nvmm_x86_vmx.c revision 1.21 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.21 2019/04/03 17:32:58 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.21 2019/04/03 17:32:58 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int _vmx_invept(uint64_t op, void *desc);
60 int _vmx_invvpid(uint64_t op, void *desc);
61 int _vmx_vmread(uint64_t op, uint64_t *val);
62 int _vmx_vmwrite(uint64_t op, uint64_t val);
63 int _vmx_vmptrld(paddr_t *pa);
64 int _vmx_vmptrst(paddr_t *pa);
65 int _vmx_vmclear(paddr_t *pa);
66 int vmx_vmlaunch(uint64_t *gprs);
67 int vmx_vmresume(uint64_t *gprs);
68
69 #define vmx_vmxon(a) \
70 if (__predict_false(_vmx_vmxon(a) != 0)) { \
71 panic("%s: VMXON failed", __func__); \
72 }
73 #define vmx_vmxoff() \
74 if (__predict_false(_vmx_vmxoff() != 0)) { \
75 panic("%s: VMXOFF failed", __func__); \
76 }
77 #define vmx_invept(a, b) \
78 if (__predict_false(_vmx_invept(a, b) != 0)) { \
79 panic("%s: INVEPT failed", __func__); \
80 }
81 #define vmx_invvpid(a, b) \
82 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
83 panic("%s: INVVPID failed", __func__); \
84 }
85 #define vmx_vmread(a, b) \
86 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
87 panic("%s: VMREAD failed", __func__); \
88 }
89 #define vmx_vmwrite(a, b) \
90 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
91 panic("%s: VMWRITE failed", __func__); \
92 }
93 #define vmx_vmptrld(a) \
94 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
95 panic("%s: VMPTRLD failed", __func__); \
96 }
97 #define vmx_vmptrst(a) \
98 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
99 panic("%s: VMPTRST failed", __func__); \
100 }
101 #define vmx_vmclear(a) \
102 if (__predict_false(_vmx_vmclear(a) != 0)) { \
103 panic("%s: VMCLEAR failed", __func__); \
104 }
105
106 #define MSR_IA32_FEATURE_CONTROL 0x003A
107 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
108 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
109 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
110
111 #define MSR_IA32_VMX_BASIC 0x0480
112 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
113 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
114 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
115 #define IA32_VMX_BASIC_DUAL __BIT(49)
116 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
117 #define MEM_TYPE_UC 0
118 #define MEM_TYPE_WB 6
119 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
120 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
121
122 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
123 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
124 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
125 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
126 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
127
128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
132
133 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
134 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
135 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
136 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
137
138 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
139 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
140 #define IA32_VMX_EPT_VPID_UC __BIT(8)
141 #define IA32_VMX_EPT_VPID_WB __BIT(14)
142 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
143 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
144 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
145 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
146 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
147 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
148 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
149 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
150 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
151
152 /* -------------------------------------------------------------------------- */
153
154 /* 16-bit control fields */
155 #define VMCS_VPID 0x00000000
156 #define VMCS_PIR_VECTOR 0x00000002
157 #define VMCS_EPTP_INDEX 0x00000004
158 /* 16-bit guest-state fields */
159 #define VMCS_GUEST_ES_SELECTOR 0x00000800
160 #define VMCS_GUEST_CS_SELECTOR 0x00000802
161 #define VMCS_GUEST_SS_SELECTOR 0x00000804
162 #define VMCS_GUEST_DS_SELECTOR 0x00000806
163 #define VMCS_GUEST_FS_SELECTOR 0x00000808
164 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
165 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
166 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
167 #define VMCS_GUEST_INTR_STATUS 0x00000810
168 #define VMCS_PML_INDEX 0x00000812
169 /* 16-bit host-state fields */
170 #define VMCS_HOST_ES_SELECTOR 0x00000C00
171 #define VMCS_HOST_CS_SELECTOR 0x00000C02
172 #define VMCS_HOST_SS_SELECTOR 0x00000C04
173 #define VMCS_HOST_DS_SELECTOR 0x00000C06
174 #define VMCS_HOST_FS_SELECTOR 0x00000C08
175 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
176 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
177 /* 64-bit control fields */
178 #define VMCS_IO_BITMAP_A 0x00002000
179 #define VMCS_IO_BITMAP_B 0x00002002
180 #define VMCS_MSR_BITMAP 0x00002004
181 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
182 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
184 #define VMCS_EXECUTIVE_VMCS 0x0000200C
185 #define VMCS_PML_ADDRESS 0x0000200E
186 #define VMCS_TSC_OFFSET 0x00002010
187 #define VMCS_VIRTUAL_APIC 0x00002012
188 #define VMCS_APIC_ACCESS 0x00002014
189 #define VMCS_PIR_DESC 0x00002016
190 #define VMCS_VM_CONTROL 0x00002018
191 #define VMCS_EPTP 0x0000201A
192 #define EPTP_TYPE __BITS(2,0)
193 #define EPTP_TYPE_UC 0
194 #define EPTP_TYPE_WB 6
195 #define EPTP_WALKLEN __BITS(5,3)
196 #define EPTP_FLAGS_AD __BIT(6)
197 #define EPTP_PHYSADDR __BITS(63,12)
198 #define VMCS_EOI_EXIT0 0x0000201C
199 #define VMCS_EOI_EXIT1 0x0000201E
200 #define VMCS_EOI_EXIT2 0x00002020
201 #define VMCS_EOI_EXIT3 0x00002022
202 #define VMCS_EPTP_LIST 0x00002024
203 #define VMCS_VMREAD_BITMAP 0x00002026
204 #define VMCS_VMWRITE_BITMAP 0x00002028
205 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
206 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
207 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
208 #define VMCS_TSC_MULTIPLIER 0x00002032
209 /* 64-bit read-only fields */
210 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
211 /* 64-bit guest-state fields */
212 #define VMCS_LINK_POINTER 0x00002800
213 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
214 #define VMCS_GUEST_IA32_PAT 0x00002804
215 #define VMCS_GUEST_IA32_EFER 0x00002806
216 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
217 #define VMCS_GUEST_PDPTE0 0x0000280A
218 #define VMCS_GUEST_PDPTE1 0x0000280C
219 #define VMCS_GUEST_PDPTE2 0x0000280E
220 #define VMCS_GUEST_PDPTE3 0x00002810
221 #define VMCS_GUEST_BNDCFGS 0x00002812
222 /* 64-bit host-state fields */
223 #define VMCS_HOST_IA32_PAT 0x00002C00
224 #define VMCS_HOST_IA32_EFER 0x00002C02
225 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
226 /* 32-bit control fields */
227 #define VMCS_PINBASED_CTLS 0x00004000
228 #define PIN_CTLS_INT_EXITING __BIT(0)
229 #define PIN_CTLS_NMI_EXITING __BIT(3)
230 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
231 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
232 #define PIN_CTLS_PROCESS_POSTEd_INTS __BIT(7)
233 #define VMCS_PROCBASED_CTLS 0x00004002
234 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
235 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
236 #define PROC_CTLS_HLT_EXITING __BIT(7)
237 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
238 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
239 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
240 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
241 #define PROC_CTLS_RCR3_EXITING __BIT(15)
242 #define PROC_CTLS_LCR3_EXITING __BIT(16)
243 #define PROC_CTLS_RCR8_EXITING __BIT(19)
244 #define PROC_CTLS_LCR8_EXITING __BIT(20)
245 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
246 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
247 #define PROC_CTLS_DR_EXITING __BIT(23)
248 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
249 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
250 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
251 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
252 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
253 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
254 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
255 #define VMCS_EXCEPTION_BITMAP 0x00004004
256 #define VMCS_PF_ERROR_MASK 0x00004006
257 #define VMCS_PF_ERROR_MATCH 0x00004008
258 #define VMCS_CR3_TARGET_COUNT 0x0000400A
259 #define VMCS_EXIT_CTLS 0x0000400C
260 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
261 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
262 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
263 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
264 #define EXIT_CTLS_SAVE_PAT __BIT(18)
265 #define EXIT_CTLS_LOAD_PAT __BIT(19)
266 #define EXIT_CTLS_SAVE_EFER __BIT(20)
267 #define EXIT_CTLS_LOAD_EFER __BIT(21)
268 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
269 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
270 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
271 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
272 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
273 #define VMCS_ENTRY_CTLS 0x00004012
274 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
275 #define ENTRY_CTLS_LONG_MODE __BIT(9)
276 #define ENTRY_CTLS_SMM __BIT(10)
277 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
278 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
279 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
280 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
281 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
282 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
283 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
284 #define VMCS_ENTRY_INTR_INFO 0x00004016
285 #define INTR_INFO_VECTOR __BITS(7,0)
286 #define INTR_INFO_TYPE __BITS(10,8)
287 #define INTR_TYPE_EXT_INT 0
288 #define INTR_TYPE_NMI 2
289 #define INTR_TYPE_HW_EXC 3
290 #define INTR_TYPE_SW_INT 4
291 #define INTR_TYPE_PRIV_SW_EXC 5
292 #define INTR_TYPE_SW_EXC 6
293 #define INTR_TYPE_OTHER 7
294 #define INTR_INFO_ERROR __BIT(11)
295 #define INTR_INFO_VALID __BIT(31)
296 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
297 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
298 #define VMCS_TPR_THRESHOLD 0x0000401C
299 #define VMCS_PROCBASED_CTLS2 0x0000401E
300 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
301 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
302 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
303 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
304 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
305 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
306 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
307 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
308 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
309 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
310 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
311 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
312 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
313 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
314 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
315 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
316 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
317 #define PROC_CTLS2_PML_ENABLE __BIT(17)
318 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
319 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
320 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
321 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
322 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
323 #define VMCS_PLE_GAP 0x00004020
324 #define VMCS_PLE_WINDOW 0x00004022
325 /* 32-bit read-only data fields */
326 #define VMCS_INSTRUCTION_ERROR 0x00004400
327 #define VMCS_EXIT_REASON 0x00004402
328 #define VMCS_EXIT_INTR_INFO 0x00004404
329 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
330 #define VMCS_IDT_VECTORING_INFO 0x00004408
331 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
332 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
333 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
334 /* 32-bit guest-state fields */
335 #define VMCS_GUEST_ES_LIMIT 0x00004800
336 #define VMCS_GUEST_CS_LIMIT 0x00004802
337 #define VMCS_GUEST_SS_LIMIT 0x00004804
338 #define VMCS_GUEST_DS_LIMIT 0x00004806
339 #define VMCS_GUEST_FS_LIMIT 0x00004808
340 #define VMCS_GUEST_GS_LIMIT 0x0000480A
341 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
342 #define VMCS_GUEST_TR_LIMIT 0x0000480E
343 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
344 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
345 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
346 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
347 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
348 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
349 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
350 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
351 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
352 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
353 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
354 #define INT_STATE_STI __BIT(0)
355 #define INT_STATE_MOVSS __BIT(1)
356 #define INT_STATE_SMI __BIT(2)
357 #define INT_STATE_NMI __BIT(3)
358 #define INT_STATE_ENCLAVE __BIT(4)
359 #define VMCS_GUEST_ACTIVITY 0x00004826
360 #define VMCS_GUEST_SMBASE 0x00004828
361 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
362 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
363 /* 32-bit host state fields */
364 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
365 /* Natural-Width control fields */
366 #define VMCS_CR0_MASK 0x00006000
367 #define VMCS_CR4_MASK 0x00006002
368 #define VMCS_CR0_SHADOW 0x00006004
369 #define VMCS_CR4_SHADOW 0x00006006
370 #define VMCS_CR3_TARGET0 0x00006008
371 #define VMCS_CR3_TARGET1 0x0000600A
372 #define VMCS_CR3_TARGET2 0x0000600C
373 #define VMCS_CR3_TARGET3 0x0000600E
374 /* Natural-Width read-only fields */
375 #define VMCS_EXIT_QUALIFICATION 0x00006400
376 #define VMCS_IO_RCX 0x00006402
377 #define VMCS_IO_RSI 0x00006404
378 #define VMCS_IO_RDI 0x00006406
379 #define VMCS_IO_RIP 0x00006408
380 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
381 /* Natural-Width guest-state fields */
382 #define VMCS_GUEST_CR0 0x00006800
383 #define VMCS_GUEST_CR3 0x00006802
384 #define VMCS_GUEST_CR4 0x00006804
385 #define VMCS_GUEST_ES_BASE 0x00006806
386 #define VMCS_GUEST_CS_BASE 0x00006808
387 #define VMCS_GUEST_SS_BASE 0x0000680A
388 #define VMCS_GUEST_DS_BASE 0x0000680C
389 #define VMCS_GUEST_FS_BASE 0x0000680E
390 #define VMCS_GUEST_GS_BASE 0x00006810
391 #define VMCS_GUEST_LDTR_BASE 0x00006812
392 #define VMCS_GUEST_TR_BASE 0x00006814
393 #define VMCS_GUEST_GDTR_BASE 0x00006816
394 #define VMCS_GUEST_IDTR_BASE 0x00006818
395 #define VMCS_GUEST_DR7 0x0000681A
396 #define VMCS_GUEST_RSP 0x0000681C
397 #define VMCS_GUEST_RIP 0x0000681E
398 #define VMCS_GUEST_RFLAGS 0x00006820
399 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
400 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
401 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
402 /* Natural-Width host-state fields */
403 #define VMCS_HOST_CR0 0x00006C00
404 #define VMCS_HOST_CR3 0x00006C02
405 #define VMCS_HOST_CR4 0x00006C04
406 #define VMCS_HOST_FS_BASE 0x00006C06
407 #define VMCS_HOST_GS_BASE 0x00006C08
408 #define VMCS_HOST_TR_BASE 0x00006C0A
409 #define VMCS_HOST_GDTR_BASE 0x00006C0C
410 #define VMCS_HOST_IDTR_BASE 0x00006C0E
411 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
412 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
413 #define VMCS_HOST_RSP 0x00006C14
414 #define VMCS_HOST_RIP 0x00006c16
415
416 /* VMX basic exit reasons. */
417 #define VMCS_EXITCODE_EXC_NMI 0
418 #define VMCS_EXITCODE_EXT_INT 1
419 #define VMCS_EXITCODE_SHUTDOWN 2
420 #define VMCS_EXITCODE_INIT 3
421 #define VMCS_EXITCODE_SIPI 4
422 #define VMCS_EXITCODE_SMI 5
423 #define VMCS_EXITCODE_OTHER_SMI 6
424 #define VMCS_EXITCODE_INT_WINDOW 7
425 #define VMCS_EXITCODE_NMI_WINDOW 8
426 #define VMCS_EXITCODE_TASK_SWITCH 9
427 #define VMCS_EXITCODE_CPUID 10
428 #define VMCS_EXITCODE_GETSEC 11
429 #define VMCS_EXITCODE_HLT 12
430 #define VMCS_EXITCODE_INVD 13
431 #define VMCS_EXITCODE_INVLPG 14
432 #define VMCS_EXITCODE_RDPMC 15
433 #define VMCS_EXITCODE_RDTSC 16
434 #define VMCS_EXITCODE_RSM 17
435 #define VMCS_EXITCODE_VMCALL 18
436 #define VMCS_EXITCODE_VMCLEAR 19
437 #define VMCS_EXITCODE_VMLAUNCH 20
438 #define VMCS_EXITCODE_VMPTRLD 21
439 #define VMCS_EXITCODE_VMPTRST 22
440 #define VMCS_EXITCODE_VMREAD 23
441 #define VMCS_EXITCODE_VMRESUME 24
442 #define VMCS_EXITCODE_VMWRITE 25
443 #define VMCS_EXITCODE_VMXOFF 26
444 #define VMCS_EXITCODE_VMXON 27
445 #define VMCS_EXITCODE_CR 28
446 #define VMCS_EXITCODE_DR 29
447 #define VMCS_EXITCODE_IO 30
448 #define VMCS_EXITCODE_RDMSR 31
449 #define VMCS_EXITCODE_WRMSR 32
450 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
451 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
452 #define VMCS_EXITCODE_MWAIT 36
453 #define VMCS_EXITCODE_TRAP_FLAG 37
454 #define VMCS_EXITCODE_MONITOR 39
455 #define VMCS_EXITCODE_PAUSE 40
456 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
457 #define VMCS_EXITCODE_TPR_BELOW 43
458 #define VMCS_EXITCODE_APIC_ACCESS 44
459 #define VMCS_EXITCODE_VEOI 45
460 #define VMCS_EXITCODE_GDTR_IDTR 46
461 #define VMCS_EXITCODE_LDTR_TR 47
462 #define VMCS_EXITCODE_EPT_VIOLATION 48
463 #define VMCS_EXITCODE_EPT_MISCONFIG 49
464 #define VMCS_EXITCODE_INVEPT 50
465 #define VMCS_EXITCODE_RDTSCP 51
466 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
467 #define VMCS_EXITCODE_INVVPID 53
468 #define VMCS_EXITCODE_WBINVD 54
469 #define VMCS_EXITCODE_XSETBV 55
470 #define VMCS_EXITCODE_APIC_WRITE 56
471 #define VMCS_EXITCODE_RDRAND 57
472 #define VMCS_EXITCODE_INVPCID 58
473 #define VMCS_EXITCODE_VMFUNC 59
474 #define VMCS_EXITCODE_ENCLS 60
475 #define VMCS_EXITCODE_RDSEED 61
476 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
477 #define VMCS_EXITCODE_XSAVES 63
478 #define VMCS_EXITCODE_XRSTORS 64
479
480 /* -------------------------------------------------------------------------- */
481
482 #define VMX_MSRLIST_STAR 0
483 #define VMX_MSRLIST_LSTAR 1
484 #define VMX_MSRLIST_CSTAR 2
485 #define VMX_MSRLIST_SFMASK 3
486 #define VMX_MSRLIST_KERNELGSBASE 4
487 #define VMX_MSRLIST_EXIT_NMSR 5
488 #define VMX_MSRLIST_L1DFLUSH 5
489
490 /* On entry, we may do +1 to include L1DFLUSH. */
491 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
492
493 struct vmxon {
494 uint32_t ident;
495 #define VMXON_IDENT_REVISION __BITS(30,0)
496
497 uint8_t data[PAGE_SIZE - 4];
498 } __packed;
499
500 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
501
502 struct vmxoncpu {
503 vaddr_t va;
504 paddr_t pa;
505 };
506
507 static struct vmxoncpu vmxoncpu[MAXCPUS];
508
509 struct vmcs {
510 uint32_t ident;
511 #define VMCS_IDENT_REVISION __BITS(30,0)
512 #define VMCS_IDENT_SHADOW __BIT(31)
513
514 uint32_t abort;
515 uint8_t data[PAGE_SIZE - 8];
516 } __packed;
517
518 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
519
520 struct msr_entry {
521 uint32_t msr;
522 uint32_t rsvd;
523 uint64_t val;
524 } __packed;
525
526 struct ept_desc {
527 uint64_t eptp;
528 uint64_t mbz;
529 } __packed;
530
531 struct vpid_desc {
532 uint64_t vpid;
533 uint64_t addr;
534 } __packed;
535
536 #define VPID_MAX 0xFFFF
537
538 /* Make sure we never run out of VPIDs. */
539 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
540
541 static uint64_t vmx_tlb_flush_op __read_mostly;
542 static uint64_t vmx_ept_flush_op __read_mostly;
543 static uint64_t vmx_eptp_type __read_mostly;
544
545 static uint64_t vmx_pinbased_ctls __read_mostly;
546 static uint64_t vmx_procbased_ctls __read_mostly;
547 static uint64_t vmx_procbased_ctls2 __read_mostly;
548 static uint64_t vmx_entry_ctls __read_mostly;
549 static uint64_t vmx_exit_ctls __read_mostly;
550
551 static uint64_t vmx_cr0_fixed0 __read_mostly;
552 static uint64_t vmx_cr0_fixed1 __read_mostly;
553 static uint64_t vmx_cr4_fixed0 __read_mostly;
554 static uint64_t vmx_cr4_fixed1 __read_mostly;
555
556 extern bool pmap_ept_has_ad;
557
558 #define VMX_PINBASED_CTLS_ONE \
559 (PIN_CTLS_INT_EXITING| \
560 PIN_CTLS_NMI_EXITING| \
561 PIN_CTLS_VIRTUAL_NMIS)
562
563 #define VMX_PINBASED_CTLS_ZERO 0
564
565 #define VMX_PROCBASED_CTLS_ONE \
566 (PROC_CTLS_USE_TSC_OFFSETTING| \
567 PROC_CTLS_HLT_EXITING| \
568 PROC_CTLS_MWAIT_EXITING | \
569 PROC_CTLS_RDPMC_EXITING | \
570 PROC_CTLS_RCR8_EXITING | \
571 PROC_CTLS_LCR8_EXITING | \
572 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
573 PROC_CTLS_USE_MSR_BITMAPS | \
574 PROC_CTLS_MONITOR_EXITING | \
575 PROC_CTLS_ACTIVATE_CTLS2)
576
577 #define VMX_PROCBASED_CTLS_ZERO \
578 (PROC_CTLS_RCR3_EXITING| \
579 PROC_CTLS_LCR3_EXITING)
580
581 #define VMX_PROCBASED_CTLS2_ONE \
582 (PROC_CTLS2_ENABLE_EPT| \
583 PROC_CTLS2_ENABLE_VPID| \
584 PROC_CTLS2_UNRESTRICTED_GUEST)
585
586 #define VMX_PROCBASED_CTLS2_ZERO 0
587
588 #define VMX_ENTRY_CTLS_ONE \
589 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
590 ENTRY_CTLS_LOAD_EFER| \
591 ENTRY_CTLS_LOAD_PAT)
592
593 #define VMX_ENTRY_CTLS_ZERO \
594 (ENTRY_CTLS_SMM| \
595 ENTRY_CTLS_DISABLE_DUAL)
596
597 #define VMX_EXIT_CTLS_ONE \
598 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
599 EXIT_CTLS_HOST_LONG_MODE| \
600 EXIT_CTLS_SAVE_PAT| \
601 EXIT_CTLS_LOAD_PAT| \
602 EXIT_CTLS_SAVE_EFER| \
603 EXIT_CTLS_LOAD_EFER)
604
605 #define VMX_EXIT_CTLS_ZERO 0
606
607 static uint8_t *vmx_asidmap __read_mostly;
608 static uint32_t vmx_maxasid __read_mostly;
609 static kmutex_t vmx_asidlock __cacheline_aligned;
610
611 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
612 static uint64_t vmx_xcr0_mask __read_mostly;
613
614 #define VMX_NCPUIDS 32
615
616 #define VMCS_NPAGES 1
617 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
618
619 #define MSRBM_NPAGES 1
620 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
621
622 #define EFER_TLB_FLUSH \
623 (EFER_NXE|EFER_LMA|EFER_LME)
624 #define CR0_TLB_FLUSH \
625 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
626 #define CR4_TLB_FLUSH \
627 (CR4_PGE|CR4_PAE|CR4_PSE)
628
629 /* -------------------------------------------------------------------------- */
630
631 struct vmx_machdata {
632 bool cpuidpresent[VMX_NCPUIDS];
633 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
634 volatile uint64_t mach_htlb_gen;
635 };
636
637 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
638 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
639 };
640
641 struct vmx_cpudata {
642 /* General */
643 uint64_t asid;
644 bool gtlb_want_flush;
645 bool gtsc_want_update;
646 uint64_t vcpu_htlb_gen;
647 kcpuset_t *htlb_want_flush;
648
649 /* VMCS */
650 struct vmcs *vmcs;
651 paddr_t vmcs_pa;
652 size_t vmcs_refcnt;
653 struct cpu_info *vmcs_ci;
654 bool vmcs_launched;
655
656 /* MSR bitmap */
657 uint8_t *msrbm;
658 paddr_t msrbm_pa;
659
660 /* Host state */
661 uint64_t hxcr0;
662 uint64_t star;
663 uint64_t lstar;
664 uint64_t cstar;
665 uint64_t sfmask;
666 uint64_t kernelgsbase;
667 bool ts_set;
668 struct xsave_header hfpu __aligned(64);
669
670 /* Event state */
671 bool int_window_exit;
672 bool nmi_window_exit;
673
674 /* Guest state */
675 struct msr_entry *gmsr;
676 paddr_t gmsr_pa;
677 uint64_t gmsr_misc_enable;
678 uint64_t gcr2;
679 uint64_t gcr8;
680 uint64_t gxcr0;
681 uint64_t gprs[NVMM_X64_NGPR];
682 uint64_t drs[NVMM_X64_NDR];
683 uint64_t gtsc;
684 struct xsave_header gfpu __aligned(64);
685 };
686
687 static const struct {
688 uint64_t selector;
689 uint64_t attrib;
690 uint64_t limit;
691 uint64_t base;
692 } vmx_guest_segs[NVMM_X64_NSEG] = {
693 [NVMM_X64_SEG_ES] = {
694 VMCS_GUEST_ES_SELECTOR,
695 VMCS_GUEST_ES_ACCESS_RIGHTS,
696 VMCS_GUEST_ES_LIMIT,
697 VMCS_GUEST_ES_BASE
698 },
699 [NVMM_X64_SEG_CS] = {
700 VMCS_GUEST_CS_SELECTOR,
701 VMCS_GUEST_CS_ACCESS_RIGHTS,
702 VMCS_GUEST_CS_LIMIT,
703 VMCS_GUEST_CS_BASE
704 },
705 [NVMM_X64_SEG_SS] = {
706 VMCS_GUEST_SS_SELECTOR,
707 VMCS_GUEST_SS_ACCESS_RIGHTS,
708 VMCS_GUEST_SS_LIMIT,
709 VMCS_GUEST_SS_BASE
710 },
711 [NVMM_X64_SEG_DS] = {
712 VMCS_GUEST_DS_SELECTOR,
713 VMCS_GUEST_DS_ACCESS_RIGHTS,
714 VMCS_GUEST_DS_LIMIT,
715 VMCS_GUEST_DS_BASE
716 },
717 [NVMM_X64_SEG_FS] = {
718 VMCS_GUEST_FS_SELECTOR,
719 VMCS_GUEST_FS_ACCESS_RIGHTS,
720 VMCS_GUEST_FS_LIMIT,
721 VMCS_GUEST_FS_BASE
722 },
723 [NVMM_X64_SEG_GS] = {
724 VMCS_GUEST_GS_SELECTOR,
725 VMCS_GUEST_GS_ACCESS_RIGHTS,
726 VMCS_GUEST_GS_LIMIT,
727 VMCS_GUEST_GS_BASE
728 },
729 [NVMM_X64_SEG_GDT] = {
730 0, /* doesn't exist */
731 0, /* doesn't exist */
732 VMCS_GUEST_GDTR_LIMIT,
733 VMCS_GUEST_GDTR_BASE
734 },
735 [NVMM_X64_SEG_IDT] = {
736 0, /* doesn't exist */
737 0, /* doesn't exist */
738 VMCS_GUEST_IDTR_LIMIT,
739 VMCS_GUEST_IDTR_BASE
740 },
741 [NVMM_X64_SEG_LDT] = {
742 VMCS_GUEST_LDTR_SELECTOR,
743 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
744 VMCS_GUEST_LDTR_LIMIT,
745 VMCS_GUEST_LDTR_BASE
746 },
747 [NVMM_X64_SEG_TR] = {
748 VMCS_GUEST_TR_SELECTOR,
749 VMCS_GUEST_TR_ACCESS_RIGHTS,
750 VMCS_GUEST_TR_LIMIT,
751 VMCS_GUEST_TR_BASE
752 }
753 };
754
755 /* -------------------------------------------------------------------------- */
756
757 static uint64_t
758 vmx_get_revision(void)
759 {
760 uint64_t msr;
761
762 msr = rdmsr(MSR_IA32_VMX_BASIC);
763 msr &= IA32_VMX_BASIC_IDENT;
764
765 return msr;
766 }
767
768 static void
769 vmx_vmclear_ipi(void *arg1, void *arg2)
770 {
771 paddr_t vmcs_pa = (paddr_t)arg1;
772 vmx_vmclear(&vmcs_pa);
773 }
774
775 static void
776 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
777 {
778 uint64_t xc;
779 int bound;
780
781 KASSERT(kpreempt_disabled());
782
783 bound = curlwp_bind();
784 kpreempt_enable();
785
786 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
787 xc_wait(xc);
788
789 kpreempt_disable();
790 curlwp_bindx(bound);
791 }
792
793 static void
794 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
795 {
796 struct vmx_cpudata *cpudata = vcpu->cpudata;
797 struct cpu_info *vmcs_ci;
798 paddr_t oldpa __diagused;
799
800 cpudata->vmcs_refcnt++;
801 if (cpudata->vmcs_refcnt > 1) {
802 #ifdef DIAGNOSTIC
803 KASSERT(kpreempt_disabled());
804 vmx_vmptrst(&oldpa);
805 KASSERT(oldpa == cpudata->vmcs_pa);
806 #endif
807 return;
808 }
809
810 vmcs_ci = cpudata->vmcs_ci;
811 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
812
813 kpreempt_disable();
814
815 if (vmcs_ci == NULL) {
816 /* This VMCS is loaded for the first time. */
817 vmx_vmclear(&cpudata->vmcs_pa);
818 cpudata->vmcs_launched = false;
819 } else if (vmcs_ci != curcpu()) {
820 /* This VMCS is active on a remote CPU. */
821 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
822 cpudata->vmcs_launched = false;
823 } else {
824 /* This VMCS is active on curcpu, nothing to do. */
825 }
826
827 vmx_vmptrld(&cpudata->vmcs_pa);
828 }
829
830 static void
831 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
832 {
833 struct vmx_cpudata *cpudata = vcpu->cpudata;
834 paddr_t oldpa __diagused;
835
836 KASSERT(kpreempt_disabled());
837 #ifdef DIAGNOSTIC
838 vmx_vmptrst(&oldpa);
839 KASSERT(oldpa == cpudata->vmcs_pa);
840 #endif
841 KASSERT(cpudata->vmcs_refcnt > 0);
842 cpudata->vmcs_refcnt--;
843
844 if (cpudata->vmcs_refcnt > 0) {
845 return;
846 }
847
848 cpudata->vmcs_ci = curcpu();
849 kpreempt_enable();
850 }
851
852 static void
853 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
854 {
855 struct vmx_cpudata *cpudata = vcpu->cpudata;
856 paddr_t oldpa __diagused;
857
858 KASSERT(kpreempt_disabled());
859 #ifdef DIAGNOSTIC
860 vmx_vmptrst(&oldpa);
861 KASSERT(oldpa == cpudata->vmcs_pa);
862 #endif
863 KASSERT(cpudata->vmcs_refcnt == 1);
864 cpudata->vmcs_refcnt--;
865
866 vmx_vmclear(&cpudata->vmcs_pa);
867 kpreempt_enable();
868 }
869
870 /* -------------------------------------------------------------------------- */
871
872 static void
873 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
874 {
875 struct vmx_cpudata *cpudata = vcpu->cpudata;
876 uint64_t ctls1;
877
878 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
879
880 if (nmi) {
881 // XXX INT_STATE_NMI?
882 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
883 cpudata->nmi_window_exit = true;
884 } else {
885 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
886 cpudata->int_window_exit = true;
887 }
888
889 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
890 }
891
892 static void
893 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
894 {
895 struct vmx_cpudata *cpudata = vcpu->cpudata;
896 uint64_t ctls1;
897
898 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
899
900 if (nmi) {
901 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
902 cpudata->nmi_window_exit = false;
903 } else {
904 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
905 cpudata->int_window_exit = false;
906 }
907
908 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
909 }
910
911 static inline int
912 vmx_event_has_error(uint64_t vector)
913 {
914 switch (vector) {
915 case 8: /* #DF */
916 case 10: /* #TS */
917 case 11: /* #NP */
918 case 12: /* #SS */
919 case 13: /* #GP */
920 case 14: /* #PF */
921 case 17: /* #AC */
922 case 30: /* #SX */
923 return 1;
924 default:
925 return 0;
926 }
927 }
928
929 static int
930 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
931 struct nvmm_event *event)
932 {
933 struct vmx_cpudata *cpudata = vcpu->cpudata;
934 int type = 0, err = 0, ret = 0;
935 uint64_t info, intstate, rflags;
936
937 if (event->vector >= 256) {
938 return EINVAL;
939 }
940
941 vmx_vmcs_enter(vcpu);
942
943 switch (event->type) {
944 case NVMM_EVENT_INTERRUPT_HW:
945 type = INTR_TYPE_EXT_INT;
946 if (event->vector == 2) {
947 type = INTR_TYPE_NMI;
948 }
949 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
950 if (type == INTR_TYPE_NMI) {
951 if (cpudata->nmi_window_exit) {
952 ret = EAGAIN;
953 goto out;
954 }
955 vmx_event_waitexit_enable(vcpu, true);
956 } else {
957 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
958 if ((rflags & PSL_I) == 0 ||
959 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
960 vmx_event_waitexit_enable(vcpu, false);
961 ret = EAGAIN;
962 goto out;
963 }
964 }
965 err = 0;
966 break;
967 case NVMM_EVENT_INTERRUPT_SW:
968 ret = EINVAL;
969 goto out;
970 case NVMM_EVENT_EXCEPTION:
971 if (event->vector == 2 || event->vector >= 32) {
972 ret = EINVAL;
973 goto out;
974 }
975 if (event->vector == 3 || event->vector == 0) {
976 ret = EINVAL;
977 goto out;
978 }
979 type = INTR_TYPE_HW_EXC;
980 err = vmx_event_has_error(event->vector);
981 break;
982 default:
983 ret = EAGAIN;
984 goto out;
985 }
986
987 info =
988 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
989 __SHIFTIN(type, INTR_INFO_TYPE) |
990 __SHIFTIN(err, INTR_INFO_ERROR) |
991 __SHIFTIN(1, INTR_INFO_VALID);
992 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
993 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
994
995 out:
996 vmx_vmcs_leave(vcpu);
997 return ret;
998 }
999
1000 static void
1001 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1002 {
1003 struct nvmm_event event;
1004 int ret __diagused;
1005
1006 event.type = NVMM_EVENT_EXCEPTION;
1007 event.vector = 6;
1008 event.u.error = 0;
1009
1010 ret = vmx_vcpu_inject(mach, vcpu, &event);
1011 KASSERT(ret == 0);
1012 }
1013
1014 static void
1015 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1016 {
1017 struct nvmm_event event;
1018 int ret __diagused;
1019
1020 event.type = NVMM_EVENT_EXCEPTION;
1021 event.vector = 13;
1022 event.u.error = 0;
1023
1024 ret = vmx_vcpu_inject(mach, vcpu, &event);
1025 KASSERT(ret == 0);
1026 }
1027
1028 static inline void
1029 vmx_inkernel_advance(void)
1030 {
1031 uint64_t rip, inslen, intstate;
1032
1033 /*
1034 * Maybe we should also apply single-stepping and debug exceptions.
1035 * Matters for guest-ring3, because it can execute 'cpuid' under a
1036 * debugger.
1037 */
1038 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1039 vmx_vmread(VMCS_GUEST_RIP, &rip);
1040 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1041 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1042 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1043 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1044 }
1045
1046 static void
1047 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1048 struct nvmm_exit *exit)
1049 {
1050 uint64_t qual;
1051
1052 vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
1053
1054 if ((qual & INTR_INFO_VALID) == 0) {
1055 goto error;
1056 }
1057 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1058 goto error;
1059 }
1060
1061 exit->reason = NVMM_EXIT_NONE;
1062 return;
1063
1064 error:
1065 exit->reason = NVMM_EXIT_INVALID;
1066 }
1067
1068 static void
1069 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1070 {
1071 struct vmx_cpudata *cpudata = vcpu->cpudata;
1072 uint64_t cr4;
1073
1074 switch (eax) {
1075 case 0x00000001:
1076 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1077
1078 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1079 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1080 CPUID_LOCAL_APIC_ID);
1081
1082 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1083 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1084
1085 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1086
1087 /* CPUID2_OSXSAVE depends on CR4. */
1088 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1089 if (!(cr4 & CR4_OSXSAVE)) {
1090 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1091 }
1092 break;
1093 case 0x00000005:
1094 case 0x00000006:
1095 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1096 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1097 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1098 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1099 break;
1100 case 0x00000007:
1101 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1102 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1103 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1104 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1105 break;
1106 case 0x0000000D:
1107 if (vmx_xcr0_mask == 0) {
1108 break;
1109 }
1110 switch (ecx) {
1111 case 0:
1112 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1113 if (cpudata->gxcr0 & XCR0_SSE) {
1114 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1115 } else {
1116 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1117 }
1118 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1119 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1120 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1121 break;
1122 case 1:
1123 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1124 break;
1125 }
1126 break;
1127 case 0x40000000:
1128 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1129 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1130 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1131 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1132 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1133 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1134 break;
1135 case 0x80000001:
1136 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1137 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1138 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1139 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1140 break;
1141 default:
1142 break;
1143 }
1144 }
1145
1146 static void
1147 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1148 struct nvmm_exit *exit)
1149 {
1150 struct vmx_machdata *machdata = mach->machdata;
1151 struct vmx_cpudata *cpudata = vcpu->cpudata;
1152 struct nvmm_x86_conf_cpuid *cpuid;
1153 uint64_t eax, ecx;
1154 u_int descs[4];
1155 size_t i;
1156
1157 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1158 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1159 x86_cpuid2(eax, ecx, descs);
1160
1161 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1162 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1163 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1164 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1165
1166 for (i = 0; i < VMX_NCPUIDS; i++) {
1167 cpuid = &machdata->cpuid[i];
1168 if (!machdata->cpuidpresent[i]) {
1169 continue;
1170 }
1171 if (cpuid->leaf != eax) {
1172 continue;
1173 }
1174
1175 /* del */
1176 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1177 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1178 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1179 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1180
1181 /* set */
1182 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1183 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1184 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1185 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1186
1187 break;
1188 }
1189
1190 /* Overwrite non-tunable leaves. */
1191 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1192
1193 vmx_inkernel_advance();
1194 exit->reason = NVMM_EXIT_NONE;
1195 }
1196
1197 static void
1198 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1199 struct nvmm_exit *exit)
1200 {
1201 struct vmx_cpudata *cpudata = vcpu->cpudata;
1202 uint64_t rflags;
1203
1204 if (cpudata->int_window_exit) {
1205 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1206 if (rflags & PSL_I) {
1207 vmx_event_waitexit_disable(vcpu, false);
1208 }
1209 }
1210
1211 vmx_inkernel_advance();
1212 exit->reason = NVMM_EXIT_HALTED;
1213 }
1214
1215 #define VMX_QUAL_CR_NUM __BITS(3,0)
1216 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1217 #define CR_TYPE_WRITE 0
1218 #define CR_TYPE_READ 1
1219 #define CR_TYPE_CLTS 2
1220 #define CR_TYPE_LMSW 3
1221 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1222 #define VMX_QUAL_CR_GPR __BITS(11,8)
1223 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1224
1225 static inline int
1226 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1227 {
1228 /* Bits set to 1 in fixed0 are fixed to 1. */
1229 if ((crval & fixed0) != fixed0) {
1230 return -1;
1231 }
1232 /* Bits set to 0 in fixed1 are fixed to 0. */
1233 if (crval & ~fixed1) {
1234 return -1;
1235 }
1236 return 0;
1237 }
1238
1239 static int
1240 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1241 uint64_t qual)
1242 {
1243 struct vmx_cpudata *cpudata = vcpu->cpudata;
1244 uint64_t type, gpr, cr0;
1245 uint64_t efer, ctls1;
1246
1247 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1248 if (type != CR_TYPE_WRITE) {
1249 return -1;
1250 }
1251
1252 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1253 KASSERT(gpr < 16);
1254
1255 if (gpr == NVMM_X64_GPR_RSP) {
1256 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1257 } else {
1258 gpr = cpudata->gprs[gpr];
1259 }
1260
1261 cr0 = gpr | CR0_NE | CR0_ET;
1262 cr0 &= ~(CR0_NW|CR0_CD);
1263
1264 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1265 return -1;
1266 }
1267
1268 /*
1269 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1270 * from CR3.
1271 */
1272
1273 if (cr0 & CR0_PG) {
1274 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1275 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1276 if (efer & EFER_LME) {
1277 ctls1 |= ENTRY_CTLS_LONG_MODE;
1278 efer |= EFER_LMA;
1279 } else {
1280 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1281 efer &= ~EFER_LMA;
1282 }
1283 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1284 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1285 }
1286
1287 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1288 vmx_inkernel_advance();
1289 return 0;
1290 }
1291
1292 static int
1293 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1294 uint64_t qual)
1295 {
1296 struct vmx_cpudata *cpudata = vcpu->cpudata;
1297 uint64_t type, gpr, cr4;
1298
1299 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1300 if (type != CR_TYPE_WRITE) {
1301 return -1;
1302 }
1303
1304 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1305 KASSERT(gpr < 16);
1306
1307 if (gpr == NVMM_X64_GPR_RSP) {
1308 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1309 } else {
1310 gpr = cpudata->gprs[gpr];
1311 }
1312
1313 cr4 = gpr | CR4_VMXE;
1314
1315 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1316 return -1;
1317 }
1318
1319 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1320 vmx_inkernel_advance();
1321 return 0;
1322 }
1323
1324 static int
1325 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1326 uint64_t qual)
1327 {
1328 struct vmx_cpudata *cpudata = vcpu->cpudata;
1329 uint64_t type, gpr;
1330 bool write;
1331
1332 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1333 if (type == CR_TYPE_WRITE) {
1334 write = true;
1335 } else if (type == CR_TYPE_READ) {
1336 write = false;
1337 } else {
1338 return -1;
1339 }
1340
1341 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1342 KASSERT(gpr < 16);
1343
1344 if (write) {
1345 if (gpr == NVMM_X64_GPR_RSP) {
1346 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1347 } else {
1348 cpudata->gcr8 = cpudata->gprs[gpr];
1349 }
1350 } else {
1351 if (gpr == NVMM_X64_GPR_RSP) {
1352 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1353 } else {
1354 cpudata->gprs[gpr] = cpudata->gcr8;
1355 }
1356 }
1357
1358 vmx_inkernel_advance();
1359 return 0;
1360 }
1361
1362 static void
1363 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1364 struct nvmm_exit *exit)
1365 {
1366 uint64_t qual;
1367 int ret;
1368
1369 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1370
1371 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1372 case 0:
1373 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1374 break;
1375 case 4:
1376 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1377 break;
1378 case 8:
1379 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1380 break;
1381 default:
1382 ret = -1;
1383 break;
1384 }
1385
1386 if (ret == -1) {
1387 vmx_inject_gp(mach, vcpu);
1388 }
1389
1390 exit->reason = NVMM_EXIT_NONE;
1391 }
1392
1393 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1394 #define IO_SIZE_8 0
1395 #define IO_SIZE_16 1
1396 #define IO_SIZE_32 3
1397 #define VMX_QUAL_IO_IN __BIT(3)
1398 #define VMX_QUAL_IO_STR __BIT(4)
1399 #define VMX_QUAL_IO_REP __BIT(5)
1400 #define VMX_QUAL_IO_DX __BIT(6)
1401 #define VMX_QUAL_IO_PORT __BITS(31,16)
1402
1403 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1404 #define IO_ADRSIZE_16 0
1405 #define IO_ADRSIZE_32 1
1406 #define IO_ADRSIZE_64 2
1407 #define VMX_INFO_IO_SEG __BITS(17,15)
1408
1409 static void
1410 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1411 struct nvmm_exit *exit)
1412 {
1413 uint64_t qual, info, inslen, rip;
1414
1415 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1416 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1417
1418 exit->reason = NVMM_EXIT_IO;
1419
1420 if (qual & VMX_QUAL_IO_IN) {
1421 exit->u.io.type = NVMM_EXIT_IO_IN;
1422 } else {
1423 exit->u.io.type = NVMM_EXIT_IO_OUT;
1424 }
1425
1426 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1427
1428 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1429 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1430
1431 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1432 exit->u.io.address_size = 8;
1433 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1434 exit->u.io.address_size = 4;
1435 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1436 exit->u.io.address_size = 2;
1437 }
1438
1439 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1440 exit->u.io.operand_size = 4;
1441 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1442 exit->u.io.operand_size = 2;
1443 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1444 exit->u.io.operand_size = 1;
1445 }
1446
1447 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1448 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1449
1450 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1451 exit->u.io.seg = NVMM_X64_SEG_ES;
1452 }
1453
1454 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1455 vmx_vmread(VMCS_GUEST_RIP, &rip);
1456 exit->u.io.npc = rip + inslen;
1457 }
1458
1459 static const uint64_t msr_ignore_list[] = {
1460 MSR_BIOS_SIGN,
1461 MSR_IA32_PLATFORM_ID
1462 };
1463
1464 static bool
1465 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1466 struct nvmm_exit *exit)
1467 {
1468 struct vmx_cpudata *cpudata = vcpu->cpudata;
1469 uint64_t val;
1470 size_t i;
1471
1472 switch (exit->u.msr.type) {
1473 case NVMM_EXIT_MSR_RDMSR:
1474 if (exit->u.msr.msr == MSR_CR_PAT) {
1475 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1476 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1477 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1478 goto handled;
1479 }
1480 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1481 val = cpudata->gmsr_misc_enable;
1482 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1483 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1484 goto handled;
1485 }
1486 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1487 if (msr_ignore_list[i] != exit->u.msr.msr)
1488 continue;
1489 val = 0;
1490 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1491 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1492 goto handled;
1493 }
1494 break;
1495 case NVMM_EXIT_MSR_WRMSR:
1496 if (exit->u.msr.msr == MSR_TSC) {
1497 cpudata->gtsc = exit->u.msr.val;
1498 cpudata->gtsc_want_update = true;
1499 goto handled;
1500 }
1501 if (exit->u.msr.msr == MSR_CR_PAT) {
1502 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1503 goto handled;
1504 }
1505 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1506 /* Don't care. */
1507 goto handled;
1508 }
1509 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1510 if (msr_ignore_list[i] != exit->u.msr.msr)
1511 continue;
1512 goto handled;
1513 }
1514 break;
1515 }
1516
1517 return false;
1518
1519 handled:
1520 vmx_inkernel_advance();
1521 return true;
1522 }
1523
1524 static void
1525 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1526 struct nvmm_exit *exit, bool rdmsr)
1527 {
1528 struct vmx_cpudata *cpudata = vcpu->cpudata;
1529 uint64_t inslen, rip;
1530
1531 if (rdmsr) {
1532 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1533 } else {
1534 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1535 }
1536
1537 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1538
1539 if (rdmsr) {
1540 exit->u.msr.val = 0;
1541 } else {
1542 uint64_t rdx, rax;
1543 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1544 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1545 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1546 }
1547
1548 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1549 exit->reason = NVMM_EXIT_NONE;
1550 return;
1551 }
1552
1553 exit->reason = NVMM_EXIT_MSR;
1554 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1555 vmx_vmread(VMCS_GUEST_RIP, &rip);
1556 exit->u.msr.npc = rip + inslen;
1557 }
1558
1559 static void
1560 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1561 struct nvmm_exit *exit)
1562 {
1563 struct vmx_cpudata *cpudata = vcpu->cpudata;
1564 uint16_t val;
1565
1566 exit->reason = NVMM_EXIT_NONE;
1567
1568 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1569 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1570
1571 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1572 goto error;
1573 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1574 goto error;
1575 } else if (__predict_false((val & XCR0_X87) == 0)) {
1576 goto error;
1577 }
1578
1579 cpudata->gxcr0 = val;
1580
1581 vmx_inkernel_advance();
1582 return;
1583
1584 error:
1585 vmx_inject_gp(mach, vcpu);
1586 }
1587
1588 #define VMX_EPT_VIOLATION_READ __BIT(0)
1589 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1590 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1591
1592 static void
1593 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1594 struct nvmm_exit *exit)
1595 {
1596 uint64_t perm;
1597 gpaddr_t gpa;
1598
1599 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1600
1601 exit->reason = NVMM_EXIT_MEMORY;
1602 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1603 if (perm & VMX_EPT_VIOLATION_WRITE)
1604 exit->u.mem.prot = PROT_WRITE;
1605 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1606 exit->u.mem.prot = PROT_EXEC;
1607 else
1608 exit->u.mem.prot = PROT_READ;
1609 exit->u.mem.gpa = gpa;
1610 exit->u.mem.inst_len = 0;
1611 }
1612
1613 /* -------------------------------------------------------------------------- */
1614
1615 static void
1616 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1617 {
1618 struct vmx_cpudata *cpudata = vcpu->cpudata;
1619
1620 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1621
1622 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1623 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1624
1625 if (vmx_xcr0_mask != 0) {
1626 cpudata->hxcr0 = rdxcr(0);
1627 wrxcr(0, cpudata->gxcr0);
1628 }
1629 }
1630
1631 static void
1632 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1633 {
1634 struct vmx_cpudata *cpudata = vcpu->cpudata;
1635
1636 if (vmx_xcr0_mask != 0) {
1637 cpudata->gxcr0 = rdxcr(0);
1638 wrxcr(0, cpudata->hxcr0);
1639 }
1640
1641 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1642 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1643
1644 if (cpudata->ts_set) {
1645 stts();
1646 }
1647 }
1648
1649 static void
1650 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1651 {
1652 struct vmx_cpudata *cpudata = vcpu->cpudata;
1653
1654 x86_dbregs_save(curlwp);
1655
1656 ldr7(0);
1657
1658 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1659 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1660 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1661 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1662 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1663 }
1664
1665 static void
1666 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1667 {
1668 struct vmx_cpudata *cpudata = vcpu->cpudata;
1669
1670 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1671 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1672 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1673 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1674 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1675
1676 x86_dbregs_restore(curlwp);
1677 }
1678
1679 static void
1680 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1681 {
1682 struct vmx_cpudata *cpudata = vcpu->cpudata;
1683
1684 /* This gets restored automatically by the CPU. */
1685 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1686 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1687 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1688
1689 /* Note: MSR_LSTAR is not static, because of SVS. */
1690 cpudata->lstar = rdmsr(MSR_LSTAR);
1691 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1692 }
1693
1694 static void
1695 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1696 {
1697 struct vmx_cpudata *cpudata = vcpu->cpudata;
1698
1699 wrmsr(MSR_STAR, cpudata->star);
1700 wrmsr(MSR_LSTAR, cpudata->lstar);
1701 wrmsr(MSR_CSTAR, cpudata->cstar);
1702 wrmsr(MSR_SFMASK, cpudata->sfmask);
1703 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1704 }
1705
1706 /* -------------------------------------------------------------------------- */
1707
1708 #define VMX_INVVPID_ADDRESS 0
1709 #define VMX_INVVPID_CONTEXT 1
1710 #define VMX_INVVPID_ALL 2
1711 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1712
1713 #define VMX_INVEPT_CONTEXT 1
1714 #define VMX_INVEPT_ALL 2
1715
1716 static inline void
1717 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1718 {
1719 struct vmx_cpudata *cpudata = vcpu->cpudata;
1720
1721 if (vcpu->hcpu_last != hcpu) {
1722 cpudata->gtlb_want_flush = true;
1723 }
1724 }
1725
1726 static inline void
1727 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1728 {
1729 struct vmx_cpudata *cpudata = vcpu->cpudata;
1730 struct ept_desc ept_desc;
1731
1732 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1733 return;
1734 }
1735
1736 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1737 ept_desc.mbz = 0;
1738 vmx_invept(vmx_ept_flush_op, &ept_desc);
1739 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1740 }
1741
1742 static inline uint64_t
1743 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1744 {
1745 struct ept_desc ept_desc;
1746 uint64_t machgen;
1747
1748 machgen = machdata->mach_htlb_gen;
1749 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1750 return machgen;
1751 }
1752
1753 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1754
1755 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1756 ept_desc.mbz = 0;
1757 vmx_invept(vmx_ept_flush_op, &ept_desc);
1758
1759 return machgen;
1760 }
1761
1762 static inline void
1763 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1764 {
1765 cpudata->vcpu_htlb_gen = machgen;
1766 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1767 }
1768
1769 static int
1770 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1771 struct nvmm_exit *exit)
1772 {
1773 struct vmx_machdata *machdata = mach->machdata;
1774 struct vmx_cpudata *cpudata = vcpu->cpudata;
1775 struct vpid_desc vpid_desc;
1776 struct cpu_info *ci;
1777 uint64_t exitcode;
1778 uint64_t intstate;
1779 uint64_t machgen;
1780 int hcpu, s, ret;
1781 bool launched;
1782
1783 vmx_vmcs_enter(vcpu);
1784 ci = curcpu();
1785 hcpu = cpu_number();
1786 launched = cpudata->vmcs_launched;
1787
1788 vmx_gtlb_catchup(vcpu, hcpu);
1789 vmx_htlb_catchup(vcpu, hcpu);
1790
1791 if (vcpu->hcpu_last != hcpu) {
1792 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1793 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1794 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1795 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1796 cpudata->gtsc_want_update = true;
1797 vcpu->hcpu_last = hcpu;
1798 }
1799
1800 vmx_vcpu_guest_dbregs_enter(vcpu);
1801 vmx_vcpu_guest_misc_enter(vcpu);
1802
1803 while (1) {
1804 if (cpudata->gtlb_want_flush) {
1805 vpid_desc.vpid = cpudata->asid;
1806 vpid_desc.addr = 0;
1807 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1808 cpudata->gtlb_want_flush = false;
1809 }
1810
1811 if (__predict_false(cpudata->gtsc_want_update)) {
1812 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1813 cpudata->gtsc_want_update = false;
1814 }
1815
1816 s = splhigh();
1817 machgen = vmx_htlb_flush(machdata, cpudata);
1818 vmx_vcpu_guest_fpu_enter(vcpu);
1819 lcr2(cpudata->gcr2);
1820 if (launched) {
1821 ret = vmx_vmresume(cpudata->gprs);
1822 } else {
1823 ret = vmx_vmlaunch(cpudata->gprs);
1824 }
1825 cpudata->gcr2 = rcr2();
1826 vmx_vcpu_guest_fpu_leave(vcpu);
1827 vmx_htlb_flush_ack(cpudata, machgen);
1828 splx(s);
1829
1830 if (__predict_false(ret != 0)) {
1831 exit->reason = NVMM_EXIT_INVALID;
1832 break;
1833 }
1834
1835 launched = true;
1836
1837 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1838 exitcode &= __BITS(15,0);
1839
1840 switch (exitcode) {
1841 case VMCS_EXITCODE_EXC_NMI:
1842 vmx_exit_exc_nmi(mach, vcpu, exit);
1843 break;
1844 case VMCS_EXITCODE_EXT_INT:
1845 exit->reason = NVMM_EXIT_NONE;
1846 break;
1847 case VMCS_EXITCODE_CPUID:
1848 vmx_exit_cpuid(mach, vcpu, exit);
1849 break;
1850 case VMCS_EXITCODE_HLT:
1851 vmx_exit_hlt(mach, vcpu, exit);
1852 break;
1853 case VMCS_EXITCODE_CR:
1854 vmx_exit_cr(mach, vcpu, exit);
1855 break;
1856 case VMCS_EXITCODE_IO:
1857 vmx_exit_io(mach, vcpu, exit);
1858 break;
1859 case VMCS_EXITCODE_RDMSR:
1860 vmx_exit_msr(mach, vcpu, exit, true);
1861 break;
1862 case VMCS_EXITCODE_WRMSR:
1863 vmx_exit_msr(mach, vcpu, exit, false);
1864 break;
1865 case VMCS_EXITCODE_SHUTDOWN:
1866 exit->reason = NVMM_EXIT_SHUTDOWN;
1867 break;
1868 case VMCS_EXITCODE_MONITOR:
1869 exit->reason = NVMM_EXIT_MONITOR;
1870 break;
1871 case VMCS_EXITCODE_MWAIT:
1872 exit->reason = NVMM_EXIT_MWAIT;
1873 break;
1874 case VMCS_EXITCODE_XSETBV:
1875 vmx_exit_xsetbv(mach, vcpu, exit);
1876 break;
1877 case VMCS_EXITCODE_RDPMC:
1878 case VMCS_EXITCODE_RDTSCP:
1879 case VMCS_EXITCODE_INVVPID:
1880 case VMCS_EXITCODE_INVEPT:
1881 case VMCS_EXITCODE_VMCALL:
1882 case VMCS_EXITCODE_VMCLEAR:
1883 case VMCS_EXITCODE_VMLAUNCH:
1884 case VMCS_EXITCODE_VMPTRLD:
1885 case VMCS_EXITCODE_VMPTRST:
1886 case VMCS_EXITCODE_VMREAD:
1887 case VMCS_EXITCODE_VMRESUME:
1888 case VMCS_EXITCODE_VMWRITE:
1889 case VMCS_EXITCODE_VMXOFF:
1890 case VMCS_EXITCODE_VMXON:
1891 vmx_inject_ud(mach, vcpu);
1892 exit->reason = NVMM_EXIT_NONE;
1893 break;
1894 case VMCS_EXITCODE_EPT_VIOLATION:
1895 vmx_exit_epf(mach, vcpu, exit);
1896 break;
1897 case VMCS_EXITCODE_INT_WINDOW:
1898 vmx_event_waitexit_disable(vcpu, false);
1899 exit->reason = NVMM_EXIT_INT_READY;
1900 break;
1901 case VMCS_EXITCODE_NMI_WINDOW:
1902 vmx_event_waitexit_disable(vcpu, true);
1903 exit->reason = NVMM_EXIT_NMI_READY;
1904 break;
1905 default:
1906 exit->reason = NVMM_EXIT_INVALID;
1907 break;
1908 }
1909
1910 /* If no reason to return to userland, keep rolling. */
1911 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1912 break;
1913 }
1914 if (curcpu()->ci_data.cpu_softints != 0) {
1915 break;
1916 }
1917 if (curlwp->l_flag & LW_USERRET) {
1918 break;
1919 }
1920 if (exit->reason != NVMM_EXIT_NONE) {
1921 break;
1922 }
1923 }
1924
1925 cpudata->vmcs_launched = launched;
1926
1927 vmx_vmread(VMCS_TSC_OFFSET, &cpudata->gtsc);
1928 cpudata->gtsc += rdtsc();
1929
1930 vmx_vcpu_guest_misc_leave(vcpu);
1931 vmx_vcpu_guest_dbregs_leave(vcpu);
1932
1933 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1934 vmx_vmread(VMCS_GUEST_RFLAGS,
1935 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1936 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1937 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1938 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1939 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1940 cpudata->int_window_exit;
1941 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1942 cpudata->nmi_window_exit;
1943
1944 vmx_vmcs_leave(vcpu);
1945
1946 return 0;
1947 }
1948
1949 /* -------------------------------------------------------------------------- */
1950
1951 static int
1952 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1953 {
1954 struct pglist pglist;
1955 paddr_t _pa;
1956 vaddr_t _va;
1957 size_t i;
1958 int ret;
1959
1960 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1961 &pglist, 1, 0);
1962 if (ret != 0)
1963 return ENOMEM;
1964 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1965 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1966 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1967 if (_va == 0)
1968 goto error;
1969
1970 for (i = 0; i < npages; i++) {
1971 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1972 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1973 }
1974 pmap_update(pmap_kernel());
1975
1976 memset((void *)_va, 0, npages * PAGE_SIZE);
1977
1978 *pa = _pa;
1979 *va = _va;
1980 return 0;
1981
1982 error:
1983 for (i = 0; i < npages; i++) {
1984 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1985 }
1986 return ENOMEM;
1987 }
1988
1989 static void
1990 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1991 {
1992 size_t i;
1993
1994 pmap_kremove(va, npages * PAGE_SIZE);
1995 pmap_update(pmap_kernel());
1996 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1997 for (i = 0; i < npages; i++) {
1998 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1999 }
2000 }
2001
2002 /* -------------------------------------------------------------------------- */
2003
2004 static void
2005 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2006 {
2007 uint64_t byte;
2008 uint8_t bitoff;
2009
2010 if (msr < 0x00002000) {
2011 /* Range 1 */
2012 byte = ((msr - 0x00000000) / 8) + 0;
2013 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2014 /* Range 2 */
2015 byte = ((msr - 0xC0000000) / 8) + 1024;
2016 } else {
2017 panic("%s: wrong range", __func__);
2018 }
2019
2020 bitoff = (msr & 0x7);
2021
2022 if (read) {
2023 bitmap[byte] &= ~__BIT(bitoff);
2024 }
2025 if (write) {
2026 bitmap[2048 + byte] &= ~__BIT(bitoff);
2027 }
2028 }
2029
2030 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2031 #define VMX_SEG_ATTRIB_S __BIT(4)
2032 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2033 #define VMX_SEG_ATTRIB_P __BIT(7)
2034 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2035 #define VMX_SEG_ATTRIB_L __BIT(13)
2036 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2037 #define VMX_SEG_ATTRIB_G __BIT(15)
2038 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2039
2040 static void
2041 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2042 {
2043 uint64_t attrib;
2044
2045 attrib =
2046 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2047 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2048 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2049 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2050 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2051 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2052 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2053 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2054 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2055
2056 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2057 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2058 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2059 }
2060 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2061 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2062 }
2063
2064 static void
2065 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2066 {
2067 uint64_t selector, base, limit, attrib = 0;
2068
2069 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2070 vmx_vmread(vmx_guest_segs[idx].selector, &selector);
2071 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2072 }
2073 vmx_vmread(vmx_guest_segs[idx].limit, &limit);
2074 vmx_vmread(vmx_guest_segs[idx].base, &base);
2075
2076 segs[idx].selector = selector;
2077 segs[idx].limit = limit;
2078 segs[idx].base = base;
2079 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2080 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2081 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2082 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2083 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2084 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2085 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2086 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2087 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2088 segs[idx].attrib.p = 0;
2089 }
2090 }
2091
2092 static inline bool
2093 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2094 {
2095 uint64_t cr0, cr3, cr4, efer;
2096
2097 if (flags & NVMM_X64_STATE_CRS) {
2098 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2099 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2100 return true;
2101 }
2102 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2103 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2104 return true;
2105 }
2106 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2107 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2108 return true;
2109 }
2110 }
2111
2112 if (flags & NVMM_X64_STATE_MSRS) {
2113 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2114 if ((efer ^
2115 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2116 return true;
2117 }
2118 }
2119
2120 return false;
2121 }
2122
2123 static void
2124 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2125 {
2126 const struct nvmm_x64_state *state = data;
2127 struct vmx_cpudata *cpudata = vcpu->cpudata;
2128 struct fxsave *fpustate;
2129 uint64_t ctls1, intstate;
2130
2131 vmx_vmcs_enter(vcpu);
2132
2133 if (vmx_state_tlb_flush(state, flags)) {
2134 cpudata->gtlb_want_flush = true;
2135 }
2136
2137 if (flags & NVMM_X64_STATE_SEGS) {
2138 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2139 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2140 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2141 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2142 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2143 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2144 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2145 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2146 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2147 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2148 }
2149
2150 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2151 if (flags & NVMM_X64_STATE_GPRS) {
2152 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2153
2154 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2155 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2156 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2157 }
2158
2159 if (flags & NVMM_X64_STATE_CRS) {
2160 /*
2161 * CR0_NE and CR4_VMXE are mandatory.
2162 */
2163 vmx_vmwrite(VMCS_GUEST_CR0,
2164 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2165 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2166 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2167 vmx_vmwrite(VMCS_GUEST_CR4,
2168 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2169 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2170
2171 if (vmx_xcr0_mask != 0) {
2172 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2173 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2174 cpudata->gxcr0 &= vmx_xcr0_mask;
2175 cpudata->gxcr0 |= XCR0_X87;
2176 }
2177 }
2178
2179 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2180 if (flags & NVMM_X64_STATE_DRS) {
2181 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2182
2183 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2184 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2185 }
2186
2187 if (flags & NVMM_X64_STATE_MSRS) {
2188 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2189 state->msrs[NVMM_X64_MSR_STAR];
2190 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2191 state->msrs[NVMM_X64_MSR_LSTAR];
2192 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2193 state->msrs[NVMM_X64_MSR_CSTAR];
2194 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2195 state->msrs[NVMM_X64_MSR_SFMASK];
2196 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2197 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2198
2199 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2200 state->msrs[NVMM_X64_MSR_EFER]);
2201 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2202 state->msrs[NVMM_X64_MSR_PAT]);
2203 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2204 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2205 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2206 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2207 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2208 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2209
2210 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2211 cpudata->gtsc_want_update = true;
2212
2213 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2214 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2215 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2216 ctls1 |= ENTRY_CTLS_LONG_MODE;
2217 } else {
2218 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2219 }
2220 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2221 }
2222
2223 if (flags & NVMM_X64_STATE_MISC) {
2224 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2225 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2226 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2227 intstate |= INT_STATE_MOVSS;
2228 }
2229 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2230
2231 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2232 vmx_event_waitexit_enable(vcpu, false);
2233 } else {
2234 vmx_event_waitexit_disable(vcpu, false);
2235 }
2236
2237 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2238 vmx_event_waitexit_enable(vcpu, true);
2239 } else {
2240 vmx_event_waitexit_disable(vcpu, true);
2241 }
2242 }
2243
2244 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2245 if (flags & NVMM_X64_STATE_FPU) {
2246 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2247 sizeof(state->fpu));
2248
2249 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2250 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2251 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2252
2253 if (vmx_xcr0_mask != 0) {
2254 /* Reset XSTATE_BV, to force a reload. */
2255 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2256 }
2257 }
2258
2259 vmx_vmcs_leave(vcpu);
2260 }
2261
2262 static void
2263 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2264 {
2265 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2266 struct vmx_cpudata *cpudata = vcpu->cpudata;
2267 uint64_t intstate;
2268
2269 vmx_vmcs_enter(vcpu);
2270
2271 if (flags & NVMM_X64_STATE_SEGS) {
2272 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2273 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2274 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2275 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2276 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2277 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2278 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2279 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2280 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2281 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2282 }
2283
2284 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2285 if (flags & NVMM_X64_STATE_GPRS) {
2286 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2287
2288 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2289 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2290 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2291 }
2292
2293 if (flags & NVMM_X64_STATE_CRS) {
2294 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2295 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2296 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2297 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2298 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2299 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2300
2301 /* Hide VMXE. */
2302 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2303 }
2304
2305 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2306 if (flags & NVMM_X64_STATE_DRS) {
2307 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2308
2309 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2310 }
2311
2312 if (flags & NVMM_X64_STATE_MSRS) {
2313 state->msrs[NVMM_X64_MSR_STAR] =
2314 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2315 state->msrs[NVMM_X64_MSR_LSTAR] =
2316 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2317 state->msrs[NVMM_X64_MSR_CSTAR] =
2318 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2319 state->msrs[NVMM_X64_MSR_SFMASK] =
2320 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2321 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2322 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2323
2324 vmx_vmread(VMCS_GUEST_IA32_EFER,
2325 &state->msrs[NVMM_X64_MSR_EFER]);
2326 vmx_vmread(VMCS_GUEST_IA32_PAT,
2327 &state->msrs[NVMM_X64_MSR_PAT]);
2328 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2329 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2330 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2331 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2332 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2333 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2334
2335 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2336 }
2337
2338 if (flags & NVMM_X64_STATE_MISC) {
2339 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2340 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2341 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2342
2343 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2344 cpudata->int_window_exit;
2345 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2346 cpudata->nmi_window_exit;
2347 }
2348
2349 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2350 if (flags & NVMM_X64_STATE_FPU) {
2351 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2352 sizeof(state->fpu));
2353 }
2354
2355 vmx_vmcs_leave(vcpu);
2356 }
2357
2358 /* -------------------------------------------------------------------------- */
2359
2360 static void
2361 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2362 {
2363 struct vmx_cpudata *cpudata = vcpu->cpudata;
2364 size_t i, oct, bit;
2365
2366 mutex_enter(&vmx_asidlock);
2367
2368 for (i = 0; i < vmx_maxasid; i++) {
2369 oct = i / 8;
2370 bit = i % 8;
2371
2372 if (vmx_asidmap[oct] & __BIT(bit)) {
2373 continue;
2374 }
2375
2376 cpudata->asid = i;
2377
2378 vmx_asidmap[oct] |= __BIT(bit);
2379 vmx_vmwrite(VMCS_VPID, i);
2380 mutex_exit(&vmx_asidlock);
2381 return;
2382 }
2383
2384 mutex_exit(&vmx_asidlock);
2385
2386 panic("%s: impossible", __func__);
2387 }
2388
2389 static void
2390 vmx_asid_free(struct nvmm_cpu *vcpu)
2391 {
2392 size_t oct, bit;
2393 uint64_t asid;
2394
2395 vmx_vmread(VMCS_VPID, &asid);
2396
2397 oct = asid / 8;
2398 bit = asid % 8;
2399
2400 mutex_enter(&vmx_asidlock);
2401 vmx_asidmap[oct] &= ~__BIT(bit);
2402 mutex_exit(&vmx_asidlock);
2403 }
2404
2405 static void
2406 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2407 {
2408 struct vmx_cpudata *cpudata = vcpu->cpudata;
2409 struct vmcs *vmcs = cpudata->vmcs;
2410 struct msr_entry *gmsr = cpudata->gmsr;
2411 extern uint8_t vmx_resume_rip;
2412 uint64_t rev, eptp;
2413
2414 rev = vmx_get_revision();
2415
2416 memset(vmcs, 0, VMCS_SIZE);
2417 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2418 vmcs->abort = 0;
2419
2420 vmx_vmcs_enter(vcpu);
2421
2422 /* No link pointer. */
2423 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2424
2425 /* Install the CTLSs. */
2426 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2427 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2428 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2429 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2430 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2431
2432 /* Allow direct access to certain MSRs. */
2433 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2434 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2435 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2436 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2437 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2438 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2439 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2440 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2441 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2442 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2443 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2444 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2445 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2446 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2447 true, false);
2448 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2449
2450 /*
2451 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2452 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2453 */
2454 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2455 gmsr[VMX_MSRLIST_STAR].val = 0;
2456 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2457 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2458 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2459 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2460 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2461 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2462 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2463 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2464 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2465 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2466 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2467 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2468 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2469 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2470
2471 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2472 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2473 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2474
2475 /* Force CR4_VMXE to zero. */
2476 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2477
2478 /* Set the Host state for resuming. */
2479 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2480 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2481 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2482 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2483 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2484 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2485 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2486 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2487 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2488 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2489 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2490 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2491 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2492 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2493
2494 /* Generate ASID. */
2495 vmx_asid_alloc(vcpu);
2496
2497 /* Enable Extended Paging, 4-Level. */
2498 eptp =
2499 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2500 __SHIFTIN(4-1, EPTP_WALKLEN) |
2501 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2502 mach->vm->vm_map.pmap->pm_pdirpa[0];
2503 vmx_vmwrite(VMCS_EPTP, eptp);
2504
2505 /* Init IA32_MISC_ENABLE. */
2506 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2507 cpudata->gmsr_misc_enable &=
2508 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2509 cpudata->gmsr_misc_enable |=
2510 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2511
2512 /* Init XSAVE header. */
2513 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2514 cpudata->gfpu.xsh_xcomp_bv = 0;
2515
2516 /* These MSRs are static. */
2517 cpudata->star = rdmsr(MSR_STAR);
2518 cpudata->cstar = rdmsr(MSR_CSTAR);
2519 cpudata->sfmask = rdmsr(MSR_SFMASK);
2520
2521 /* Install the RESET state. */
2522 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2523
2524 vmx_vmcs_leave(vcpu);
2525 }
2526
2527 static int
2528 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2529 {
2530 struct vmx_cpudata *cpudata;
2531 int error;
2532
2533 /* Allocate the VMX cpudata. */
2534 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2535 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2536 UVM_KMF_WIRED|UVM_KMF_ZERO);
2537 vcpu->cpudata = cpudata;
2538
2539 /* VMCS */
2540 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2541 VMCS_NPAGES);
2542 if (error)
2543 goto error;
2544
2545 /* MSR Bitmap */
2546 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2547 MSRBM_NPAGES);
2548 if (error)
2549 goto error;
2550
2551 /* Guest MSR List */
2552 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2553 if (error)
2554 goto error;
2555
2556 kcpuset_create(&cpudata->htlb_want_flush, true);
2557
2558 /* Init the VCPU info. */
2559 vmx_vcpu_init(mach, vcpu);
2560
2561 return 0;
2562
2563 error:
2564 if (cpudata->vmcs_pa) {
2565 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2566 VMCS_NPAGES);
2567 }
2568 if (cpudata->msrbm_pa) {
2569 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2570 MSRBM_NPAGES);
2571 }
2572 if (cpudata->gmsr_pa) {
2573 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2574 }
2575
2576 kmem_free(cpudata, sizeof(*cpudata));
2577 return error;
2578 }
2579
2580 static void
2581 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2582 {
2583 struct vmx_cpudata *cpudata = vcpu->cpudata;
2584
2585 vmx_vmcs_enter(vcpu);
2586 vmx_asid_free(vcpu);
2587 vmx_vmcs_destroy(vcpu);
2588
2589 kcpuset_destroy(cpudata->htlb_want_flush);
2590
2591 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2592 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2593 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2594 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2595 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2596 }
2597
2598 /* -------------------------------------------------------------------------- */
2599
2600 static void
2601 vmx_tlb_flush(struct pmap *pm)
2602 {
2603 struct nvmm_machine *mach = pm->pm_data;
2604 struct vmx_machdata *machdata = mach->machdata;
2605
2606 atomic_inc_64(&machdata->mach_htlb_gen);
2607
2608 /* Generates IPIs, which cause #VMEXITs. */
2609 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2610 }
2611
2612 static void
2613 vmx_machine_create(struct nvmm_machine *mach)
2614 {
2615 struct pmap *pmap = mach->vm->vm_map.pmap;
2616 struct vmx_machdata *machdata;
2617
2618 /* Convert to EPT. */
2619 pmap_ept_transform(pmap);
2620
2621 /* Fill in pmap info. */
2622 pmap->pm_data = (void *)mach;
2623 pmap->pm_tlb_flush = vmx_tlb_flush;
2624
2625 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2626 mach->machdata = machdata;
2627
2628 /* Start with an hTLB flush everywhere. */
2629 machdata->mach_htlb_gen = 1;
2630 }
2631
2632 static void
2633 vmx_machine_destroy(struct nvmm_machine *mach)
2634 {
2635 struct vmx_machdata *machdata = mach->machdata;
2636
2637 kmem_free(machdata, sizeof(struct vmx_machdata));
2638 }
2639
2640 static int
2641 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2642 {
2643 struct nvmm_x86_conf_cpuid *cpuid = data;
2644 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2645 size_t i;
2646
2647 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2648 return EINVAL;
2649 }
2650
2651 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2652 (cpuid->set.ebx & cpuid->del.ebx) ||
2653 (cpuid->set.ecx & cpuid->del.ecx) ||
2654 (cpuid->set.edx & cpuid->del.edx))) {
2655 return EINVAL;
2656 }
2657
2658 /* If already here, replace. */
2659 for (i = 0; i < VMX_NCPUIDS; i++) {
2660 if (!machdata->cpuidpresent[i]) {
2661 continue;
2662 }
2663 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2664 memcpy(&machdata->cpuid[i], cpuid,
2665 sizeof(struct nvmm_x86_conf_cpuid));
2666 return 0;
2667 }
2668 }
2669
2670 /* Not here, insert. */
2671 for (i = 0; i < VMX_NCPUIDS; i++) {
2672 if (!machdata->cpuidpresent[i]) {
2673 machdata->cpuidpresent[i] = true;
2674 memcpy(&machdata->cpuid[i], cpuid,
2675 sizeof(struct nvmm_x86_conf_cpuid));
2676 return 0;
2677 }
2678 }
2679
2680 return ENOBUFS;
2681 }
2682
2683 /* -------------------------------------------------------------------------- */
2684
2685 static int
2686 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2687 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2688 {
2689 uint64_t basic, val, true_val;
2690 bool one_allowed, zero_allowed, has_true;
2691 size_t i;
2692
2693 basic = rdmsr(MSR_IA32_VMX_BASIC);
2694 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2695
2696 val = rdmsr(msr_ctls);
2697 if (has_true) {
2698 true_val = rdmsr(msr_true_ctls);
2699 } else {
2700 true_val = val;
2701 }
2702
2703 #define ONE_ALLOWED(msrval, bitoff) \
2704 ((msrval & __BIT(32 + bitoff)) != 0)
2705 #define ZERO_ALLOWED(msrval, bitoff) \
2706 ((msrval & __BIT(bitoff)) == 0)
2707
2708 for (i = 0; i < 32; i++) {
2709 one_allowed = ONE_ALLOWED(true_val, i);
2710 zero_allowed = ZERO_ALLOWED(true_val, i);
2711
2712 if (zero_allowed && !one_allowed) {
2713 if (set_one & __BIT(i))
2714 return -1;
2715 *res &= ~__BIT(i);
2716 } else if (one_allowed && !zero_allowed) {
2717 if (set_zero & __BIT(i))
2718 return -1;
2719 *res |= __BIT(i);
2720 } else {
2721 if (set_zero & __BIT(i)) {
2722 *res &= ~__BIT(i);
2723 } else if (set_one & __BIT(i)) {
2724 *res |= __BIT(i);
2725 } else if (!has_true) {
2726 *res &= ~__BIT(i);
2727 } else if (ZERO_ALLOWED(val, i)) {
2728 *res &= ~__BIT(i);
2729 } else if (ONE_ALLOWED(val, i)) {
2730 *res |= __BIT(i);
2731 } else {
2732 return -1;
2733 }
2734 }
2735 }
2736
2737 return 0;
2738 }
2739
2740 static bool
2741 vmx_ident(void)
2742 {
2743 uint64_t msr;
2744 int ret;
2745
2746 if (!(cpu_feature[1] & CPUID2_VMX)) {
2747 return false;
2748 }
2749
2750 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2751 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2752 return false;
2753 }
2754
2755 msr = rdmsr(MSR_IA32_VMX_BASIC);
2756 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2757 return false;
2758 }
2759 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2760 return false;
2761 }
2762
2763 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2764 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2765 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2766 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2767 if (ret == -1) {
2768 return false;
2769 }
2770
2771 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2772 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2773 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2774 if (ret == -1) {
2775 return false;
2776 }
2777
2778 /* Init the CTLSs right now, and check for errors. */
2779 ret = vmx_init_ctls(
2780 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2781 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2782 &vmx_pinbased_ctls);
2783 if (ret == -1) {
2784 return false;
2785 }
2786 ret = vmx_init_ctls(
2787 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2788 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2789 &vmx_procbased_ctls);
2790 if (ret == -1) {
2791 return false;
2792 }
2793 ret = vmx_init_ctls(
2794 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2795 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2796 &vmx_procbased_ctls2);
2797 if (ret == -1) {
2798 return false;
2799 }
2800 ret = vmx_init_ctls(
2801 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2802 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2803 &vmx_entry_ctls);
2804 if (ret == -1) {
2805 return false;
2806 }
2807 ret = vmx_init_ctls(
2808 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2809 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2810 &vmx_exit_ctls);
2811 if (ret == -1) {
2812 return false;
2813 }
2814
2815 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2816 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2817 return false;
2818 }
2819 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2820 return false;
2821 }
2822 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2823 return false;
2824 }
2825 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2826 pmap_ept_has_ad = true;
2827 } else {
2828 pmap_ept_has_ad = false;
2829 }
2830 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2831 return false;
2832 }
2833
2834 return true;
2835 }
2836
2837 static void
2838 vmx_init_asid(uint32_t maxasid)
2839 {
2840 size_t allocsz;
2841
2842 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2843
2844 vmx_maxasid = maxasid;
2845 allocsz = roundup(maxasid, 8) / 8;
2846 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2847
2848 /* ASID 0 is reserved for the host. */
2849 vmx_asidmap[0] |= __BIT(0);
2850 }
2851
2852 static void
2853 vmx_change_cpu(void *arg1, void *arg2)
2854 {
2855 struct cpu_info *ci = curcpu();
2856 bool enable = (bool)arg1;
2857 uint64_t cr4;
2858
2859 if (!enable) {
2860 vmx_vmxoff();
2861 }
2862
2863 cr4 = rcr4();
2864 if (enable) {
2865 cr4 |= CR4_VMXE;
2866 } else {
2867 cr4 &= ~CR4_VMXE;
2868 }
2869 lcr4(cr4);
2870
2871 if (enable) {
2872 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2873 }
2874 }
2875
2876 static void
2877 vmx_init_l1tf(void)
2878 {
2879 u_int descs[4];
2880 uint64_t msr;
2881
2882 if (cpuid_level < 7) {
2883 return;
2884 }
2885
2886 x86_cpuid(7, descs);
2887
2888 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2889 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2890 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2891 /* No mitigation needed. */
2892 return;
2893 }
2894 }
2895
2896 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2897 /* Enable hardware mitigation. */
2898 vmx_msrlist_entry_nmsr += 1;
2899 }
2900 }
2901
2902 static void
2903 vmx_init(void)
2904 {
2905 CPU_INFO_ITERATOR cii;
2906 struct cpu_info *ci;
2907 uint64_t xc, msr;
2908 struct vmxon *vmxon;
2909 uint32_t revision;
2910 paddr_t pa;
2911 vaddr_t va;
2912 int error;
2913
2914 /* Init the ASID bitmap (VPID). */
2915 vmx_init_asid(VPID_MAX);
2916
2917 /* Init the XCR0 mask. */
2918 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2919
2920 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2921 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2922 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2923 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2924 } else {
2925 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2926 }
2927 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2928 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2929 } else {
2930 vmx_ept_flush_op = VMX_INVEPT_ALL;
2931 }
2932 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2933 vmx_eptp_type = EPTP_TYPE_WB;
2934 } else {
2935 vmx_eptp_type = EPTP_TYPE_UC;
2936 }
2937
2938 /* Init the L1TF mitigation. */
2939 vmx_init_l1tf();
2940
2941 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2942 revision = vmx_get_revision();
2943
2944 for (CPU_INFO_FOREACH(cii, ci)) {
2945 error = vmx_memalloc(&pa, &va, 1);
2946 if (error) {
2947 panic("%s: out of memory", __func__);
2948 }
2949 vmxoncpu[cpu_index(ci)].pa = pa;
2950 vmxoncpu[cpu_index(ci)].va = va;
2951
2952 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2953 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2954 }
2955
2956 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2957 xc_wait(xc);
2958 }
2959
2960 static void
2961 vmx_fini_asid(void)
2962 {
2963 size_t allocsz;
2964
2965 allocsz = roundup(vmx_maxasid, 8) / 8;
2966 kmem_free(vmx_asidmap, allocsz);
2967
2968 mutex_destroy(&vmx_asidlock);
2969 }
2970
2971 static void
2972 vmx_fini(void)
2973 {
2974 uint64_t xc;
2975 size_t i;
2976
2977 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2978 xc_wait(xc);
2979
2980 for (i = 0; i < MAXCPUS; i++) {
2981 if (vmxoncpu[i].pa != 0)
2982 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2983 }
2984
2985 vmx_fini_asid();
2986 }
2987
2988 static void
2989 vmx_capability(struct nvmm_capability *cap)
2990 {
2991 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2992 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2993 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2994 }
2995
2996 const struct nvmm_impl nvmm_x86_vmx = {
2997 .ident = vmx_ident,
2998 .init = vmx_init,
2999 .fini = vmx_fini,
3000 .capability = vmx_capability,
3001 .conf_max = NVMM_X86_NCONF,
3002 .conf_sizes = vmx_conf_sizes,
3003 .state_size = sizeof(struct nvmm_x64_state),
3004 .machine_create = vmx_machine_create,
3005 .machine_destroy = vmx_machine_destroy,
3006 .machine_configure = vmx_machine_configure,
3007 .vcpu_create = vmx_vcpu_create,
3008 .vcpu_destroy = vmx_vcpu_destroy,
3009 .vcpu_setstate = vmx_vcpu_setstate,
3010 .vcpu_getstate = vmx_vcpu_getstate,
3011 .vcpu_inject = vmx_vcpu_inject,
3012 .vcpu_run = vmx_vcpu_run
3013 };
3014