Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.21
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.21 2019/04/03 17:32:58 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.21 2019/04/03 17:32:58 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int _vmx_vmxon(paddr_t *pa);
     58 int _vmx_vmxoff(void);
     59 int _vmx_invept(uint64_t op, void *desc);
     60 int _vmx_invvpid(uint64_t op, void *desc);
     61 int _vmx_vmread(uint64_t op, uint64_t *val);
     62 int _vmx_vmwrite(uint64_t op, uint64_t val);
     63 int _vmx_vmptrld(paddr_t *pa);
     64 int _vmx_vmptrst(paddr_t *pa);
     65 int _vmx_vmclear(paddr_t *pa);
     66 int vmx_vmlaunch(uint64_t *gprs);
     67 int vmx_vmresume(uint64_t *gprs);
     68 
     69 #define vmx_vmxon(a) \
     70 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     71 		panic("%s: VMXON failed", __func__); \
     72 	}
     73 #define vmx_vmxoff() \
     74 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     75 		panic("%s: VMXOFF failed", __func__); \
     76 	}
     77 #define vmx_invept(a, b) \
     78 	if (__predict_false(_vmx_invept(a, b) != 0)) { \
     79 		panic("%s: INVEPT failed", __func__); \
     80 	}
     81 #define vmx_invvpid(a, b) \
     82 	if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
     83 		panic("%s: INVVPID failed", __func__); \
     84 	}
     85 #define vmx_vmread(a, b) \
     86 	if (__predict_false(_vmx_vmread(a, b) != 0)) { \
     87 		panic("%s: VMREAD failed", __func__); \
     88 	}
     89 #define vmx_vmwrite(a, b) \
     90 	if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
     91 		panic("%s: VMWRITE failed", __func__); \
     92 	}
     93 #define vmx_vmptrld(a) \
     94 	if (__predict_false(_vmx_vmptrld(a) != 0)) { \
     95 		panic("%s: VMPTRLD failed", __func__); \
     96 	}
     97 #define vmx_vmptrst(a) \
     98 	if (__predict_false(_vmx_vmptrst(a) != 0)) { \
     99 		panic("%s: VMPTRST failed", __func__); \
    100 	}
    101 #define vmx_vmclear(a) \
    102 	if (__predict_false(_vmx_vmclear(a) != 0)) { \
    103 		panic("%s: VMCLEAR failed", __func__); \
    104 	}
    105 
    106 #define MSR_IA32_FEATURE_CONTROL	0x003A
    107 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    108 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    109 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    110 
    111 #define MSR_IA32_VMX_BASIC		0x0480
    112 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    113 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    114 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    115 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    116 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    117 #define			MEM_TYPE_UC		0
    118 #define			MEM_TYPE_WB		6
    119 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    120 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    121 
    122 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    123 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    124 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    125 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    126 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    127 
    128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    132 
    133 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    134 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    135 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    136 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    137 
    138 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    139 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    140 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    141 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    142 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    143 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    144 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    145 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    146 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    147 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    148 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    149 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    150 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    151 
    152 /* -------------------------------------------------------------------------- */
    153 
    154 /* 16-bit control fields */
    155 #define VMCS_VPID				0x00000000
    156 #define VMCS_PIR_VECTOR				0x00000002
    157 #define VMCS_EPTP_INDEX				0x00000004
    158 /* 16-bit guest-state fields */
    159 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    160 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    161 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    162 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    163 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    164 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    165 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    166 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    167 #define VMCS_GUEST_INTR_STATUS			0x00000810
    168 #define VMCS_PML_INDEX				0x00000812
    169 /* 16-bit host-state fields */
    170 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    171 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    172 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    173 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    174 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    175 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    176 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    177 /* 64-bit control fields */
    178 #define VMCS_IO_BITMAP_A			0x00002000
    179 #define VMCS_IO_BITMAP_B			0x00002002
    180 #define VMCS_MSR_BITMAP				0x00002004
    181 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    182 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    184 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    185 #define VMCS_PML_ADDRESS			0x0000200E
    186 #define VMCS_TSC_OFFSET				0x00002010
    187 #define VMCS_VIRTUAL_APIC			0x00002012
    188 #define VMCS_APIC_ACCESS			0x00002014
    189 #define VMCS_PIR_DESC				0x00002016
    190 #define VMCS_VM_CONTROL				0x00002018
    191 #define VMCS_EPTP				0x0000201A
    192 #define		EPTP_TYPE			__BITS(2,0)
    193 #define			EPTP_TYPE_UC		0
    194 #define			EPTP_TYPE_WB		6
    195 #define		EPTP_WALKLEN			__BITS(5,3)
    196 #define		EPTP_FLAGS_AD			__BIT(6)
    197 #define		EPTP_PHYSADDR			__BITS(63,12)
    198 #define VMCS_EOI_EXIT0				0x0000201C
    199 #define VMCS_EOI_EXIT1				0x0000201E
    200 #define VMCS_EOI_EXIT2				0x00002020
    201 #define VMCS_EOI_EXIT3				0x00002022
    202 #define VMCS_EPTP_LIST				0x00002024
    203 #define VMCS_VMREAD_BITMAP			0x00002026
    204 #define VMCS_VMWRITE_BITMAP			0x00002028
    205 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    206 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    207 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    208 #define VMCS_TSC_MULTIPLIER			0x00002032
    209 /* 64-bit read-only fields */
    210 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    211 /* 64-bit guest-state fields */
    212 #define VMCS_LINK_POINTER			0x00002800
    213 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    214 #define VMCS_GUEST_IA32_PAT			0x00002804
    215 #define VMCS_GUEST_IA32_EFER			0x00002806
    216 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    217 #define VMCS_GUEST_PDPTE0			0x0000280A
    218 #define VMCS_GUEST_PDPTE1			0x0000280C
    219 #define VMCS_GUEST_PDPTE2			0x0000280E
    220 #define VMCS_GUEST_PDPTE3			0x00002810
    221 #define VMCS_GUEST_BNDCFGS			0x00002812
    222 /* 64-bit host-state fields */
    223 #define VMCS_HOST_IA32_PAT			0x00002C00
    224 #define VMCS_HOST_IA32_EFER			0x00002C02
    225 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    226 /* 32-bit control fields */
    227 #define VMCS_PINBASED_CTLS			0x00004000
    228 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    229 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    230 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    231 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    232 #define		PIN_CTLS_PROCESS_POSTEd_INTS	__BIT(7)
    233 #define VMCS_PROCBASED_CTLS			0x00004002
    234 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    235 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    236 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    237 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    238 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    239 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    240 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    241 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    242 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    243 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    244 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    245 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    246 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    247 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    248 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    249 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    250 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    251 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    252 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    253 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    254 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    255 #define VMCS_EXCEPTION_BITMAP			0x00004004
    256 #define VMCS_PF_ERROR_MASK			0x00004006
    257 #define VMCS_PF_ERROR_MATCH			0x00004008
    258 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    259 #define VMCS_EXIT_CTLS				0x0000400C
    260 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    261 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    262 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    263 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    264 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    265 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    266 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    267 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    268 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    269 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    270 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    271 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    272 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    273 #define VMCS_ENTRY_CTLS				0x00004012
    274 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    275 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    276 #define		ENTRY_CTLS_SMM			__BIT(10)
    277 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    278 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    279 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    280 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    281 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    282 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    283 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    284 #define VMCS_ENTRY_INTR_INFO			0x00004016
    285 #define		INTR_INFO_VECTOR		__BITS(7,0)
    286 #define		INTR_INFO_TYPE			__BITS(10,8)
    287 #define			INTR_TYPE_EXT_INT	0
    288 #define			INTR_TYPE_NMI		2
    289 #define			INTR_TYPE_HW_EXC	3
    290 #define			INTR_TYPE_SW_INT	4
    291 #define			INTR_TYPE_PRIV_SW_EXC	5
    292 #define			INTR_TYPE_SW_EXC	6
    293 #define			INTR_TYPE_OTHER		7
    294 #define		INTR_INFO_ERROR			__BIT(11)
    295 #define		INTR_INFO_VALID			__BIT(31)
    296 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    297 #define VMCS_ENTRY_INST_LENGTH			0x0000401A
    298 #define VMCS_TPR_THRESHOLD			0x0000401C
    299 #define VMCS_PROCBASED_CTLS2			0x0000401E
    300 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    301 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    302 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    303 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    304 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    305 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    306 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    307 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    308 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    309 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    310 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    311 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    312 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    313 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    314 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    315 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    316 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    317 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    318 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    319 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    320 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    321 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    322 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    323 #define VMCS_PLE_GAP				0x00004020
    324 #define VMCS_PLE_WINDOW				0x00004022
    325 /* 32-bit read-only data fields */
    326 #define VMCS_INSTRUCTION_ERROR			0x00004400
    327 #define VMCS_EXIT_REASON			0x00004402
    328 #define VMCS_EXIT_INTR_INFO			0x00004404
    329 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    330 #define VMCS_IDT_VECTORING_INFO			0x00004408
    331 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    332 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    333 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    334 /* 32-bit guest-state fields */
    335 #define VMCS_GUEST_ES_LIMIT			0x00004800
    336 #define VMCS_GUEST_CS_LIMIT			0x00004802
    337 #define VMCS_GUEST_SS_LIMIT			0x00004804
    338 #define VMCS_GUEST_DS_LIMIT			0x00004806
    339 #define VMCS_GUEST_FS_LIMIT			0x00004808
    340 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    341 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    342 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    343 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    344 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    345 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    346 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    347 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    348 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    349 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    350 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    351 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    352 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    353 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    354 #define		INT_STATE_STI			__BIT(0)
    355 #define		INT_STATE_MOVSS			__BIT(1)
    356 #define		INT_STATE_SMI			__BIT(2)
    357 #define		INT_STATE_NMI			__BIT(3)
    358 #define		INT_STATE_ENCLAVE		__BIT(4)
    359 #define VMCS_GUEST_ACTIVITY			0x00004826
    360 #define VMCS_GUEST_SMBASE			0x00004828
    361 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    362 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    363 /* 32-bit host state fields */
    364 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    365 /* Natural-Width control fields */
    366 #define VMCS_CR0_MASK				0x00006000
    367 #define VMCS_CR4_MASK				0x00006002
    368 #define VMCS_CR0_SHADOW				0x00006004
    369 #define VMCS_CR4_SHADOW				0x00006006
    370 #define VMCS_CR3_TARGET0			0x00006008
    371 #define VMCS_CR3_TARGET1			0x0000600A
    372 #define VMCS_CR3_TARGET2			0x0000600C
    373 #define VMCS_CR3_TARGET3			0x0000600E
    374 /* Natural-Width read-only fields */
    375 #define VMCS_EXIT_QUALIFICATION			0x00006400
    376 #define VMCS_IO_RCX				0x00006402
    377 #define VMCS_IO_RSI				0x00006404
    378 #define VMCS_IO_RDI				0x00006406
    379 #define VMCS_IO_RIP				0x00006408
    380 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    381 /* Natural-Width guest-state fields */
    382 #define VMCS_GUEST_CR0				0x00006800
    383 #define VMCS_GUEST_CR3				0x00006802
    384 #define VMCS_GUEST_CR4				0x00006804
    385 #define VMCS_GUEST_ES_BASE			0x00006806
    386 #define VMCS_GUEST_CS_BASE			0x00006808
    387 #define VMCS_GUEST_SS_BASE			0x0000680A
    388 #define VMCS_GUEST_DS_BASE			0x0000680C
    389 #define VMCS_GUEST_FS_BASE			0x0000680E
    390 #define VMCS_GUEST_GS_BASE			0x00006810
    391 #define VMCS_GUEST_LDTR_BASE			0x00006812
    392 #define VMCS_GUEST_TR_BASE			0x00006814
    393 #define VMCS_GUEST_GDTR_BASE			0x00006816
    394 #define VMCS_GUEST_IDTR_BASE			0x00006818
    395 #define VMCS_GUEST_DR7				0x0000681A
    396 #define VMCS_GUEST_RSP				0x0000681C
    397 #define VMCS_GUEST_RIP				0x0000681E
    398 #define VMCS_GUEST_RFLAGS			0x00006820
    399 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    400 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    401 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    402 /* Natural-Width host-state fields */
    403 #define VMCS_HOST_CR0				0x00006C00
    404 #define VMCS_HOST_CR3				0x00006C02
    405 #define VMCS_HOST_CR4				0x00006C04
    406 #define VMCS_HOST_FS_BASE			0x00006C06
    407 #define VMCS_HOST_GS_BASE			0x00006C08
    408 #define VMCS_HOST_TR_BASE			0x00006C0A
    409 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    410 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    411 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    412 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    413 #define VMCS_HOST_RSP				0x00006C14
    414 #define VMCS_HOST_RIP				0x00006c16
    415 
    416 /* VMX basic exit reasons. */
    417 #define VMCS_EXITCODE_EXC_NMI			0
    418 #define VMCS_EXITCODE_EXT_INT			1
    419 #define VMCS_EXITCODE_SHUTDOWN			2
    420 #define VMCS_EXITCODE_INIT			3
    421 #define VMCS_EXITCODE_SIPI			4
    422 #define VMCS_EXITCODE_SMI			5
    423 #define VMCS_EXITCODE_OTHER_SMI			6
    424 #define VMCS_EXITCODE_INT_WINDOW		7
    425 #define VMCS_EXITCODE_NMI_WINDOW		8
    426 #define VMCS_EXITCODE_TASK_SWITCH		9
    427 #define VMCS_EXITCODE_CPUID			10
    428 #define VMCS_EXITCODE_GETSEC			11
    429 #define VMCS_EXITCODE_HLT			12
    430 #define VMCS_EXITCODE_INVD			13
    431 #define VMCS_EXITCODE_INVLPG			14
    432 #define VMCS_EXITCODE_RDPMC			15
    433 #define VMCS_EXITCODE_RDTSC			16
    434 #define VMCS_EXITCODE_RSM			17
    435 #define VMCS_EXITCODE_VMCALL			18
    436 #define VMCS_EXITCODE_VMCLEAR			19
    437 #define VMCS_EXITCODE_VMLAUNCH			20
    438 #define VMCS_EXITCODE_VMPTRLD			21
    439 #define VMCS_EXITCODE_VMPTRST			22
    440 #define VMCS_EXITCODE_VMREAD			23
    441 #define VMCS_EXITCODE_VMRESUME			24
    442 #define VMCS_EXITCODE_VMWRITE			25
    443 #define VMCS_EXITCODE_VMXOFF			26
    444 #define VMCS_EXITCODE_VMXON			27
    445 #define VMCS_EXITCODE_CR			28
    446 #define VMCS_EXITCODE_DR			29
    447 #define VMCS_EXITCODE_IO			30
    448 #define VMCS_EXITCODE_RDMSR			31
    449 #define VMCS_EXITCODE_WRMSR			32
    450 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    451 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    452 #define VMCS_EXITCODE_MWAIT			36
    453 #define VMCS_EXITCODE_TRAP_FLAG			37
    454 #define VMCS_EXITCODE_MONITOR			39
    455 #define VMCS_EXITCODE_PAUSE			40
    456 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    457 #define VMCS_EXITCODE_TPR_BELOW			43
    458 #define VMCS_EXITCODE_APIC_ACCESS		44
    459 #define VMCS_EXITCODE_VEOI			45
    460 #define VMCS_EXITCODE_GDTR_IDTR			46
    461 #define VMCS_EXITCODE_LDTR_TR			47
    462 #define VMCS_EXITCODE_EPT_VIOLATION		48
    463 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    464 #define VMCS_EXITCODE_INVEPT			50
    465 #define VMCS_EXITCODE_RDTSCP			51
    466 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    467 #define VMCS_EXITCODE_INVVPID			53
    468 #define VMCS_EXITCODE_WBINVD			54
    469 #define VMCS_EXITCODE_XSETBV			55
    470 #define VMCS_EXITCODE_APIC_WRITE		56
    471 #define VMCS_EXITCODE_RDRAND			57
    472 #define VMCS_EXITCODE_INVPCID			58
    473 #define VMCS_EXITCODE_VMFUNC			59
    474 #define VMCS_EXITCODE_ENCLS			60
    475 #define VMCS_EXITCODE_RDSEED			61
    476 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    477 #define VMCS_EXITCODE_XSAVES			63
    478 #define VMCS_EXITCODE_XRSTORS			64
    479 
    480 /* -------------------------------------------------------------------------- */
    481 
    482 #define VMX_MSRLIST_STAR		0
    483 #define VMX_MSRLIST_LSTAR		1
    484 #define VMX_MSRLIST_CSTAR		2
    485 #define VMX_MSRLIST_SFMASK		3
    486 #define VMX_MSRLIST_KERNELGSBASE	4
    487 #define VMX_MSRLIST_EXIT_NMSR		5
    488 #define VMX_MSRLIST_L1DFLUSH		5
    489 
    490 /* On entry, we may do +1 to include L1DFLUSH. */
    491 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    492 
    493 struct vmxon {
    494 	uint32_t ident;
    495 #define VMXON_IDENT_REVISION	__BITS(30,0)
    496 
    497 	uint8_t data[PAGE_SIZE - 4];
    498 } __packed;
    499 
    500 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    501 
    502 struct vmxoncpu {
    503 	vaddr_t va;
    504 	paddr_t pa;
    505 };
    506 
    507 static struct vmxoncpu vmxoncpu[MAXCPUS];
    508 
    509 struct vmcs {
    510 	uint32_t ident;
    511 #define VMCS_IDENT_REVISION	__BITS(30,0)
    512 #define VMCS_IDENT_SHADOW	__BIT(31)
    513 
    514 	uint32_t abort;
    515 	uint8_t data[PAGE_SIZE - 8];
    516 } __packed;
    517 
    518 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    519 
    520 struct msr_entry {
    521 	uint32_t msr;
    522 	uint32_t rsvd;
    523 	uint64_t val;
    524 } __packed;
    525 
    526 struct ept_desc {
    527 	uint64_t eptp;
    528 	uint64_t mbz;
    529 } __packed;
    530 
    531 struct vpid_desc {
    532 	uint64_t vpid;
    533 	uint64_t addr;
    534 } __packed;
    535 
    536 #define VPID_MAX	0xFFFF
    537 
    538 /* Make sure we never run out of VPIDs. */
    539 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    540 
    541 static uint64_t vmx_tlb_flush_op __read_mostly;
    542 static uint64_t vmx_ept_flush_op __read_mostly;
    543 static uint64_t vmx_eptp_type __read_mostly;
    544 
    545 static uint64_t vmx_pinbased_ctls __read_mostly;
    546 static uint64_t vmx_procbased_ctls __read_mostly;
    547 static uint64_t vmx_procbased_ctls2 __read_mostly;
    548 static uint64_t vmx_entry_ctls __read_mostly;
    549 static uint64_t vmx_exit_ctls __read_mostly;
    550 
    551 static uint64_t vmx_cr0_fixed0 __read_mostly;
    552 static uint64_t vmx_cr0_fixed1 __read_mostly;
    553 static uint64_t vmx_cr4_fixed0 __read_mostly;
    554 static uint64_t vmx_cr4_fixed1 __read_mostly;
    555 
    556 extern bool pmap_ept_has_ad;
    557 
    558 #define VMX_PINBASED_CTLS_ONE	\
    559 	(PIN_CTLS_INT_EXITING| \
    560 	 PIN_CTLS_NMI_EXITING| \
    561 	 PIN_CTLS_VIRTUAL_NMIS)
    562 
    563 #define VMX_PINBASED_CTLS_ZERO	0
    564 
    565 #define VMX_PROCBASED_CTLS_ONE	\
    566 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    567 	 PROC_CTLS_HLT_EXITING| \
    568 	 PROC_CTLS_MWAIT_EXITING | \
    569 	 PROC_CTLS_RDPMC_EXITING | \
    570 	 PROC_CTLS_RCR8_EXITING | \
    571 	 PROC_CTLS_LCR8_EXITING | \
    572 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    573 	 PROC_CTLS_USE_MSR_BITMAPS | \
    574 	 PROC_CTLS_MONITOR_EXITING | \
    575 	 PROC_CTLS_ACTIVATE_CTLS2)
    576 
    577 #define VMX_PROCBASED_CTLS_ZERO	\
    578 	(PROC_CTLS_RCR3_EXITING| \
    579 	 PROC_CTLS_LCR3_EXITING)
    580 
    581 #define VMX_PROCBASED_CTLS2_ONE	\
    582 	(PROC_CTLS2_ENABLE_EPT| \
    583 	 PROC_CTLS2_ENABLE_VPID| \
    584 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    585 
    586 #define VMX_PROCBASED_CTLS2_ZERO	0
    587 
    588 #define VMX_ENTRY_CTLS_ONE	\
    589 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    590 	 ENTRY_CTLS_LOAD_EFER| \
    591 	 ENTRY_CTLS_LOAD_PAT)
    592 
    593 #define VMX_ENTRY_CTLS_ZERO	\
    594 	(ENTRY_CTLS_SMM| \
    595 	 ENTRY_CTLS_DISABLE_DUAL)
    596 
    597 #define VMX_EXIT_CTLS_ONE	\
    598 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    599 	 EXIT_CTLS_HOST_LONG_MODE| \
    600 	 EXIT_CTLS_SAVE_PAT| \
    601 	 EXIT_CTLS_LOAD_PAT| \
    602 	 EXIT_CTLS_SAVE_EFER| \
    603 	 EXIT_CTLS_LOAD_EFER)
    604 
    605 #define VMX_EXIT_CTLS_ZERO	0
    606 
    607 static uint8_t *vmx_asidmap __read_mostly;
    608 static uint32_t vmx_maxasid __read_mostly;
    609 static kmutex_t vmx_asidlock __cacheline_aligned;
    610 
    611 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    612 static uint64_t vmx_xcr0_mask __read_mostly;
    613 
    614 #define VMX_NCPUIDS	32
    615 
    616 #define VMCS_NPAGES	1
    617 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    618 
    619 #define MSRBM_NPAGES	1
    620 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    621 
    622 #define EFER_TLB_FLUSH \
    623 	(EFER_NXE|EFER_LMA|EFER_LME)
    624 #define CR0_TLB_FLUSH \
    625 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    626 #define CR4_TLB_FLUSH \
    627 	(CR4_PGE|CR4_PAE|CR4_PSE)
    628 
    629 /* -------------------------------------------------------------------------- */
    630 
    631 struct vmx_machdata {
    632 	bool cpuidpresent[VMX_NCPUIDS];
    633 	struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
    634 	volatile uint64_t mach_htlb_gen;
    635 };
    636 
    637 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
    638 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    639 };
    640 
    641 struct vmx_cpudata {
    642 	/* General */
    643 	uint64_t asid;
    644 	bool gtlb_want_flush;
    645 	bool gtsc_want_update;
    646 	uint64_t vcpu_htlb_gen;
    647 	kcpuset_t *htlb_want_flush;
    648 
    649 	/* VMCS */
    650 	struct vmcs *vmcs;
    651 	paddr_t vmcs_pa;
    652 	size_t vmcs_refcnt;
    653 	struct cpu_info *vmcs_ci;
    654 	bool vmcs_launched;
    655 
    656 	/* MSR bitmap */
    657 	uint8_t *msrbm;
    658 	paddr_t msrbm_pa;
    659 
    660 	/* Host state */
    661 	uint64_t hxcr0;
    662 	uint64_t star;
    663 	uint64_t lstar;
    664 	uint64_t cstar;
    665 	uint64_t sfmask;
    666 	uint64_t kernelgsbase;
    667 	bool ts_set;
    668 	struct xsave_header hfpu __aligned(64);
    669 
    670 	/* Event state */
    671 	bool int_window_exit;
    672 	bool nmi_window_exit;
    673 
    674 	/* Guest state */
    675 	struct msr_entry *gmsr;
    676 	paddr_t gmsr_pa;
    677 	uint64_t gmsr_misc_enable;
    678 	uint64_t gcr2;
    679 	uint64_t gcr8;
    680 	uint64_t gxcr0;
    681 	uint64_t gprs[NVMM_X64_NGPR];
    682 	uint64_t drs[NVMM_X64_NDR];
    683 	uint64_t gtsc;
    684 	struct xsave_header gfpu __aligned(64);
    685 };
    686 
    687 static const struct {
    688 	uint64_t selector;
    689 	uint64_t attrib;
    690 	uint64_t limit;
    691 	uint64_t base;
    692 } vmx_guest_segs[NVMM_X64_NSEG] = {
    693 	[NVMM_X64_SEG_ES] = {
    694 		VMCS_GUEST_ES_SELECTOR,
    695 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    696 		VMCS_GUEST_ES_LIMIT,
    697 		VMCS_GUEST_ES_BASE
    698 	},
    699 	[NVMM_X64_SEG_CS] = {
    700 		VMCS_GUEST_CS_SELECTOR,
    701 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    702 		VMCS_GUEST_CS_LIMIT,
    703 		VMCS_GUEST_CS_BASE
    704 	},
    705 	[NVMM_X64_SEG_SS] = {
    706 		VMCS_GUEST_SS_SELECTOR,
    707 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    708 		VMCS_GUEST_SS_LIMIT,
    709 		VMCS_GUEST_SS_BASE
    710 	},
    711 	[NVMM_X64_SEG_DS] = {
    712 		VMCS_GUEST_DS_SELECTOR,
    713 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    714 		VMCS_GUEST_DS_LIMIT,
    715 		VMCS_GUEST_DS_BASE
    716 	},
    717 	[NVMM_X64_SEG_FS] = {
    718 		VMCS_GUEST_FS_SELECTOR,
    719 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    720 		VMCS_GUEST_FS_LIMIT,
    721 		VMCS_GUEST_FS_BASE
    722 	},
    723 	[NVMM_X64_SEG_GS] = {
    724 		VMCS_GUEST_GS_SELECTOR,
    725 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    726 		VMCS_GUEST_GS_LIMIT,
    727 		VMCS_GUEST_GS_BASE
    728 	},
    729 	[NVMM_X64_SEG_GDT] = {
    730 		0, /* doesn't exist */
    731 		0, /* doesn't exist */
    732 		VMCS_GUEST_GDTR_LIMIT,
    733 		VMCS_GUEST_GDTR_BASE
    734 	},
    735 	[NVMM_X64_SEG_IDT] = {
    736 		0, /* doesn't exist */
    737 		0, /* doesn't exist */
    738 		VMCS_GUEST_IDTR_LIMIT,
    739 		VMCS_GUEST_IDTR_BASE
    740 	},
    741 	[NVMM_X64_SEG_LDT] = {
    742 		VMCS_GUEST_LDTR_SELECTOR,
    743 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    744 		VMCS_GUEST_LDTR_LIMIT,
    745 		VMCS_GUEST_LDTR_BASE
    746 	},
    747 	[NVMM_X64_SEG_TR] = {
    748 		VMCS_GUEST_TR_SELECTOR,
    749 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    750 		VMCS_GUEST_TR_LIMIT,
    751 		VMCS_GUEST_TR_BASE
    752 	}
    753 };
    754 
    755 /* -------------------------------------------------------------------------- */
    756 
    757 static uint64_t
    758 vmx_get_revision(void)
    759 {
    760 	uint64_t msr;
    761 
    762 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    763 	msr &= IA32_VMX_BASIC_IDENT;
    764 
    765 	return msr;
    766 }
    767 
    768 static void
    769 vmx_vmclear_ipi(void *arg1, void *arg2)
    770 {
    771 	paddr_t vmcs_pa = (paddr_t)arg1;
    772 	vmx_vmclear(&vmcs_pa);
    773 }
    774 
    775 static void
    776 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    777 {
    778 	uint64_t xc;
    779 	int bound;
    780 
    781 	KASSERT(kpreempt_disabled());
    782 
    783 	bound = curlwp_bind();
    784 	kpreempt_enable();
    785 
    786 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    787 	xc_wait(xc);
    788 
    789 	kpreempt_disable();
    790 	curlwp_bindx(bound);
    791 }
    792 
    793 static void
    794 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    795 {
    796 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    797 	struct cpu_info *vmcs_ci;
    798 	paddr_t oldpa __diagused;
    799 
    800 	cpudata->vmcs_refcnt++;
    801 	if (cpudata->vmcs_refcnt > 1) {
    802 #ifdef DIAGNOSTIC
    803 		KASSERT(kpreempt_disabled());
    804 		vmx_vmptrst(&oldpa);
    805 		KASSERT(oldpa == cpudata->vmcs_pa);
    806 #endif
    807 		return;
    808 	}
    809 
    810 	vmcs_ci = cpudata->vmcs_ci;
    811 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    812 
    813 	kpreempt_disable();
    814 
    815 	if (vmcs_ci == NULL) {
    816 		/* This VMCS is loaded for the first time. */
    817 		vmx_vmclear(&cpudata->vmcs_pa);
    818 		cpudata->vmcs_launched = false;
    819 	} else if (vmcs_ci != curcpu()) {
    820 		/* This VMCS is active on a remote CPU. */
    821 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    822 		cpudata->vmcs_launched = false;
    823 	} else {
    824 		/* This VMCS is active on curcpu, nothing to do. */
    825 	}
    826 
    827 	vmx_vmptrld(&cpudata->vmcs_pa);
    828 }
    829 
    830 static void
    831 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    832 {
    833 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    834 	paddr_t oldpa __diagused;
    835 
    836 	KASSERT(kpreempt_disabled());
    837 #ifdef DIAGNOSTIC
    838 	vmx_vmptrst(&oldpa);
    839 	KASSERT(oldpa == cpudata->vmcs_pa);
    840 #endif
    841 	KASSERT(cpudata->vmcs_refcnt > 0);
    842 	cpudata->vmcs_refcnt--;
    843 
    844 	if (cpudata->vmcs_refcnt > 0) {
    845 		return;
    846 	}
    847 
    848 	cpudata->vmcs_ci = curcpu();
    849 	kpreempt_enable();
    850 }
    851 
    852 static void
    853 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    854 {
    855 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    856 	paddr_t oldpa __diagused;
    857 
    858 	KASSERT(kpreempt_disabled());
    859 #ifdef DIAGNOSTIC
    860 	vmx_vmptrst(&oldpa);
    861 	KASSERT(oldpa == cpudata->vmcs_pa);
    862 #endif
    863 	KASSERT(cpudata->vmcs_refcnt == 1);
    864 	cpudata->vmcs_refcnt--;
    865 
    866 	vmx_vmclear(&cpudata->vmcs_pa);
    867 	kpreempt_enable();
    868 }
    869 
    870 /* -------------------------------------------------------------------------- */
    871 
    872 static void
    873 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    874 {
    875 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    876 	uint64_t ctls1;
    877 
    878 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    879 
    880 	if (nmi) {
    881 		// XXX INT_STATE_NMI?
    882 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    883 		cpudata->nmi_window_exit = true;
    884 	} else {
    885 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    886 		cpudata->int_window_exit = true;
    887 	}
    888 
    889 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    890 }
    891 
    892 static void
    893 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    894 {
    895 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    896 	uint64_t ctls1;
    897 
    898 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    899 
    900 	if (nmi) {
    901 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    902 		cpudata->nmi_window_exit = false;
    903 	} else {
    904 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    905 		cpudata->int_window_exit = false;
    906 	}
    907 
    908 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    909 }
    910 
    911 static inline int
    912 vmx_event_has_error(uint64_t vector)
    913 {
    914 	switch (vector) {
    915 	case 8:		/* #DF */
    916 	case 10:	/* #TS */
    917 	case 11:	/* #NP */
    918 	case 12:	/* #SS */
    919 	case 13:	/* #GP */
    920 	case 14:	/* #PF */
    921 	case 17:	/* #AC */
    922 	case 30:	/* #SX */
    923 		return 1;
    924 	default:
    925 		return 0;
    926 	}
    927 }
    928 
    929 static int
    930 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    931     struct nvmm_event *event)
    932 {
    933 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    934 	int type = 0, err = 0, ret = 0;
    935 	uint64_t info, intstate, rflags;
    936 
    937 	if (event->vector >= 256) {
    938 		return EINVAL;
    939 	}
    940 
    941 	vmx_vmcs_enter(vcpu);
    942 
    943 	switch (event->type) {
    944 	case NVMM_EVENT_INTERRUPT_HW:
    945 		type = INTR_TYPE_EXT_INT;
    946 		if (event->vector == 2) {
    947 			type = INTR_TYPE_NMI;
    948 		}
    949 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    950 		if (type == INTR_TYPE_NMI) {
    951 			if (cpudata->nmi_window_exit) {
    952 				ret = EAGAIN;
    953 				goto out;
    954 			}
    955 			vmx_event_waitexit_enable(vcpu, true);
    956 		} else {
    957 			vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
    958 			if ((rflags & PSL_I) == 0 ||
    959 			    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
    960 				vmx_event_waitexit_enable(vcpu, false);
    961 				ret = EAGAIN;
    962 				goto out;
    963 			}
    964 		}
    965 		err = 0;
    966 		break;
    967 	case NVMM_EVENT_INTERRUPT_SW:
    968 		ret = EINVAL;
    969 		goto out;
    970 	case NVMM_EVENT_EXCEPTION:
    971 		if (event->vector == 2 || event->vector >= 32) {
    972 			ret = EINVAL;
    973 			goto out;
    974 		}
    975 		if (event->vector == 3 || event->vector == 0) {
    976 			ret = EINVAL;
    977 			goto out;
    978 		}
    979 		type = INTR_TYPE_HW_EXC;
    980 		err = vmx_event_has_error(event->vector);
    981 		break;
    982 	default:
    983 		ret = EAGAIN;
    984 		goto out;
    985 	}
    986 
    987 	info =
    988 	    __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
    989 	    __SHIFTIN(type, INTR_INFO_TYPE) |
    990 	    __SHIFTIN(err, INTR_INFO_ERROR) |
    991 	    __SHIFTIN(1, INTR_INFO_VALID);
    992 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
    993 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
    994 
    995 out:
    996 	vmx_vmcs_leave(vcpu);
    997 	return ret;
    998 }
    999 
   1000 static void
   1001 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1002 {
   1003 	struct nvmm_event event;
   1004 	int ret __diagused;
   1005 
   1006 	event.type = NVMM_EVENT_EXCEPTION;
   1007 	event.vector = 6;
   1008 	event.u.error = 0;
   1009 
   1010 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1011 	KASSERT(ret == 0);
   1012 }
   1013 
   1014 static void
   1015 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1016 {
   1017 	struct nvmm_event event;
   1018 	int ret __diagused;
   1019 
   1020 	event.type = NVMM_EVENT_EXCEPTION;
   1021 	event.vector = 13;
   1022 	event.u.error = 0;
   1023 
   1024 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1025 	KASSERT(ret == 0);
   1026 }
   1027 
   1028 static inline void
   1029 vmx_inkernel_advance(void)
   1030 {
   1031 	uint64_t rip, inslen, intstate;
   1032 
   1033 	/*
   1034 	 * Maybe we should also apply single-stepping and debug exceptions.
   1035 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1036 	 * debugger.
   1037 	 */
   1038 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1039 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1040 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1041 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1042 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1043 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1044 }
   1045 
   1046 static void
   1047 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1048     struct nvmm_exit *exit)
   1049 {
   1050 	uint64_t qual;
   1051 
   1052 	vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
   1053 
   1054 	if ((qual & INTR_INFO_VALID) == 0) {
   1055 		goto error;
   1056 	}
   1057 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1058 		goto error;
   1059 	}
   1060 
   1061 	exit->reason = NVMM_EXIT_NONE;
   1062 	return;
   1063 
   1064 error:
   1065 	exit->reason = NVMM_EXIT_INVALID;
   1066 }
   1067 
   1068 static void
   1069 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
   1070 {
   1071 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1072 	uint64_t cr4;
   1073 
   1074 	switch (eax) {
   1075 	case 0x00000001:
   1076 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1077 
   1078 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1079 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1080 		    CPUID_LOCAL_APIC_ID);
   1081 
   1082 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1083 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1084 
   1085 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1086 
   1087 		/* CPUID2_OSXSAVE depends on CR4. */
   1088 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   1089 		if (!(cr4 & CR4_OSXSAVE)) {
   1090 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1091 		}
   1092 		break;
   1093 	case 0x00000005:
   1094 	case 0x00000006:
   1095 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1096 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1097 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1098 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1099 		break;
   1100 	case 0x00000007:
   1101 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
   1102 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1103 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1104 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1105 		break;
   1106 	case 0x0000000D:
   1107 		if (vmx_xcr0_mask == 0) {
   1108 			break;
   1109 		}
   1110 		switch (ecx) {
   1111 		case 0:
   1112 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1113 			if (cpudata->gxcr0 & XCR0_SSE) {
   1114 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1115 			} else {
   1116 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1117 			}
   1118 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1119 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
   1120 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1121 			break;
   1122 		case 1:
   1123 			cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
   1124 			break;
   1125 		}
   1126 		break;
   1127 	case 0x40000000:
   1128 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1129 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1130 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1131 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1132 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1133 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1134 		break;
   1135 	case 0x80000001:
   1136 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1137 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1138 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1139 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1140 		break;
   1141 	default:
   1142 		break;
   1143 	}
   1144 }
   1145 
   1146 static void
   1147 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1148     struct nvmm_exit *exit)
   1149 {
   1150 	struct vmx_machdata *machdata = mach->machdata;
   1151 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1152 	struct nvmm_x86_conf_cpuid *cpuid;
   1153 	uint64_t eax, ecx;
   1154 	u_int descs[4];
   1155 	size_t i;
   1156 
   1157 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1158 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1159 	x86_cpuid2(eax, ecx, descs);
   1160 
   1161 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1162 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1163 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1164 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1165 
   1166 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1167 		cpuid = &machdata->cpuid[i];
   1168 		if (!machdata->cpuidpresent[i]) {
   1169 			continue;
   1170 		}
   1171 		if (cpuid->leaf != eax) {
   1172 			continue;
   1173 		}
   1174 
   1175 		/* del */
   1176 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
   1177 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
   1178 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
   1179 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
   1180 
   1181 		/* set */
   1182 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
   1183 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
   1184 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
   1185 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
   1186 
   1187 		break;
   1188 	}
   1189 
   1190 	/* Overwrite non-tunable leaves. */
   1191 	vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
   1192 
   1193 	vmx_inkernel_advance();
   1194 	exit->reason = NVMM_EXIT_NONE;
   1195 }
   1196 
   1197 static void
   1198 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1199     struct nvmm_exit *exit)
   1200 {
   1201 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1202 	uint64_t rflags;
   1203 
   1204 	if (cpudata->int_window_exit) {
   1205 		vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
   1206 		if (rflags & PSL_I) {
   1207 			vmx_event_waitexit_disable(vcpu, false);
   1208 		}
   1209 	}
   1210 
   1211 	vmx_inkernel_advance();
   1212 	exit->reason = NVMM_EXIT_HALTED;
   1213 }
   1214 
   1215 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1216 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1217 #define		CR_TYPE_WRITE	0
   1218 #define		CR_TYPE_READ	1
   1219 #define		CR_TYPE_CLTS	2
   1220 #define		CR_TYPE_LMSW	3
   1221 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1222 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1223 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1224 
   1225 static inline int
   1226 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1227 {
   1228 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1229 	if ((crval & fixed0) != fixed0) {
   1230 		return -1;
   1231 	}
   1232 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1233 	if (crval & ~fixed1) {
   1234 		return -1;
   1235 	}
   1236 	return 0;
   1237 }
   1238 
   1239 static int
   1240 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1241     uint64_t qual)
   1242 {
   1243 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1244 	uint64_t type, gpr, cr0;
   1245 	uint64_t efer, ctls1;
   1246 
   1247 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1248 	if (type != CR_TYPE_WRITE) {
   1249 		return -1;
   1250 	}
   1251 
   1252 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1253 	KASSERT(gpr < 16);
   1254 
   1255 	if (gpr == NVMM_X64_GPR_RSP) {
   1256 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1257 	} else {
   1258 		gpr = cpudata->gprs[gpr];
   1259 	}
   1260 
   1261 	cr0 = gpr | CR0_NE | CR0_ET;
   1262 	cr0 &= ~(CR0_NW|CR0_CD);
   1263 
   1264 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1265 		return -1;
   1266 	}
   1267 
   1268 	/*
   1269 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1270 	 * from CR3.
   1271 	 */
   1272 
   1273 	if (cr0 & CR0_PG) {
   1274 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   1275 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   1276 		if (efer & EFER_LME) {
   1277 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1278 			efer |= EFER_LMA;
   1279 		} else {
   1280 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1281 			efer &= ~EFER_LMA;
   1282 		}
   1283 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1284 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1285 	}
   1286 
   1287 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1288 	vmx_inkernel_advance();
   1289 	return 0;
   1290 }
   1291 
   1292 static int
   1293 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1294     uint64_t qual)
   1295 {
   1296 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1297 	uint64_t type, gpr, cr4;
   1298 
   1299 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1300 	if (type != CR_TYPE_WRITE) {
   1301 		return -1;
   1302 	}
   1303 
   1304 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1305 	KASSERT(gpr < 16);
   1306 
   1307 	if (gpr == NVMM_X64_GPR_RSP) {
   1308 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1309 	} else {
   1310 		gpr = cpudata->gprs[gpr];
   1311 	}
   1312 
   1313 	cr4 = gpr | CR4_VMXE;
   1314 
   1315 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1316 		return -1;
   1317 	}
   1318 
   1319 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1320 	vmx_inkernel_advance();
   1321 	return 0;
   1322 }
   1323 
   1324 static int
   1325 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1326     uint64_t qual)
   1327 {
   1328 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1329 	uint64_t type, gpr;
   1330 	bool write;
   1331 
   1332 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1333 	if (type == CR_TYPE_WRITE) {
   1334 		write = true;
   1335 	} else if (type == CR_TYPE_READ) {
   1336 		write = false;
   1337 	} else {
   1338 		return -1;
   1339 	}
   1340 
   1341 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1342 	KASSERT(gpr < 16);
   1343 
   1344 	if (write) {
   1345 		if (gpr == NVMM_X64_GPR_RSP) {
   1346 			vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
   1347 		} else {
   1348 			cpudata->gcr8 = cpudata->gprs[gpr];
   1349 		}
   1350 	} else {
   1351 		if (gpr == NVMM_X64_GPR_RSP) {
   1352 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1353 		} else {
   1354 			cpudata->gprs[gpr] = cpudata->gcr8;
   1355 		}
   1356 	}
   1357 
   1358 	vmx_inkernel_advance();
   1359 	return 0;
   1360 }
   1361 
   1362 static void
   1363 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1364     struct nvmm_exit *exit)
   1365 {
   1366 	uint64_t qual;
   1367 	int ret;
   1368 
   1369 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1370 
   1371 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1372 	case 0:
   1373 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1374 		break;
   1375 	case 4:
   1376 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1377 		break;
   1378 	case 8:
   1379 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
   1380 		break;
   1381 	default:
   1382 		ret = -1;
   1383 		break;
   1384 	}
   1385 
   1386 	if (ret == -1) {
   1387 		vmx_inject_gp(mach, vcpu);
   1388 	}
   1389 
   1390 	exit->reason = NVMM_EXIT_NONE;
   1391 }
   1392 
   1393 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1394 #define		IO_SIZE_8	0
   1395 #define		IO_SIZE_16	1
   1396 #define		IO_SIZE_32	3
   1397 #define VMX_QUAL_IO_IN		__BIT(3)
   1398 #define VMX_QUAL_IO_STR		__BIT(4)
   1399 #define VMX_QUAL_IO_REP		__BIT(5)
   1400 #define VMX_QUAL_IO_DX		__BIT(6)
   1401 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1402 
   1403 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1404 #define		IO_ADRSIZE_16	0
   1405 #define		IO_ADRSIZE_32	1
   1406 #define		IO_ADRSIZE_64	2
   1407 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1408 
   1409 static void
   1410 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1411     struct nvmm_exit *exit)
   1412 {
   1413 	uint64_t qual, info, inslen, rip;
   1414 
   1415 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1416 	vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
   1417 
   1418 	exit->reason = NVMM_EXIT_IO;
   1419 
   1420 	if (qual & VMX_QUAL_IO_IN) {
   1421 		exit->u.io.type = NVMM_EXIT_IO_IN;
   1422 	} else {
   1423 		exit->u.io.type = NVMM_EXIT_IO_OUT;
   1424 	}
   1425 
   1426 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1427 
   1428 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1429 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1430 
   1431 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1432 		exit->u.io.address_size = 8;
   1433 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1434 		exit->u.io.address_size = 4;
   1435 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1436 		exit->u.io.address_size = 2;
   1437 	}
   1438 
   1439 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1440 		exit->u.io.operand_size = 4;
   1441 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1442 		exit->u.io.operand_size = 2;
   1443 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1444 		exit->u.io.operand_size = 1;
   1445 	}
   1446 
   1447 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1448 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1449 
   1450 	if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
   1451 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1452 	}
   1453 
   1454 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1455 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1456 	exit->u.io.npc = rip + inslen;
   1457 }
   1458 
   1459 static const uint64_t msr_ignore_list[] = {
   1460 	MSR_BIOS_SIGN,
   1461 	MSR_IA32_PLATFORM_ID
   1462 };
   1463 
   1464 static bool
   1465 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1466     struct nvmm_exit *exit)
   1467 {
   1468 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1469 	uint64_t val;
   1470 	size_t i;
   1471 
   1472 	switch (exit->u.msr.type) {
   1473 	case NVMM_EXIT_MSR_RDMSR:
   1474 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1475 			vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
   1476 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1477 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1478 			goto handled;
   1479 		}
   1480 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1481 			val = cpudata->gmsr_misc_enable;
   1482 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1483 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1484 			goto handled;
   1485 		}
   1486 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1487 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1488 				continue;
   1489 			val = 0;
   1490 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1491 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1492 			goto handled;
   1493 		}
   1494 		break;
   1495 	case NVMM_EXIT_MSR_WRMSR:
   1496 		if (exit->u.msr.msr == MSR_TSC) {
   1497 			cpudata->gtsc = exit->u.msr.val;
   1498 			cpudata->gtsc_want_update = true;
   1499 			goto handled;
   1500 		}
   1501 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1502 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
   1503 			goto handled;
   1504 		}
   1505 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1506 			/* Don't care. */
   1507 			goto handled;
   1508 		}
   1509 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1510 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1511 				continue;
   1512 			goto handled;
   1513 		}
   1514 		break;
   1515 	}
   1516 
   1517 	return false;
   1518 
   1519 handled:
   1520 	vmx_inkernel_advance();
   1521 	return true;
   1522 }
   1523 
   1524 static void
   1525 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1526     struct nvmm_exit *exit, bool rdmsr)
   1527 {
   1528 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1529 	uint64_t inslen, rip;
   1530 
   1531 	if (rdmsr) {
   1532 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1533 	} else {
   1534 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1535 	}
   1536 
   1537 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1538 
   1539 	if (rdmsr) {
   1540 		exit->u.msr.val = 0;
   1541 	} else {
   1542 		uint64_t rdx, rax;
   1543 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1544 		rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1545 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1546 	}
   1547 
   1548 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1549 		exit->reason = NVMM_EXIT_NONE;
   1550 		return;
   1551 	}
   1552 
   1553 	exit->reason = NVMM_EXIT_MSR;
   1554 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1555 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1556 	exit->u.msr.npc = rip + inslen;
   1557 }
   1558 
   1559 static void
   1560 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1561     struct nvmm_exit *exit)
   1562 {
   1563 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1564 	uint16_t val;
   1565 
   1566 	exit->reason = NVMM_EXIT_NONE;
   1567 
   1568 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1569 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1570 
   1571 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1572 		goto error;
   1573 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1574 		goto error;
   1575 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1576 		goto error;
   1577 	}
   1578 
   1579 	cpudata->gxcr0 = val;
   1580 
   1581 	vmx_inkernel_advance();
   1582 	return;
   1583 
   1584 error:
   1585 	vmx_inject_gp(mach, vcpu);
   1586 }
   1587 
   1588 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1589 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1590 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1591 
   1592 static void
   1593 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1594     struct nvmm_exit *exit)
   1595 {
   1596 	uint64_t perm;
   1597 	gpaddr_t gpa;
   1598 
   1599 	vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
   1600 
   1601 	exit->reason = NVMM_EXIT_MEMORY;
   1602 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
   1603 	if (perm & VMX_EPT_VIOLATION_WRITE)
   1604 		exit->u.mem.prot = PROT_WRITE;
   1605 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1606 		exit->u.mem.prot = PROT_EXEC;
   1607 	else
   1608 		exit->u.mem.prot = PROT_READ;
   1609 	exit->u.mem.gpa = gpa;
   1610 	exit->u.mem.inst_len = 0;
   1611 }
   1612 
   1613 /* -------------------------------------------------------------------------- */
   1614 
   1615 static void
   1616 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1617 {
   1618 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1619 
   1620 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1621 
   1622 	fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
   1623 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1624 
   1625 	if (vmx_xcr0_mask != 0) {
   1626 		cpudata->hxcr0 = rdxcr(0);
   1627 		wrxcr(0, cpudata->gxcr0);
   1628 	}
   1629 }
   1630 
   1631 static void
   1632 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1633 {
   1634 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1635 
   1636 	if (vmx_xcr0_mask != 0) {
   1637 		cpudata->gxcr0 = rdxcr(0);
   1638 		wrxcr(0, cpudata->hxcr0);
   1639 	}
   1640 
   1641 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1642 	fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
   1643 
   1644 	if (cpudata->ts_set) {
   1645 		stts();
   1646 	}
   1647 }
   1648 
   1649 static void
   1650 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1651 {
   1652 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1653 
   1654 	x86_dbregs_save(curlwp);
   1655 
   1656 	ldr7(0);
   1657 
   1658 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1659 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1660 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1661 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1662 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1663 }
   1664 
   1665 static void
   1666 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1667 {
   1668 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1669 
   1670 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1671 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1672 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1673 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1674 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1675 
   1676 	x86_dbregs_restore(curlwp);
   1677 }
   1678 
   1679 static void
   1680 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1681 {
   1682 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1683 
   1684 	/* This gets restored automatically by the CPU. */
   1685 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1686 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1687 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1688 
   1689 	/* Note: MSR_LSTAR is not static, because of SVS. */
   1690 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1691 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1692 }
   1693 
   1694 static void
   1695 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1696 {
   1697 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1698 
   1699 	wrmsr(MSR_STAR, cpudata->star);
   1700 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1701 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1702 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1703 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1704 }
   1705 
   1706 /* -------------------------------------------------------------------------- */
   1707 
   1708 #define VMX_INVVPID_ADDRESS		0
   1709 #define VMX_INVVPID_CONTEXT		1
   1710 #define VMX_INVVPID_ALL			2
   1711 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1712 
   1713 #define VMX_INVEPT_CONTEXT		1
   1714 #define VMX_INVEPT_ALL			2
   1715 
   1716 static inline void
   1717 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1718 {
   1719 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1720 
   1721 	if (vcpu->hcpu_last != hcpu) {
   1722 		cpudata->gtlb_want_flush = true;
   1723 	}
   1724 }
   1725 
   1726 static inline void
   1727 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1728 {
   1729 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1730 	struct ept_desc ept_desc;
   1731 
   1732 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   1733 		return;
   1734 	}
   1735 
   1736 	vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1737 	ept_desc.mbz = 0;
   1738 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1739 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   1740 }
   1741 
   1742 static inline uint64_t
   1743 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   1744 {
   1745 	struct ept_desc ept_desc;
   1746 	uint64_t machgen;
   1747 
   1748 	machgen = machdata->mach_htlb_gen;
   1749 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1750 		return machgen;
   1751 	}
   1752 
   1753 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   1754 
   1755 	vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1756 	ept_desc.mbz = 0;
   1757 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1758 
   1759 	return machgen;
   1760 }
   1761 
   1762 static inline void
   1763 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   1764 {
   1765 	cpudata->vcpu_htlb_gen = machgen;
   1766 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   1767 }
   1768 
   1769 static int
   1770 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1771     struct nvmm_exit *exit)
   1772 {
   1773 	struct vmx_machdata *machdata = mach->machdata;
   1774 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1775 	struct vpid_desc vpid_desc;
   1776 	struct cpu_info *ci;
   1777 	uint64_t exitcode;
   1778 	uint64_t intstate;
   1779 	uint64_t machgen;
   1780 	int hcpu, s, ret;
   1781 	bool launched;
   1782 
   1783 	vmx_vmcs_enter(vcpu);
   1784 	ci = curcpu();
   1785 	hcpu = cpu_number();
   1786 	launched = cpudata->vmcs_launched;
   1787 
   1788 	vmx_gtlb_catchup(vcpu, hcpu);
   1789 	vmx_htlb_catchup(vcpu, hcpu);
   1790 
   1791 	if (vcpu->hcpu_last != hcpu) {
   1792 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   1793 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   1794 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   1795 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   1796 		cpudata->gtsc_want_update = true;
   1797 		vcpu->hcpu_last = hcpu;
   1798 	}
   1799 
   1800 	vmx_vcpu_guest_dbregs_enter(vcpu);
   1801 	vmx_vcpu_guest_misc_enter(vcpu);
   1802 
   1803 	while (1) {
   1804 		if (cpudata->gtlb_want_flush) {
   1805 			vpid_desc.vpid = cpudata->asid;
   1806 			vpid_desc.addr = 0;
   1807 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   1808 			cpudata->gtlb_want_flush = false;
   1809 		}
   1810 
   1811 		if (__predict_false(cpudata->gtsc_want_update)) {
   1812 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
   1813 			cpudata->gtsc_want_update = false;
   1814 		}
   1815 
   1816 		s = splhigh();
   1817 		machgen = vmx_htlb_flush(machdata, cpudata);
   1818 		vmx_vcpu_guest_fpu_enter(vcpu);
   1819 		lcr2(cpudata->gcr2);
   1820 		if (launched) {
   1821 			ret = vmx_vmresume(cpudata->gprs);
   1822 		} else {
   1823 			ret = vmx_vmlaunch(cpudata->gprs);
   1824 		}
   1825 		cpudata->gcr2 = rcr2();
   1826 		vmx_vcpu_guest_fpu_leave(vcpu);
   1827 		vmx_htlb_flush_ack(cpudata, machgen);
   1828 		splx(s);
   1829 
   1830 		if (__predict_false(ret != 0)) {
   1831 			exit->reason = NVMM_EXIT_INVALID;
   1832 			break;
   1833 		}
   1834 
   1835 		launched = true;
   1836 
   1837 		vmx_vmread(VMCS_EXIT_REASON, &exitcode);
   1838 		exitcode &= __BITS(15,0);
   1839 
   1840 		switch (exitcode) {
   1841 		case VMCS_EXITCODE_EXC_NMI:
   1842 			vmx_exit_exc_nmi(mach, vcpu, exit);
   1843 			break;
   1844 		case VMCS_EXITCODE_EXT_INT:
   1845 			exit->reason = NVMM_EXIT_NONE;
   1846 			break;
   1847 		case VMCS_EXITCODE_CPUID:
   1848 			vmx_exit_cpuid(mach, vcpu, exit);
   1849 			break;
   1850 		case VMCS_EXITCODE_HLT:
   1851 			vmx_exit_hlt(mach, vcpu, exit);
   1852 			break;
   1853 		case VMCS_EXITCODE_CR:
   1854 			vmx_exit_cr(mach, vcpu, exit);
   1855 			break;
   1856 		case VMCS_EXITCODE_IO:
   1857 			vmx_exit_io(mach, vcpu, exit);
   1858 			break;
   1859 		case VMCS_EXITCODE_RDMSR:
   1860 			vmx_exit_msr(mach, vcpu, exit, true);
   1861 			break;
   1862 		case VMCS_EXITCODE_WRMSR:
   1863 			vmx_exit_msr(mach, vcpu, exit, false);
   1864 			break;
   1865 		case VMCS_EXITCODE_SHUTDOWN:
   1866 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1867 			break;
   1868 		case VMCS_EXITCODE_MONITOR:
   1869 			exit->reason = NVMM_EXIT_MONITOR;
   1870 			break;
   1871 		case VMCS_EXITCODE_MWAIT:
   1872 			exit->reason = NVMM_EXIT_MWAIT;
   1873 			break;
   1874 		case VMCS_EXITCODE_XSETBV:
   1875 			vmx_exit_xsetbv(mach, vcpu, exit);
   1876 			break;
   1877 		case VMCS_EXITCODE_RDPMC:
   1878 		case VMCS_EXITCODE_RDTSCP:
   1879 		case VMCS_EXITCODE_INVVPID:
   1880 		case VMCS_EXITCODE_INVEPT:
   1881 		case VMCS_EXITCODE_VMCALL:
   1882 		case VMCS_EXITCODE_VMCLEAR:
   1883 		case VMCS_EXITCODE_VMLAUNCH:
   1884 		case VMCS_EXITCODE_VMPTRLD:
   1885 		case VMCS_EXITCODE_VMPTRST:
   1886 		case VMCS_EXITCODE_VMREAD:
   1887 		case VMCS_EXITCODE_VMRESUME:
   1888 		case VMCS_EXITCODE_VMWRITE:
   1889 		case VMCS_EXITCODE_VMXOFF:
   1890 		case VMCS_EXITCODE_VMXON:
   1891 			vmx_inject_ud(mach, vcpu);
   1892 			exit->reason = NVMM_EXIT_NONE;
   1893 			break;
   1894 		case VMCS_EXITCODE_EPT_VIOLATION:
   1895 			vmx_exit_epf(mach, vcpu, exit);
   1896 			break;
   1897 		case VMCS_EXITCODE_INT_WINDOW:
   1898 			vmx_event_waitexit_disable(vcpu, false);
   1899 			exit->reason = NVMM_EXIT_INT_READY;
   1900 			break;
   1901 		case VMCS_EXITCODE_NMI_WINDOW:
   1902 			vmx_event_waitexit_disable(vcpu, true);
   1903 			exit->reason = NVMM_EXIT_NMI_READY;
   1904 			break;
   1905 		default:
   1906 			exit->reason = NVMM_EXIT_INVALID;
   1907 			break;
   1908 		}
   1909 
   1910 		/* If no reason to return to userland, keep rolling. */
   1911 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1912 			break;
   1913 		}
   1914 		if (curcpu()->ci_data.cpu_softints != 0) {
   1915 			break;
   1916 		}
   1917 		if (curlwp->l_flag & LW_USERRET) {
   1918 			break;
   1919 		}
   1920 		if (exit->reason != NVMM_EXIT_NONE) {
   1921 			break;
   1922 		}
   1923 	}
   1924 
   1925 	cpudata->vmcs_launched = launched;
   1926 
   1927 	vmx_vmread(VMCS_TSC_OFFSET, &cpudata->gtsc);
   1928 	cpudata->gtsc += rdtsc();
   1929 
   1930 	vmx_vcpu_guest_misc_leave(vcpu);
   1931 	vmx_vcpu_guest_dbregs_leave(vcpu);
   1932 
   1933 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
   1934 	vmx_vmread(VMCS_GUEST_RFLAGS,
   1935 	    &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
   1936 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1937 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1938 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   1939 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1940 	    cpudata->int_window_exit;
   1941 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1942 	    cpudata->nmi_window_exit;
   1943 
   1944 	vmx_vmcs_leave(vcpu);
   1945 
   1946 	return 0;
   1947 }
   1948 
   1949 /* -------------------------------------------------------------------------- */
   1950 
   1951 static int
   1952 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1953 {
   1954 	struct pglist pglist;
   1955 	paddr_t _pa;
   1956 	vaddr_t _va;
   1957 	size_t i;
   1958 	int ret;
   1959 
   1960 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1961 	    &pglist, 1, 0);
   1962 	if (ret != 0)
   1963 		return ENOMEM;
   1964 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1965 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1966 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1967 	if (_va == 0)
   1968 		goto error;
   1969 
   1970 	for (i = 0; i < npages; i++) {
   1971 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1972 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1973 	}
   1974 	pmap_update(pmap_kernel());
   1975 
   1976 	memset((void *)_va, 0, npages * PAGE_SIZE);
   1977 
   1978 	*pa = _pa;
   1979 	*va = _va;
   1980 	return 0;
   1981 
   1982 error:
   1983 	for (i = 0; i < npages; i++) {
   1984 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   1985 	}
   1986 	return ENOMEM;
   1987 }
   1988 
   1989 static void
   1990 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   1991 {
   1992 	size_t i;
   1993 
   1994 	pmap_kremove(va, npages * PAGE_SIZE);
   1995 	pmap_update(pmap_kernel());
   1996 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   1997 	for (i = 0; i < npages; i++) {
   1998 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   1999 	}
   2000 }
   2001 
   2002 /* -------------------------------------------------------------------------- */
   2003 
   2004 static void
   2005 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   2006 {
   2007 	uint64_t byte;
   2008 	uint8_t bitoff;
   2009 
   2010 	if (msr < 0x00002000) {
   2011 		/* Range 1 */
   2012 		byte = ((msr - 0x00000000) / 8) + 0;
   2013 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2014 		/* Range 2 */
   2015 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2016 	} else {
   2017 		panic("%s: wrong range", __func__);
   2018 	}
   2019 
   2020 	bitoff = (msr & 0x7);
   2021 
   2022 	if (read) {
   2023 		bitmap[byte] &= ~__BIT(bitoff);
   2024 	}
   2025 	if (write) {
   2026 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2027 	}
   2028 }
   2029 
   2030 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2031 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2032 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2033 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2034 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2035 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2036 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2037 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2038 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2039 
   2040 static void
   2041 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2042 {
   2043 	uint64_t attrib;
   2044 
   2045 	attrib =
   2046 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2047 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2048 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2049 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2050 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2051 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2052 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2053 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2054 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2055 
   2056 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2057 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2058 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2059 	}
   2060 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2061 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2062 }
   2063 
   2064 static void
   2065 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2066 {
   2067 	uint64_t selector, base, limit, attrib = 0;
   2068 
   2069 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2070 		vmx_vmread(vmx_guest_segs[idx].selector, &selector);
   2071 		vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
   2072 	}
   2073 	vmx_vmread(vmx_guest_segs[idx].limit, &limit);
   2074 	vmx_vmread(vmx_guest_segs[idx].base, &base);
   2075 
   2076 	segs[idx].selector = selector;
   2077 	segs[idx].limit = limit;
   2078 	segs[idx].base = base;
   2079 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2080 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2081 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2082 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2083 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2084 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2085 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2086 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2087 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2088 		segs[idx].attrib.p = 0;
   2089 	}
   2090 }
   2091 
   2092 static inline bool
   2093 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2094 {
   2095 	uint64_t cr0, cr3, cr4, efer;
   2096 
   2097 	if (flags & NVMM_X64_STATE_CRS) {
   2098 		vmx_vmread(VMCS_GUEST_CR0, &cr0);
   2099 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2100 			return true;
   2101 		}
   2102 		vmx_vmread(VMCS_GUEST_CR3, &cr3);
   2103 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2104 			return true;
   2105 		}
   2106 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   2107 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2108 			return true;
   2109 		}
   2110 	}
   2111 
   2112 	if (flags & NVMM_X64_STATE_MSRS) {
   2113 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   2114 		if ((efer ^
   2115 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2116 			return true;
   2117 		}
   2118 	}
   2119 
   2120 	return false;
   2121 }
   2122 
   2123 static void
   2124 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   2125 {
   2126 	const struct nvmm_x64_state *state = data;
   2127 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2128 	struct fxsave *fpustate;
   2129 	uint64_t ctls1, intstate;
   2130 
   2131 	vmx_vmcs_enter(vcpu);
   2132 
   2133 	if (vmx_state_tlb_flush(state, flags)) {
   2134 		cpudata->gtlb_want_flush = true;
   2135 	}
   2136 
   2137 	if (flags & NVMM_X64_STATE_SEGS) {
   2138 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2139 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2140 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2141 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2142 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2143 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2144 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2145 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2146 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2147 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2148 	}
   2149 
   2150 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2151 	if (flags & NVMM_X64_STATE_GPRS) {
   2152 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2153 
   2154 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2155 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2156 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2157 	}
   2158 
   2159 	if (flags & NVMM_X64_STATE_CRS) {
   2160 		/*
   2161 		 * CR0_NE and CR4_VMXE are mandatory.
   2162 		 */
   2163 		vmx_vmwrite(VMCS_GUEST_CR0,
   2164 		    state->crs[NVMM_X64_CR_CR0] | CR0_NE);
   2165 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2166 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2167 		vmx_vmwrite(VMCS_GUEST_CR4,
   2168 		    state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
   2169 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2170 
   2171 		if (vmx_xcr0_mask != 0) {
   2172 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2173 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2174 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2175 			cpudata->gxcr0 |= XCR0_X87;
   2176 		}
   2177 	}
   2178 
   2179 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2180 	if (flags & NVMM_X64_STATE_DRS) {
   2181 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2182 
   2183 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2184 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2185 	}
   2186 
   2187 	if (flags & NVMM_X64_STATE_MSRS) {
   2188 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2189 		    state->msrs[NVMM_X64_MSR_STAR];
   2190 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2191 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2192 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2193 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2194 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2195 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2196 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2197 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2198 
   2199 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2200 		    state->msrs[NVMM_X64_MSR_EFER]);
   2201 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2202 		    state->msrs[NVMM_X64_MSR_PAT]);
   2203 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2204 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2205 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2206 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2207 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2208 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2209 
   2210 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   2211 		cpudata->gtsc_want_update = true;
   2212 
   2213 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2214 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   2215 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2216 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2217 		} else {
   2218 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2219 		}
   2220 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2221 	}
   2222 
   2223 	if (flags & NVMM_X64_STATE_MISC) {
   2224 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2225 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2226 		if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
   2227 			intstate |= INT_STATE_MOVSS;
   2228 		}
   2229 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2230 
   2231 		if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
   2232 			vmx_event_waitexit_enable(vcpu, false);
   2233 		} else {
   2234 			vmx_event_waitexit_disable(vcpu, false);
   2235 		}
   2236 
   2237 		if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
   2238 			vmx_event_waitexit_enable(vcpu, true);
   2239 		} else {
   2240 			vmx_event_waitexit_disable(vcpu, true);
   2241 		}
   2242 	}
   2243 
   2244 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2245 	if (flags & NVMM_X64_STATE_FPU) {
   2246 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2247 		    sizeof(state->fpu));
   2248 
   2249 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2250 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2251 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2252 
   2253 		if (vmx_xcr0_mask != 0) {
   2254 			/* Reset XSTATE_BV, to force a reload. */
   2255 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2256 		}
   2257 	}
   2258 
   2259 	vmx_vmcs_leave(vcpu);
   2260 }
   2261 
   2262 static void
   2263 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2264 {
   2265 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2266 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2267 	uint64_t intstate;
   2268 
   2269 	vmx_vmcs_enter(vcpu);
   2270 
   2271 	if (flags & NVMM_X64_STATE_SEGS) {
   2272 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2273 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2274 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2275 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2276 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2277 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2278 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2279 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2280 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2281 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2282 	}
   2283 
   2284 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2285 	if (flags & NVMM_X64_STATE_GPRS) {
   2286 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2287 
   2288 		vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
   2289 		vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
   2290 		vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
   2291 	}
   2292 
   2293 	if (flags & NVMM_X64_STATE_CRS) {
   2294 		vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
   2295 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2296 		vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
   2297 		vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
   2298 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2299 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2300 
   2301 		/* Hide VMXE. */
   2302 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2303 	}
   2304 
   2305 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2306 	if (flags & NVMM_X64_STATE_DRS) {
   2307 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2308 
   2309 		vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
   2310 	}
   2311 
   2312 	if (flags & NVMM_X64_STATE_MSRS) {
   2313 		state->msrs[NVMM_X64_MSR_STAR] =
   2314 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2315 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2316 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2317 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2318 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2319 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2320 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2321 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2322 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2323 
   2324 		vmx_vmread(VMCS_GUEST_IA32_EFER,
   2325 		    &state->msrs[NVMM_X64_MSR_EFER]);
   2326 		vmx_vmread(VMCS_GUEST_IA32_PAT,
   2327 		    &state->msrs[NVMM_X64_MSR_PAT]);
   2328 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
   2329 		    &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2330 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
   2331 		    &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2332 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
   2333 		    &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2334 
   2335 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2336 	}
   2337 
   2338 	if (flags & NVMM_X64_STATE_MISC) {
   2339 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2340 		state->misc[NVMM_X64_MISC_INT_SHADOW] =
   2341 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2342 
   2343 		state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
   2344 		    cpudata->int_window_exit;
   2345 		state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
   2346 		    cpudata->nmi_window_exit;
   2347 	}
   2348 
   2349 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2350 	if (flags & NVMM_X64_STATE_FPU) {
   2351 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2352 		    sizeof(state->fpu));
   2353 	}
   2354 
   2355 	vmx_vmcs_leave(vcpu);
   2356 }
   2357 
   2358 /* -------------------------------------------------------------------------- */
   2359 
   2360 static void
   2361 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2362 {
   2363 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2364 	size_t i, oct, bit;
   2365 
   2366 	mutex_enter(&vmx_asidlock);
   2367 
   2368 	for (i = 0; i < vmx_maxasid; i++) {
   2369 		oct = i / 8;
   2370 		bit = i % 8;
   2371 
   2372 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2373 			continue;
   2374 		}
   2375 
   2376 		cpudata->asid = i;
   2377 
   2378 		vmx_asidmap[oct] |= __BIT(bit);
   2379 		vmx_vmwrite(VMCS_VPID, i);
   2380 		mutex_exit(&vmx_asidlock);
   2381 		return;
   2382 	}
   2383 
   2384 	mutex_exit(&vmx_asidlock);
   2385 
   2386 	panic("%s: impossible", __func__);
   2387 }
   2388 
   2389 static void
   2390 vmx_asid_free(struct nvmm_cpu *vcpu)
   2391 {
   2392 	size_t oct, bit;
   2393 	uint64_t asid;
   2394 
   2395 	vmx_vmread(VMCS_VPID, &asid);
   2396 
   2397 	oct = asid / 8;
   2398 	bit = asid % 8;
   2399 
   2400 	mutex_enter(&vmx_asidlock);
   2401 	vmx_asidmap[oct] &= ~__BIT(bit);
   2402 	mutex_exit(&vmx_asidlock);
   2403 }
   2404 
   2405 static void
   2406 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2407 {
   2408 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2409 	struct vmcs *vmcs = cpudata->vmcs;
   2410 	struct msr_entry *gmsr = cpudata->gmsr;
   2411 	extern uint8_t vmx_resume_rip;
   2412 	uint64_t rev, eptp;
   2413 
   2414 	rev = vmx_get_revision();
   2415 
   2416 	memset(vmcs, 0, VMCS_SIZE);
   2417 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2418 	vmcs->abort = 0;
   2419 
   2420 	vmx_vmcs_enter(vcpu);
   2421 
   2422 	/* No link pointer. */
   2423 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2424 
   2425 	/* Install the CTLSs. */
   2426 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2427 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2428 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2429 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2430 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2431 
   2432 	/* Allow direct access to certain MSRs. */
   2433 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2434 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2435 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2436 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2437 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2438 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2439 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2440 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2441 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2442 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2443 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2444 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2445 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2446 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   2447 	    true, false);
   2448 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2449 
   2450 	/*
   2451 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2452 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2453 	 */
   2454 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2455 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2456 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2457 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2458 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2459 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2460 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2461 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2462 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2463 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2464 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2465 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2466 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2467 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2468 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2469 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2470 
   2471 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   2472 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
   2473 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   2474 
   2475 	/* Force CR4_VMXE to zero. */
   2476 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   2477 
   2478 	/* Set the Host state for resuming. */
   2479 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2480 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2481 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2482 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2483 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2484 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2485 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2486 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2487 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2488 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2489 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   2490 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2491 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2492 	vmx_vmwrite(VMCS_HOST_CR0, rcr0());
   2493 
   2494 	/* Generate ASID. */
   2495 	vmx_asid_alloc(vcpu);
   2496 
   2497 	/* Enable Extended Paging, 4-Level. */
   2498 	eptp =
   2499 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2500 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2501 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2502 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2503 	vmx_vmwrite(VMCS_EPTP, eptp);
   2504 
   2505 	/* Init IA32_MISC_ENABLE. */
   2506 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2507 	cpudata->gmsr_misc_enable &=
   2508 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2509 	cpudata->gmsr_misc_enable |=
   2510 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2511 
   2512 	/* Init XSAVE header. */
   2513 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2514 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2515 
   2516 	/* These MSRs are static. */
   2517 	cpudata->star = rdmsr(MSR_STAR);
   2518 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2519 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2520 
   2521 	/* Install the RESET state. */
   2522 	vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   2523 
   2524 	vmx_vmcs_leave(vcpu);
   2525 }
   2526 
   2527 static int
   2528 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2529 {
   2530 	struct vmx_cpudata *cpudata;
   2531 	int error;
   2532 
   2533 	/* Allocate the VMX cpudata. */
   2534 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2535 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2536 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2537 	vcpu->cpudata = cpudata;
   2538 
   2539 	/* VMCS */
   2540 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2541 	    VMCS_NPAGES);
   2542 	if (error)
   2543 		goto error;
   2544 
   2545 	/* MSR Bitmap */
   2546 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2547 	    MSRBM_NPAGES);
   2548 	if (error)
   2549 		goto error;
   2550 
   2551 	/* Guest MSR List */
   2552 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2553 	if (error)
   2554 		goto error;
   2555 
   2556 	kcpuset_create(&cpudata->htlb_want_flush, true);
   2557 
   2558 	/* Init the VCPU info. */
   2559 	vmx_vcpu_init(mach, vcpu);
   2560 
   2561 	return 0;
   2562 
   2563 error:
   2564 	if (cpudata->vmcs_pa) {
   2565 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2566 		    VMCS_NPAGES);
   2567 	}
   2568 	if (cpudata->msrbm_pa) {
   2569 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2570 		    MSRBM_NPAGES);
   2571 	}
   2572 	if (cpudata->gmsr_pa) {
   2573 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2574 	}
   2575 
   2576 	kmem_free(cpudata, sizeof(*cpudata));
   2577 	return error;
   2578 }
   2579 
   2580 static void
   2581 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2582 {
   2583 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2584 
   2585 	vmx_vmcs_enter(vcpu);
   2586 	vmx_asid_free(vcpu);
   2587 	vmx_vmcs_destroy(vcpu);
   2588 
   2589 	kcpuset_destroy(cpudata->htlb_want_flush);
   2590 
   2591 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2592 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2593 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2594 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2595 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2596 }
   2597 
   2598 /* -------------------------------------------------------------------------- */
   2599 
   2600 static void
   2601 vmx_tlb_flush(struct pmap *pm)
   2602 {
   2603 	struct nvmm_machine *mach = pm->pm_data;
   2604 	struct vmx_machdata *machdata = mach->machdata;
   2605 
   2606 	atomic_inc_64(&machdata->mach_htlb_gen);
   2607 
   2608 	/* Generates IPIs, which cause #VMEXITs. */
   2609 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2610 }
   2611 
   2612 static void
   2613 vmx_machine_create(struct nvmm_machine *mach)
   2614 {
   2615 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2616 	struct vmx_machdata *machdata;
   2617 
   2618 	/* Convert to EPT. */
   2619 	pmap_ept_transform(pmap);
   2620 
   2621 	/* Fill in pmap info. */
   2622 	pmap->pm_data = (void *)mach;
   2623 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2624 
   2625 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2626 	mach->machdata = machdata;
   2627 
   2628 	/* Start with an hTLB flush everywhere. */
   2629 	machdata->mach_htlb_gen = 1;
   2630 }
   2631 
   2632 static void
   2633 vmx_machine_destroy(struct nvmm_machine *mach)
   2634 {
   2635 	struct vmx_machdata *machdata = mach->machdata;
   2636 
   2637 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2638 }
   2639 
   2640 static int
   2641 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2642 {
   2643 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2644 	struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
   2645 	size_t i;
   2646 
   2647 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2648 		return EINVAL;
   2649 	}
   2650 
   2651 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2652 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2653 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2654 	    (cpuid->set.edx & cpuid->del.edx))) {
   2655 		return EINVAL;
   2656 	}
   2657 
   2658 	/* If already here, replace. */
   2659 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2660 		if (!machdata->cpuidpresent[i]) {
   2661 			continue;
   2662 		}
   2663 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2664 			memcpy(&machdata->cpuid[i], cpuid,
   2665 			    sizeof(struct nvmm_x86_conf_cpuid));
   2666 			return 0;
   2667 		}
   2668 	}
   2669 
   2670 	/* Not here, insert. */
   2671 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2672 		if (!machdata->cpuidpresent[i]) {
   2673 			machdata->cpuidpresent[i] = true;
   2674 			memcpy(&machdata->cpuid[i], cpuid,
   2675 			    sizeof(struct nvmm_x86_conf_cpuid));
   2676 			return 0;
   2677 		}
   2678 	}
   2679 
   2680 	return ENOBUFS;
   2681 }
   2682 
   2683 /* -------------------------------------------------------------------------- */
   2684 
   2685 static int
   2686 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   2687     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   2688 {
   2689 	uint64_t basic, val, true_val;
   2690 	bool one_allowed, zero_allowed, has_true;
   2691 	size_t i;
   2692 
   2693 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   2694 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   2695 
   2696 	val = rdmsr(msr_ctls);
   2697 	if (has_true) {
   2698 		true_val = rdmsr(msr_true_ctls);
   2699 	} else {
   2700 		true_val = val;
   2701 	}
   2702 
   2703 #define ONE_ALLOWED(msrval, bitoff) \
   2704 	((msrval & __BIT(32 + bitoff)) != 0)
   2705 #define ZERO_ALLOWED(msrval, bitoff) \
   2706 	((msrval & __BIT(bitoff)) == 0)
   2707 
   2708 	for (i = 0; i < 32; i++) {
   2709 		one_allowed = ONE_ALLOWED(true_val, i);
   2710 		zero_allowed = ZERO_ALLOWED(true_val, i);
   2711 
   2712 		if (zero_allowed && !one_allowed) {
   2713 			if (set_one & __BIT(i))
   2714 				return -1;
   2715 			*res &= ~__BIT(i);
   2716 		} else if (one_allowed && !zero_allowed) {
   2717 			if (set_zero & __BIT(i))
   2718 				return -1;
   2719 			*res |= __BIT(i);
   2720 		} else {
   2721 			if (set_zero & __BIT(i)) {
   2722 				*res &= ~__BIT(i);
   2723 			} else if (set_one & __BIT(i)) {
   2724 				*res |= __BIT(i);
   2725 			} else if (!has_true) {
   2726 				*res &= ~__BIT(i);
   2727 			} else if (ZERO_ALLOWED(val, i)) {
   2728 				*res &= ~__BIT(i);
   2729 			} else if (ONE_ALLOWED(val, i)) {
   2730 				*res |= __BIT(i);
   2731 			} else {
   2732 				return -1;
   2733 			}
   2734 		}
   2735 	}
   2736 
   2737 	return 0;
   2738 }
   2739 
   2740 static bool
   2741 vmx_ident(void)
   2742 {
   2743 	uint64_t msr;
   2744 	int ret;
   2745 
   2746 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   2747 		return false;
   2748 	}
   2749 
   2750 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   2751 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   2752 		return false;
   2753 	}
   2754 
   2755 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   2756 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   2757 		return false;
   2758 	}
   2759 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   2760 		return false;
   2761 	}
   2762 
   2763 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   2764 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   2765 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   2766 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   2767 	if (ret == -1) {
   2768 		return false;
   2769 	}
   2770 
   2771 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   2772 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   2773 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   2774 	if (ret == -1) {
   2775 		return false;
   2776 	}
   2777 
   2778 	/* Init the CTLSs right now, and check for errors. */
   2779 	ret = vmx_init_ctls(
   2780 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   2781 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   2782 	    &vmx_pinbased_ctls);
   2783 	if (ret == -1) {
   2784 		return false;
   2785 	}
   2786 	ret = vmx_init_ctls(
   2787 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   2788 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   2789 	    &vmx_procbased_ctls);
   2790 	if (ret == -1) {
   2791 		return false;
   2792 	}
   2793 	ret = vmx_init_ctls(
   2794 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   2795 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   2796 	    &vmx_procbased_ctls2);
   2797 	if (ret == -1) {
   2798 		return false;
   2799 	}
   2800 	ret = vmx_init_ctls(
   2801 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   2802 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   2803 	    &vmx_entry_ctls);
   2804 	if (ret == -1) {
   2805 		return false;
   2806 	}
   2807 	ret = vmx_init_ctls(
   2808 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   2809 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   2810 	    &vmx_exit_ctls);
   2811 	if (ret == -1) {
   2812 		return false;
   2813 	}
   2814 
   2815 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2816 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   2817 		return false;
   2818 	}
   2819 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   2820 		return false;
   2821 	}
   2822 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   2823 		return false;
   2824 	}
   2825 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   2826 		pmap_ept_has_ad = true;
   2827 	} else {
   2828 		pmap_ept_has_ad = false;
   2829 	}
   2830 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   2831 		return false;
   2832 	}
   2833 
   2834 	return true;
   2835 }
   2836 
   2837 static void
   2838 vmx_init_asid(uint32_t maxasid)
   2839 {
   2840 	size_t allocsz;
   2841 
   2842 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2843 
   2844 	vmx_maxasid = maxasid;
   2845 	allocsz = roundup(maxasid, 8) / 8;
   2846 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2847 
   2848 	/* ASID 0 is reserved for the host. */
   2849 	vmx_asidmap[0] |= __BIT(0);
   2850 }
   2851 
   2852 static void
   2853 vmx_change_cpu(void *arg1, void *arg2)
   2854 {
   2855 	struct cpu_info *ci = curcpu();
   2856 	bool enable = (bool)arg1;
   2857 	uint64_t cr4;
   2858 
   2859 	if (!enable) {
   2860 		vmx_vmxoff();
   2861 	}
   2862 
   2863 	cr4 = rcr4();
   2864 	if (enable) {
   2865 		cr4 |= CR4_VMXE;
   2866 	} else {
   2867 		cr4 &= ~CR4_VMXE;
   2868 	}
   2869 	lcr4(cr4);
   2870 
   2871 	if (enable) {
   2872 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   2873 	}
   2874 }
   2875 
   2876 static void
   2877 vmx_init_l1tf(void)
   2878 {
   2879 	u_int descs[4];
   2880 	uint64_t msr;
   2881 
   2882 	if (cpuid_level < 7) {
   2883 		return;
   2884 	}
   2885 
   2886 	x86_cpuid(7, descs);
   2887 
   2888 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   2889 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   2890 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   2891 			/* No mitigation needed. */
   2892 			return;
   2893 		}
   2894 	}
   2895 
   2896 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   2897 		/* Enable hardware mitigation. */
   2898 		vmx_msrlist_entry_nmsr += 1;
   2899 	}
   2900 }
   2901 
   2902 static void
   2903 vmx_init(void)
   2904 {
   2905 	CPU_INFO_ITERATOR cii;
   2906 	struct cpu_info *ci;
   2907 	uint64_t xc, msr;
   2908 	struct vmxon *vmxon;
   2909 	uint32_t revision;
   2910 	paddr_t pa;
   2911 	vaddr_t va;
   2912 	int error;
   2913 
   2914 	/* Init the ASID bitmap (VPID). */
   2915 	vmx_init_asid(VPID_MAX);
   2916 
   2917 	/* Init the XCR0 mask. */
   2918 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   2919 
   2920 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   2921 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2922 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   2923 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   2924 	} else {
   2925 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   2926 	}
   2927 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   2928 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   2929 	} else {
   2930 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   2931 	}
   2932 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   2933 		vmx_eptp_type = EPTP_TYPE_WB;
   2934 	} else {
   2935 		vmx_eptp_type = EPTP_TYPE_UC;
   2936 	}
   2937 
   2938 	/* Init the L1TF mitigation. */
   2939 	vmx_init_l1tf();
   2940 
   2941 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   2942 	revision = vmx_get_revision();
   2943 
   2944 	for (CPU_INFO_FOREACH(cii, ci)) {
   2945 		error = vmx_memalloc(&pa, &va, 1);
   2946 		if (error) {
   2947 			panic("%s: out of memory", __func__);
   2948 		}
   2949 		vmxoncpu[cpu_index(ci)].pa = pa;
   2950 		vmxoncpu[cpu_index(ci)].va = va;
   2951 
   2952 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   2953 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   2954 	}
   2955 
   2956 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   2957 	xc_wait(xc);
   2958 }
   2959 
   2960 static void
   2961 vmx_fini_asid(void)
   2962 {
   2963 	size_t allocsz;
   2964 
   2965 	allocsz = roundup(vmx_maxasid, 8) / 8;
   2966 	kmem_free(vmx_asidmap, allocsz);
   2967 
   2968 	mutex_destroy(&vmx_asidlock);
   2969 }
   2970 
   2971 static void
   2972 vmx_fini(void)
   2973 {
   2974 	uint64_t xc;
   2975 	size_t i;
   2976 
   2977 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   2978 	xc_wait(xc);
   2979 
   2980 	for (i = 0; i < MAXCPUS; i++) {
   2981 		if (vmxoncpu[i].pa != 0)
   2982 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   2983 	}
   2984 
   2985 	vmx_fini_asid();
   2986 }
   2987 
   2988 static void
   2989 vmx_capability(struct nvmm_capability *cap)
   2990 {
   2991 	cap->u.x86.xcr0_mask = vmx_xcr0_mask;
   2992 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   2993 	cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
   2994 }
   2995 
   2996 const struct nvmm_impl nvmm_x86_vmx = {
   2997 	.ident = vmx_ident,
   2998 	.init = vmx_init,
   2999 	.fini = vmx_fini,
   3000 	.capability = vmx_capability,
   3001 	.conf_max = NVMM_X86_NCONF,
   3002 	.conf_sizes = vmx_conf_sizes,
   3003 	.state_size = sizeof(struct nvmm_x64_state),
   3004 	.machine_create = vmx_machine_create,
   3005 	.machine_destroy = vmx_machine_destroy,
   3006 	.machine_configure = vmx_machine_configure,
   3007 	.vcpu_create = vmx_vcpu_create,
   3008 	.vcpu_destroy = vmx_vcpu_destroy,
   3009 	.vcpu_setstate = vmx_vcpu_setstate,
   3010 	.vcpu_getstate = vmx_vcpu_getstate,
   3011 	.vcpu_inject = vmx_vcpu_inject,
   3012 	.vcpu_run = vmx_vcpu_run
   3013 };
   3014