nvmm_x86_vmx.c revision 1.20 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.20 2019/03/21 20:21:41 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.20 2019/03/21 20:21:41 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int _vmx_invept(uint64_t op, void *desc);
60 int _vmx_invvpid(uint64_t op, void *desc);
61 int _vmx_vmread(uint64_t op, uint64_t *val);
62 int _vmx_vmwrite(uint64_t op, uint64_t val);
63 int _vmx_vmptrld(paddr_t *pa);
64 int _vmx_vmptrst(paddr_t *pa);
65 int _vmx_vmclear(paddr_t *pa);
66 int vmx_vmlaunch(uint64_t *gprs);
67 int vmx_vmresume(uint64_t *gprs);
68
69 #define vmx_vmxon(a) \
70 if (__predict_false(_vmx_vmxon(a) != 0)) { \
71 panic("%s: VMXON failed", __func__); \
72 }
73 #define vmx_vmxoff() \
74 if (__predict_false(_vmx_vmxoff() != 0)) { \
75 panic("%s: VMXOFF failed", __func__); \
76 }
77 #define vmx_invept(a, b) \
78 if (__predict_false(_vmx_invept(a, b) != 0)) { \
79 panic("%s: INVEPT failed", __func__); \
80 }
81 #define vmx_invvpid(a, b) \
82 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
83 panic("%s: INVVPID failed", __func__); \
84 }
85 #define vmx_vmread(a, b) \
86 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
87 panic("%s: VMREAD failed", __func__); \
88 }
89 #define vmx_vmwrite(a, b) \
90 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
91 panic("%s: VMWRITE failed", __func__); \
92 }
93 #define vmx_vmptrld(a) \
94 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
95 panic("%s: VMPTRLD failed", __func__); \
96 }
97 #define vmx_vmptrst(a) \
98 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
99 panic("%s: VMPTRST failed", __func__); \
100 }
101 #define vmx_vmclear(a) \
102 if (__predict_false(_vmx_vmclear(a) != 0)) { \
103 panic("%s: VMCLEAR failed", __func__); \
104 }
105
106 #define MSR_IA32_FEATURE_CONTROL 0x003A
107 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
108 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
109 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
110
111 #define MSR_IA32_VMX_BASIC 0x0480
112 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
113 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
114 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
115 #define IA32_VMX_BASIC_DUAL __BIT(49)
116 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
117 #define MEM_TYPE_UC 0
118 #define MEM_TYPE_WB 6
119 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
120 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
121
122 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
123 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
124 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
125 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
126 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
127
128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
132
133 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
134 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
135 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
136 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
137
138 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
139 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
140 #define IA32_VMX_EPT_VPID_UC __BIT(8)
141 #define IA32_VMX_EPT_VPID_WB __BIT(14)
142 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
143 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
144 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
145 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
146 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
147 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
148 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
149 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
150 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
151
152 /* -------------------------------------------------------------------------- */
153
154 /* 16-bit control fields */
155 #define VMCS_VPID 0x00000000
156 #define VMCS_PIR_VECTOR 0x00000002
157 #define VMCS_EPTP_INDEX 0x00000004
158 /* 16-bit guest-state fields */
159 #define VMCS_GUEST_ES_SELECTOR 0x00000800
160 #define VMCS_GUEST_CS_SELECTOR 0x00000802
161 #define VMCS_GUEST_SS_SELECTOR 0x00000804
162 #define VMCS_GUEST_DS_SELECTOR 0x00000806
163 #define VMCS_GUEST_FS_SELECTOR 0x00000808
164 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
165 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
166 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
167 #define VMCS_GUEST_INTR_STATUS 0x00000810
168 #define VMCS_PML_INDEX 0x00000812
169 /* 16-bit host-state fields */
170 #define VMCS_HOST_ES_SELECTOR 0x00000C00
171 #define VMCS_HOST_CS_SELECTOR 0x00000C02
172 #define VMCS_HOST_SS_SELECTOR 0x00000C04
173 #define VMCS_HOST_DS_SELECTOR 0x00000C06
174 #define VMCS_HOST_FS_SELECTOR 0x00000C08
175 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
176 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
177 /* 64-bit control fields */
178 #define VMCS_IO_BITMAP_A 0x00002000
179 #define VMCS_IO_BITMAP_B 0x00002002
180 #define VMCS_MSR_BITMAP 0x00002004
181 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
182 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
184 #define VMCS_EXECUTIVE_VMCS 0x0000200C
185 #define VMCS_PML_ADDRESS 0x0000200E
186 #define VMCS_TSC_OFFSET 0x00002010
187 #define VMCS_VIRTUAL_APIC 0x00002012
188 #define VMCS_APIC_ACCESS 0x00002014
189 #define VMCS_PIR_DESC 0x00002016
190 #define VMCS_VM_CONTROL 0x00002018
191 #define VMCS_EPTP 0x0000201A
192 #define EPTP_TYPE __BITS(2,0)
193 #define EPTP_TYPE_UC 0
194 #define EPTP_TYPE_WB 6
195 #define EPTP_WALKLEN __BITS(5,3)
196 #define EPTP_FLAGS_AD __BIT(6)
197 #define EPTP_PHYSADDR __BITS(63,12)
198 #define VMCS_EOI_EXIT0 0x0000201C
199 #define VMCS_EOI_EXIT1 0x0000201E
200 #define VMCS_EOI_EXIT2 0x00002020
201 #define VMCS_EOI_EXIT3 0x00002022
202 #define VMCS_EPTP_LIST 0x00002024
203 #define VMCS_VMREAD_BITMAP 0x00002026
204 #define VMCS_VMWRITE_BITMAP 0x00002028
205 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
206 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
207 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
208 #define VMCS_TSC_MULTIPLIER 0x00002032
209 /* 64-bit read-only fields */
210 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
211 /* 64-bit guest-state fields */
212 #define VMCS_LINK_POINTER 0x00002800
213 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
214 #define VMCS_GUEST_IA32_PAT 0x00002804
215 #define VMCS_GUEST_IA32_EFER 0x00002806
216 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
217 #define VMCS_GUEST_PDPTE0 0x0000280A
218 #define VMCS_GUEST_PDPTE1 0x0000280C
219 #define VMCS_GUEST_PDPTE2 0x0000280E
220 #define VMCS_GUEST_PDPTE3 0x00002810
221 #define VMCS_GUEST_BNDCFGS 0x00002812
222 /* 64-bit host-state fields */
223 #define VMCS_HOST_IA32_PAT 0x00002C00
224 #define VMCS_HOST_IA32_EFER 0x00002C02
225 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
226 /* 32-bit control fields */
227 #define VMCS_PINBASED_CTLS 0x00004000
228 #define PIN_CTLS_INT_EXITING __BIT(0)
229 #define PIN_CTLS_NMI_EXITING __BIT(3)
230 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
231 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
232 #define PIN_CTLS_PROCESS_POSTEd_INTS __BIT(7)
233 #define VMCS_PROCBASED_CTLS 0x00004002
234 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
235 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
236 #define PROC_CTLS_HLT_EXITING __BIT(7)
237 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
238 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
239 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
240 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
241 #define PROC_CTLS_RCR3_EXITING __BIT(15)
242 #define PROC_CTLS_LCR3_EXITING __BIT(16)
243 #define PROC_CTLS_RCR8_EXITING __BIT(19)
244 #define PROC_CTLS_LCR8_EXITING __BIT(20)
245 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
246 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
247 #define PROC_CTLS_DR_EXITING __BIT(23)
248 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
249 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
250 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
251 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
252 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
253 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
254 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
255 #define VMCS_EXCEPTION_BITMAP 0x00004004
256 #define VMCS_PF_ERROR_MASK 0x00004006
257 #define VMCS_PF_ERROR_MATCH 0x00004008
258 #define VMCS_CR3_TARGET_COUNT 0x0000400A
259 #define VMCS_EXIT_CTLS 0x0000400C
260 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
261 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
262 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
263 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
264 #define EXIT_CTLS_SAVE_PAT __BIT(18)
265 #define EXIT_CTLS_LOAD_PAT __BIT(19)
266 #define EXIT_CTLS_SAVE_EFER __BIT(20)
267 #define EXIT_CTLS_LOAD_EFER __BIT(21)
268 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
269 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
270 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
271 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
272 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
273 #define VMCS_ENTRY_CTLS 0x00004012
274 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
275 #define ENTRY_CTLS_LONG_MODE __BIT(9)
276 #define ENTRY_CTLS_SMM __BIT(10)
277 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
278 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
279 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
280 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
281 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
282 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
283 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
284 #define VMCS_ENTRY_INTR_INFO 0x00004016
285 #define INTR_INFO_VECTOR __BITS(7,0)
286 #define INTR_INFO_TYPE __BITS(10,8)
287 #define INTR_TYPE_EXT_INT 0
288 #define INTR_TYPE_NMI 2
289 #define INTR_TYPE_HW_EXC 3
290 #define INTR_TYPE_SW_INT 4
291 #define INTR_TYPE_PRIV_SW_EXC 5
292 #define INTR_TYPE_SW_EXC 6
293 #define INTR_TYPE_OTHER 7
294 #define INTR_INFO_ERROR __BIT(11)
295 #define INTR_INFO_VALID __BIT(31)
296 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
297 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
298 #define VMCS_TPR_THRESHOLD 0x0000401C
299 #define VMCS_PROCBASED_CTLS2 0x0000401E
300 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
301 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
302 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
303 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
304 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
305 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
306 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
307 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
308 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
309 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
310 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
311 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
312 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
313 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
314 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
315 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
316 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
317 #define PROC_CTLS2_PML_ENABLE __BIT(17)
318 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
319 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
320 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
321 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
322 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
323 #define VMCS_PLE_GAP 0x00004020
324 #define VMCS_PLE_WINDOW 0x00004022
325 /* 32-bit read-only data fields */
326 #define VMCS_INSTRUCTION_ERROR 0x00004400
327 #define VMCS_EXIT_REASON 0x00004402
328 #define VMCS_EXIT_INTR_INFO 0x00004404
329 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
330 #define VMCS_IDT_VECTORING_INFO 0x00004408
331 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
332 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
333 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
334 /* 32-bit guest-state fields */
335 #define VMCS_GUEST_ES_LIMIT 0x00004800
336 #define VMCS_GUEST_CS_LIMIT 0x00004802
337 #define VMCS_GUEST_SS_LIMIT 0x00004804
338 #define VMCS_GUEST_DS_LIMIT 0x00004806
339 #define VMCS_GUEST_FS_LIMIT 0x00004808
340 #define VMCS_GUEST_GS_LIMIT 0x0000480A
341 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
342 #define VMCS_GUEST_TR_LIMIT 0x0000480E
343 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
344 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
345 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
346 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
347 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
348 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
349 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
350 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
351 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
352 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
353 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
354 #define INT_STATE_STI __BIT(0)
355 #define INT_STATE_MOVSS __BIT(1)
356 #define INT_STATE_SMI __BIT(2)
357 #define INT_STATE_NMI __BIT(3)
358 #define INT_STATE_ENCLAVE __BIT(4)
359 #define VMCS_GUEST_ACTIVITY 0x00004826
360 #define VMCS_GUEST_SMBASE 0x00004828
361 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
362 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
363 /* 32-bit host state fields */
364 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
365 /* Natural-Width control fields */
366 #define VMCS_CR0_MASK 0x00006000
367 #define VMCS_CR4_MASK 0x00006002
368 #define VMCS_CR0_SHADOW 0x00006004
369 #define VMCS_CR4_SHADOW 0x00006006
370 #define VMCS_CR3_TARGET0 0x00006008
371 #define VMCS_CR3_TARGET1 0x0000600A
372 #define VMCS_CR3_TARGET2 0x0000600C
373 #define VMCS_CR3_TARGET3 0x0000600E
374 /* Natural-Width read-only fields */
375 #define VMCS_EXIT_QUALIFICATION 0x00006400
376 #define VMCS_IO_RCX 0x00006402
377 #define VMCS_IO_RSI 0x00006404
378 #define VMCS_IO_RDI 0x00006406
379 #define VMCS_IO_RIP 0x00006408
380 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
381 /* Natural-Width guest-state fields */
382 #define VMCS_GUEST_CR0 0x00006800
383 #define VMCS_GUEST_CR3 0x00006802
384 #define VMCS_GUEST_CR4 0x00006804
385 #define VMCS_GUEST_ES_BASE 0x00006806
386 #define VMCS_GUEST_CS_BASE 0x00006808
387 #define VMCS_GUEST_SS_BASE 0x0000680A
388 #define VMCS_GUEST_DS_BASE 0x0000680C
389 #define VMCS_GUEST_FS_BASE 0x0000680E
390 #define VMCS_GUEST_GS_BASE 0x00006810
391 #define VMCS_GUEST_LDTR_BASE 0x00006812
392 #define VMCS_GUEST_TR_BASE 0x00006814
393 #define VMCS_GUEST_GDTR_BASE 0x00006816
394 #define VMCS_GUEST_IDTR_BASE 0x00006818
395 #define VMCS_GUEST_DR7 0x0000681A
396 #define VMCS_GUEST_RSP 0x0000681C
397 #define VMCS_GUEST_RIP 0x0000681E
398 #define VMCS_GUEST_RFLAGS 0x00006820
399 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
400 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
401 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
402 /* Natural-Width host-state fields */
403 #define VMCS_HOST_CR0 0x00006C00
404 #define VMCS_HOST_CR3 0x00006C02
405 #define VMCS_HOST_CR4 0x00006C04
406 #define VMCS_HOST_FS_BASE 0x00006C06
407 #define VMCS_HOST_GS_BASE 0x00006C08
408 #define VMCS_HOST_TR_BASE 0x00006C0A
409 #define VMCS_HOST_GDTR_BASE 0x00006C0C
410 #define VMCS_HOST_IDTR_BASE 0x00006C0E
411 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
412 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
413 #define VMCS_HOST_RSP 0x00006C14
414 #define VMCS_HOST_RIP 0x00006c16
415
416 /* VMX basic exit reasons. */
417 #define VMCS_EXITCODE_EXC_NMI 0
418 #define VMCS_EXITCODE_EXT_INT 1
419 #define VMCS_EXITCODE_SHUTDOWN 2
420 #define VMCS_EXITCODE_INIT 3
421 #define VMCS_EXITCODE_SIPI 4
422 #define VMCS_EXITCODE_SMI 5
423 #define VMCS_EXITCODE_OTHER_SMI 6
424 #define VMCS_EXITCODE_INT_WINDOW 7
425 #define VMCS_EXITCODE_NMI_WINDOW 8
426 #define VMCS_EXITCODE_TASK_SWITCH 9
427 #define VMCS_EXITCODE_CPUID 10
428 #define VMCS_EXITCODE_GETSEC 11
429 #define VMCS_EXITCODE_HLT 12
430 #define VMCS_EXITCODE_INVD 13
431 #define VMCS_EXITCODE_INVLPG 14
432 #define VMCS_EXITCODE_RDPMC 15
433 #define VMCS_EXITCODE_RDTSC 16
434 #define VMCS_EXITCODE_RSM 17
435 #define VMCS_EXITCODE_VMCALL 18
436 #define VMCS_EXITCODE_VMCLEAR 19
437 #define VMCS_EXITCODE_VMLAUNCH 20
438 #define VMCS_EXITCODE_VMPTRLD 21
439 #define VMCS_EXITCODE_VMPTRST 22
440 #define VMCS_EXITCODE_VMREAD 23
441 #define VMCS_EXITCODE_VMRESUME 24
442 #define VMCS_EXITCODE_VMWRITE 25
443 #define VMCS_EXITCODE_VMXOFF 26
444 #define VMCS_EXITCODE_VMXON 27
445 #define VMCS_EXITCODE_CR 28
446 #define VMCS_EXITCODE_DR 29
447 #define VMCS_EXITCODE_IO 30
448 #define VMCS_EXITCODE_RDMSR 31
449 #define VMCS_EXITCODE_WRMSR 32
450 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
451 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
452 #define VMCS_EXITCODE_MWAIT 36
453 #define VMCS_EXITCODE_TRAP_FLAG 37
454 #define VMCS_EXITCODE_MONITOR 39
455 #define VMCS_EXITCODE_PAUSE 40
456 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
457 #define VMCS_EXITCODE_TPR_BELOW 43
458 #define VMCS_EXITCODE_APIC_ACCESS 44
459 #define VMCS_EXITCODE_VEOI 45
460 #define VMCS_EXITCODE_GDTR_IDTR 46
461 #define VMCS_EXITCODE_LDTR_TR 47
462 #define VMCS_EXITCODE_EPT_VIOLATION 48
463 #define VMCS_EXITCODE_EPT_MISCONFIG 49
464 #define VMCS_EXITCODE_INVEPT 50
465 #define VMCS_EXITCODE_RDTSCP 51
466 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
467 #define VMCS_EXITCODE_INVVPID 53
468 #define VMCS_EXITCODE_WBINVD 54
469 #define VMCS_EXITCODE_XSETBV 55
470 #define VMCS_EXITCODE_APIC_WRITE 56
471 #define VMCS_EXITCODE_RDRAND 57
472 #define VMCS_EXITCODE_INVPCID 58
473 #define VMCS_EXITCODE_VMFUNC 59
474 #define VMCS_EXITCODE_ENCLS 60
475 #define VMCS_EXITCODE_RDSEED 61
476 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
477 #define VMCS_EXITCODE_XSAVES 63
478 #define VMCS_EXITCODE_XRSTORS 64
479
480 /* -------------------------------------------------------------------------- */
481
482 #define VMX_MSRLIST_STAR 0
483 #define VMX_MSRLIST_LSTAR 1
484 #define VMX_MSRLIST_CSTAR 2
485 #define VMX_MSRLIST_SFMASK 3
486 #define VMX_MSRLIST_KERNELGSBASE 4
487 #define VMX_MSRLIST_EXIT_NMSR 5
488 #define VMX_MSRLIST_L1DFLUSH 5
489
490 /* On entry, we may do +1 to include L1DFLUSH. */
491 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
492
493 struct vmxon {
494 uint32_t ident;
495 #define VMXON_IDENT_REVISION __BITS(30,0)
496
497 uint8_t data[PAGE_SIZE - 4];
498 } __packed;
499
500 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
501
502 struct vmxoncpu {
503 vaddr_t va;
504 paddr_t pa;
505 };
506
507 static struct vmxoncpu vmxoncpu[MAXCPUS];
508
509 struct vmcs {
510 uint32_t ident;
511 #define VMCS_IDENT_REVISION __BITS(30,0)
512 #define VMCS_IDENT_SHADOW __BIT(31)
513
514 uint32_t abort;
515 uint8_t data[PAGE_SIZE - 8];
516 } __packed;
517
518 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
519
520 struct msr_entry {
521 uint32_t msr;
522 uint32_t rsvd;
523 uint64_t val;
524 } __packed;
525
526 struct ept_desc {
527 uint64_t eptp;
528 uint64_t mbz;
529 } __packed;
530
531 struct vpid_desc {
532 uint64_t vpid;
533 uint64_t addr;
534 } __packed;
535
536 #define VPID_MAX 0xFFFF
537
538 /* Make sure we never run out of VPIDs. */
539 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
540
541 static uint64_t vmx_tlb_flush_op __read_mostly;
542 static uint64_t vmx_ept_flush_op __read_mostly;
543 static uint64_t vmx_eptp_type __read_mostly;
544
545 static uint64_t vmx_pinbased_ctls __read_mostly;
546 static uint64_t vmx_procbased_ctls __read_mostly;
547 static uint64_t vmx_procbased_ctls2 __read_mostly;
548 static uint64_t vmx_entry_ctls __read_mostly;
549 static uint64_t vmx_exit_ctls __read_mostly;
550
551 static uint64_t vmx_cr0_fixed0 __read_mostly;
552 static uint64_t vmx_cr0_fixed1 __read_mostly;
553 static uint64_t vmx_cr4_fixed0 __read_mostly;
554 static uint64_t vmx_cr4_fixed1 __read_mostly;
555
556 extern bool pmap_ept_has_ad;
557
558 #define VMX_PINBASED_CTLS_ONE \
559 (PIN_CTLS_INT_EXITING| \
560 PIN_CTLS_NMI_EXITING| \
561 PIN_CTLS_VIRTUAL_NMIS)
562
563 #define VMX_PINBASED_CTLS_ZERO 0
564
565 #define VMX_PROCBASED_CTLS_ONE \
566 (PROC_CTLS_USE_TSC_OFFSETTING| \
567 PROC_CTLS_HLT_EXITING| \
568 PROC_CTLS_MWAIT_EXITING | \
569 PROC_CTLS_RDPMC_EXITING | \
570 PROC_CTLS_RCR8_EXITING | \
571 PROC_CTLS_LCR8_EXITING | \
572 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
573 PROC_CTLS_USE_MSR_BITMAPS | \
574 PROC_CTLS_MONITOR_EXITING | \
575 PROC_CTLS_ACTIVATE_CTLS2)
576
577 #define VMX_PROCBASED_CTLS_ZERO \
578 (PROC_CTLS_RCR3_EXITING| \
579 PROC_CTLS_LCR3_EXITING)
580
581 #define VMX_PROCBASED_CTLS2_ONE \
582 (PROC_CTLS2_ENABLE_EPT| \
583 PROC_CTLS2_ENABLE_VPID| \
584 PROC_CTLS2_UNRESTRICTED_GUEST)
585
586 #define VMX_PROCBASED_CTLS2_ZERO 0
587
588 #define VMX_ENTRY_CTLS_ONE \
589 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
590 ENTRY_CTLS_LOAD_EFER| \
591 ENTRY_CTLS_LOAD_PAT)
592
593 #define VMX_ENTRY_CTLS_ZERO \
594 (ENTRY_CTLS_SMM| \
595 ENTRY_CTLS_DISABLE_DUAL)
596
597 #define VMX_EXIT_CTLS_ONE \
598 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
599 EXIT_CTLS_HOST_LONG_MODE| \
600 EXIT_CTLS_SAVE_PAT| \
601 EXIT_CTLS_LOAD_PAT| \
602 EXIT_CTLS_SAVE_EFER| \
603 EXIT_CTLS_LOAD_EFER)
604
605 #define VMX_EXIT_CTLS_ZERO 0
606
607 static uint8_t *vmx_asidmap __read_mostly;
608 static uint32_t vmx_maxasid __read_mostly;
609 static kmutex_t vmx_asidlock __cacheline_aligned;
610
611 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
612 static uint64_t vmx_xcr0_mask __read_mostly;
613
614 #define VMX_NCPUIDS 32
615
616 #define VMCS_NPAGES 1
617 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
618
619 #define MSRBM_NPAGES 1
620 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
621
622 #define EFER_TLB_FLUSH \
623 (EFER_NXE|EFER_LMA|EFER_LME)
624 #define CR0_TLB_FLUSH \
625 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
626 #define CR4_TLB_FLUSH \
627 (CR4_PGE|CR4_PAE|CR4_PSE)
628
629 /* -------------------------------------------------------------------------- */
630
631 struct vmx_machdata {
632 bool cpuidpresent[VMX_NCPUIDS];
633 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
634 volatile uint64_t mach_htlb_gen;
635 };
636
637 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
638 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
639 };
640
641 struct vmx_cpudata {
642 /* General */
643 uint64_t asid;
644 bool gtlb_want_flush;
645 uint64_t vcpu_htlb_gen;
646 kcpuset_t *htlb_want_flush;
647
648 /* VMCS */
649 struct vmcs *vmcs;
650 paddr_t vmcs_pa;
651 size_t vmcs_refcnt;
652 struct cpu_info *vmcs_ci;
653 bool vmcs_launched;
654
655 /* MSR bitmap */
656 uint8_t *msrbm;
657 paddr_t msrbm_pa;
658
659 /* Host state */
660 uint64_t hxcr0;
661 uint64_t star;
662 uint64_t lstar;
663 uint64_t cstar;
664 uint64_t sfmask;
665 uint64_t kernelgsbase;
666 bool ts_set;
667 struct xsave_header hfpu __aligned(64);
668
669 /* Event state */
670 bool int_window_exit;
671 bool nmi_window_exit;
672
673 /* Guest state */
674 struct msr_entry *gmsr;
675 paddr_t gmsr_pa;
676 uint64_t gmsr_misc_enable;
677 uint64_t gcr2;
678 uint64_t gcr8;
679 uint64_t gxcr0;
680 uint64_t gprs[NVMM_X64_NGPR];
681 uint64_t drs[NVMM_X64_NDR];
682 uint64_t tsc_offset;
683 struct xsave_header gfpu __aligned(64);
684 };
685
686 static const struct {
687 uint64_t selector;
688 uint64_t attrib;
689 uint64_t limit;
690 uint64_t base;
691 } vmx_guest_segs[NVMM_X64_NSEG] = {
692 [NVMM_X64_SEG_ES] = {
693 VMCS_GUEST_ES_SELECTOR,
694 VMCS_GUEST_ES_ACCESS_RIGHTS,
695 VMCS_GUEST_ES_LIMIT,
696 VMCS_GUEST_ES_BASE
697 },
698 [NVMM_X64_SEG_CS] = {
699 VMCS_GUEST_CS_SELECTOR,
700 VMCS_GUEST_CS_ACCESS_RIGHTS,
701 VMCS_GUEST_CS_LIMIT,
702 VMCS_GUEST_CS_BASE
703 },
704 [NVMM_X64_SEG_SS] = {
705 VMCS_GUEST_SS_SELECTOR,
706 VMCS_GUEST_SS_ACCESS_RIGHTS,
707 VMCS_GUEST_SS_LIMIT,
708 VMCS_GUEST_SS_BASE
709 },
710 [NVMM_X64_SEG_DS] = {
711 VMCS_GUEST_DS_SELECTOR,
712 VMCS_GUEST_DS_ACCESS_RIGHTS,
713 VMCS_GUEST_DS_LIMIT,
714 VMCS_GUEST_DS_BASE
715 },
716 [NVMM_X64_SEG_FS] = {
717 VMCS_GUEST_FS_SELECTOR,
718 VMCS_GUEST_FS_ACCESS_RIGHTS,
719 VMCS_GUEST_FS_LIMIT,
720 VMCS_GUEST_FS_BASE
721 },
722 [NVMM_X64_SEG_GS] = {
723 VMCS_GUEST_GS_SELECTOR,
724 VMCS_GUEST_GS_ACCESS_RIGHTS,
725 VMCS_GUEST_GS_LIMIT,
726 VMCS_GUEST_GS_BASE
727 },
728 [NVMM_X64_SEG_GDT] = {
729 0, /* doesn't exist */
730 0, /* doesn't exist */
731 VMCS_GUEST_GDTR_LIMIT,
732 VMCS_GUEST_GDTR_BASE
733 },
734 [NVMM_X64_SEG_IDT] = {
735 0, /* doesn't exist */
736 0, /* doesn't exist */
737 VMCS_GUEST_IDTR_LIMIT,
738 VMCS_GUEST_IDTR_BASE
739 },
740 [NVMM_X64_SEG_LDT] = {
741 VMCS_GUEST_LDTR_SELECTOR,
742 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
743 VMCS_GUEST_LDTR_LIMIT,
744 VMCS_GUEST_LDTR_BASE
745 },
746 [NVMM_X64_SEG_TR] = {
747 VMCS_GUEST_TR_SELECTOR,
748 VMCS_GUEST_TR_ACCESS_RIGHTS,
749 VMCS_GUEST_TR_LIMIT,
750 VMCS_GUEST_TR_BASE
751 }
752 };
753
754 /* -------------------------------------------------------------------------- */
755
756 static uint64_t
757 vmx_get_revision(void)
758 {
759 uint64_t msr;
760
761 msr = rdmsr(MSR_IA32_VMX_BASIC);
762 msr &= IA32_VMX_BASIC_IDENT;
763
764 return msr;
765 }
766
767 static void
768 vmx_vmclear_ipi(void *arg1, void *arg2)
769 {
770 paddr_t vmcs_pa = (paddr_t)arg1;
771 vmx_vmclear(&vmcs_pa);
772 }
773
774 static void
775 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
776 {
777 uint64_t xc;
778 int bound;
779
780 KASSERT(kpreempt_disabled());
781
782 bound = curlwp_bind();
783 kpreempt_enable();
784
785 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
786 xc_wait(xc);
787
788 kpreempt_disable();
789 curlwp_bindx(bound);
790 }
791
792 static void
793 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
794 {
795 struct vmx_cpudata *cpudata = vcpu->cpudata;
796 struct cpu_info *vmcs_ci;
797 paddr_t oldpa __diagused;
798
799 cpudata->vmcs_refcnt++;
800 if (cpudata->vmcs_refcnt > 1) {
801 #ifdef DIAGNOSTIC
802 KASSERT(kpreempt_disabled());
803 vmx_vmptrst(&oldpa);
804 KASSERT(oldpa == cpudata->vmcs_pa);
805 #endif
806 return;
807 }
808
809 vmcs_ci = cpudata->vmcs_ci;
810 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
811
812 kpreempt_disable();
813
814 if (vmcs_ci == NULL) {
815 /* This VMCS is loaded for the first time. */
816 vmx_vmclear(&cpudata->vmcs_pa);
817 cpudata->vmcs_launched = false;
818 } else if (vmcs_ci != curcpu()) {
819 /* This VMCS is active on a remote CPU. */
820 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
821 cpudata->vmcs_launched = false;
822 } else {
823 /* This VMCS is active on curcpu, nothing to do. */
824 }
825
826 vmx_vmptrld(&cpudata->vmcs_pa);
827 }
828
829 static void
830 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
831 {
832 struct vmx_cpudata *cpudata = vcpu->cpudata;
833 paddr_t oldpa __diagused;
834
835 KASSERT(kpreempt_disabled());
836 #ifdef DIAGNOSTIC
837 vmx_vmptrst(&oldpa);
838 KASSERT(oldpa == cpudata->vmcs_pa);
839 #endif
840 KASSERT(cpudata->vmcs_refcnt > 0);
841 cpudata->vmcs_refcnt--;
842
843 if (cpudata->vmcs_refcnt > 0) {
844 return;
845 }
846
847 cpudata->vmcs_ci = curcpu();
848 kpreempt_enable();
849 }
850
851 static void
852 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
853 {
854 struct vmx_cpudata *cpudata = vcpu->cpudata;
855 paddr_t oldpa __diagused;
856
857 KASSERT(kpreempt_disabled());
858 #ifdef DIAGNOSTIC
859 vmx_vmptrst(&oldpa);
860 KASSERT(oldpa == cpudata->vmcs_pa);
861 #endif
862 KASSERT(cpudata->vmcs_refcnt == 1);
863 cpudata->vmcs_refcnt--;
864
865 vmx_vmclear(&cpudata->vmcs_pa);
866 kpreempt_enable();
867 }
868
869 /* -------------------------------------------------------------------------- */
870
871 static void
872 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
873 {
874 struct vmx_cpudata *cpudata = vcpu->cpudata;
875 uint64_t ctls1;
876
877 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
878
879 if (nmi) {
880 // XXX INT_STATE_NMI?
881 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
882 cpudata->nmi_window_exit = true;
883 } else {
884 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
885 cpudata->int_window_exit = true;
886 }
887
888 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
889 }
890
891 static void
892 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
893 {
894 struct vmx_cpudata *cpudata = vcpu->cpudata;
895 uint64_t ctls1;
896
897 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
898
899 if (nmi) {
900 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
901 cpudata->nmi_window_exit = false;
902 } else {
903 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
904 cpudata->int_window_exit = false;
905 }
906
907 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
908 }
909
910 static inline int
911 vmx_event_has_error(uint64_t vector)
912 {
913 switch (vector) {
914 case 8: /* #DF */
915 case 10: /* #TS */
916 case 11: /* #NP */
917 case 12: /* #SS */
918 case 13: /* #GP */
919 case 14: /* #PF */
920 case 17: /* #AC */
921 case 30: /* #SX */
922 return 1;
923 default:
924 return 0;
925 }
926 }
927
928 static int
929 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
930 struct nvmm_event *event)
931 {
932 struct vmx_cpudata *cpudata = vcpu->cpudata;
933 int type = 0, err = 0, ret = 0;
934 uint64_t info, intstate, rflags;
935
936 if (event->vector >= 256) {
937 return EINVAL;
938 }
939
940 vmx_vmcs_enter(vcpu);
941
942 switch (event->type) {
943 case NVMM_EVENT_INTERRUPT_HW:
944 type = INTR_TYPE_EXT_INT;
945 if (event->vector == 2) {
946 type = INTR_TYPE_NMI;
947 }
948 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
949 if (type == INTR_TYPE_NMI) {
950 if (cpudata->nmi_window_exit) {
951 ret = EAGAIN;
952 goto out;
953 }
954 vmx_event_waitexit_enable(vcpu, true);
955 } else {
956 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
957 if ((rflags & PSL_I) == 0 ||
958 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
959 vmx_event_waitexit_enable(vcpu, false);
960 ret = EAGAIN;
961 goto out;
962 }
963 }
964 err = 0;
965 break;
966 case NVMM_EVENT_INTERRUPT_SW:
967 ret = EINVAL;
968 goto out;
969 case NVMM_EVENT_EXCEPTION:
970 if (event->vector == 2 || event->vector >= 32) {
971 ret = EINVAL;
972 goto out;
973 }
974 if (event->vector == 3 || event->vector == 0) {
975 ret = EINVAL;
976 goto out;
977 }
978 type = INTR_TYPE_HW_EXC;
979 err = vmx_event_has_error(event->vector);
980 break;
981 default:
982 ret = EAGAIN;
983 goto out;
984 }
985
986 info =
987 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
988 __SHIFTIN(type, INTR_INFO_TYPE) |
989 __SHIFTIN(err, INTR_INFO_ERROR) |
990 __SHIFTIN(1, INTR_INFO_VALID);
991 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
992 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
993
994 out:
995 vmx_vmcs_leave(vcpu);
996 return ret;
997 }
998
999 static void
1000 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1001 {
1002 struct nvmm_event event;
1003 int ret __diagused;
1004
1005 event.type = NVMM_EVENT_EXCEPTION;
1006 event.vector = 6;
1007 event.u.error = 0;
1008
1009 ret = vmx_vcpu_inject(mach, vcpu, &event);
1010 KASSERT(ret == 0);
1011 }
1012
1013 static void
1014 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1015 {
1016 struct nvmm_event event;
1017 int ret __diagused;
1018
1019 event.type = NVMM_EVENT_EXCEPTION;
1020 event.vector = 13;
1021 event.u.error = 0;
1022
1023 ret = vmx_vcpu_inject(mach, vcpu, &event);
1024 KASSERT(ret == 0);
1025 }
1026
1027 static inline void
1028 vmx_inkernel_advance(void)
1029 {
1030 uint64_t rip, inslen, intstate;
1031
1032 /*
1033 * Maybe we should also apply single-stepping and debug exceptions.
1034 * Matters for guest-ring3, because it can execute 'cpuid' under a
1035 * debugger.
1036 */
1037 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1038 vmx_vmread(VMCS_GUEST_RIP, &rip);
1039 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1040 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1041 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1042 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1043 }
1044
1045 static void
1046 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1047 struct nvmm_exit *exit)
1048 {
1049 uint64_t qual;
1050
1051 vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
1052
1053 if ((qual & INTR_INFO_VALID) == 0) {
1054 goto error;
1055 }
1056 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1057 goto error;
1058 }
1059
1060 exit->reason = NVMM_EXIT_NONE;
1061 return;
1062
1063 error:
1064 exit->reason = NVMM_EXIT_INVALID;
1065 }
1066
1067 static void
1068 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1069 {
1070 struct vmx_cpudata *cpudata = vcpu->cpudata;
1071 uint64_t cr4;
1072
1073 switch (eax) {
1074 case 0x00000001:
1075 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1076
1077 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1078 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1079 CPUID_LOCAL_APIC_ID);
1080
1081 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1082 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1083
1084 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1085
1086 /* CPUID2_OSXSAVE depends on CR4. */
1087 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1088 if (!(cr4 & CR4_OSXSAVE)) {
1089 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1090 }
1091 break;
1092 case 0x00000005:
1093 case 0x00000006:
1094 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1095 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1096 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1097 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1098 break;
1099 case 0x00000007:
1100 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1101 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1102 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1103 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1104 break;
1105 case 0x0000000D:
1106 if (vmx_xcr0_mask == 0) {
1107 break;
1108 }
1109 switch (ecx) {
1110 case 0:
1111 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1112 if (cpudata->gxcr0 & XCR0_SSE) {
1113 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1114 } else {
1115 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1116 }
1117 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1118 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1119 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1120 break;
1121 case 1:
1122 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1123 break;
1124 }
1125 break;
1126 case 0x40000000:
1127 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1128 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1129 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1130 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1131 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1132 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1133 break;
1134 case 0x80000001:
1135 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1136 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1137 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1138 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1139 break;
1140 default:
1141 break;
1142 }
1143 }
1144
1145 static void
1146 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1147 struct nvmm_exit *exit)
1148 {
1149 struct vmx_machdata *machdata = mach->machdata;
1150 struct vmx_cpudata *cpudata = vcpu->cpudata;
1151 struct nvmm_x86_conf_cpuid *cpuid;
1152 uint64_t eax, ecx;
1153 u_int descs[4];
1154 size_t i;
1155
1156 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1157 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1158 x86_cpuid2(eax, ecx, descs);
1159
1160 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1161 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1162 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1163 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1164
1165 for (i = 0; i < VMX_NCPUIDS; i++) {
1166 cpuid = &machdata->cpuid[i];
1167 if (!machdata->cpuidpresent[i]) {
1168 continue;
1169 }
1170 if (cpuid->leaf != eax) {
1171 continue;
1172 }
1173
1174 /* del */
1175 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1176 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1177 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1178 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1179
1180 /* set */
1181 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1182 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1183 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1184 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1185
1186 break;
1187 }
1188
1189 /* Overwrite non-tunable leaves. */
1190 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1191
1192 vmx_inkernel_advance();
1193 exit->reason = NVMM_EXIT_NONE;
1194 }
1195
1196 static void
1197 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1198 struct nvmm_exit *exit)
1199 {
1200 struct vmx_cpudata *cpudata = vcpu->cpudata;
1201 uint64_t rflags;
1202
1203 if (cpudata->int_window_exit) {
1204 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1205 if (rflags & PSL_I) {
1206 vmx_event_waitexit_disable(vcpu, false);
1207 }
1208 }
1209
1210 vmx_inkernel_advance();
1211 exit->reason = NVMM_EXIT_HALTED;
1212 }
1213
1214 #define VMX_QUAL_CR_NUM __BITS(3,0)
1215 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1216 #define CR_TYPE_WRITE 0
1217 #define CR_TYPE_READ 1
1218 #define CR_TYPE_CLTS 2
1219 #define CR_TYPE_LMSW 3
1220 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1221 #define VMX_QUAL_CR_GPR __BITS(11,8)
1222 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1223
1224 static inline int
1225 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1226 {
1227 /* Bits set to 1 in fixed0 are fixed to 1. */
1228 if ((crval & fixed0) != fixed0) {
1229 return -1;
1230 }
1231 /* Bits set to 0 in fixed1 are fixed to 0. */
1232 if (crval & ~fixed1) {
1233 return -1;
1234 }
1235 return 0;
1236 }
1237
1238 static int
1239 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1240 uint64_t qual)
1241 {
1242 struct vmx_cpudata *cpudata = vcpu->cpudata;
1243 uint64_t type, gpr, cr0;
1244 uint64_t efer, ctls1;
1245
1246 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1247 if (type != CR_TYPE_WRITE) {
1248 return -1;
1249 }
1250
1251 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1252 KASSERT(gpr < 16);
1253
1254 if (gpr == NVMM_X64_GPR_RSP) {
1255 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1256 } else {
1257 gpr = cpudata->gprs[gpr];
1258 }
1259
1260 cr0 = gpr | CR0_NE | CR0_ET;
1261 cr0 &= ~(CR0_NW|CR0_CD);
1262
1263 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1264 return -1;
1265 }
1266
1267 /*
1268 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1269 * from CR3.
1270 */
1271
1272 if (cr0 & CR0_PG) {
1273 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1274 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1275 if (efer & EFER_LME) {
1276 ctls1 |= ENTRY_CTLS_LONG_MODE;
1277 efer |= EFER_LMA;
1278 } else {
1279 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1280 efer &= ~EFER_LMA;
1281 }
1282 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1283 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1284 }
1285
1286 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1287 vmx_inkernel_advance();
1288 return 0;
1289 }
1290
1291 static int
1292 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1293 uint64_t qual)
1294 {
1295 struct vmx_cpudata *cpudata = vcpu->cpudata;
1296 uint64_t type, gpr, cr4;
1297
1298 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1299 if (type != CR_TYPE_WRITE) {
1300 return -1;
1301 }
1302
1303 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1304 KASSERT(gpr < 16);
1305
1306 if (gpr == NVMM_X64_GPR_RSP) {
1307 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1308 } else {
1309 gpr = cpudata->gprs[gpr];
1310 }
1311
1312 cr4 = gpr | CR4_VMXE;
1313
1314 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1315 return -1;
1316 }
1317
1318 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1319 vmx_inkernel_advance();
1320 return 0;
1321 }
1322
1323 static int
1324 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1325 uint64_t qual)
1326 {
1327 struct vmx_cpudata *cpudata = vcpu->cpudata;
1328 uint64_t type, gpr;
1329 bool write;
1330
1331 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1332 if (type == CR_TYPE_WRITE) {
1333 write = true;
1334 } else if (type == CR_TYPE_READ) {
1335 write = false;
1336 } else {
1337 return -1;
1338 }
1339
1340 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1341 KASSERT(gpr < 16);
1342
1343 if (write) {
1344 if (gpr == NVMM_X64_GPR_RSP) {
1345 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1346 } else {
1347 cpudata->gcr8 = cpudata->gprs[gpr];
1348 }
1349 } else {
1350 if (gpr == NVMM_X64_GPR_RSP) {
1351 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1352 } else {
1353 cpudata->gprs[gpr] = cpudata->gcr8;
1354 }
1355 }
1356
1357 vmx_inkernel_advance();
1358 return 0;
1359 }
1360
1361 static void
1362 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1363 struct nvmm_exit *exit)
1364 {
1365 uint64_t qual;
1366 int ret;
1367
1368 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1369
1370 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1371 case 0:
1372 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1373 break;
1374 case 4:
1375 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1376 break;
1377 case 8:
1378 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1379 break;
1380 default:
1381 ret = -1;
1382 break;
1383 }
1384
1385 if (ret == -1) {
1386 vmx_inject_gp(mach, vcpu);
1387 }
1388
1389 exit->reason = NVMM_EXIT_NONE;
1390 }
1391
1392 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1393 #define IO_SIZE_8 0
1394 #define IO_SIZE_16 1
1395 #define IO_SIZE_32 3
1396 #define VMX_QUAL_IO_IN __BIT(3)
1397 #define VMX_QUAL_IO_STR __BIT(4)
1398 #define VMX_QUAL_IO_REP __BIT(5)
1399 #define VMX_QUAL_IO_DX __BIT(6)
1400 #define VMX_QUAL_IO_PORT __BITS(31,16)
1401
1402 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1403 #define IO_ADRSIZE_16 0
1404 #define IO_ADRSIZE_32 1
1405 #define IO_ADRSIZE_64 2
1406 #define VMX_INFO_IO_SEG __BITS(17,15)
1407
1408 static void
1409 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1410 struct nvmm_exit *exit)
1411 {
1412 uint64_t qual, info, inslen, rip;
1413
1414 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1415 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1416
1417 exit->reason = NVMM_EXIT_IO;
1418
1419 if (qual & VMX_QUAL_IO_IN) {
1420 exit->u.io.type = NVMM_EXIT_IO_IN;
1421 } else {
1422 exit->u.io.type = NVMM_EXIT_IO_OUT;
1423 }
1424
1425 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1426
1427 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1428 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1429
1430 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1431 exit->u.io.address_size = 8;
1432 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1433 exit->u.io.address_size = 4;
1434 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1435 exit->u.io.address_size = 2;
1436 }
1437
1438 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1439 exit->u.io.operand_size = 4;
1440 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1441 exit->u.io.operand_size = 2;
1442 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1443 exit->u.io.operand_size = 1;
1444 }
1445
1446 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1447 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1448
1449 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1450 exit->u.io.seg = NVMM_X64_SEG_ES;
1451 }
1452
1453 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1454 vmx_vmread(VMCS_GUEST_RIP, &rip);
1455 exit->u.io.npc = rip + inslen;
1456 }
1457
1458 static const uint64_t msr_ignore_list[] = {
1459 MSR_BIOS_SIGN,
1460 MSR_IA32_PLATFORM_ID
1461 };
1462
1463 static bool
1464 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1465 struct nvmm_exit *exit)
1466 {
1467 struct vmx_cpudata *cpudata = vcpu->cpudata;
1468 uint64_t val;
1469 size_t i;
1470
1471 switch (exit->u.msr.type) {
1472 case NVMM_EXIT_MSR_RDMSR:
1473 if (exit->u.msr.msr == MSR_CR_PAT) {
1474 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1475 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1476 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1477 goto handled;
1478 }
1479 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1480 val = cpudata->gmsr_misc_enable;
1481 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1482 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1483 goto handled;
1484 }
1485 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1486 if (msr_ignore_list[i] != exit->u.msr.msr)
1487 continue;
1488 val = 0;
1489 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1490 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1491 goto handled;
1492 }
1493 break;
1494 case NVMM_EXIT_MSR_WRMSR:
1495 if (exit->u.msr.msr == MSR_TSC) {
1496 cpudata->tsc_offset = exit->u.msr.val - cpu_counter();
1497 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1498 curcpu()->ci_data.cpu_cc_skew);
1499 goto handled;
1500 }
1501 if (exit->u.msr.msr == MSR_CR_PAT) {
1502 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1503 goto handled;
1504 }
1505 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1506 /* Don't care. */
1507 goto handled;
1508 }
1509 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1510 if (msr_ignore_list[i] != exit->u.msr.msr)
1511 continue;
1512 goto handled;
1513 }
1514 break;
1515 }
1516
1517 return false;
1518
1519 handled:
1520 vmx_inkernel_advance();
1521 return true;
1522 }
1523
1524 static void
1525 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1526 struct nvmm_exit *exit, bool rdmsr)
1527 {
1528 struct vmx_cpudata *cpudata = vcpu->cpudata;
1529 uint64_t inslen, rip;
1530
1531 if (rdmsr) {
1532 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1533 } else {
1534 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1535 }
1536
1537 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1538
1539 if (rdmsr) {
1540 exit->u.msr.val = 0;
1541 } else {
1542 uint64_t rdx, rax;
1543 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1544 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1545 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1546 }
1547
1548 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1549 exit->reason = NVMM_EXIT_NONE;
1550 return;
1551 }
1552
1553 exit->reason = NVMM_EXIT_MSR;
1554 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1555 vmx_vmread(VMCS_GUEST_RIP, &rip);
1556 exit->u.msr.npc = rip + inslen;
1557 }
1558
1559 static void
1560 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1561 struct nvmm_exit *exit)
1562 {
1563 struct vmx_cpudata *cpudata = vcpu->cpudata;
1564 uint16_t val;
1565
1566 exit->reason = NVMM_EXIT_NONE;
1567
1568 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1569 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1570
1571 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1572 goto error;
1573 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1574 goto error;
1575 } else if (__predict_false((val & XCR0_X87) == 0)) {
1576 goto error;
1577 }
1578
1579 cpudata->gxcr0 = val;
1580
1581 vmx_inkernel_advance();
1582 return;
1583
1584 error:
1585 vmx_inject_gp(mach, vcpu);
1586 }
1587
1588 #define VMX_EPT_VIOLATION_READ __BIT(0)
1589 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1590 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1591
1592 static void
1593 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1594 struct nvmm_exit *exit)
1595 {
1596 uint64_t perm;
1597 gpaddr_t gpa;
1598
1599 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1600
1601 exit->reason = NVMM_EXIT_MEMORY;
1602 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1603 if (perm & VMX_EPT_VIOLATION_WRITE)
1604 exit->u.mem.prot = PROT_WRITE;
1605 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1606 exit->u.mem.prot = PROT_EXEC;
1607 else
1608 exit->u.mem.prot = PROT_READ;
1609 exit->u.mem.gpa = gpa;
1610 exit->u.mem.inst_len = 0;
1611 }
1612
1613 /* -------------------------------------------------------------------------- */
1614
1615 static void
1616 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1617 {
1618 struct vmx_cpudata *cpudata = vcpu->cpudata;
1619
1620 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1621
1622 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1623 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1624
1625 if (vmx_xcr0_mask != 0) {
1626 cpudata->hxcr0 = rdxcr(0);
1627 wrxcr(0, cpudata->gxcr0);
1628 }
1629 }
1630
1631 static void
1632 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1633 {
1634 struct vmx_cpudata *cpudata = vcpu->cpudata;
1635
1636 if (vmx_xcr0_mask != 0) {
1637 cpudata->gxcr0 = rdxcr(0);
1638 wrxcr(0, cpudata->hxcr0);
1639 }
1640
1641 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1642 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1643
1644 if (cpudata->ts_set) {
1645 stts();
1646 }
1647 }
1648
1649 static void
1650 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1651 {
1652 struct vmx_cpudata *cpudata = vcpu->cpudata;
1653
1654 x86_dbregs_save(curlwp);
1655
1656 ldr7(0);
1657
1658 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1659 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1660 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1661 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1662 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1663 }
1664
1665 static void
1666 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1667 {
1668 struct vmx_cpudata *cpudata = vcpu->cpudata;
1669
1670 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1671 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1672 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1673 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1674 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1675
1676 x86_dbregs_restore(curlwp);
1677 }
1678
1679 static void
1680 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1681 {
1682 struct vmx_cpudata *cpudata = vcpu->cpudata;
1683
1684 /* This gets restored automatically by the CPU. */
1685 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1686 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1687 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1688
1689 /* Note: MSR_LSTAR is not static, because of SVS. */
1690 cpudata->lstar = rdmsr(MSR_LSTAR);
1691 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1692 }
1693
1694 static void
1695 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1696 {
1697 struct vmx_cpudata *cpudata = vcpu->cpudata;
1698
1699 wrmsr(MSR_STAR, cpudata->star);
1700 wrmsr(MSR_LSTAR, cpudata->lstar);
1701 wrmsr(MSR_CSTAR, cpudata->cstar);
1702 wrmsr(MSR_SFMASK, cpudata->sfmask);
1703 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1704 }
1705
1706 /* -------------------------------------------------------------------------- */
1707
1708 #define VMX_INVVPID_ADDRESS 0
1709 #define VMX_INVVPID_CONTEXT 1
1710 #define VMX_INVVPID_ALL 2
1711 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1712
1713 #define VMX_INVEPT_CONTEXT 1
1714 #define VMX_INVEPT_ALL 2
1715
1716 static inline void
1717 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1718 {
1719 struct vmx_cpudata *cpudata = vcpu->cpudata;
1720
1721 if (vcpu->hcpu_last != hcpu) {
1722 cpudata->gtlb_want_flush = true;
1723 }
1724 }
1725
1726 static inline void
1727 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1728 {
1729 struct vmx_cpudata *cpudata = vcpu->cpudata;
1730 struct ept_desc ept_desc;
1731
1732 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1733 return;
1734 }
1735
1736 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1737 ept_desc.mbz = 0;
1738 vmx_invept(vmx_ept_flush_op, &ept_desc);
1739 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1740 }
1741
1742 static inline uint64_t
1743 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1744 {
1745 struct ept_desc ept_desc;
1746 uint64_t machgen;
1747
1748 machgen = machdata->mach_htlb_gen;
1749 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1750 return machgen;
1751 }
1752
1753 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1754
1755 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1756 ept_desc.mbz = 0;
1757 vmx_invept(vmx_ept_flush_op, &ept_desc);
1758
1759 return machgen;
1760 }
1761
1762 static inline void
1763 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1764 {
1765 cpudata->vcpu_htlb_gen = machgen;
1766 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1767 }
1768
1769 static int
1770 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1771 struct nvmm_exit *exit)
1772 {
1773 struct vmx_machdata *machdata = mach->machdata;
1774 struct vmx_cpudata *cpudata = vcpu->cpudata;
1775 struct vpid_desc vpid_desc;
1776 struct cpu_info *ci;
1777 uint64_t exitcode;
1778 uint64_t intstate;
1779 uint64_t machgen;
1780 int hcpu, s, ret;
1781 bool launched;
1782
1783 vmx_vmcs_enter(vcpu);
1784 ci = curcpu();
1785 hcpu = cpu_number();
1786 launched = cpudata->vmcs_launched;
1787
1788 vmx_gtlb_catchup(vcpu, hcpu);
1789 vmx_htlb_catchup(vcpu, hcpu);
1790
1791 if (vcpu->hcpu_last != hcpu) {
1792 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1793 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1794 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1795 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1796 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->tsc_offset +
1797 curcpu()->ci_data.cpu_cc_skew);
1798 vcpu->hcpu_last = hcpu;
1799 }
1800
1801 vmx_vcpu_guest_dbregs_enter(vcpu);
1802 vmx_vcpu_guest_misc_enter(vcpu);
1803
1804 while (1) {
1805 if (cpudata->gtlb_want_flush) {
1806 vpid_desc.vpid = cpudata->asid;
1807 vpid_desc.addr = 0;
1808 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1809 cpudata->gtlb_want_flush = false;
1810 }
1811
1812 s = splhigh();
1813 machgen = vmx_htlb_flush(machdata, cpudata);
1814 vmx_vcpu_guest_fpu_enter(vcpu);
1815 lcr2(cpudata->gcr2);
1816 if (launched) {
1817 ret = vmx_vmresume(cpudata->gprs);
1818 } else {
1819 ret = vmx_vmlaunch(cpudata->gprs);
1820 }
1821 cpudata->gcr2 = rcr2();
1822 vmx_vcpu_guest_fpu_leave(vcpu);
1823 vmx_htlb_flush_ack(cpudata, machgen);
1824 splx(s);
1825
1826 if (__predict_false(ret != 0)) {
1827 exit->reason = NVMM_EXIT_INVALID;
1828 break;
1829 }
1830
1831 launched = true;
1832
1833 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1834 exitcode &= __BITS(15,0);
1835
1836 switch (exitcode) {
1837 case VMCS_EXITCODE_EXC_NMI:
1838 vmx_exit_exc_nmi(mach, vcpu, exit);
1839 break;
1840 case VMCS_EXITCODE_EXT_INT:
1841 exit->reason = NVMM_EXIT_NONE;
1842 break;
1843 case VMCS_EXITCODE_CPUID:
1844 vmx_exit_cpuid(mach, vcpu, exit);
1845 break;
1846 case VMCS_EXITCODE_HLT:
1847 vmx_exit_hlt(mach, vcpu, exit);
1848 break;
1849 case VMCS_EXITCODE_CR:
1850 vmx_exit_cr(mach, vcpu, exit);
1851 break;
1852 case VMCS_EXITCODE_IO:
1853 vmx_exit_io(mach, vcpu, exit);
1854 break;
1855 case VMCS_EXITCODE_RDMSR:
1856 vmx_exit_msr(mach, vcpu, exit, true);
1857 break;
1858 case VMCS_EXITCODE_WRMSR:
1859 vmx_exit_msr(mach, vcpu, exit, false);
1860 break;
1861 case VMCS_EXITCODE_SHUTDOWN:
1862 exit->reason = NVMM_EXIT_SHUTDOWN;
1863 break;
1864 case VMCS_EXITCODE_MONITOR:
1865 exit->reason = NVMM_EXIT_MONITOR;
1866 break;
1867 case VMCS_EXITCODE_MWAIT:
1868 exit->reason = NVMM_EXIT_MWAIT;
1869 break;
1870 case VMCS_EXITCODE_XSETBV:
1871 vmx_exit_xsetbv(mach, vcpu, exit);
1872 break;
1873 case VMCS_EXITCODE_RDPMC:
1874 case VMCS_EXITCODE_RDTSCP:
1875 case VMCS_EXITCODE_INVVPID:
1876 case VMCS_EXITCODE_INVEPT:
1877 case VMCS_EXITCODE_VMCALL:
1878 case VMCS_EXITCODE_VMCLEAR:
1879 case VMCS_EXITCODE_VMLAUNCH:
1880 case VMCS_EXITCODE_VMPTRLD:
1881 case VMCS_EXITCODE_VMPTRST:
1882 case VMCS_EXITCODE_VMREAD:
1883 case VMCS_EXITCODE_VMRESUME:
1884 case VMCS_EXITCODE_VMWRITE:
1885 case VMCS_EXITCODE_VMXOFF:
1886 case VMCS_EXITCODE_VMXON:
1887 vmx_inject_ud(mach, vcpu);
1888 exit->reason = NVMM_EXIT_NONE;
1889 break;
1890 case VMCS_EXITCODE_EPT_VIOLATION:
1891 vmx_exit_epf(mach, vcpu, exit);
1892 break;
1893 case VMCS_EXITCODE_INT_WINDOW:
1894 vmx_event_waitexit_disable(vcpu, false);
1895 exit->reason = NVMM_EXIT_INT_READY;
1896 break;
1897 case VMCS_EXITCODE_NMI_WINDOW:
1898 vmx_event_waitexit_disable(vcpu, true);
1899 exit->reason = NVMM_EXIT_NMI_READY;
1900 break;
1901 default:
1902 exit->reason = NVMM_EXIT_INVALID;
1903 break;
1904 }
1905
1906 /* If no reason to return to userland, keep rolling. */
1907 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1908 break;
1909 }
1910 if (curcpu()->ci_data.cpu_softints != 0) {
1911 break;
1912 }
1913 if (curlwp->l_flag & LW_USERRET) {
1914 break;
1915 }
1916 if (exit->reason != NVMM_EXIT_NONE) {
1917 break;
1918 }
1919 }
1920
1921 cpudata->vmcs_launched = launched;
1922
1923 vmx_vcpu_guest_misc_leave(vcpu);
1924 vmx_vcpu_guest_dbregs_leave(vcpu);
1925
1926 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1927 vmx_vmread(VMCS_GUEST_RFLAGS,
1928 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1929 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1930 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1931 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1932 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1933 cpudata->int_window_exit;
1934 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1935 cpudata->nmi_window_exit;
1936
1937 vmx_vmcs_leave(vcpu);
1938
1939 return 0;
1940 }
1941
1942 /* -------------------------------------------------------------------------- */
1943
1944 static int
1945 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1946 {
1947 struct pglist pglist;
1948 paddr_t _pa;
1949 vaddr_t _va;
1950 size_t i;
1951 int ret;
1952
1953 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1954 &pglist, 1, 0);
1955 if (ret != 0)
1956 return ENOMEM;
1957 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1958 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1959 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1960 if (_va == 0)
1961 goto error;
1962
1963 for (i = 0; i < npages; i++) {
1964 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1965 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1966 }
1967 pmap_update(pmap_kernel());
1968
1969 memset((void *)_va, 0, npages * PAGE_SIZE);
1970
1971 *pa = _pa;
1972 *va = _va;
1973 return 0;
1974
1975 error:
1976 for (i = 0; i < npages; i++) {
1977 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1978 }
1979 return ENOMEM;
1980 }
1981
1982 static void
1983 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1984 {
1985 size_t i;
1986
1987 pmap_kremove(va, npages * PAGE_SIZE);
1988 pmap_update(pmap_kernel());
1989 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1990 for (i = 0; i < npages; i++) {
1991 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1992 }
1993 }
1994
1995 /* -------------------------------------------------------------------------- */
1996
1997 static void
1998 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1999 {
2000 uint64_t byte;
2001 uint8_t bitoff;
2002
2003 if (msr < 0x00002000) {
2004 /* Range 1 */
2005 byte = ((msr - 0x00000000) / 8) + 0;
2006 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2007 /* Range 2 */
2008 byte = ((msr - 0xC0000000) / 8) + 1024;
2009 } else {
2010 panic("%s: wrong range", __func__);
2011 }
2012
2013 bitoff = (msr & 0x7);
2014
2015 if (read) {
2016 bitmap[byte] &= ~__BIT(bitoff);
2017 }
2018 if (write) {
2019 bitmap[2048 + byte] &= ~__BIT(bitoff);
2020 }
2021 }
2022
2023 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2024 #define VMX_SEG_ATTRIB_S __BIT(4)
2025 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2026 #define VMX_SEG_ATTRIB_P __BIT(7)
2027 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2028 #define VMX_SEG_ATTRIB_L __BIT(13)
2029 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2030 #define VMX_SEG_ATTRIB_G __BIT(15)
2031 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2032
2033 static void
2034 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2035 {
2036 uint64_t attrib;
2037
2038 attrib =
2039 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2040 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2041 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2042 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2043 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2044 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2045 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2046 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2047 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2048
2049 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2050 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2051 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2052 }
2053 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2054 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2055 }
2056
2057 static void
2058 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2059 {
2060 uint64_t selector, base, limit, attrib = 0;
2061
2062 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2063 vmx_vmread(vmx_guest_segs[idx].selector, &selector);
2064 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2065 }
2066 vmx_vmread(vmx_guest_segs[idx].limit, &limit);
2067 vmx_vmread(vmx_guest_segs[idx].base, &base);
2068
2069 segs[idx].selector = selector;
2070 segs[idx].limit = limit;
2071 segs[idx].base = base;
2072 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2073 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2074 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2075 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2076 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2077 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2078 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2079 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2080 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2081 segs[idx].attrib.p = 0;
2082 }
2083 }
2084
2085 static inline bool
2086 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2087 {
2088 uint64_t cr0, cr3, cr4, efer;
2089
2090 if (flags & NVMM_X64_STATE_CRS) {
2091 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2092 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2093 return true;
2094 }
2095 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2096 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2097 return true;
2098 }
2099 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2100 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2101 return true;
2102 }
2103 }
2104
2105 if (flags & NVMM_X64_STATE_MSRS) {
2106 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2107 if ((efer ^
2108 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2109 return true;
2110 }
2111 }
2112
2113 return false;
2114 }
2115
2116 static void
2117 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2118 {
2119 const struct nvmm_x64_state *state = data;
2120 struct vmx_cpudata *cpudata = vcpu->cpudata;
2121 struct fxsave *fpustate;
2122 uint64_t ctls1, intstate;
2123
2124 vmx_vmcs_enter(vcpu);
2125
2126 if (vmx_state_tlb_flush(state, flags)) {
2127 cpudata->gtlb_want_flush = true;
2128 }
2129
2130 if (flags & NVMM_X64_STATE_SEGS) {
2131 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2132 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2133 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2134 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2135 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2136 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2137 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2138 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2139 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2140 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2141 }
2142
2143 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2144 if (flags & NVMM_X64_STATE_GPRS) {
2145 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2146
2147 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2148 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2149 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2150 }
2151
2152 if (flags & NVMM_X64_STATE_CRS) {
2153 /*
2154 * CR0_NE and CR4_VMXE are mandatory.
2155 */
2156 vmx_vmwrite(VMCS_GUEST_CR0,
2157 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2158 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2159 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2160 vmx_vmwrite(VMCS_GUEST_CR4,
2161 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2162 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2163
2164 if (vmx_xcr0_mask != 0) {
2165 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2166 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2167 cpudata->gxcr0 &= vmx_xcr0_mask;
2168 cpudata->gxcr0 |= XCR0_X87;
2169 }
2170 }
2171
2172 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2173 if (flags & NVMM_X64_STATE_DRS) {
2174 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2175
2176 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2177 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2178 }
2179
2180 if (flags & NVMM_X64_STATE_MSRS) {
2181 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2182 state->msrs[NVMM_X64_MSR_STAR];
2183 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2184 state->msrs[NVMM_X64_MSR_LSTAR];
2185 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2186 state->msrs[NVMM_X64_MSR_CSTAR];
2187 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2188 state->msrs[NVMM_X64_MSR_SFMASK];
2189 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2190 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2191
2192 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2193 state->msrs[NVMM_X64_MSR_EFER]);
2194 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2195 state->msrs[NVMM_X64_MSR_PAT]);
2196 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2197 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2198 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2199 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2200 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2201 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2202
2203 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2204 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2205 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2206 ctls1 |= ENTRY_CTLS_LONG_MODE;
2207 } else {
2208 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2209 }
2210 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2211 }
2212
2213 if (flags & NVMM_X64_STATE_MISC) {
2214 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2215 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2216 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2217 intstate |= INT_STATE_MOVSS;
2218 }
2219 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2220
2221 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2222 vmx_event_waitexit_enable(vcpu, false);
2223 } else {
2224 vmx_event_waitexit_disable(vcpu, false);
2225 }
2226
2227 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2228 vmx_event_waitexit_enable(vcpu, true);
2229 } else {
2230 vmx_event_waitexit_disable(vcpu, true);
2231 }
2232 }
2233
2234 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2235 if (flags & NVMM_X64_STATE_FPU) {
2236 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2237 sizeof(state->fpu));
2238
2239 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2240 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2241 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2242
2243 if (vmx_xcr0_mask != 0) {
2244 /* Reset XSTATE_BV, to force a reload. */
2245 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2246 }
2247 }
2248
2249 vmx_vmcs_leave(vcpu);
2250 }
2251
2252 static void
2253 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2254 {
2255 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2256 struct vmx_cpudata *cpudata = vcpu->cpudata;
2257 uint64_t intstate;
2258
2259 vmx_vmcs_enter(vcpu);
2260
2261 if (flags & NVMM_X64_STATE_SEGS) {
2262 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2263 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2264 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2265 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2266 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2267 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2268 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2269 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2270 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2271 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2272 }
2273
2274 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2275 if (flags & NVMM_X64_STATE_GPRS) {
2276 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2277
2278 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2279 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2280 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2281 }
2282
2283 if (flags & NVMM_X64_STATE_CRS) {
2284 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2285 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2286 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2287 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2288 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2289 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2290
2291 /* Hide VMXE. */
2292 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2293 }
2294
2295 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2296 if (flags & NVMM_X64_STATE_DRS) {
2297 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2298
2299 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2300 }
2301
2302 if (flags & NVMM_X64_STATE_MSRS) {
2303 state->msrs[NVMM_X64_MSR_STAR] =
2304 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2305 state->msrs[NVMM_X64_MSR_LSTAR] =
2306 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2307 state->msrs[NVMM_X64_MSR_CSTAR] =
2308 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2309 state->msrs[NVMM_X64_MSR_SFMASK] =
2310 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2311 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2312 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2313
2314 vmx_vmread(VMCS_GUEST_IA32_EFER,
2315 &state->msrs[NVMM_X64_MSR_EFER]);
2316 vmx_vmread(VMCS_GUEST_IA32_PAT,
2317 &state->msrs[NVMM_X64_MSR_PAT]);
2318 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2319 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2320 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2321 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2322 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2323 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2324 }
2325
2326 if (flags & NVMM_X64_STATE_MISC) {
2327 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2328 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2329 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2330
2331 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2332 cpudata->int_window_exit;
2333 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2334 cpudata->nmi_window_exit;
2335 }
2336
2337 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2338 if (flags & NVMM_X64_STATE_FPU) {
2339 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2340 sizeof(state->fpu));
2341 }
2342
2343 vmx_vmcs_leave(vcpu);
2344 }
2345
2346 /* -------------------------------------------------------------------------- */
2347
2348 static void
2349 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2350 {
2351 struct vmx_cpudata *cpudata = vcpu->cpudata;
2352 size_t i, oct, bit;
2353
2354 mutex_enter(&vmx_asidlock);
2355
2356 for (i = 0; i < vmx_maxasid; i++) {
2357 oct = i / 8;
2358 bit = i % 8;
2359
2360 if (vmx_asidmap[oct] & __BIT(bit)) {
2361 continue;
2362 }
2363
2364 cpudata->asid = i;
2365
2366 vmx_asidmap[oct] |= __BIT(bit);
2367 vmx_vmwrite(VMCS_VPID, i);
2368 mutex_exit(&vmx_asidlock);
2369 return;
2370 }
2371
2372 mutex_exit(&vmx_asidlock);
2373
2374 panic("%s: impossible", __func__);
2375 }
2376
2377 static void
2378 vmx_asid_free(struct nvmm_cpu *vcpu)
2379 {
2380 size_t oct, bit;
2381 uint64_t asid;
2382
2383 vmx_vmread(VMCS_VPID, &asid);
2384
2385 oct = asid / 8;
2386 bit = asid % 8;
2387
2388 mutex_enter(&vmx_asidlock);
2389 vmx_asidmap[oct] &= ~__BIT(bit);
2390 mutex_exit(&vmx_asidlock);
2391 }
2392
2393 static void
2394 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2395 {
2396 struct vmx_cpudata *cpudata = vcpu->cpudata;
2397 struct vmcs *vmcs = cpudata->vmcs;
2398 struct msr_entry *gmsr = cpudata->gmsr;
2399 extern uint8_t vmx_resume_rip;
2400 uint64_t rev, eptp;
2401
2402 rev = vmx_get_revision();
2403
2404 memset(vmcs, 0, VMCS_SIZE);
2405 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2406 vmcs->abort = 0;
2407
2408 vmx_vmcs_enter(vcpu);
2409
2410 /* No link pointer. */
2411 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2412
2413 /* Install the CTLSs. */
2414 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2415 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2416 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2417 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2418 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2419
2420 /* Allow direct access to certain MSRs. */
2421 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2422 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2423 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2424 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2425 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2426 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2427 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2428 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2429 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2430 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2431 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2432 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2433 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2434 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2435 true, false);
2436 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2437
2438 /*
2439 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2440 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2441 */
2442 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2443 gmsr[VMX_MSRLIST_STAR].val = 0;
2444 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2445 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2446 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2447 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2448 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2449 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2450 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2451 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2452 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2453 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2454 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2455 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2456 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2457 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2458
2459 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2460 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2461 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2462
2463 /* Force CR4_VMXE to zero. */
2464 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2465
2466 /* Set the Host state for resuming. */
2467 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2468 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2469 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2470 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2471 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2472 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2473 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2474 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2475 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2476 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2477 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2478 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2479 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2480 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2481
2482 /* Generate ASID. */
2483 vmx_asid_alloc(vcpu);
2484
2485 /* Enable Extended Paging, 4-Level. */
2486 eptp =
2487 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2488 __SHIFTIN(4-1, EPTP_WALKLEN) |
2489 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2490 mach->vm->vm_map.pmap->pm_pdirpa[0];
2491 vmx_vmwrite(VMCS_EPTP, eptp);
2492
2493 /* Init IA32_MISC_ENABLE. */
2494 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2495 cpudata->gmsr_misc_enable &=
2496 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2497 cpudata->gmsr_misc_enable |=
2498 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2499
2500 /* Init XSAVE header. */
2501 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2502 cpudata->gfpu.xsh_xcomp_bv = 0;
2503
2504 /* Set guest TSC to zero, more or less. */
2505 cpudata->tsc_offset = -cpu_counter();
2506
2507 /* These MSRs are static. */
2508 cpudata->star = rdmsr(MSR_STAR);
2509 cpudata->cstar = rdmsr(MSR_CSTAR);
2510 cpudata->sfmask = rdmsr(MSR_SFMASK);
2511
2512 /* Install the RESET state. */
2513 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2514
2515 vmx_vmcs_leave(vcpu);
2516 }
2517
2518 static int
2519 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2520 {
2521 struct vmx_cpudata *cpudata;
2522 int error;
2523
2524 /* Allocate the VMX cpudata. */
2525 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2526 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2527 UVM_KMF_WIRED|UVM_KMF_ZERO);
2528 vcpu->cpudata = cpudata;
2529
2530 /* VMCS */
2531 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2532 VMCS_NPAGES);
2533 if (error)
2534 goto error;
2535
2536 /* MSR Bitmap */
2537 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2538 MSRBM_NPAGES);
2539 if (error)
2540 goto error;
2541
2542 /* Guest MSR List */
2543 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2544 if (error)
2545 goto error;
2546
2547 kcpuset_create(&cpudata->htlb_want_flush, true);
2548
2549 /* Init the VCPU info. */
2550 vmx_vcpu_init(mach, vcpu);
2551
2552 return 0;
2553
2554 error:
2555 if (cpudata->vmcs_pa) {
2556 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2557 VMCS_NPAGES);
2558 }
2559 if (cpudata->msrbm_pa) {
2560 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2561 MSRBM_NPAGES);
2562 }
2563 if (cpudata->gmsr_pa) {
2564 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2565 }
2566
2567 kmem_free(cpudata, sizeof(*cpudata));
2568 return error;
2569 }
2570
2571 static void
2572 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2573 {
2574 struct vmx_cpudata *cpudata = vcpu->cpudata;
2575
2576 vmx_vmcs_enter(vcpu);
2577 vmx_asid_free(vcpu);
2578 vmx_vmcs_destroy(vcpu);
2579
2580 kcpuset_destroy(cpudata->htlb_want_flush);
2581
2582 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2583 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2584 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2585 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2586 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2587 }
2588
2589 /* -------------------------------------------------------------------------- */
2590
2591 static void
2592 vmx_tlb_flush(struct pmap *pm)
2593 {
2594 struct nvmm_machine *mach = pm->pm_data;
2595 struct vmx_machdata *machdata = mach->machdata;
2596
2597 atomic_inc_64(&machdata->mach_htlb_gen);
2598
2599 /* Generates IPIs, which cause #VMEXITs. */
2600 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2601 }
2602
2603 static void
2604 vmx_machine_create(struct nvmm_machine *mach)
2605 {
2606 struct pmap *pmap = mach->vm->vm_map.pmap;
2607 struct vmx_machdata *machdata;
2608
2609 /* Convert to EPT. */
2610 pmap_ept_transform(pmap);
2611
2612 /* Fill in pmap info. */
2613 pmap->pm_data = (void *)mach;
2614 pmap->pm_tlb_flush = vmx_tlb_flush;
2615
2616 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2617 mach->machdata = machdata;
2618
2619 /* Start with an hTLB flush everywhere. */
2620 machdata->mach_htlb_gen = 1;
2621 }
2622
2623 static void
2624 vmx_machine_destroy(struct nvmm_machine *mach)
2625 {
2626 struct vmx_machdata *machdata = mach->machdata;
2627
2628 kmem_free(machdata, sizeof(struct vmx_machdata));
2629 }
2630
2631 static int
2632 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2633 {
2634 struct nvmm_x86_conf_cpuid *cpuid = data;
2635 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2636 size_t i;
2637
2638 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2639 return EINVAL;
2640 }
2641
2642 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2643 (cpuid->set.ebx & cpuid->del.ebx) ||
2644 (cpuid->set.ecx & cpuid->del.ecx) ||
2645 (cpuid->set.edx & cpuid->del.edx))) {
2646 return EINVAL;
2647 }
2648
2649 /* If already here, replace. */
2650 for (i = 0; i < VMX_NCPUIDS; i++) {
2651 if (!machdata->cpuidpresent[i]) {
2652 continue;
2653 }
2654 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2655 memcpy(&machdata->cpuid[i], cpuid,
2656 sizeof(struct nvmm_x86_conf_cpuid));
2657 return 0;
2658 }
2659 }
2660
2661 /* Not here, insert. */
2662 for (i = 0; i < VMX_NCPUIDS; i++) {
2663 if (!machdata->cpuidpresent[i]) {
2664 machdata->cpuidpresent[i] = true;
2665 memcpy(&machdata->cpuid[i], cpuid,
2666 sizeof(struct nvmm_x86_conf_cpuid));
2667 return 0;
2668 }
2669 }
2670
2671 return ENOBUFS;
2672 }
2673
2674 /* -------------------------------------------------------------------------- */
2675
2676 static int
2677 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2678 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2679 {
2680 uint64_t basic, val, true_val;
2681 bool one_allowed, zero_allowed, has_true;
2682 size_t i;
2683
2684 basic = rdmsr(MSR_IA32_VMX_BASIC);
2685 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2686
2687 val = rdmsr(msr_ctls);
2688 if (has_true) {
2689 true_val = rdmsr(msr_true_ctls);
2690 } else {
2691 true_val = val;
2692 }
2693
2694 #define ONE_ALLOWED(msrval, bitoff) \
2695 ((msrval & __BIT(32 + bitoff)) != 0)
2696 #define ZERO_ALLOWED(msrval, bitoff) \
2697 ((msrval & __BIT(bitoff)) == 0)
2698
2699 for (i = 0; i < 32; i++) {
2700 one_allowed = ONE_ALLOWED(true_val, i);
2701 zero_allowed = ZERO_ALLOWED(true_val, i);
2702
2703 if (zero_allowed && !one_allowed) {
2704 if (set_one & __BIT(i))
2705 return -1;
2706 *res &= ~__BIT(i);
2707 } else if (one_allowed && !zero_allowed) {
2708 if (set_zero & __BIT(i))
2709 return -1;
2710 *res |= __BIT(i);
2711 } else {
2712 if (set_zero & __BIT(i)) {
2713 *res &= ~__BIT(i);
2714 } else if (set_one & __BIT(i)) {
2715 *res |= __BIT(i);
2716 } else if (!has_true) {
2717 *res &= ~__BIT(i);
2718 } else if (ZERO_ALLOWED(val, i)) {
2719 *res &= ~__BIT(i);
2720 } else if (ONE_ALLOWED(val, i)) {
2721 *res |= __BIT(i);
2722 } else {
2723 return -1;
2724 }
2725 }
2726 }
2727
2728 return 0;
2729 }
2730
2731 static bool
2732 vmx_ident(void)
2733 {
2734 uint64_t msr;
2735 int ret;
2736
2737 if (!(cpu_feature[1] & CPUID2_VMX)) {
2738 return false;
2739 }
2740
2741 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2742 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2743 return false;
2744 }
2745
2746 msr = rdmsr(MSR_IA32_VMX_BASIC);
2747 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2748 return false;
2749 }
2750 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2751 return false;
2752 }
2753
2754 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2755 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2756 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2757 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2758 if (ret == -1) {
2759 return false;
2760 }
2761
2762 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2763 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2764 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2765 if (ret == -1) {
2766 return false;
2767 }
2768
2769 /* Init the CTLSs right now, and check for errors. */
2770 ret = vmx_init_ctls(
2771 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2772 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2773 &vmx_pinbased_ctls);
2774 if (ret == -1) {
2775 return false;
2776 }
2777 ret = vmx_init_ctls(
2778 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2779 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2780 &vmx_procbased_ctls);
2781 if (ret == -1) {
2782 return false;
2783 }
2784 ret = vmx_init_ctls(
2785 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2786 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2787 &vmx_procbased_ctls2);
2788 if (ret == -1) {
2789 return false;
2790 }
2791 ret = vmx_init_ctls(
2792 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2793 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2794 &vmx_entry_ctls);
2795 if (ret == -1) {
2796 return false;
2797 }
2798 ret = vmx_init_ctls(
2799 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2800 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2801 &vmx_exit_ctls);
2802 if (ret == -1) {
2803 return false;
2804 }
2805
2806 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2807 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2808 return false;
2809 }
2810 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2811 return false;
2812 }
2813 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2814 return false;
2815 }
2816 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2817 pmap_ept_has_ad = true;
2818 } else {
2819 pmap_ept_has_ad = false;
2820 }
2821 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2822 return false;
2823 }
2824
2825 return true;
2826 }
2827
2828 static void
2829 vmx_init_asid(uint32_t maxasid)
2830 {
2831 size_t allocsz;
2832
2833 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2834
2835 vmx_maxasid = maxasid;
2836 allocsz = roundup(maxasid, 8) / 8;
2837 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2838
2839 /* ASID 0 is reserved for the host. */
2840 vmx_asidmap[0] |= __BIT(0);
2841 }
2842
2843 static void
2844 vmx_change_cpu(void *arg1, void *arg2)
2845 {
2846 struct cpu_info *ci = curcpu();
2847 bool enable = (bool)arg1;
2848 uint64_t cr4;
2849
2850 if (!enable) {
2851 vmx_vmxoff();
2852 }
2853
2854 cr4 = rcr4();
2855 if (enable) {
2856 cr4 |= CR4_VMXE;
2857 } else {
2858 cr4 &= ~CR4_VMXE;
2859 }
2860 lcr4(cr4);
2861
2862 if (enable) {
2863 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2864 }
2865 }
2866
2867 static void
2868 vmx_init_l1tf(void)
2869 {
2870 u_int descs[4];
2871 uint64_t msr;
2872
2873 if (cpuid_level < 7) {
2874 return;
2875 }
2876
2877 x86_cpuid(7, descs);
2878
2879 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2880 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2881 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2882 /* No mitigation needed. */
2883 return;
2884 }
2885 }
2886
2887 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2888 /* Enable hardware mitigation. */
2889 vmx_msrlist_entry_nmsr += 1;
2890 }
2891 }
2892
2893 static void
2894 vmx_init(void)
2895 {
2896 CPU_INFO_ITERATOR cii;
2897 struct cpu_info *ci;
2898 uint64_t xc, msr;
2899 struct vmxon *vmxon;
2900 uint32_t revision;
2901 paddr_t pa;
2902 vaddr_t va;
2903 int error;
2904
2905 /* Init the ASID bitmap (VPID). */
2906 vmx_init_asid(VPID_MAX);
2907
2908 /* Init the XCR0 mask. */
2909 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2910
2911 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2912 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2913 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2914 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2915 } else {
2916 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2917 }
2918 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2919 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2920 } else {
2921 vmx_ept_flush_op = VMX_INVEPT_ALL;
2922 }
2923 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2924 vmx_eptp_type = EPTP_TYPE_WB;
2925 } else {
2926 vmx_eptp_type = EPTP_TYPE_UC;
2927 }
2928
2929 /* Init the L1TF mitigation. */
2930 vmx_init_l1tf();
2931
2932 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2933 revision = vmx_get_revision();
2934
2935 for (CPU_INFO_FOREACH(cii, ci)) {
2936 error = vmx_memalloc(&pa, &va, 1);
2937 if (error) {
2938 panic("%s: out of memory", __func__);
2939 }
2940 vmxoncpu[cpu_index(ci)].pa = pa;
2941 vmxoncpu[cpu_index(ci)].va = va;
2942
2943 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2944 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2945 }
2946
2947 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2948 xc_wait(xc);
2949 }
2950
2951 static void
2952 vmx_fini_asid(void)
2953 {
2954 size_t allocsz;
2955
2956 allocsz = roundup(vmx_maxasid, 8) / 8;
2957 kmem_free(vmx_asidmap, allocsz);
2958
2959 mutex_destroy(&vmx_asidlock);
2960 }
2961
2962 static void
2963 vmx_fini(void)
2964 {
2965 uint64_t xc;
2966 size_t i;
2967
2968 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2969 xc_wait(xc);
2970
2971 for (i = 0; i < MAXCPUS; i++) {
2972 if (vmxoncpu[i].pa != 0)
2973 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2974 }
2975
2976 vmx_fini_asid();
2977 }
2978
2979 static void
2980 vmx_capability(struct nvmm_capability *cap)
2981 {
2982 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2983 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2984 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2985 }
2986
2987 const struct nvmm_impl nvmm_x86_vmx = {
2988 .ident = vmx_ident,
2989 .init = vmx_init,
2990 .fini = vmx_fini,
2991 .capability = vmx_capability,
2992 .conf_max = NVMM_X86_NCONF,
2993 .conf_sizes = vmx_conf_sizes,
2994 .state_size = sizeof(struct nvmm_x64_state),
2995 .machine_create = vmx_machine_create,
2996 .machine_destroy = vmx_machine_destroy,
2997 .machine_configure = vmx_machine_configure,
2998 .vcpu_create = vmx_vcpu_create,
2999 .vcpu_destroy = vmx_vcpu_destroy,
3000 .vcpu_setstate = vmx_vcpu_setstate,
3001 .vcpu_getstate = vmx_vcpu_getstate,
3002 .vcpu_inject = vmx_vcpu_inject,
3003 .vcpu_run = vmx_vcpu_run
3004 };
3005