nvmm_x86_vmx.c revision 1.22 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.22 2019/04/03 18:05:55 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.22 2019/04/03 18:05:55 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int _vmx_invept(uint64_t op, void *desc);
60 int _vmx_invvpid(uint64_t op, void *desc);
61 int _vmx_vmread(uint64_t op, uint64_t *val);
62 int _vmx_vmwrite(uint64_t op, uint64_t val);
63 int _vmx_vmptrld(paddr_t *pa);
64 int _vmx_vmptrst(paddr_t *pa);
65 int _vmx_vmclear(paddr_t *pa);
66 int vmx_vmlaunch(uint64_t *gprs);
67 int vmx_vmresume(uint64_t *gprs);
68
69 #define vmx_vmxon(a) \
70 if (__predict_false(_vmx_vmxon(a) != 0)) { \
71 panic("%s: VMXON failed", __func__); \
72 }
73 #define vmx_vmxoff() \
74 if (__predict_false(_vmx_vmxoff() != 0)) { \
75 panic("%s: VMXOFF failed", __func__); \
76 }
77 #define vmx_invept(a, b) \
78 if (__predict_false(_vmx_invept(a, b) != 0)) { \
79 panic("%s: INVEPT failed", __func__); \
80 }
81 #define vmx_invvpid(a, b) \
82 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
83 panic("%s: INVVPID failed", __func__); \
84 }
85 #define vmx_vmread(a, b) \
86 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
87 panic("%s: VMREAD failed", __func__); \
88 }
89 #define vmx_vmwrite(a, b) \
90 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
91 panic("%s: VMWRITE failed", __func__); \
92 }
93 #define vmx_vmptrld(a) \
94 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
95 panic("%s: VMPTRLD failed", __func__); \
96 }
97 #define vmx_vmptrst(a) \
98 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
99 panic("%s: VMPTRST failed", __func__); \
100 }
101 #define vmx_vmclear(a) \
102 if (__predict_false(_vmx_vmclear(a) != 0)) { \
103 panic("%s: VMCLEAR failed", __func__); \
104 }
105
106 #define MSR_IA32_FEATURE_CONTROL 0x003A
107 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
108 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
109 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
110
111 #define MSR_IA32_VMX_BASIC 0x0480
112 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
113 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
114 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
115 #define IA32_VMX_BASIC_DUAL __BIT(49)
116 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
117 #define MEM_TYPE_UC 0
118 #define MEM_TYPE_WB 6
119 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
120 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
121
122 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
123 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
124 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
125 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
126 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
127
128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
132
133 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
134 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
135 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
136 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
137
138 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
139 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
140 #define IA32_VMX_EPT_VPID_UC __BIT(8)
141 #define IA32_VMX_EPT_VPID_WB __BIT(14)
142 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
143 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
144 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
145 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
146 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
147 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
148 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
149 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
150 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
151
152 /* -------------------------------------------------------------------------- */
153
154 /* 16-bit control fields */
155 #define VMCS_VPID 0x00000000
156 #define VMCS_PIR_VECTOR 0x00000002
157 #define VMCS_EPTP_INDEX 0x00000004
158 /* 16-bit guest-state fields */
159 #define VMCS_GUEST_ES_SELECTOR 0x00000800
160 #define VMCS_GUEST_CS_SELECTOR 0x00000802
161 #define VMCS_GUEST_SS_SELECTOR 0x00000804
162 #define VMCS_GUEST_DS_SELECTOR 0x00000806
163 #define VMCS_GUEST_FS_SELECTOR 0x00000808
164 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
165 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
166 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
167 #define VMCS_GUEST_INTR_STATUS 0x00000810
168 #define VMCS_PML_INDEX 0x00000812
169 /* 16-bit host-state fields */
170 #define VMCS_HOST_ES_SELECTOR 0x00000C00
171 #define VMCS_HOST_CS_SELECTOR 0x00000C02
172 #define VMCS_HOST_SS_SELECTOR 0x00000C04
173 #define VMCS_HOST_DS_SELECTOR 0x00000C06
174 #define VMCS_HOST_FS_SELECTOR 0x00000C08
175 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
176 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
177 /* 64-bit control fields */
178 #define VMCS_IO_BITMAP_A 0x00002000
179 #define VMCS_IO_BITMAP_B 0x00002002
180 #define VMCS_MSR_BITMAP 0x00002004
181 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
182 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
184 #define VMCS_EXECUTIVE_VMCS 0x0000200C
185 #define VMCS_PML_ADDRESS 0x0000200E
186 #define VMCS_TSC_OFFSET 0x00002010
187 #define VMCS_VIRTUAL_APIC 0x00002012
188 #define VMCS_APIC_ACCESS 0x00002014
189 #define VMCS_PIR_DESC 0x00002016
190 #define VMCS_VM_CONTROL 0x00002018
191 #define VMCS_EPTP 0x0000201A
192 #define EPTP_TYPE __BITS(2,0)
193 #define EPTP_TYPE_UC 0
194 #define EPTP_TYPE_WB 6
195 #define EPTP_WALKLEN __BITS(5,3)
196 #define EPTP_FLAGS_AD __BIT(6)
197 #define EPTP_PHYSADDR __BITS(63,12)
198 #define VMCS_EOI_EXIT0 0x0000201C
199 #define VMCS_EOI_EXIT1 0x0000201E
200 #define VMCS_EOI_EXIT2 0x00002020
201 #define VMCS_EOI_EXIT3 0x00002022
202 #define VMCS_EPTP_LIST 0x00002024
203 #define VMCS_VMREAD_BITMAP 0x00002026
204 #define VMCS_VMWRITE_BITMAP 0x00002028
205 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
206 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
207 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
208 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
209 #define VMCS_TSC_MULTIPLIER 0x00002032
210 /* 64-bit read-only fields */
211 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
212 /* 64-bit guest-state fields */
213 #define VMCS_LINK_POINTER 0x00002800
214 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
215 #define VMCS_GUEST_IA32_PAT 0x00002804
216 #define VMCS_GUEST_IA32_EFER 0x00002806
217 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
218 #define VMCS_GUEST_PDPTE0 0x0000280A
219 #define VMCS_GUEST_PDPTE1 0x0000280C
220 #define VMCS_GUEST_PDPTE2 0x0000280E
221 #define VMCS_GUEST_PDPTE3 0x00002810
222 #define VMCS_GUEST_BNDCFGS 0x00002812
223 /* 64-bit host-state fields */
224 #define VMCS_HOST_IA32_PAT 0x00002C00
225 #define VMCS_HOST_IA32_EFER 0x00002C02
226 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
227 /* 32-bit control fields */
228 #define VMCS_PINBASED_CTLS 0x00004000
229 #define PIN_CTLS_INT_EXITING __BIT(0)
230 #define PIN_CTLS_NMI_EXITING __BIT(3)
231 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
232 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
233 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
234 #define VMCS_PROCBASED_CTLS 0x00004002
235 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
236 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
237 #define PROC_CTLS_HLT_EXITING __BIT(7)
238 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
239 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
240 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
241 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
242 #define PROC_CTLS_RCR3_EXITING __BIT(15)
243 #define PROC_CTLS_LCR3_EXITING __BIT(16)
244 #define PROC_CTLS_RCR8_EXITING __BIT(19)
245 #define PROC_CTLS_LCR8_EXITING __BIT(20)
246 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
247 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
248 #define PROC_CTLS_DR_EXITING __BIT(23)
249 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
250 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
251 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
252 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
253 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
254 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
255 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
256 #define VMCS_EXCEPTION_BITMAP 0x00004004
257 #define VMCS_PF_ERROR_MASK 0x00004006
258 #define VMCS_PF_ERROR_MATCH 0x00004008
259 #define VMCS_CR3_TARGET_COUNT 0x0000400A
260 #define VMCS_EXIT_CTLS 0x0000400C
261 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
262 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
263 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
264 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
265 #define EXIT_CTLS_SAVE_PAT __BIT(18)
266 #define EXIT_CTLS_LOAD_PAT __BIT(19)
267 #define EXIT_CTLS_SAVE_EFER __BIT(20)
268 #define EXIT_CTLS_LOAD_EFER __BIT(21)
269 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
270 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
271 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
272 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
273 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
274 #define VMCS_ENTRY_CTLS 0x00004012
275 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
276 #define ENTRY_CTLS_LONG_MODE __BIT(9)
277 #define ENTRY_CTLS_SMM __BIT(10)
278 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
279 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
280 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
281 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
282 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
283 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
284 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
285 #define VMCS_ENTRY_INTR_INFO 0x00004016
286 #define INTR_INFO_VECTOR __BITS(7,0)
287 #define INTR_INFO_TYPE __BITS(10,8)
288 #define INTR_TYPE_EXT_INT 0
289 #define INTR_TYPE_NMI 2
290 #define INTR_TYPE_HW_EXC 3
291 #define INTR_TYPE_SW_INT 4
292 #define INTR_TYPE_PRIV_SW_EXC 5
293 #define INTR_TYPE_SW_EXC 6
294 #define INTR_TYPE_OTHER 7
295 #define INTR_INFO_ERROR __BIT(11)
296 #define INTR_INFO_VALID __BIT(31)
297 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
298 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
299 #define VMCS_TPR_THRESHOLD 0x0000401C
300 #define VMCS_PROCBASED_CTLS2 0x0000401E
301 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
302 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
303 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
304 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
305 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
306 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
307 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
308 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
309 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
310 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
311 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
312 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
313 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
314 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
315 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
316 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
317 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
318 #define PROC_CTLS2_PML_ENABLE __BIT(17)
319 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
320 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
321 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
322 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
323 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
324 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
325 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
326 #define VMCS_PLE_GAP 0x00004020
327 #define VMCS_PLE_WINDOW 0x00004022
328 /* 32-bit read-only data fields */
329 #define VMCS_INSTRUCTION_ERROR 0x00004400
330 #define VMCS_EXIT_REASON 0x00004402
331 #define VMCS_EXIT_INTR_INFO 0x00004404
332 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
333 #define VMCS_IDT_VECTORING_INFO 0x00004408
334 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
335 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
336 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
337 /* 32-bit guest-state fields */
338 #define VMCS_GUEST_ES_LIMIT 0x00004800
339 #define VMCS_GUEST_CS_LIMIT 0x00004802
340 #define VMCS_GUEST_SS_LIMIT 0x00004804
341 #define VMCS_GUEST_DS_LIMIT 0x00004806
342 #define VMCS_GUEST_FS_LIMIT 0x00004808
343 #define VMCS_GUEST_GS_LIMIT 0x0000480A
344 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
345 #define VMCS_GUEST_TR_LIMIT 0x0000480E
346 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
347 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
348 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
349 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
350 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
351 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
352 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
353 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
354 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
355 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
356 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
357 #define INT_STATE_STI __BIT(0)
358 #define INT_STATE_MOVSS __BIT(1)
359 #define INT_STATE_SMI __BIT(2)
360 #define INT_STATE_NMI __BIT(3)
361 #define INT_STATE_ENCLAVE __BIT(4)
362 #define VMCS_GUEST_ACTIVITY 0x00004826
363 #define VMCS_GUEST_SMBASE 0x00004828
364 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
365 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
366 /* 32-bit host state fields */
367 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
368 /* Natural-Width control fields */
369 #define VMCS_CR0_MASK 0x00006000
370 #define VMCS_CR4_MASK 0x00006002
371 #define VMCS_CR0_SHADOW 0x00006004
372 #define VMCS_CR4_SHADOW 0x00006006
373 #define VMCS_CR3_TARGET0 0x00006008
374 #define VMCS_CR3_TARGET1 0x0000600A
375 #define VMCS_CR3_TARGET2 0x0000600C
376 #define VMCS_CR3_TARGET3 0x0000600E
377 /* Natural-Width read-only fields */
378 #define VMCS_EXIT_QUALIFICATION 0x00006400
379 #define VMCS_IO_RCX 0x00006402
380 #define VMCS_IO_RSI 0x00006404
381 #define VMCS_IO_RDI 0x00006406
382 #define VMCS_IO_RIP 0x00006408
383 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
384 /* Natural-Width guest-state fields */
385 #define VMCS_GUEST_CR0 0x00006800
386 #define VMCS_GUEST_CR3 0x00006802
387 #define VMCS_GUEST_CR4 0x00006804
388 #define VMCS_GUEST_ES_BASE 0x00006806
389 #define VMCS_GUEST_CS_BASE 0x00006808
390 #define VMCS_GUEST_SS_BASE 0x0000680A
391 #define VMCS_GUEST_DS_BASE 0x0000680C
392 #define VMCS_GUEST_FS_BASE 0x0000680E
393 #define VMCS_GUEST_GS_BASE 0x00006810
394 #define VMCS_GUEST_LDTR_BASE 0x00006812
395 #define VMCS_GUEST_TR_BASE 0x00006814
396 #define VMCS_GUEST_GDTR_BASE 0x00006816
397 #define VMCS_GUEST_IDTR_BASE 0x00006818
398 #define VMCS_GUEST_DR7 0x0000681A
399 #define VMCS_GUEST_RSP 0x0000681C
400 #define VMCS_GUEST_RIP 0x0000681E
401 #define VMCS_GUEST_RFLAGS 0x00006820
402 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
403 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
404 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
405 /* Natural-Width host-state fields */
406 #define VMCS_HOST_CR0 0x00006C00
407 #define VMCS_HOST_CR3 0x00006C02
408 #define VMCS_HOST_CR4 0x00006C04
409 #define VMCS_HOST_FS_BASE 0x00006C06
410 #define VMCS_HOST_GS_BASE 0x00006C08
411 #define VMCS_HOST_TR_BASE 0x00006C0A
412 #define VMCS_HOST_GDTR_BASE 0x00006C0C
413 #define VMCS_HOST_IDTR_BASE 0x00006C0E
414 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
415 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
416 #define VMCS_HOST_RSP 0x00006C14
417 #define VMCS_HOST_RIP 0x00006c16
418
419 /* VMX basic exit reasons. */
420 #define VMCS_EXITCODE_EXC_NMI 0
421 #define VMCS_EXITCODE_EXT_INT 1
422 #define VMCS_EXITCODE_SHUTDOWN 2
423 #define VMCS_EXITCODE_INIT 3
424 #define VMCS_EXITCODE_SIPI 4
425 #define VMCS_EXITCODE_SMI 5
426 #define VMCS_EXITCODE_OTHER_SMI 6
427 #define VMCS_EXITCODE_INT_WINDOW 7
428 #define VMCS_EXITCODE_NMI_WINDOW 8
429 #define VMCS_EXITCODE_TASK_SWITCH 9
430 #define VMCS_EXITCODE_CPUID 10
431 #define VMCS_EXITCODE_GETSEC 11
432 #define VMCS_EXITCODE_HLT 12
433 #define VMCS_EXITCODE_INVD 13
434 #define VMCS_EXITCODE_INVLPG 14
435 #define VMCS_EXITCODE_RDPMC 15
436 #define VMCS_EXITCODE_RDTSC 16
437 #define VMCS_EXITCODE_RSM 17
438 #define VMCS_EXITCODE_VMCALL 18
439 #define VMCS_EXITCODE_VMCLEAR 19
440 #define VMCS_EXITCODE_VMLAUNCH 20
441 #define VMCS_EXITCODE_VMPTRLD 21
442 #define VMCS_EXITCODE_VMPTRST 22
443 #define VMCS_EXITCODE_VMREAD 23
444 #define VMCS_EXITCODE_VMRESUME 24
445 #define VMCS_EXITCODE_VMWRITE 25
446 #define VMCS_EXITCODE_VMXOFF 26
447 #define VMCS_EXITCODE_VMXON 27
448 #define VMCS_EXITCODE_CR 28
449 #define VMCS_EXITCODE_DR 29
450 #define VMCS_EXITCODE_IO 30
451 #define VMCS_EXITCODE_RDMSR 31
452 #define VMCS_EXITCODE_WRMSR 32
453 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
454 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
455 #define VMCS_EXITCODE_MWAIT 36
456 #define VMCS_EXITCODE_TRAP_FLAG 37
457 #define VMCS_EXITCODE_MONITOR 39
458 #define VMCS_EXITCODE_PAUSE 40
459 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
460 #define VMCS_EXITCODE_TPR_BELOW 43
461 #define VMCS_EXITCODE_APIC_ACCESS 44
462 #define VMCS_EXITCODE_VEOI 45
463 #define VMCS_EXITCODE_GDTR_IDTR 46
464 #define VMCS_EXITCODE_LDTR_TR 47
465 #define VMCS_EXITCODE_EPT_VIOLATION 48
466 #define VMCS_EXITCODE_EPT_MISCONFIG 49
467 #define VMCS_EXITCODE_INVEPT 50
468 #define VMCS_EXITCODE_RDTSCP 51
469 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
470 #define VMCS_EXITCODE_INVVPID 53
471 #define VMCS_EXITCODE_WBINVD 54
472 #define VMCS_EXITCODE_XSETBV 55
473 #define VMCS_EXITCODE_APIC_WRITE 56
474 #define VMCS_EXITCODE_RDRAND 57
475 #define VMCS_EXITCODE_INVPCID 58
476 #define VMCS_EXITCODE_VMFUNC 59
477 #define VMCS_EXITCODE_ENCLS 60
478 #define VMCS_EXITCODE_RDSEED 61
479 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
480 #define VMCS_EXITCODE_XSAVES 63
481 #define VMCS_EXITCODE_XRSTORS 64
482
483 /* -------------------------------------------------------------------------- */
484
485 #define VMX_MSRLIST_STAR 0
486 #define VMX_MSRLIST_LSTAR 1
487 #define VMX_MSRLIST_CSTAR 2
488 #define VMX_MSRLIST_SFMASK 3
489 #define VMX_MSRLIST_KERNELGSBASE 4
490 #define VMX_MSRLIST_EXIT_NMSR 5
491 #define VMX_MSRLIST_L1DFLUSH 5
492
493 /* On entry, we may do +1 to include L1DFLUSH. */
494 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
495
496 struct vmxon {
497 uint32_t ident;
498 #define VMXON_IDENT_REVISION __BITS(30,0)
499
500 uint8_t data[PAGE_SIZE - 4];
501 } __packed;
502
503 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
504
505 struct vmxoncpu {
506 vaddr_t va;
507 paddr_t pa;
508 };
509
510 static struct vmxoncpu vmxoncpu[MAXCPUS];
511
512 struct vmcs {
513 uint32_t ident;
514 #define VMCS_IDENT_REVISION __BITS(30,0)
515 #define VMCS_IDENT_SHADOW __BIT(31)
516
517 uint32_t abort;
518 uint8_t data[PAGE_SIZE - 8];
519 } __packed;
520
521 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
522
523 struct msr_entry {
524 uint32_t msr;
525 uint32_t rsvd;
526 uint64_t val;
527 } __packed;
528
529 struct ept_desc {
530 uint64_t eptp;
531 uint64_t mbz;
532 } __packed;
533
534 struct vpid_desc {
535 uint64_t vpid;
536 uint64_t addr;
537 } __packed;
538
539 #define VPID_MAX 0xFFFF
540
541 /* Make sure we never run out of VPIDs. */
542 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
543
544 static uint64_t vmx_tlb_flush_op __read_mostly;
545 static uint64_t vmx_ept_flush_op __read_mostly;
546 static uint64_t vmx_eptp_type __read_mostly;
547
548 static uint64_t vmx_pinbased_ctls __read_mostly;
549 static uint64_t vmx_procbased_ctls __read_mostly;
550 static uint64_t vmx_procbased_ctls2 __read_mostly;
551 static uint64_t vmx_entry_ctls __read_mostly;
552 static uint64_t vmx_exit_ctls __read_mostly;
553
554 static uint64_t vmx_cr0_fixed0 __read_mostly;
555 static uint64_t vmx_cr0_fixed1 __read_mostly;
556 static uint64_t vmx_cr4_fixed0 __read_mostly;
557 static uint64_t vmx_cr4_fixed1 __read_mostly;
558
559 extern bool pmap_ept_has_ad;
560
561 #define VMX_PINBASED_CTLS_ONE \
562 (PIN_CTLS_INT_EXITING| \
563 PIN_CTLS_NMI_EXITING| \
564 PIN_CTLS_VIRTUAL_NMIS)
565
566 #define VMX_PINBASED_CTLS_ZERO 0
567
568 #define VMX_PROCBASED_CTLS_ONE \
569 (PROC_CTLS_USE_TSC_OFFSETTING| \
570 PROC_CTLS_HLT_EXITING| \
571 PROC_CTLS_MWAIT_EXITING | \
572 PROC_CTLS_RDPMC_EXITING | \
573 PROC_CTLS_RCR8_EXITING | \
574 PROC_CTLS_LCR8_EXITING | \
575 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
576 PROC_CTLS_USE_MSR_BITMAPS | \
577 PROC_CTLS_MONITOR_EXITING | \
578 PROC_CTLS_ACTIVATE_CTLS2)
579
580 #define VMX_PROCBASED_CTLS_ZERO \
581 (PROC_CTLS_RCR3_EXITING| \
582 PROC_CTLS_LCR3_EXITING)
583
584 #define VMX_PROCBASED_CTLS2_ONE \
585 (PROC_CTLS2_ENABLE_EPT| \
586 PROC_CTLS2_ENABLE_VPID| \
587 PROC_CTLS2_UNRESTRICTED_GUEST)
588
589 #define VMX_PROCBASED_CTLS2_ZERO 0
590
591 #define VMX_ENTRY_CTLS_ONE \
592 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
593 ENTRY_CTLS_LOAD_EFER| \
594 ENTRY_CTLS_LOAD_PAT)
595
596 #define VMX_ENTRY_CTLS_ZERO \
597 (ENTRY_CTLS_SMM| \
598 ENTRY_CTLS_DISABLE_DUAL)
599
600 #define VMX_EXIT_CTLS_ONE \
601 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
602 EXIT_CTLS_HOST_LONG_MODE| \
603 EXIT_CTLS_SAVE_PAT| \
604 EXIT_CTLS_LOAD_PAT| \
605 EXIT_CTLS_SAVE_EFER| \
606 EXIT_CTLS_LOAD_EFER)
607
608 #define VMX_EXIT_CTLS_ZERO 0
609
610 static uint8_t *vmx_asidmap __read_mostly;
611 static uint32_t vmx_maxasid __read_mostly;
612 static kmutex_t vmx_asidlock __cacheline_aligned;
613
614 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
615 static uint64_t vmx_xcr0_mask __read_mostly;
616
617 #define VMX_NCPUIDS 32
618
619 #define VMCS_NPAGES 1
620 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
621
622 #define MSRBM_NPAGES 1
623 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
624
625 #define EFER_TLB_FLUSH \
626 (EFER_NXE|EFER_LMA|EFER_LME)
627 #define CR0_TLB_FLUSH \
628 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
629 #define CR4_TLB_FLUSH \
630 (CR4_PGE|CR4_PAE|CR4_PSE)
631
632 /* -------------------------------------------------------------------------- */
633
634 struct vmx_machdata {
635 bool cpuidpresent[VMX_NCPUIDS];
636 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
637 volatile uint64_t mach_htlb_gen;
638 };
639
640 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
641 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
642 };
643
644 struct vmx_cpudata {
645 /* General */
646 uint64_t asid;
647 bool gtlb_want_flush;
648 bool gtsc_want_update;
649 uint64_t vcpu_htlb_gen;
650 kcpuset_t *htlb_want_flush;
651
652 /* VMCS */
653 struct vmcs *vmcs;
654 paddr_t vmcs_pa;
655 size_t vmcs_refcnt;
656 struct cpu_info *vmcs_ci;
657 bool vmcs_launched;
658
659 /* MSR bitmap */
660 uint8_t *msrbm;
661 paddr_t msrbm_pa;
662
663 /* Host state */
664 uint64_t hxcr0;
665 uint64_t star;
666 uint64_t lstar;
667 uint64_t cstar;
668 uint64_t sfmask;
669 uint64_t kernelgsbase;
670 bool ts_set;
671 struct xsave_header hfpu __aligned(64);
672
673 /* Event state */
674 bool int_window_exit;
675 bool nmi_window_exit;
676
677 /* Guest state */
678 struct msr_entry *gmsr;
679 paddr_t gmsr_pa;
680 uint64_t gmsr_misc_enable;
681 uint64_t gcr2;
682 uint64_t gcr8;
683 uint64_t gxcr0;
684 uint64_t gprs[NVMM_X64_NGPR];
685 uint64_t drs[NVMM_X64_NDR];
686 uint64_t gtsc;
687 struct xsave_header gfpu __aligned(64);
688 };
689
690 static const struct {
691 uint64_t selector;
692 uint64_t attrib;
693 uint64_t limit;
694 uint64_t base;
695 } vmx_guest_segs[NVMM_X64_NSEG] = {
696 [NVMM_X64_SEG_ES] = {
697 VMCS_GUEST_ES_SELECTOR,
698 VMCS_GUEST_ES_ACCESS_RIGHTS,
699 VMCS_GUEST_ES_LIMIT,
700 VMCS_GUEST_ES_BASE
701 },
702 [NVMM_X64_SEG_CS] = {
703 VMCS_GUEST_CS_SELECTOR,
704 VMCS_GUEST_CS_ACCESS_RIGHTS,
705 VMCS_GUEST_CS_LIMIT,
706 VMCS_GUEST_CS_BASE
707 },
708 [NVMM_X64_SEG_SS] = {
709 VMCS_GUEST_SS_SELECTOR,
710 VMCS_GUEST_SS_ACCESS_RIGHTS,
711 VMCS_GUEST_SS_LIMIT,
712 VMCS_GUEST_SS_BASE
713 },
714 [NVMM_X64_SEG_DS] = {
715 VMCS_GUEST_DS_SELECTOR,
716 VMCS_GUEST_DS_ACCESS_RIGHTS,
717 VMCS_GUEST_DS_LIMIT,
718 VMCS_GUEST_DS_BASE
719 },
720 [NVMM_X64_SEG_FS] = {
721 VMCS_GUEST_FS_SELECTOR,
722 VMCS_GUEST_FS_ACCESS_RIGHTS,
723 VMCS_GUEST_FS_LIMIT,
724 VMCS_GUEST_FS_BASE
725 },
726 [NVMM_X64_SEG_GS] = {
727 VMCS_GUEST_GS_SELECTOR,
728 VMCS_GUEST_GS_ACCESS_RIGHTS,
729 VMCS_GUEST_GS_LIMIT,
730 VMCS_GUEST_GS_BASE
731 },
732 [NVMM_X64_SEG_GDT] = {
733 0, /* doesn't exist */
734 0, /* doesn't exist */
735 VMCS_GUEST_GDTR_LIMIT,
736 VMCS_GUEST_GDTR_BASE
737 },
738 [NVMM_X64_SEG_IDT] = {
739 0, /* doesn't exist */
740 0, /* doesn't exist */
741 VMCS_GUEST_IDTR_LIMIT,
742 VMCS_GUEST_IDTR_BASE
743 },
744 [NVMM_X64_SEG_LDT] = {
745 VMCS_GUEST_LDTR_SELECTOR,
746 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
747 VMCS_GUEST_LDTR_LIMIT,
748 VMCS_GUEST_LDTR_BASE
749 },
750 [NVMM_X64_SEG_TR] = {
751 VMCS_GUEST_TR_SELECTOR,
752 VMCS_GUEST_TR_ACCESS_RIGHTS,
753 VMCS_GUEST_TR_LIMIT,
754 VMCS_GUEST_TR_BASE
755 }
756 };
757
758 /* -------------------------------------------------------------------------- */
759
760 static uint64_t
761 vmx_get_revision(void)
762 {
763 uint64_t msr;
764
765 msr = rdmsr(MSR_IA32_VMX_BASIC);
766 msr &= IA32_VMX_BASIC_IDENT;
767
768 return msr;
769 }
770
771 static void
772 vmx_vmclear_ipi(void *arg1, void *arg2)
773 {
774 paddr_t vmcs_pa = (paddr_t)arg1;
775 vmx_vmclear(&vmcs_pa);
776 }
777
778 static void
779 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
780 {
781 uint64_t xc;
782 int bound;
783
784 KASSERT(kpreempt_disabled());
785
786 bound = curlwp_bind();
787 kpreempt_enable();
788
789 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
790 xc_wait(xc);
791
792 kpreempt_disable();
793 curlwp_bindx(bound);
794 }
795
796 static void
797 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
798 {
799 struct vmx_cpudata *cpudata = vcpu->cpudata;
800 struct cpu_info *vmcs_ci;
801 paddr_t oldpa __diagused;
802
803 cpudata->vmcs_refcnt++;
804 if (cpudata->vmcs_refcnt > 1) {
805 #ifdef DIAGNOSTIC
806 KASSERT(kpreempt_disabled());
807 vmx_vmptrst(&oldpa);
808 KASSERT(oldpa == cpudata->vmcs_pa);
809 #endif
810 return;
811 }
812
813 vmcs_ci = cpudata->vmcs_ci;
814 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
815
816 kpreempt_disable();
817
818 if (vmcs_ci == NULL) {
819 /* This VMCS is loaded for the first time. */
820 vmx_vmclear(&cpudata->vmcs_pa);
821 cpudata->vmcs_launched = false;
822 } else if (vmcs_ci != curcpu()) {
823 /* This VMCS is active on a remote CPU. */
824 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
825 cpudata->vmcs_launched = false;
826 } else {
827 /* This VMCS is active on curcpu, nothing to do. */
828 }
829
830 vmx_vmptrld(&cpudata->vmcs_pa);
831 }
832
833 static void
834 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
835 {
836 struct vmx_cpudata *cpudata = vcpu->cpudata;
837 paddr_t oldpa __diagused;
838
839 KASSERT(kpreempt_disabled());
840 #ifdef DIAGNOSTIC
841 vmx_vmptrst(&oldpa);
842 KASSERT(oldpa == cpudata->vmcs_pa);
843 #endif
844 KASSERT(cpudata->vmcs_refcnt > 0);
845 cpudata->vmcs_refcnt--;
846
847 if (cpudata->vmcs_refcnt > 0) {
848 return;
849 }
850
851 cpudata->vmcs_ci = curcpu();
852 kpreempt_enable();
853 }
854
855 static void
856 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
857 {
858 struct vmx_cpudata *cpudata = vcpu->cpudata;
859 paddr_t oldpa __diagused;
860
861 KASSERT(kpreempt_disabled());
862 #ifdef DIAGNOSTIC
863 vmx_vmptrst(&oldpa);
864 KASSERT(oldpa == cpudata->vmcs_pa);
865 #endif
866 KASSERT(cpudata->vmcs_refcnt == 1);
867 cpudata->vmcs_refcnt--;
868
869 vmx_vmclear(&cpudata->vmcs_pa);
870 kpreempt_enable();
871 }
872
873 /* -------------------------------------------------------------------------- */
874
875 static void
876 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
877 {
878 struct vmx_cpudata *cpudata = vcpu->cpudata;
879 uint64_t ctls1;
880
881 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
882
883 if (nmi) {
884 // XXX INT_STATE_NMI?
885 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
886 cpudata->nmi_window_exit = true;
887 } else {
888 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
889 cpudata->int_window_exit = true;
890 }
891
892 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
893 }
894
895 static void
896 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
897 {
898 struct vmx_cpudata *cpudata = vcpu->cpudata;
899 uint64_t ctls1;
900
901 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
902
903 if (nmi) {
904 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
905 cpudata->nmi_window_exit = false;
906 } else {
907 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
908 cpudata->int_window_exit = false;
909 }
910
911 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
912 }
913
914 static inline int
915 vmx_event_has_error(uint64_t vector)
916 {
917 switch (vector) {
918 case 8: /* #DF */
919 case 10: /* #TS */
920 case 11: /* #NP */
921 case 12: /* #SS */
922 case 13: /* #GP */
923 case 14: /* #PF */
924 case 17: /* #AC */
925 case 30: /* #SX */
926 return 1;
927 default:
928 return 0;
929 }
930 }
931
932 static int
933 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
934 struct nvmm_event *event)
935 {
936 struct vmx_cpudata *cpudata = vcpu->cpudata;
937 int type = 0, err = 0, ret = 0;
938 uint64_t info, intstate, rflags;
939
940 if (event->vector >= 256) {
941 return EINVAL;
942 }
943
944 vmx_vmcs_enter(vcpu);
945
946 switch (event->type) {
947 case NVMM_EVENT_INTERRUPT_HW:
948 type = INTR_TYPE_EXT_INT;
949 if (event->vector == 2) {
950 type = INTR_TYPE_NMI;
951 }
952 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
953 if (type == INTR_TYPE_NMI) {
954 if (cpudata->nmi_window_exit) {
955 ret = EAGAIN;
956 goto out;
957 }
958 vmx_event_waitexit_enable(vcpu, true);
959 } else {
960 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
961 if ((rflags & PSL_I) == 0 ||
962 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
963 vmx_event_waitexit_enable(vcpu, false);
964 ret = EAGAIN;
965 goto out;
966 }
967 }
968 err = 0;
969 break;
970 case NVMM_EVENT_INTERRUPT_SW:
971 ret = EINVAL;
972 goto out;
973 case NVMM_EVENT_EXCEPTION:
974 if (event->vector == 2 || event->vector >= 32) {
975 ret = EINVAL;
976 goto out;
977 }
978 if (event->vector == 3 || event->vector == 0) {
979 ret = EINVAL;
980 goto out;
981 }
982 type = INTR_TYPE_HW_EXC;
983 err = vmx_event_has_error(event->vector);
984 break;
985 default:
986 ret = EAGAIN;
987 goto out;
988 }
989
990 info =
991 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
992 __SHIFTIN(type, INTR_INFO_TYPE) |
993 __SHIFTIN(err, INTR_INFO_ERROR) |
994 __SHIFTIN(1, INTR_INFO_VALID);
995 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
996 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
997
998 out:
999 vmx_vmcs_leave(vcpu);
1000 return ret;
1001 }
1002
1003 static void
1004 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1005 {
1006 struct nvmm_event event;
1007 int ret __diagused;
1008
1009 event.type = NVMM_EVENT_EXCEPTION;
1010 event.vector = 6;
1011 event.u.error = 0;
1012
1013 ret = vmx_vcpu_inject(mach, vcpu, &event);
1014 KASSERT(ret == 0);
1015 }
1016
1017 static void
1018 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1019 {
1020 struct nvmm_event event;
1021 int ret __diagused;
1022
1023 event.type = NVMM_EVENT_EXCEPTION;
1024 event.vector = 13;
1025 event.u.error = 0;
1026
1027 ret = vmx_vcpu_inject(mach, vcpu, &event);
1028 KASSERT(ret == 0);
1029 }
1030
1031 static inline void
1032 vmx_inkernel_advance(void)
1033 {
1034 uint64_t rip, inslen, intstate;
1035
1036 /*
1037 * Maybe we should also apply single-stepping and debug exceptions.
1038 * Matters for guest-ring3, because it can execute 'cpuid' under a
1039 * debugger.
1040 */
1041 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1042 vmx_vmread(VMCS_GUEST_RIP, &rip);
1043 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1044 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1045 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1046 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1047 }
1048
1049 static void
1050 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1051 struct nvmm_exit *exit)
1052 {
1053 uint64_t qual;
1054
1055 vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
1056
1057 if ((qual & INTR_INFO_VALID) == 0) {
1058 goto error;
1059 }
1060 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1061 goto error;
1062 }
1063
1064 exit->reason = NVMM_EXIT_NONE;
1065 return;
1066
1067 error:
1068 exit->reason = NVMM_EXIT_INVALID;
1069 }
1070
1071 static void
1072 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1073 {
1074 struct vmx_cpudata *cpudata = vcpu->cpudata;
1075 uint64_t cr4;
1076
1077 switch (eax) {
1078 case 0x00000001:
1079 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1080
1081 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1082 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1083 CPUID_LOCAL_APIC_ID);
1084
1085 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1086 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1087
1088 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1089
1090 /* CPUID2_OSXSAVE depends on CR4. */
1091 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1092 if (!(cr4 & CR4_OSXSAVE)) {
1093 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1094 }
1095 break;
1096 case 0x00000005:
1097 case 0x00000006:
1098 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1099 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1100 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1101 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1102 break;
1103 case 0x00000007:
1104 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1105 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1106 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1107 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1108 break;
1109 case 0x0000000D:
1110 if (vmx_xcr0_mask == 0) {
1111 break;
1112 }
1113 switch (ecx) {
1114 case 0:
1115 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1116 if (cpudata->gxcr0 & XCR0_SSE) {
1117 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1118 } else {
1119 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1120 }
1121 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1122 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1123 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1124 break;
1125 case 1:
1126 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1127 break;
1128 }
1129 break;
1130 case 0x40000000:
1131 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1132 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1133 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1134 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1135 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1136 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1137 break;
1138 case 0x80000001:
1139 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1140 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1141 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1142 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1143 break;
1144 default:
1145 break;
1146 }
1147 }
1148
1149 static void
1150 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1151 struct nvmm_exit *exit)
1152 {
1153 struct vmx_machdata *machdata = mach->machdata;
1154 struct vmx_cpudata *cpudata = vcpu->cpudata;
1155 struct nvmm_x86_conf_cpuid *cpuid;
1156 uint64_t eax, ecx;
1157 u_int descs[4];
1158 size_t i;
1159
1160 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1161 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1162 x86_cpuid2(eax, ecx, descs);
1163
1164 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1165 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1166 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1167 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1168
1169 for (i = 0; i < VMX_NCPUIDS; i++) {
1170 cpuid = &machdata->cpuid[i];
1171 if (!machdata->cpuidpresent[i]) {
1172 continue;
1173 }
1174 if (cpuid->leaf != eax) {
1175 continue;
1176 }
1177
1178 /* del */
1179 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1180 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1181 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1182 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1183
1184 /* set */
1185 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1186 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1187 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1188 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1189
1190 break;
1191 }
1192
1193 /* Overwrite non-tunable leaves. */
1194 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1195
1196 vmx_inkernel_advance();
1197 exit->reason = NVMM_EXIT_NONE;
1198 }
1199
1200 static void
1201 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1202 struct nvmm_exit *exit)
1203 {
1204 struct vmx_cpudata *cpudata = vcpu->cpudata;
1205 uint64_t rflags;
1206
1207 if (cpudata->int_window_exit) {
1208 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1209 if (rflags & PSL_I) {
1210 vmx_event_waitexit_disable(vcpu, false);
1211 }
1212 }
1213
1214 vmx_inkernel_advance();
1215 exit->reason = NVMM_EXIT_HALTED;
1216 }
1217
1218 #define VMX_QUAL_CR_NUM __BITS(3,0)
1219 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1220 #define CR_TYPE_WRITE 0
1221 #define CR_TYPE_READ 1
1222 #define CR_TYPE_CLTS 2
1223 #define CR_TYPE_LMSW 3
1224 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1225 #define VMX_QUAL_CR_GPR __BITS(11,8)
1226 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1227
1228 static inline int
1229 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1230 {
1231 /* Bits set to 1 in fixed0 are fixed to 1. */
1232 if ((crval & fixed0) != fixed0) {
1233 return -1;
1234 }
1235 /* Bits set to 0 in fixed1 are fixed to 0. */
1236 if (crval & ~fixed1) {
1237 return -1;
1238 }
1239 return 0;
1240 }
1241
1242 static int
1243 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1244 uint64_t qual)
1245 {
1246 struct vmx_cpudata *cpudata = vcpu->cpudata;
1247 uint64_t type, gpr, cr0;
1248 uint64_t efer, ctls1;
1249
1250 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1251 if (type != CR_TYPE_WRITE) {
1252 return -1;
1253 }
1254
1255 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1256 KASSERT(gpr < 16);
1257
1258 if (gpr == NVMM_X64_GPR_RSP) {
1259 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1260 } else {
1261 gpr = cpudata->gprs[gpr];
1262 }
1263
1264 cr0 = gpr | CR0_NE | CR0_ET;
1265 cr0 &= ~(CR0_NW|CR0_CD);
1266
1267 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1268 return -1;
1269 }
1270
1271 /*
1272 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1273 * from CR3.
1274 */
1275
1276 if (cr0 & CR0_PG) {
1277 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1278 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1279 if (efer & EFER_LME) {
1280 ctls1 |= ENTRY_CTLS_LONG_MODE;
1281 efer |= EFER_LMA;
1282 } else {
1283 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1284 efer &= ~EFER_LMA;
1285 }
1286 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1287 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1288 }
1289
1290 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1291 vmx_inkernel_advance();
1292 return 0;
1293 }
1294
1295 static int
1296 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1297 uint64_t qual)
1298 {
1299 struct vmx_cpudata *cpudata = vcpu->cpudata;
1300 uint64_t type, gpr, cr4;
1301
1302 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1303 if (type != CR_TYPE_WRITE) {
1304 return -1;
1305 }
1306
1307 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1308 KASSERT(gpr < 16);
1309
1310 if (gpr == NVMM_X64_GPR_RSP) {
1311 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1312 } else {
1313 gpr = cpudata->gprs[gpr];
1314 }
1315
1316 cr4 = gpr | CR4_VMXE;
1317
1318 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1319 return -1;
1320 }
1321
1322 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1323 vmx_inkernel_advance();
1324 return 0;
1325 }
1326
1327 static int
1328 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1329 uint64_t qual)
1330 {
1331 struct vmx_cpudata *cpudata = vcpu->cpudata;
1332 uint64_t type, gpr;
1333 bool write;
1334
1335 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1336 if (type == CR_TYPE_WRITE) {
1337 write = true;
1338 } else if (type == CR_TYPE_READ) {
1339 write = false;
1340 } else {
1341 return -1;
1342 }
1343
1344 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1345 KASSERT(gpr < 16);
1346
1347 if (write) {
1348 if (gpr == NVMM_X64_GPR_RSP) {
1349 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1350 } else {
1351 cpudata->gcr8 = cpudata->gprs[gpr];
1352 }
1353 } else {
1354 if (gpr == NVMM_X64_GPR_RSP) {
1355 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1356 } else {
1357 cpudata->gprs[gpr] = cpudata->gcr8;
1358 }
1359 }
1360
1361 vmx_inkernel_advance();
1362 return 0;
1363 }
1364
1365 static void
1366 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1367 struct nvmm_exit *exit)
1368 {
1369 uint64_t qual;
1370 int ret;
1371
1372 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1373
1374 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1375 case 0:
1376 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1377 break;
1378 case 4:
1379 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1380 break;
1381 case 8:
1382 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1383 break;
1384 default:
1385 ret = -1;
1386 break;
1387 }
1388
1389 if (ret == -1) {
1390 vmx_inject_gp(mach, vcpu);
1391 }
1392
1393 exit->reason = NVMM_EXIT_NONE;
1394 }
1395
1396 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1397 #define IO_SIZE_8 0
1398 #define IO_SIZE_16 1
1399 #define IO_SIZE_32 3
1400 #define VMX_QUAL_IO_IN __BIT(3)
1401 #define VMX_QUAL_IO_STR __BIT(4)
1402 #define VMX_QUAL_IO_REP __BIT(5)
1403 #define VMX_QUAL_IO_DX __BIT(6)
1404 #define VMX_QUAL_IO_PORT __BITS(31,16)
1405
1406 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1407 #define IO_ADRSIZE_16 0
1408 #define IO_ADRSIZE_32 1
1409 #define IO_ADRSIZE_64 2
1410 #define VMX_INFO_IO_SEG __BITS(17,15)
1411
1412 static void
1413 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1414 struct nvmm_exit *exit)
1415 {
1416 uint64_t qual, info, inslen, rip;
1417
1418 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1419 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1420
1421 exit->reason = NVMM_EXIT_IO;
1422
1423 if (qual & VMX_QUAL_IO_IN) {
1424 exit->u.io.type = NVMM_EXIT_IO_IN;
1425 } else {
1426 exit->u.io.type = NVMM_EXIT_IO_OUT;
1427 }
1428
1429 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1430
1431 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1432 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1433
1434 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1435 exit->u.io.address_size = 8;
1436 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1437 exit->u.io.address_size = 4;
1438 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1439 exit->u.io.address_size = 2;
1440 }
1441
1442 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1443 exit->u.io.operand_size = 4;
1444 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1445 exit->u.io.operand_size = 2;
1446 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1447 exit->u.io.operand_size = 1;
1448 }
1449
1450 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1451 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1452
1453 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1454 exit->u.io.seg = NVMM_X64_SEG_ES;
1455 }
1456
1457 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1458 vmx_vmread(VMCS_GUEST_RIP, &rip);
1459 exit->u.io.npc = rip + inslen;
1460 }
1461
1462 static const uint64_t msr_ignore_list[] = {
1463 MSR_BIOS_SIGN,
1464 MSR_IA32_PLATFORM_ID
1465 };
1466
1467 static bool
1468 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1469 struct nvmm_exit *exit)
1470 {
1471 struct vmx_cpudata *cpudata = vcpu->cpudata;
1472 uint64_t val;
1473 size_t i;
1474
1475 switch (exit->u.msr.type) {
1476 case NVMM_EXIT_MSR_RDMSR:
1477 if (exit->u.msr.msr == MSR_CR_PAT) {
1478 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1479 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1480 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1481 goto handled;
1482 }
1483 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1484 val = cpudata->gmsr_misc_enable;
1485 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1486 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1487 goto handled;
1488 }
1489 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1490 if (msr_ignore_list[i] != exit->u.msr.msr)
1491 continue;
1492 val = 0;
1493 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1494 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1495 goto handled;
1496 }
1497 break;
1498 case NVMM_EXIT_MSR_WRMSR:
1499 if (exit->u.msr.msr == MSR_TSC) {
1500 cpudata->gtsc = exit->u.msr.val;
1501 cpudata->gtsc_want_update = true;
1502 goto handled;
1503 }
1504 if (exit->u.msr.msr == MSR_CR_PAT) {
1505 vmx_vmwrite(VMCS_GUEST_IA32_PAT, exit->u.msr.val);
1506 goto handled;
1507 }
1508 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1509 /* Don't care. */
1510 goto handled;
1511 }
1512 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1513 if (msr_ignore_list[i] != exit->u.msr.msr)
1514 continue;
1515 goto handled;
1516 }
1517 break;
1518 }
1519
1520 return false;
1521
1522 handled:
1523 vmx_inkernel_advance();
1524 return true;
1525 }
1526
1527 static void
1528 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1529 struct nvmm_exit *exit, bool rdmsr)
1530 {
1531 struct vmx_cpudata *cpudata = vcpu->cpudata;
1532 uint64_t inslen, rip;
1533
1534 if (rdmsr) {
1535 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1536 } else {
1537 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1538 }
1539
1540 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1541
1542 if (rdmsr) {
1543 exit->u.msr.val = 0;
1544 } else {
1545 uint64_t rdx, rax;
1546 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1547 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1548 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1549 }
1550
1551 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1552 exit->reason = NVMM_EXIT_NONE;
1553 return;
1554 }
1555
1556 exit->reason = NVMM_EXIT_MSR;
1557 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1558 vmx_vmread(VMCS_GUEST_RIP, &rip);
1559 exit->u.msr.npc = rip + inslen;
1560 }
1561
1562 static void
1563 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1564 struct nvmm_exit *exit)
1565 {
1566 struct vmx_cpudata *cpudata = vcpu->cpudata;
1567 uint16_t val;
1568
1569 exit->reason = NVMM_EXIT_NONE;
1570
1571 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1572 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1573
1574 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1575 goto error;
1576 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1577 goto error;
1578 } else if (__predict_false((val & XCR0_X87) == 0)) {
1579 goto error;
1580 }
1581
1582 cpudata->gxcr0 = val;
1583
1584 vmx_inkernel_advance();
1585 return;
1586
1587 error:
1588 vmx_inject_gp(mach, vcpu);
1589 }
1590
1591 #define VMX_EPT_VIOLATION_READ __BIT(0)
1592 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1593 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1594
1595 static void
1596 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1597 struct nvmm_exit *exit)
1598 {
1599 uint64_t perm;
1600 gpaddr_t gpa;
1601
1602 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1603
1604 exit->reason = NVMM_EXIT_MEMORY;
1605 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1606 if (perm & VMX_EPT_VIOLATION_WRITE)
1607 exit->u.mem.prot = PROT_WRITE;
1608 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1609 exit->u.mem.prot = PROT_EXEC;
1610 else
1611 exit->u.mem.prot = PROT_READ;
1612 exit->u.mem.gpa = gpa;
1613 exit->u.mem.inst_len = 0;
1614 }
1615
1616 /* -------------------------------------------------------------------------- */
1617
1618 static void
1619 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1620 {
1621 struct vmx_cpudata *cpudata = vcpu->cpudata;
1622
1623 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1624
1625 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1626 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1627
1628 if (vmx_xcr0_mask != 0) {
1629 cpudata->hxcr0 = rdxcr(0);
1630 wrxcr(0, cpudata->gxcr0);
1631 }
1632 }
1633
1634 static void
1635 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1636 {
1637 struct vmx_cpudata *cpudata = vcpu->cpudata;
1638
1639 if (vmx_xcr0_mask != 0) {
1640 cpudata->gxcr0 = rdxcr(0);
1641 wrxcr(0, cpudata->hxcr0);
1642 }
1643
1644 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1645 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1646
1647 if (cpudata->ts_set) {
1648 stts();
1649 }
1650 }
1651
1652 static void
1653 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1654 {
1655 struct vmx_cpudata *cpudata = vcpu->cpudata;
1656
1657 x86_dbregs_save(curlwp);
1658
1659 ldr7(0);
1660
1661 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1662 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1663 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1664 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1665 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1666 }
1667
1668 static void
1669 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1670 {
1671 struct vmx_cpudata *cpudata = vcpu->cpudata;
1672
1673 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1674 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1675 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1676 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1677 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1678
1679 x86_dbregs_restore(curlwp);
1680 }
1681
1682 static void
1683 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1684 {
1685 struct vmx_cpudata *cpudata = vcpu->cpudata;
1686
1687 /* This gets restored automatically by the CPU. */
1688 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1689 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1690 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1691
1692 /* Note: MSR_LSTAR is not static, because of SVS. */
1693 cpudata->lstar = rdmsr(MSR_LSTAR);
1694 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1695 }
1696
1697 static void
1698 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1699 {
1700 struct vmx_cpudata *cpudata = vcpu->cpudata;
1701
1702 wrmsr(MSR_STAR, cpudata->star);
1703 wrmsr(MSR_LSTAR, cpudata->lstar);
1704 wrmsr(MSR_CSTAR, cpudata->cstar);
1705 wrmsr(MSR_SFMASK, cpudata->sfmask);
1706 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1707 }
1708
1709 /* -------------------------------------------------------------------------- */
1710
1711 #define VMX_INVVPID_ADDRESS 0
1712 #define VMX_INVVPID_CONTEXT 1
1713 #define VMX_INVVPID_ALL 2
1714 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1715
1716 #define VMX_INVEPT_CONTEXT 1
1717 #define VMX_INVEPT_ALL 2
1718
1719 static inline void
1720 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1721 {
1722 struct vmx_cpudata *cpudata = vcpu->cpudata;
1723
1724 if (vcpu->hcpu_last != hcpu) {
1725 cpudata->gtlb_want_flush = true;
1726 }
1727 }
1728
1729 static inline void
1730 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1731 {
1732 struct vmx_cpudata *cpudata = vcpu->cpudata;
1733 struct ept_desc ept_desc;
1734
1735 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1736 return;
1737 }
1738
1739 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1740 ept_desc.mbz = 0;
1741 vmx_invept(vmx_ept_flush_op, &ept_desc);
1742 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1743 }
1744
1745 static inline uint64_t
1746 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1747 {
1748 struct ept_desc ept_desc;
1749 uint64_t machgen;
1750
1751 machgen = machdata->mach_htlb_gen;
1752 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1753 return machgen;
1754 }
1755
1756 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1757
1758 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1759 ept_desc.mbz = 0;
1760 vmx_invept(vmx_ept_flush_op, &ept_desc);
1761
1762 return machgen;
1763 }
1764
1765 static inline void
1766 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1767 {
1768 cpudata->vcpu_htlb_gen = machgen;
1769 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1770 }
1771
1772 static int
1773 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1774 struct nvmm_exit *exit)
1775 {
1776 struct vmx_machdata *machdata = mach->machdata;
1777 struct vmx_cpudata *cpudata = vcpu->cpudata;
1778 struct vpid_desc vpid_desc;
1779 struct cpu_info *ci;
1780 uint64_t exitcode;
1781 uint64_t intstate;
1782 uint64_t machgen;
1783 int hcpu, s, ret;
1784 bool launched;
1785
1786 vmx_vmcs_enter(vcpu);
1787 ci = curcpu();
1788 hcpu = cpu_number();
1789 launched = cpudata->vmcs_launched;
1790
1791 vmx_gtlb_catchup(vcpu, hcpu);
1792 vmx_htlb_catchup(vcpu, hcpu);
1793
1794 if (vcpu->hcpu_last != hcpu) {
1795 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1796 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1797 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1798 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1799 cpudata->gtsc_want_update = true;
1800 vcpu->hcpu_last = hcpu;
1801 }
1802
1803 vmx_vcpu_guest_dbregs_enter(vcpu);
1804 vmx_vcpu_guest_misc_enter(vcpu);
1805
1806 while (1) {
1807 if (cpudata->gtlb_want_flush) {
1808 vpid_desc.vpid = cpudata->asid;
1809 vpid_desc.addr = 0;
1810 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1811 cpudata->gtlb_want_flush = false;
1812 }
1813
1814 if (__predict_false(cpudata->gtsc_want_update)) {
1815 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1816 cpudata->gtsc_want_update = false;
1817 }
1818
1819 s = splhigh();
1820 machgen = vmx_htlb_flush(machdata, cpudata);
1821 vmx_vcpu_guest_fpu_enter(vcpu);
1822 lcr2(cpudata->gcr2);
1823 if (launched) {
1824 ret = vmx_vmresume(cpudata->gprs);
1825 } else {
1826 ret = vmx_vmlaunch(cpudata->gprs);
1827 }
1828 cpudata->gcr2 = rcr2();
1829 vmx_vcpu_guest_fpu_leave(vcpu);
1830 vmx_htlb_flush_ack(cpudata, machgen);
1831 splx(s);
1832
1833 if (__predict_false(ret != 0)) {
1834 exit->reason = NVMM_EXIT_INVALID;
1835 break;
1836 }
1837
1838 launched = true;
1839
1840 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1841 exitcode &= __BITS(15,0);
1842
1843 switch (exitcode) {
1844 case VMCS_EXITCODE_EXC_NMI:
1845 vmx_exit_exc_nmi(mach, vcpu, exit);
1846 break;
1847 case VMCS_EXITCODE_EXT_INT:
1848 exit->reason = NVMM_EXIT_NONE;
1849 break;
1850 case VMCS_EXITCODE_CPUID:
1851 vmx_exit_cpuid(mach, vcpu, exit);
1852 break;
1853 case VMCS_EXITCODE_HLT:
1854 vmx_exit_hlt(mach, vcpu, exit);
1855 break;
1856 case VMCS_EXITCODE_CR:
1857 vmx_exit_cr(mach, vcpu, exit);
1858 break;
1859 case VMCS_EXITCODE_IO:
1860 vmx_exit_io(mach, vcpu, exit);
1861 break;
1862 case VMCS_EXITCODE_RDMSR:
1863 vmx_exit_msr(mach, vcpu, exit, true);
1864 break;
1865 case VMCS_EXITCODE_WRMSR:
1866 vmx_exit_msr(mach, vcpu, exit, false);
1867 break;
1868 case VMCS_EXITCODE_SHUTDOWN:
1869 exit->reason = NVMM_EXIT_SHUTDOWN;
1870 break;
1871 case VMCS_EXITCODE_MONITOR:
1872 exit->reason = NVMM_EXIT_MONITOR;
1873 break;
1874 case VMCS_EXITCODE_MWAIT:
1875 exit->reason = NVMM_EXIT_MWAIT;
1876 break;
1877 case VMCS_EXITCODE_XSETBV:
1878 vmx_exit_xsetbv(mach, vcpu, exit);
1879 break;
1880 case VMCS_EXITCODE_RDPMC:
1881 case VMCS_EXITCODE_RDTSCP:
1882 case VMCS_EXITCODE_INVVPID:
1883 case VMCS_EXITCODE_INVEPT:
1884 case VMCS_EXITCODE_VMCALL:
1885 case VMCS_EXITCODE_VMCLEAR:
1886 case VMCS_EXITCODE_VMLAUNCH:
1887 case VMCS_EXITCODE_VMPTRLD:
1888 case VMCS_EXITCODE_VMPTRST:
1889 case VMCS_EXITCODE_VMREAD:
1890 case VMCS_EXITCODE_VMRESUME:
1891 case VMCS_EXITCODE_VMWRITE:
1892 case VMCS_EXITCODE_VMXOFF:
1893 case VMCS_EXITCODE_VMXON:
1894 vmx_inject_ud(mach, vcpu);
1895 exit->reason = NVMM_EXIT_NONE;
1896 break;
1897 case VMCS_EXITCODE_EPT_VIOLATION:
1898 vmx_exit_epf(mach, vcpu, exit);
1899 break;
1900 case VMCS_EXITCODE_INT_WINDOW:
1901 vmx_event_waitexit_disable(vcpu, false);
1902 exit->reason = NVMM_EXIT_INT_READY;
1903 break;
1904 case VMCS_EXITCODE_NMI_WINDOW:
1905 vmx_event_waitexit_disable(vcpu, true);
1906 exit->reason = NVMM_EXIT_NMI_READY;
1907 break;
1908 default:
1909 exit->reason = NVMM_EXIT_INVALID;
1910 break;
1911 }
1912
1913 /* If no reason to return to userland, keep rolling. */
1914 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1915 break;
1916 }
1917 if (curcpu()->ci_data.cpu_softints != 0) {
1918 break;
1919 }
1920 if (curlwp->l_flag & LW_USERRET) {
1921 break;
1922 }
1923 if (exit->reason != NVMM_EXIT_NONE) {
1924 break;
1925 }
1926 }
1927
1928 cpudata->vmcs_launched = launched;
1929
1930 vmx_vmread(VMCS_TSC_OFFSET, &cpudata->gtsc);
1931 cpudata->gtsc += rdtsc();
1932
1933 vmx_vcpu_guest_misc_leave(vcpu);
1934 vmx_vcpu_guest_dbregs_leave(vcpu);
1935
1936 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1937 vmx_vmread(VMCS_GUEST_RFLAGS,
1938 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1939 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1940 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1941 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1942 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1943 cpudata->int_window_exit;
1944 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1945 cpudata->nmi_window_exit;
1946
1947 vmx_vmcs_leave(vcpu);
1948
1949 return 0;
1950 }
1951
1952 /* -------------------------------------------------------------------------- */
1953
1954 static int
1955 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1956 {
1957 struct pglist pglist;
1958 paddr_t _pa;
1959 vaddr_t _va;
1960 size_t i;
1961 int ret;
1962
1963 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1964 &pglist, 1, 0);
1965 if (ret != 0)
1966 return ENOMEM;
1967 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1968 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1969 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1970 if (_va == 0)
1971 goto error;
1972
1973 for (i = 0; i < npages; i++) {
1974 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1975 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1976 }
1977 pmap_update(pmap_kernel());
1978
1979 memset((void *)_va, 0, npages * PAGE_SIZE);
1980
1981 *pa = _pa;
1982 *va = _va;
1983 return 0;
1984
1985 error:
1986 for (i = 0; i < npages; i++) {
1987 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1988 }
1989 return ENOMEM;
1990 }
1991
1992 static void
1993 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
1994 {
1995 size_t i;
1996
1997 pmap_kremove(va, npages * PAGE_SIZE);
1998 pmap_update(pmap_kernel());
1999 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2000 for (i = 0; i < npages; i++) {
2001 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2002 }
2003 }
2004
2005 /* -------------------------------------------------------------------------- */
2006
2007 static void
2008 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2009 {
2010 uint64_t byte;
2011 uint8_t bitoff;
2012
2013 if (msr < 0x00002000) {
2014 /* Range 1 */
2015 byte = ((msr - 0x00000000) / 8) + 0;
2016 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2017 /* Range 2 */
2018 byte = ((msr - 0xC0000000) / 8) + 1024;
2019 } else {
2020 panic("%s: wrong range", __func__);
2021 }
2022
2023 bitoff = (msr & 0x7);
2024
2025 if (read) {
2026 bitmap[byte] &= ~__BIT(bitoff);
2027 }
2028 if (write) {
2029 bitmap[2048 + byte] &= ~__BIT(bitoff);
2030 }
2031 }
2032
2033 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2034 #define VMX_SEG_ATTRIB_S __BIT(4)
2035 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2036 #define VMX_SEG_ATTRIB_P __BIT(7)
2037 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2038 #define VMX_SEG_ATTRIB_L __BIT(13)
2039 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2040 #define VMX_SEG_ATTRIB_G __BIT(15)
2041 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2042
2043 static void
2044 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2045 {
2046 uint64_t attrib;
2047
2048 attrib =
2049 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2050 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2051 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2052 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2053 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2054 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2055 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2056 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2057 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2058
2059 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2060 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2061 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2062 }
2063 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2064 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2065 }
2066
2067 static void
2068 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2069 {
2070 uint64_t selector, base, limit, attrib = 0;
2071
2072 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2073 vmx_vmread(vmx_guest_segs[idx].selector, &selector);
2074 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2075 }
2076 vmx_vmread(vmx_guest_segs[idx].limit, &limit);
2077 vmx_vmread(vmx_guest_segs[idx].base, &base);
2078
2079 segs[idx].selector = selector;
2080 segs[idx].limit = limit;
2081 segs[idx].base = base;
2082 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2083 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2084 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2085 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2086 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2087 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2088 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2089 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2090 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2091 segs[idx].attrib.p = 0;
2092 }
2093 }
2094
2095 static inline bool
2096 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2097 {
2098 uint64_t cr0, cr3, cr4, efer;
2099
2100 if (flags & NVMM_X64_STATE_CRS) {
2101 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2102 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2103 return true;
2104 }
2105 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2106 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2107 return true;
2108 }
2109 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2110 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2111 return true;
2112 }
2113 }
2114
2115 if (flags & NVMM_X64_STATE_MSRS) {
2116 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2117 if ((efer ^
2118 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2119 return true;
2120 }
2121 }
2122
2123 return false;
2124 }
2125
2126 static void
2127 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2128 {
2129 const struct nvmm_x64_state *state = data;
2130 struct vmx_cpudata *cpudata = vcpu->cpudata;
2131 struct fxsave *fpustate;
2132 uint64_t ctls1, intstate;
2133
2134 vmx_vmcs_enter(vcpu);
2135
2136 if (vmx_state_tlb_flush(state, flags)) {
2137 cpudata->gtlb_want_flush = true;
2138 }
2139
2140 if (flags & NVMM_X64_STATE_SEGS) {
2141 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2142 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2143 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2144 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2145 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2146 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2147 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2148 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2149 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2150 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2151 }
2152
2153 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2154 if (flags & NVMM_X64_STATE_GPRS) {
2155 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2156
2157 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2158 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2159 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2160 }
2161
2162 if (flags & NVMM_X64_STATE_CRS) {
2163 /*
2164 * CR0_NE and CR4_VMXE are mandatory.
2165 */
2166 vmx_vmwrite(VMCS_GUEST_CR0,
2167 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2168 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2169 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2170 vmx_vmwrite(VMCS_GUEST_CR4,
2171 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2172 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2173
2174 if (vmx_xcr0_mask != 0) {
2175 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2176 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2177 cpudata->gxcr0 &= vmx_xcr0_mask;
2178 cpudata->gxcr0 |= XCR0_X87;
2179 }
2180 }
2181
2182 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2183 if (flags & NVMM_X64_STATE_DRS) {
2184 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2185
2186 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2187 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2188 }
2189
2190 if (flags & NVMM_X64_STATE_MSRS) {
2191 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2192 state->msrs[NVMM_X64_MSR_STAR];
2193 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2194 state->msrs[NVMM_X64_MSR_LSTAR];
2195 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2196 state->msrs[NVMM_X64_MSR_CSTAR];
2197 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2198 state->msrs[NVMM_X64_MSR_SFMASK];
2199 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2200 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2201
2202 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2203 state->msrs[NVMM_X64_MSR_EFER]);
2204 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2205 state->msrs[NVMM_X64_MSR_PAT]);
2206 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2207 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2208 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2209 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2210 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2211 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2212
2213 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2214 cpudata->gtsc_want_update = true;
2215
2216 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2217 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2218 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2219 ctls1 |= ENTRY_CTLS_LONG_MODE;
2220 } else {
2221 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2222 }
2223 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2224 }
2225
2226 if (flags & NVMM_X64_STATE_MISC) {
2227 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2228 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2229 if (state->misc[NVMM_X64_MISC_INT_SHADOW]) {
2230 intstate |= INT_STATE_MOVSS;
2231 }
2232 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2233
2234 if (state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT]) {
2235 vmx_event_waitexit_enable(vcpu, false);
2236 } else {
2237 vmx_event_waitexit_disable(vcpu, false);
2238 }
2239
2240 if (state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT]) {
2241 vmx_event_waitexit_enable(vcpu, true);
2242 } else {
2243 vmx_event_waitexit_disable(vcpu, true);
2244 }
2245 }
2246
2247 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2248 if (flags & NVMM_X64_STATE_FPU) {
2249 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2250 sizeof(state->fpu));
2251
2252 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2253 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2254 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2255
2256 if (vmx_xcr0_mask != 0) {
2257 /* Reset XSTATE_BV, to force a reload. */
2258 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2259 }
2260 }
2261
2262 vmx_vmcs_leave(vcpu);
2263 }
2264
2265 static void
2266 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2267 {
2268 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2269 struct vmx_cpudata *cpudata = vcpu->cpudata;
2270 uint64_t intstate;
2271
2272 vmx_vmcs_enter(vcpu);
2273
2274 if (flags & NVMM_X64_STATE_SEGS) {
2275 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2276 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2277 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2278 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2279 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2280 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2281 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2282 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2283 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2284 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2285 }
2286
2287 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2288 if (flags & NVMM_X64_STATE_GPRS) {
2289 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2290
2291 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2292 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2293 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2294 }
2295
2296 if (flags & NVMM_X64_STATE_CRS) {
2297 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2298 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2299 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2300 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2301 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2302 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2303
2304 /* Hide VMXE. */
2305 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2306 }
2307
2308 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2309 if (flags & NVMM_X64_STATE_DRS) {
2310 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2311
2312 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2313 }
2314
2315 if (flags & NVMM_X64_STATE_MSRS) {
2316 state->msrs[NVMM_X64_MSR_STAR] =
2317 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2318 state->msrs[NVMM_X64_MSR_LSTAR] =
2319 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2320 state->msrs[NVMM_X64_MSR_CSTAR] =
2321 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2322 state->msrs[NVMM_X64_MSR_SFMASK] =
2323 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2324 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2325 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2326
2327 vmx_vmread(VMCS_GUEST_IA32_EFER,
2328 &state->msrs[NVMM_X64_MSR_EFER]);
2329 vmx_vmread(VMCS_GUEST_IA32_PAT,
2330 &state->msrs[NVMM_X64_MSR_PAT]);
2331 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2332 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2333 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2334 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2335 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2336 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2337
2338 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2339 }
2340
2341 if (flags & NVMM_X64_STATE_MISC) {
2342 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2343 state->misc[NVMM_X64_MISC_INT_SHADOW] =
2344 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2345
2346 state->misc[NVMM_X64_MISC_INT_WINDOW_EXIT] =
2347 cpudata->int_window_exit;
2348 state->misc[NVMM_X64_MISC_NMI_WINDOW_EXIT] =
2349 cpudata->nmi_window_exit;
2350 }
2351
2352 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2353 if (flags & NVMM_X64_STATE_FPU) {
2354 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2355 sizeof(state->fpu));
2356 }
2357
2358 vmx_vmcs_leave(vcpu);
2359 }
2360
2361 /* -------------------------------------------------------------------------- */
2362
2363 static void
2364 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2365 {
2366 struct vmx_cpudata *cpudata = vcpu->cpudata;
2367 size_t i, oct, bit;
2368
2369 mutex_enter(&vmx_asidlock);
2370
2371 for (i = 0; i < vmx_maxasid; i++) {
2372 oct = i / 8;
2373 bit = i % 8;
2374
2375 if (vmx_asidmap[oct] & __BIT(bit)) {
2376 continue;
2377 }
2378
2379 cpudata->asid = i;
2380
2381 vmx_asidmap[oct] |= __BIT(bit);
2382 vmx_vmwrite(VMCS_VPID, i);
2383 mutex_exit(&vmx_asidlock);
2384 return;
2385 }
2386
2387 mutex_exit(&vmx_asidlock);
2388
2389 panic("%s: impossible", __func__);
2390 }
2391
2392 static void
2393 vmx_asid_free(struct nvmm_cpu *vcpu)
2394 {
2395 size_t oct, bit;
2396 uint64_t asid;
2397
2398 vmx_vmread(VMCS_VPID, &asid);
2399
2400 oct = asid / 8;
2401 bit = asid % 8;
2402
2403 mutex_enter(&vmx_asidlock);
2404 vmx_asidmap[oct] &= ~__BIT(bit);
2405 mutex_exit(&vmx_asidlock);
2406 }
2407
2408 static void
2409 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2410 {
2411 struct vmx_cpudata *cpudata = vcpu->cpudata;
2412 struct vmcs *vmcs = cpudata->vmcs;
2413 struct msr_entry *gmsr = cpudata->gmsr;
2414 extern uint8_t vmx_resume_rip;
2415 uint64_t rev, eptp;
2416
2417 rev = vmx_get_revision();
2418
2419 memset(vmcs, 0, VMCS_SIZE);
2420 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2421 vmcs->abort = 0;
2422
2423 vmx_vmcs_enter(vcpu);
2424
2425 /* No link pointer. */
2426 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2427
2428 /* Install the CTLSs. */
2429 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2430 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2431 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2432 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2433 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2434
2435 /* Allow direct access to certain MSRs. */
2436 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2437 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2438 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2439 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2440 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2441 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2442 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2443 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2444 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2445 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2446 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2447 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2448 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2449 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2450 true, false);
2451 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2452
2453 /*
2454 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2455 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2456 */
2457 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2458 gmsr[VMX_MSRLIST_STAR].val = 0;
2459 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2460 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2461 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2462 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2463 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2464 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2465 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2466 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2467 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2468 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2469 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2470 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2471 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2472 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2473
2474 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2475 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2476 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2477
2478 /* Force CR4_VMXE to zero. */
2479 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2480
2481 /* Set the Host state for resuming. */
2482 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2483 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2484 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2485 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2486 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2487 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2488 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2489 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2490 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2491 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2492 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2493 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2494 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2495 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2496
2497 /* Generate ASID. */
2498 vmx_asid_alloc(vcpu);
2499
2500 /* Enable Extended Paging, 4-Level. */
2501 eptp =
2502 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2503 __SHIFTIN(4-1, EPTP_WALKLEN) |
2504 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2505 mach->vm->vm_map.pmap->pm_pdirpa[0];
2506 vmx_vmwrite(VMCS_EPTP, eptp);
2507
2508 /* Init IA32_MISC_ENABLE. */
2509 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2510 cpudata->gmsr_misc_enable &=
2511 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2512 cpudata->gmsr_misc_enable |=
2513 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2514
2515 /* Init XSAVE header. */
2516 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2517 cpudata->gfpu.xsh_xcomp_bv = 0;
2518
2519 /* These MSRs are static. */
2520 cpudata->star = rdmsr(MSR_STAR);
2521 cpudata->cstar = rdmsr(MSR_CSTAR);
2522 cpudata->sfmask = rdmsr(MSR_SFMASK);
2523
2524 /* Install the RESET state. */
2525 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2526
2527 vmx_vmcs_leave(vcpu);
2528 }
2529
2530 static int
2531 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2532 {
2533 struct vmx_cpudata *cpudata;
2534 int error;
2535
2536 /* Allocate the VMX cpudata. */
2537 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2538 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2539 UVM_KMF_WIRED|UVM_KMF_ZERO);
2540 vcpu->cpudata = cpudata;
2541
2542 /* VMCS */
2543 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2544 VMCS_NPAGES);
2545 if (error)
2546 goto error;
2547
2548 /* MSR Bitmap */
2549 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2550 MSRBM_NPAGES);
2551 if (error)
2552 goto error;
2553
2554 /* Guest MSR List */
2555 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2556 if (error)
2557 goto error;
2558
2559 kcpuset_create(&cpudata->htlb_want_flush, true);
2560
2561 /* Init the VCPU info. */
2562 vmx_vcpu_init(mach, vcpu);
2563
2564 return 0;
2565
2566 error:
2567 if (cpudata->vmcs_pa) {
2568 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2569 VMCS_NPAGES);
2570 }
2571 if (cpudata->msrbm_pa) {
2572 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2573 MSRBM_NPAGES);
2574 }
2575 if (cpudata->gmsr_pa) {
2576 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2577 }
2578
2579 kmem_free(cpudata, sizeof(*cpudata));
2580 return error;
2581 }
2582
2583 static void
2584 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2585 {
2586 struct vmx_cpudata *cpudata = vcpu->cpudata;
2587
2588 vmx_vmcs_enter(vcpu);
2589 vmx_asid_free(vcpu);
2590 vmx_vmcs_destroy(vcpu);
2591
2592 kcpuset_destroy(cpudata->htlb_want_flush);
2593
2594 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2595 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2596 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2597 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2598 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2599 }
2600
2601 /* -------------------------------------------------------------------------- */
2602
2603 static void
2604 vmx_tlb_flush(struct pmap *pm)
2605 {
2606 struct nvmm_machine *mach = pm->pm_data;
2607 struct vmx_machdata *machdata = mach->machdata;
2608
2609 atomic_inc_64(&machdata->mach_htlb_gen);
2610
2611 /* Generates IPIs, which cause #VMEXITs. */
2612 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2613 }
2614
2615 static void
2616 vmx_machine_create(struct nvmm_machine *mach)
2617 {
2618 struct pmap *pmap = mach->vm->vm_map.pmap;
2619 struct vmx_machdata *machdata;
2620
2621 /* Convert to EPT. */
2622 pmap_ept_transform(pmap);
2623
2624 /* Fill in pmap info. */
2625 pmap->pm_data = (void *)mach;
2626 pmap->pm_tlb_flush = vmx_tlb_flush;
2627
2628 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2629 mach->machdata = machdata;
2630
2631 /* Start with an hTLB flush everywhere. */
2632 machdata->mach_htlb_gen = 1;
2633 }
2634
2635 static void
2636 vmx_machine_destroy(struct nvmm_machine *mach)
2637 {
2638 struct vmx_machdata *machdata = mach->machdata;
2639
2640 kmem_free(machdata, sizeof(struct vmx_machdata));
2641 }
2642
2643 static int
2644 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2645 {
2646 struct nvmm_x86_conf_cpuid *cpuid = data;
2647 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2648 size_t i;
2649
2650 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2651 return EINVAL;
2652 }
2653
2654 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2655 (cpuid->set.ebx & cpuid->del.ebx) ||
2656 (cpuid->set.ecx & cpuid->del.ecx) ||
2657 (cpuid->set.edx & cpuid->del.edx))) {
2658 return EINVAL;
2659 }
2660
2661 /* If already here, replace. */
2662 for (i = 0; i < VMX_NCPUIDS; i++) {
2663 if (!machdata->cpuidpresent[i]) {
2664 continue;
2665 }
2666 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2667 memcpy(&machdata->cpuid[i], cpuid,
2668 sizeof(struct nvmm_x86_conf_cpuid));
2669 return 0;
2670 }
2671 }
2672
2673 /* Not here, insert. */
2674 for (i = 0; i < VMX_NCPUIDS; i++) {
2675 if (!machdata->cpuidpresent[i]) {
2676 machdata->cpuidpresent[i] = true;
2677 memcpy(&machdata->cpuid[i], cpuid,
2678 sizeof(struct nvmm_x86_conf_cpuid));
2679 return 0;
2680 }
2681 }
2682
2683 return ENOBUFS;
2684 }
2685
2686 /* -------------------------------------------------------------------------- */
2687
2688 static int
2689 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2690 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2691 {
2692 uint64_t basic, val, true_val;
2693 bool one_allowed, zero_allowed, has_true;
2694 size_t i;
2695
2696 basic = rdmsr(MSR_IA32_VMX_BASIC);
2697 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2698
2699 val = rdmsr(msr_ctls);
2700 if (has_true) {
2701 true_val = rdmsr(msr_true_ctls);
2702 } else {
2703 true_val = val;
2704 }
2705
2706 #define ONE_ALLOWED(msrval, bitoff) \
2707 ((msrval & __BIT(32 + bitoff)) != 0)
2708 #define ZERO_ALLOWED(msrval, bitoff) \
2709 ((msrval & __BIT(bitoff)) == 0)
2710
2711 for (i = 0; i < 32; i++) {
2712 one_allowed = ONE_ALLOWED(true_val, i);
2713 zero_allowed = ZERO_ALLOWED(true_val, i);
2714
2715 if (zero_allowed && !one_allowed) {
2716 if (set_one & __BIT(i))
2717 return -1;
2718 *res &= ~__BIT(i);
2719 } else if (one_allowed && !zero_allowed) {
2720 if (set_zero & __BIT(i))
2721 return -1;
2722 *res |= __BIT(i);
2723 } else {
2724 if (set_zero & __BIT(i)) {
2725 *res &= ~__BIT(i);
2726 } else if (set_one & __BIT(i)) {
2727 *res |= __BIT(i);
2728 } else if (!has_true) {
2729 *res &= ~__BIT(i);
2730 } else if (ZERO_ALLOWED(val, i)) {
2731 *res &= ~__BIT(i);
2732 } else if (ONE_ALLOWED(val, i)) {
2733 *res |= __BIT(i);
2734 } else {
2735 return -1;
2736 }
2737 }
2738 }
2739
2740 return 0;
2741 }
2742
2743 static bool
2744 vmx_ident(void)
2745 {
2746 uint64_t msr;
2747 int ret;
2748
2749 if (!(cpu_feature[1] & CPUID2_VMX)) {
2750 return false;
2751 }
2752
2753 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2754 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2755 return false;
2756 }
2757
2758 msr = rdmsr(MSR_IA32_VMX_BASIC);
2759 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2760 return false;
2761 }
2762 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2763 return false;
2764 }
2765
2766 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2767 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2768 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2769 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2770 if (ret == -1) {
2771 return false;
2772 }
2773
2774 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2775 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2776 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2777 if (ret == -1) {
2778 return false;
2779 }
2780
2781 /* Init the CTLSs right now, and check for errors. */
2782 ret = vmx_init_ctls(
2783 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2784 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2785 &vmx_pinbased_ctls);
2786 if (ret == -1) {
2787 return false;
2788 }
2789 ret = vmx_init_ctls(
2790 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2791 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2792 &vmx_procbased_ctls);
2793 if (ret == -1) {
2794 return false;
2795 }
2796 ret = vmx_init_ctls(
2797 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2798 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2799 &vmx_procbased_ctls2);
2800 if (ret == -1) {
2801 return false;
2802 }
2803 ret = vmx_init_ctls(
2804 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2805 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2806 &vmx_entry_ctls);
2807 if (ret == -1) {
2808 return false;
2809 }
2810 ret = vmx_init_ctls(
2811 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2812 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2813 &vmx_exit_ctls);
2814 if (ret == -1) {
2815 return false;
2816 }
2817
2818 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2819 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2820 return false;
2821 }
2822 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2823 return false;
2824 }
2825 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2826 return false;
2827 }
2828 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2829 pmap_ept_has_ad = true;
2830 } else {
2831 pmap_ept_has_ad = false;
2832 }
2833 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2834 return false;
2835 }
2836
2837 return true;
2838 }
2839
2840 static void
2841 vmx_init_asid(uint32_t maxasid)
2842 {
2843 size_t allocsz;
2844
2845 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2846
2847 vmx_maxasid = maxasid;
2848 allocsz = roundup(maxasid, 8) / 8;
2849 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2850
2851 /* ASID 0 is reserved for the host. */
2852 vmx_asidmap[0] |= __BIT(0);
2853 }
2854
2855 static void
2856 vmx_change_cpu(void *arg1, void *arg2)
2857 {
2858 struct cpu_info *ci = curcpu();
2859 bool enable = (bool)arg1;
2860 uint64_t cr4;
2861
2862 if (!enable) {
2863 vmx_vmxoff();
2864 }
2865
2866 cr4 = rcr4();
2867 if (enable) {
2868 cr4 |= CR4_VMXE;
2869 } else {
2870 cr4 &= ~CR4_VMXE;
2871 }
2872 lcr4(cr4);
2873
2874 if (enable) {
2875 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2876 }
2877 }
2878
2879 static void
2880 vmx_init_l1tf(void)
2881 {
2882 u_int descs[4];
2883 uint64_t msr;
2884
2885 if (cpuid_level < 7) {
2886 return;
2887 }
2888
2889 x86_cpuid(7, descs);
2890
2891 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2892 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2893 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2894 /* No mitigation needed. */
2895 return;
2896 }
2897 }
2898
2899 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2900 /* Enable hardware mitigation. */
2901 vmx_msrlist_entry_nmsr += 1;
2902 }
2903 }
2904
2905 static void
2906 vmx_init(void)
2907 {
2908 CPU_INFO_ITERATOR cii;
2909 struct cpu_info *ci;
2910 uint64_t xc, msr;
2911 struct vmxon *vmxon;
2912 uint32_t revision;
2913 paddr_t pa;
2914 vaddr_t va;
2915 int error;
2916
2917 /* Init the ASID bitmap (VPID). */
2918 vmx_init_asid(VPID_MAX);
2919
2920 /* Init the XCR0 mask. */
2921 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2922
2923 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2924 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2925 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2926 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2927 } else {
2928 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2929 }
2930 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2931 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2932 } else {
2933 vmx_ept_flush_op = VMX_INVEPT_ALL;
2934 }
2935 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2936 vmx_eptp_type = EPTP_TYPE_WB;
2937 } else {
2938 vmx_eptp_type = EPTP_TYPE_UC;
2939 }
2940
2941 /* Init the L1TF mitigation. */
2942 vmx_init_l1tf();
2943
2944 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2945 revision = vmx_get_revision();
2946
2947 for (CPU_INFO_FOREACH(cii, ci)) {
2948 error = vmx_memalloc(&pa, &va, 1);
2949 if (error) {
2950 panic("%s: out of memory", __func__);
2951 }
2952 vmxoncpu[cpu_index(ci)].pa = pa;
2953 vmxoncpu[cpu_index(ci)].va = va;
2954
2955 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2956 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2957 }
2958
2959 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2960 xc_wait(xc);
2961 }
2962
2963 static void
2964 vmx_fini_asid(void)
2965 {
2966 size_t allocsz;
2967
2968 allocsz = roundup(vmx_maxasid, 8) / 8;
2969 kmem_free(vmx_asidmap, allocsz);
2970
2971 mutex_destroy(&vmx_asidlock);
2972 }
2973
2974 static void
2975 vmx_fini(void)
2976 {
2977 uint64_t xc;
2978 size_t i;
2979
2980 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2981 xc_wait(xc);
2982
2983 for (i = 0; i < MAXCPUS; i++) {
2984 if (vmxoncpu[i].pa != 0)
2985 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2986 }
2987
2988 vmx_fini_asid();
2989 }
2990
2991 static void
2992 vmx_capability(struct nvmm_capability *cap)
2993 {
2994 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
2995 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
2996 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
2997 }
2998
2999 const struct nvmm_impl nvmm_x86_vmx = {
3000 .ident = vmx_ident,
3001 .init = vmx_init,
3002 .fini = vmx_fini,
3003 .capability = vmx_capability,
3004 .conf_max = NVMM_X86_NCONF,
3005 .conf_sizes = vmx_conf_sizes,
3006 .state_size = sizeof(struct nvmm_x64_state),
3007 .machine_create = vmx_machine_create,
3008 .machine_destroy = vmx_machine_destroy,
3009 .machine_configure = vmx_machine_configure,
3010 .vcpu_create = vmx_vcpu_create,
3011 .vcpu_destroy = vmx_vcpu_destroy,
3012 .vcpu_setstate = vmx_vcpu_setstate,
3013 .vcpu_getstate = vmx_vcpu_getstate,
3014 .vcpu_inject = vmx_vcpu_inject,
3015 .vcpu_run = vmx_vcpu_run
3016 };
3017