   1972 	*va = _va;
   1973 	return 0;
   1974 
   1975 error:
   1976 	for (i = 0; i < npages; i++) {
   1977 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1978 	}
   1979 	return ENOMEM;
   1980 }
   1981 
   1982 static void
   1983 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1984 {
   1985 	size_t i;
   1986 
   1987 	pmap_kremove(va, npages * PAGE_SIZE);
   1988 	pmap_update(pmap_kernel());
   1989 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1990 	for (i = 0; i < npages; i++) {
   1991 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1992 	}
   1993 }
   1994 
   1995 /* -------------------------------------------------------------------------- */
   1996 
   1997 static void
   1998 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   1999 {
   2000 	uint64_t byte;
   2001 	uint8_t bitoff;
   2002 
   2003 	if (msr < 0x00002000) {
   2004 		/* Range 1 */
   2005 		byte = ((msr - 0x00000000) / 8) + 0;
   2006 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2007 		/* Range 2 */
   2008 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2009 	} else {
   2010 		panic("%s: wrong range", __func__);
   2011 	}
   2012 
   2013 	bitoff = (msr & 0x7);
   2014 
   2015 	if (read) {
   2016 		bitmap[byte] &= ~__BIT(bitoff);
   2017 	}
   2018 	if (write) {
   2019 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2020 	}
   2021 }
   2022 
   2023 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2024 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2025 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2026 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2027 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2028 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2029 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2030 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2031 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2032 
   2033 static void
   2034 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2035 {
   2036 	uint64_t attrib;
   2037 
   2038 	attrib =
   2039 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2040 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2041 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2042 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2043 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2044 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2045 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2046 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2047 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2048 
   2049 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2050 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2051 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2052 	}
   2053 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2054 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2055 }
   2056 
   2057 static void
   2058 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2059 {
   2060 	uint64_t selector, base, limit, attrib = 0;
   2061 
   2062 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2063 		vmx_vmread(vmx_guest_segs[idx].selector, &selector);
   2064 		vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
   2065 	}
   2066 	vmx_vmread(vmx_guest_segs[idx].limit, &limit);
   2067 	vmx_vmread(vmx_guest_segs[idx].base, &base);
   2068 
   2069 	segs[idx].selector = selector;
   2070 	segs[idx].limit = limit;
   2071 	segs[idx].base = base;
   2072 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2073 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2074 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2075 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2076 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2077 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2078 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2079 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2080 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2081 		segs[idx].attrib.p = 0;
   2082 	}
   2083 }
   2084 
   2085 static inline bool
   2086 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2087 {
   2088 	uint64_t cr0, cr3, cr4, efer;
   2089 
   2090 	if (flags & NVMM_X64_STATE_CRS) {
   2091 		vmx_vmread(VMCS_GUEST_CR0, &cr0);
   2092 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2093 			return true;
   2094 		}
   2095 		vmx_vmread(VMCS_GUEST_CR3, &cr3);
   2096 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2097 			return true;
   2098 		}
   2099 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   2100 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2101 			return true;
   2102 		}
   2103 	}
   2104 
   2105 	if (flags & NVMM_X64_STATE_MSRS) {
   2106 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   2107 		if ((efer ^
   2108 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2109 			return true;
   2110 		}
   2111 	}
   2112 
   2113 	return false;
   2114 }
   2115 
   2116 static void
   2117 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   2118 {
   2119 	const struct nvmm_x64_state *state = data;
   2120 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2121 	struct fxsave *fpustate;
   2122 	uint64_t ctls1, intstate;
   2123 
   2124 	vmx_vmcs_enter(vcpu);
   2125 
   2126 	if (vmx_state_tlb_flush(state, flags)) {
   2127 		cpudata->gtlb_want_flush = true;
   2128 	}
   2129 
   2130 	if (flags & NVMM_X64_STATE_SEGS) {
   2131 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2132 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2133 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2134 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2135 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2136 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2137 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2138 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2139 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2140 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2141 	}
   2142 
   2143 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2144 	if (flags & NVMM_X64_STATE_GPRS) {
   2145 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2146 
   2147 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2148 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2149 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2150 	}
   2151 
   2152 	if (flags & NVMM_X64_STATE_CRS) {
   2153 		/*
   2154 		 * CR0_NE and CR4_VMXE are mandatory.
   2155 		 */
   2156 		vmx_vmwrite(VMCS_GUEST_CR0,
   2157 		    state->crs[NVMM_X64_CR_CR0] | CR0_NE);
   2158 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2159 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2160 		vmx_vmwrite(VMCS_GUEST_CR4,
   2161 		    state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
   2162 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2163 
   2164 		if (vmx_xcr0_mask != 0) {
   2165 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2166 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2167 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2168 			cpudata->gxcr0 |= XCR0_X87;
   2169 		}
   2170 	}
   2171 
   2172 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2173 	if (flags & NVMM_X64_STATE_DRS) {
   2174 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2175 
   2176 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2177 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2178 	}
   2179 
   2180 	if (flags & NVMM_X64_STATE_MSRS) {
   2181 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2182 		    state->msrs[NVMM_X64_MSR_STAR];
   2183 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2184 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2185 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2186 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2187 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2188 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2189 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2190 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2191 
   2192 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2193 		    state->msrs[NVMM_X64_MSR_EFER]);
   2194 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2195 		    state->msrs[NVMM_X64_MSR_PAT]);
   2196 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2197 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2198 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2199 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2200 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2201 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2202 
   2203 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2204 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   2205 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2206 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2207 		} else {
   2208 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2209 		}
   2210 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2211 	}
   2212 
   2213 	if (flags & NVMM_X64_STATE_MISC) {
   2214 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2215 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2216 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   2217 			intstate |= INT_STATE_MOVSS;
   2218 		}
   2219 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2220 
   2221 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   2222 			vmx_event_waitexit_enable(vcpu, false);
   2223 		} else {
   2224 			vmx_event_waitexit_disable(vcpu, false);
   2225 		}
   2226 
   2227 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   2228 			vmx_event_waitexit_enable(vcpu, true);
   2229 		} else {
   2230 			vmx_event_waitexit_disable(vcpu, true);
   2231 		}
   2232 	}
   2233 
   2234 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2235 	if (flags & NVMM_X64_STATE_FPU) {
   2236 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2237 		    sizeof(state->fpu));
   2238 
   2239 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2240 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2241 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2242 
   2243 		if (vmx_xcr0_mask != 0) {
   2244 			/* Reset XSTATE_BV, to force a reload. */
   2245 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2246 		}
   2247 	}
   2248 
   2249 	vmx_vmcs_leave(vcpu);
   2250 }
   2251 
   2252 static void
   2253 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2254 {
   2255 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2256 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2257 	uint64_t intstate;
   2258 
   2259 	vmx_vmcs_enter(vcpu);
   2260 
   2261 	if (flags & NVMM_X64_STATE_SEGS) {
   2262 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2263 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2264 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2265 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2266 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2267 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2268 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2269 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2270 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2271 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2272 	}
   2273 
   2274 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2275 	if (flags & NVMM_X64_STATE_GPRS) {
   2276 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2277 
   2278 		vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
   2279 		vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
   2280 		vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
   2281 	}
   2282 
   2283 	if (flags & NVMM_X64_STATE_CRS) {
   2284 		vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
   2285 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2286 		vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
   2287 		vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
   2288 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2289 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2290 
   2291 		/* Hide VMXE. */
   2292 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2293 	}
   2294 
   2295 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2296 	if (flags & NVMM_X64_STATE_DRS) {
   2297 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2298 
   2299 		vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
   2300 	}
   2301 
   2302 	if (flags & NVMM_X64_STATE_MSRS) {
   2303 		state->msrs[NVMM_X64_MSR_STAR] =
   2304 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2305 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2306 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2307 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2308 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2309 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2310 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2311 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2312 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2313 
   2314 		vmx_vmread(VMCS_GUEST_IA32_EFER,
   2315 		    &state->msrs[NVMM_X64_MSR_EFER]);
   2316 		vmx_vmread(VMCS_GUEST_IA32_PAT,
   2317 		    &state->msrs[NVMM_X64_MSR_PAT]);
   2318 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
   2319 		    &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2320 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
   2321 		    &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2322 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
   2323 		    &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2324 	}
   2325 
   2326 	if (flags & NVMM_X64_STATE_MISC) {
   2327 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2328 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   2329 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2330 
   2331 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   2332 		    cpudata->int_window_exit;
   2333 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   2334 		    cpudata->nmi_window_exit;
   2335 	}
   2336 
   2337 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2338 	if (flags & NVMM_X64_STATE_FPU) {
   2339 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2340 		    sizeof(state->fpu));
   2341 	}
   2342 
   2343 	vmx_vmcs_leave(vcpu);
   2344 }
   2345 
   2346 /* -------------------------------------------------------------------------- */
   2347 
   2348 static void
   2349 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2350 {
   2351 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2352 	size_t i, oct, bit;
   2353 
   2354 	mutex_enter(&vmx_asidlock);
   2355 
   2356 	for (i = 0; i < vmx_maxasid; i++) {
   2357 		oct = i / 8;
   2358 		bit = i % 8;
   2359 
   2360 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2361 			continue;
   2362 		}
   2363 
   2364 		cpudata->asid = i;
   2365 
   2366 		vmx_asidmap[oct] |= __BIT(bit);
   2367 		vmx_vmwrite(VMCS_VPID, i);
   2368 		mutex_exit(&vmx_asidlock);
   2369 		return;
   2370 	}
   2371 
   2372 	mutex_exit(&vmx_asidlock);
   2373 
   2374 	panic("%s: impossible", __func__);
   2375 }
   2376 
   2377 static void
   2378 vmx_asid_free(struct nvmm_cpu *vcpu)
   2379 {
   2380 	size_t oct, bit;
   2381 	uint64_t asid;
   2382 
   2383 	vmx_vmread(VMCS_VPID, &asid);
   2384 
   2385 	oct = asid / 8;
   2386 	bit = asid % 8;
   2387 
   2388 	mutex_enter(&vmx_asidlock);
   2389 	vmx_asidmap[oct] &= ~__BIT(bit);
   2390 	mutex_exit(&vmx_asidlock);
   2391 }
   2392 
   2393 static void
   2394 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2395 {
   2396 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2397 	struct vmcs *vmcs = cpudata->vmcs;
   2398 	struct msr_entry *gmsr = cpudata->gmsr;
   2399 	extern uint8_t vmx_resume_rip;
   2400 	uint64_t rev, eptp;
   2401 
   2402 	rev = vmx_get_revision();
   2403 
   2404 	memset(vmcs, 0, VMCS_SIZE);
   2405 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2406 	vmcs->abort = 0;
   2407 
   2408 	vmx_vmcs_enter(vcpu);
   2409 
   2410 	/* No link pointer. */
   2411 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2412 
   2413 	/* Install the CTLSs. */
   2414 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2415 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2416 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2417 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2418 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2419 
   2420 	/* Allow direct access to certain MSRs. */
   2421 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2422 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2423 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2424 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2425 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2426 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2427 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2428 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2429 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2430 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2431 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2432 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2433 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2434 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   2435 	    true, false);
   2436 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2437 
   2438 	/*
   2439 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2440 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2441 	 */
   2442 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2443 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2444 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2445 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2446 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2447 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2448 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2449 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2450 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2451 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2452 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2453 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2454 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2455 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2456 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2457 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2458 
   2459 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   2460 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
   2461 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   2462 
   2463 	/* Force CR4_VMXE to zero. */
   2464 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   2465 
   2466 	/* Set the Host state for resuming. */
   2467 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2468 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2469 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2470 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2471 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2472 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2473 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2474 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2475 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2476 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2477 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   2478 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2479 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2480 	vmx_vmwrite(VMCS_HOST_CR0, rcr0());
   2481 
   2482 	/* Generate ASID. */
   2483 	vmx_asid_alloc(vcpu);
   2484 
   2485 	/* Enable Extended Paging, 4-Level. */
   2486 	eptp =
   2487 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2488 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2489 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2490 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2491 	vmx_vmwrite(VMCS_EPTP, eptp);
   2492 
   2493 	/* Init IA32_MISC_ENABLE. */
   2494 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2495 	cpudata->gmsr_misc_enable &=
   2496 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2497 	cpudata->gmsr_misc_enable |=
   2498 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2499 
   2500 	/* Init XSAVE header. */
   2501 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2502 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2503 
   2504 	/* Set guest TSC to zero, more or less. */
   2505 	cpudata->tsc_offset = -cpu_counter();
   2506 
   2507 	/* These MSRs are static. */
   2508 	cpudata->star = rdmsr(MSR_STAR);
   2509 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2510 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2511 
   2512 	/* Install the RESET state. */
   2513 	vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   2514 
   2515 	vmx_vmcs_leave(vcpu);
   2516 }
   2517 
   2518 static int
   2519 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2520 {
   2521 	struct vmx_cpudata *cpudata;
   2522 	int error;
   2523 
   2524 	/* Allocate the VMX cpudata. */
   2525 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2526 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2527 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2528 	vcpu->cpudata = cpudata;
   2529 
   2530 	/* VMCS */
   2531 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2532 	    VMCS_NPAGES);
   2533 	if (error)
   2534 		goto error;
   2535 
   2536 	/* MSR Bitmap */
   2537 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2538 	    MSRBM_NPAGES);
   2539 	if (error)
   2540 		goto error;
   2541 
   2542 	/* Guest MSR List */
   2543 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2544 	if (error)
   2545 		goto error;
   2546 
   2547 	kcpuset_create(&cpudata->htlb_want_flush, true);
   2548 
   2549 	/* Init the VCPU info. */
   2550 	vmx_vcpu_init(mach, vcpu);
   2551 
   2552 	return 0;
   2553 
   2554 error:
   2555 	if (cpudata->vmcs_pa) {
   2556 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2557 		    VMCS_NPAGES);
   2558 	}
   2559 	if (cpudata->msrbm_pa) {
   2560 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2561 		    MSRBM_NPAGES);
   2562 	}
   2563 	if (cpudata->gmsr_pa) {
   2564 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2565 	}
   2566 
   2567 	kmem_free(cpudata, sizeof(*cpudata));
   2568 	return error;
   2569 }
   2570 
   2571 static void
   2572 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2573 {
   2574 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2575 
   2576 	vmx_vmcs_enter(vcpu);
   2577 	vmx_asid_free(vcpu);
   2578 	vmx_vmcs_destroy(vcpu);
   2579 
   2580 	kcpuset_destroy(cpudata->htlb_want_flush);
   2581 
   2582 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2583 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2584 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2585 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2586 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2587 }
   2588 
   2589 /* -------------------------------------------------------------------------- */
   2590 
   2591 static void
   2592 vmx_tlb_flush(struct pmap *pm)
   2593 {
   2594 	struct nvmm_machine *mach = pm->pm_data;
   2595 	struct vmx_machdata *machdata = mach->machdata;
   2596 
   2597 	atomic_inc_64(&machdata->mach_htlb_gen);
   2598 
   2599 	/* Generates IPIs, which cause #VMEXITs. */
   2600 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2601 }
   2602 
   2603 static void
   2604 vmx_machine_create(struct nvmm_machine *mach)
   2605 {
   2606 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2607 	struct vmx_machdata *machdata;
   2608 
   2609 	/* Convert to EPT. */
   2610 	pmap_ept_transform(pmap);
   2611 
   2612 	/* Fill in pmap info. */
   2613 	pmap->pm_data = (void *)mach;
   2614 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2615 
   2616 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2617 	mach->machdata = machdata;
   2618 
   2619 	/* Start with an hTLB flush everywhere. */
   2620 	machdata->mach_htlb_gen = 1;
   2621 }
   2622 
   2623 static void
   2624 vmx_machine_destroy(struct nvmm_machine *mach)
   2625 {
   2626 	struct vmx_machdata *machdata = mach->machdata;
   2627 
   2628 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2629 }
   2630 
   2631 static int
   2632 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2633 {
   2634 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2635 	struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
   2636 	size_t i;
   2637 
   2638 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2639 		return EINVAL;
   2640 	}
   2641 
   2642 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2643 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2644 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2645 	    (cpuid->set.edx & cpuid->del.edx))) {
   2646 		return EINVAL;
   2647 	}
   2648 
   2649 	/* If already here, replace. */
   2650 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2651 		if (!machdata->cpuidpresent[i]) {
   2652 			continue;
   2653 		}
   2654 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2655 			memcpy(&machdata->cpuid[i], cpuid,
   2656 			    sizeof(struct nvmm_x86_conf_cpuid));
   2657 			return 0;
   2658 		}
   2659 	}
   2660 
   2661 	/* Not here, insert. */
   2662 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2663 		if (!machdata->cpuidpresent[i]) {
   2664 			machdata->cpuidpresent[i] = true;
   2665 			memcpy(&machdata->cpuid[i], cpuid,
   2666 			    sizeof(struct nvmm_x86_conf_cpuid));
   2667 			return 0;
   2668 		}
   2669 	}
   2670 
   2671 	return ENOBUFS;
   2672 }
   2673 
   2674 /* -------------------------------------------------------------------------- */
   2675 
   2676 static int
   2677 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   2678     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   2679 {
   2680 	uint64_t basic, val, true_val;
   2681 	bool one_allowed, zero_allowed, has_true;
   2682 	size_t i;
   2683 
   2684 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   2685 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   2686 
   2687 	val = rdmsr(msr_ctls);
   2688 	if (has_true) {
   2689 		true_val = rdmsr(msr_true_ctls);
   2690 	} else {
   2691 		true_val = val;
   2692 	}
   2693 
   2694 #define ONE_ALLOWED(msrval, bitoff) \
   2695 	((msrval & __BIT(32 + bitoff)) != 0)
   2696 #define ZERO_ALLOWED(msrval, bitoff) \
   2697 	((msrval & __BIT(bitoff)) == 0)
   2698 
   2699 	for (i = 0; i < 32; i++) {
   2700 		one_allowed = ONE_ALLOWED(true_val, i);
   2701 		zero_allowed = ZERO_ALLOWED(true_val, i);
   2702 
   2703 		if (zero_allowed && !one_allowed) {
   2704 			if (set_one & __BIT(i))
   2705 				return -1;
   2706 			*res &= ~__BIT(i);
   2707 		} else if (one_allowed && !zero_allowed) {
   2708 			if (set_zero & __BIT(i))
   2709 				return -1;
   2710 			*res |= __BIT(i);
   2711 		} else {
   2712 			if (set_zero & __BIT(i)) {
   2713 				*res &= ~__BIT(i);
   2714 			} else if (set_one & __BIT(i)) {
   2715 				*res |= __BIT(i);
   2716 			} else if (!has_true) {
   2717 				*res &= ~__BIT(i);
   2718 			} else if (ZERO_ALLOWED(val, i)) {
   2719 				*res &= ~__BIT(i);
   2720 			} else if (ONE_ALLOWED(val, i)) {
   2721 				*res |= __BIT(i);
   2722 			} else {
   2723 				return -1;
   2724 			}
   2725 		}
   2726 	}
   2727 
   2728 	return 0;
   2729 }
   2730 
   2731 static bool
   2732 vmx_ident(void)
   2733 {
   2734 	uint64_t msr;
   2735 	int ret;
   2736 
   2737 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   2738 		return false;
   2739 	}
   2740 
   2741 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   2742 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   2743 		return false;
   2744 	}
   2745 
   2746 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   2747 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   2748 		return false;
   2749 	}
   2750 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   2751 		return false;
   2752 	}
   2753 
   2754 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   2755 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   2756 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   2757 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   2758 	if (ret == -1) {
   2759 		return false;
   2760 	}
   2761 
   2762 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   2763 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   2764 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   2765 	if (ret == -1) {
   2766 		return false;
   2767 	}
   2768 
   2769 	/* Init the CTLSs right now, and check for errors. */
   2770 	ret = vmx_init_ctls(
   2771 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   2772 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   2773 	    &vmx_pinbased_ctls);
   2774 	if (ret == -1) {
   2775 		return false;
   2776 	}
   2777 	ret = vmx_init_ctls(
   2778 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   2779 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   2780 	    &vmx_procbased_ctls);
   2781 	if (ret == -1) {
   2782 		return false;
   2783 	}
   2784 	ret = vmx_init_ctls(
   2785 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   2786 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   2787 	    &vmx_procbased_ctls2);
   2788 	if (ret == -1) {
   2789 		return false;
   2790 	}
   2791 	ret = vmx_init_ctls(
   2792 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   2793 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   2794 	    &vmx_entry_ctls);
   2795 	if (ret == -1) {
   2796 		return false;
   2797 	}
   2798 	ret = vmx_init_ctls(
   2799 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   2800 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   2801 	    &vmx_exit_ctls);
   2802 	if (ret == -1) {
   2803 		return false;
   2804 	}
   2805 
   2806 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2807 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   2808 		return false;
   2809 	}
   2810 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   2811 		return false;
   2812 	}
   2813 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   2814 		return false;
   2815 	}
   2816 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   2817 		pmap_ept_has_ad = true;
   2818 	} else {
   2819 		pmap_ept_has_ad = false;
   2820 	}
   2821 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   2822 		return false;
   2823 	}
   2824 
   2825 	return true;
   2826 }
   2827 
   2828 static void
   2829 vmx_init_asid(uint32_t maxasid)
   2830 {
   2831 	size_t allocsz;
   2832 
   2833 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2834 
   2835 	vmx_maxasid = maxasid;
   2836 	allocsz = roundup(maxasid, 8) / 8;
   2837 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2838 
   2839 	/* ASID 0 is reserved for the host. */
   2840 	vmx_asidmap[0] |= __BIT(0);
   2841 }
   2842 
   2843 static void
   2844 vmx_change_cpu(void *arg1, void *arg2)
   2845 {
   2846 	struct cpu_info *ci = curcpu();
   2847 	bool enable = (bool)arg1;
   2848 	uint64_t cr4;
   2849 
   2850 	if (!enable) {
   2851 		vmx_vmxoff();
   2852 	}
   2853 
   2854 	cr4 = rcr4();
   2855 	if (enable) {
   2856 		cr4 |= CR4_VMXE;
   2857 	} else {
   2858 		cr4 &= ~CR4_VMXE;
   2859 	}
   2860 	lcr4(cr4);
   2861 
   2862 	if (enable) {
   2863 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   2864 	}
   2865 }
   2866 
   2867 static void
   2868 vmx_init_l1tf(void)
   2869 {
   2870 	u_int descs[4];
   2871 	uint64_t msr;
   2872 
   2873 	if (cpuid_level < 7) {
   2874 		return;
   2875 	}
   2876 
   2877 	x86_cpuid(7, descs);
   2878 
   2879 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   2880 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   2881 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   2882 			/* No mitigation needed. */
   2883 			return;
   2884 		}
   2885 	}
   2886 
   2887 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   2888 		/* Enable hardware mitigation. */
   2889 		vmx_msrlist_entry_nmsr += 1;
   2890 	}
   2891 }
   2892 
   2893 static void
   2894 vmx_init(void)
   2895 {
   2896 	CPU_INFO_ITERATOR cii;
   2897 	struct cpu_info *ci;
   2898 	uint64_t xc, msr;
   2899 	struct vmxon *vmxon;
   2900 	uint32_t revision;
   2901 	paddr_t pa;
   2902 	vaddr_t va;
   2903 	int error;
   2904 
   2905 	/* Init the ASID bitmap (VPID). */
   2906 	vmx_init_asid(VPID_MAX);
   2907 
   2908 	/* Init the XCR0 mask. */
   2909 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   2910 
   2911 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   2912 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2913 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   2914 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   2915 	} else {
   2916 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   2917 	}
   2918 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   2919 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   2920 	} else {
   2921 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   2922 	}
   2923 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   2924 		vmx_eptp_type = EPTP_TYPE_WB;
   2925 	} else {
   2926 		vmx_eptp_type = EPTP_TYPE_UC;
   2927 	}
   2928 
   2929 	/* Init the L1TF mitigation. */
   2930 	vmx_init_l1tf();
   2931 
   2932 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   2933 	revision = vmx_get_revision();
   2934 
   2935 	for (CPU_INFO_FOREACH(cii, ci)) {
   2936 		error = vmx_memalloc(&pa, &va, 1);
   2937 		if (error) {
   2938 			panic("%s: out of memory", __func__);
   2939 		}
   2940 		vmxoncpu[cpu_index(ci)].pa = pa;
   2941 		vmxoncpu[cpu_index(ci)].va = va;
   2942 
   2943 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   2944 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   2945 	}
   2946 
   2947 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   2948 	xc_wait(xc);
   2949 }
   2950 
   2951 static void
   2952 vmx_fini_asid(void)
   2953 {
   2954 	size_t allocsz;
   2955 
   2956 	allocsz = roundup(vmx_maxasid, 8) / 8;
   2957 	kmem_free(vmx_asidmap, allocsz);
   2958 
   2959 	mutex_destroy(&vmx_asidlock);
   2960 }
   2961 
   2962 static void
   2963 vmx_fini(void)
   2964 {
   2965 	uint64_t xc;
   2966 	size_t i;
   2967 
   2968 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   2969 	xc_wait(xc);
   2970 
   2971 	for (i = 0; i < MAXCPUS; i++) {
   2972 		if (vmxoncpu[i].pa != 0)
   2973 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   2974 	}
   2975 
   2976 	vmx_fini_asid();
   2977 }
   2978 
   2979 static void
   2980 vmx_capability(struct nvmm_capability *cap)
   2981 {
   2982 	cap->u.x86.xcr0_mask = vmx_xcr0_mask;
   2983 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2984 	cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
   2985 }
   2986 
   2987 const struct nvmm_impl nvmm_x86_vmx = {
   2988 	.ident = vmx_ident,
   2989 	.init = vmx_init,
   2990 	.fini = vmx_fini,
   2991 	.capability = vmx_capability,
   2992 	.conf_max = NVMM_X86_NCONF,
   2993 	.conf_sizes = vmx_conf_sizes,
   2994 	.state_size = sizeof(struct nvmm_x64_state),
   2995 	.machine_create = vmx_machine_create,
   2996 	.machine_destroy = vmx_machine_destroy,
   2997 	.machine_configure = vmx_machine_configure,
   2998 	.vcpu_create = vmx_vcpu_create,
   2999 	.vcpu_destroy = vmx_vcpu_destroy,
   3000 	.vcpu_setstate = vmx_vcpu_setstate,
   3001 	.vcpu_getstate = vmx_vcpu_getstate,
   3002 	.vcpu_inject = vmx_vcpu_inject,
   3003 	.vcpu_run = vmx_vcpu_run
   3004 };
   3005