nvmm_x86_vmx.c revision 1.24 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.24 2019/04/06 11:49:53 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.24 2019/04/06 11:49:53 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int _vmx_invept(uint64_t op, void *desc);
60 int _vmx_invvpid(uint64_t op, void *desc);
61 int _vmx_vmread(uint64_t op, uint64_t *val);
62 int _vmx_vmwrite(uint64_t op, uint64_t val);
63 int _vmx_vmptrld(paddr_t *pa);
64 int _vmx_vmptrst(paddr_t *pa);
65 int _vmx_vmclear(paddr_t *pa);
66 int vmx_vmlaunch(uint64_t *gprs);
67 int vmx_vmresume(uint64_t *gprs);
68
69 #define vmx_vmxon(a) \
70 if (__predict_false(_vmx_vmxon(a) != 0)) { \
71 panic("%s: VMXON failed", __func__); \
72 }
73 #define vmx_vmxoff() \
74 if (__predict_false(_vmx_vmxoff() != 0)) { \
75 panic("%s: VMXOFF failed", __func__); \
76 }
77 #define vmx_invept(a, b) \
78 if (__predict_false(_vmx_invept(a, b) != 0)) { \
79 panic("%s: INVEPT failed", __func__); \
80 }
81 #define vmx_invvpid(a, b) \
82 if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
83 panic("%s: INVVPID failed", __func__); \
84 }
85 #define vmx_vmread(a, b) \
86 if (__predict_false(_vmx_vmread(a, b) != 0)) { \
87 panic("%s: VMREAD failed", __func__); \
88 }
89 #define vmx_vmwrite(a, b) \
90 if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
91 panic("%s: VMWRITE failed", __func__); \
92 }
93 #define vmx_vmptrld(a) \
94 if (__predict_false(_vmx_vmptrld(a) != 0)) { \
95 panic("%s: VMPTRLD failed", __func__); \
96 }
97 #define vmx_vmptrst(a) \
98 if (__predict_false(_vmx_vmptrst(a) != 0)) { \
99 panic("%s: VMPTRST failed", __func__); \
100 }
101 #define vmx_vmclear(a) \
102 if (__predict_false(_vmx_vmclear(a) != 0)) { \
103 panic("%s: VMCLEAR failed", __func__); \
104 }
105
106 #define MSR_IA32_FEATURE_CONTROL 0x003A
107 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
108 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
109 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
110
111 #define MSR_IA32_VMX_BASIC 0x0480
112 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
113 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
114 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
115 #define IA32_VMX_BASIC_DUAL __BIT(49)
116 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
117 #define MEM_TYPE_UC 0
118 #define MEM_TYPE_WB 6
119 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
120 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
121
122 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
123 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
124 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
125 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
126 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
127
128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
132
133 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
134 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
135 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
136 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
137
138 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
139 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
140 #define IA32_VMX_EPT_VPID_UC __BIT(8)
141 #define IA32_VMX_EPT_VPID_WB __BIT(14)
142 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
143 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
144 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
145 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
146 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
147 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
148 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
149 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
150 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
151
152 /* -------------------------------------------------------------------------- */
153
154 /* 16-bit control fields */
155 #define VMCS_VPID 0x00000000
156 #define VMCS_PIR_VECTOR 0x00000002
157 #define VMCS_EPTP_INDEX 0x00000004
158 /* 16-bit guest-state fields */
159 #define VMCS_GUEST_ES_SELECTOR 0x00000800
160 #define VMCS_GUEST_CS_SELECTOR 0x00000802
161 #define VMCS_GUEST_SS_SELECTOR 0x00000804
162 #define VMCS_GUEST_DS_SELECTOR 0x00000806
163 #define VMCS_GUEST_FS_SELECTOR 0x00000808
164 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
165 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
166 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
167 #define VMCS_GUEST_INTR_STATUS 0x00000810
168 #define VMCS_PML_INDEX 0x00000812
169 /* 16-bit host-state fields */
170 #define VMCS_HOST_ES_SELECTOR 0x00000C00
171 #define VMCS_HOST_CS_SELECTOR 0x00000C02
172 #define VMCS_HOST_SS_SELECTOR 0x00000C04
173 #define VMCS_HOST_DS_SELECTOR 0x00000C06
174 #define VMCS_HOST_FS_SELECTOR 0x00000C08
175 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
176 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
177 /* 64-bit control fields */
178 #define VMCS_IO_BITMAP_A 0x00002000
179 #define VMCS_IO_BITMAP_B 0x00002002
180 #define VMCS_MSR_BITMAP 0x00002004
181 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
182 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
184 #define VMCS_EXECUTIVE_VMCS 0x0000200C
185 #define VMCS_PML_ADDRESS 0x0000200E
186 #define VMCS_TSC_OFFSET 0x00002010
187 #define VMCS_VIRTUAL_APIC 0x00002012
188 #define VMCS_APIC_ACCESS 0x00002014
189 #define VMCS_PIR_DESC 0x00002016
190 #define VMCS_VM_CONTROL 0x00002018
191 #define VMCS_EPTP 0x0000201A
192 #define EPTP_TYPE __BITS(2,0)
193 #define EPTP_TYPE_UC 0
194 #define EPTP_TYPE_WB 6
195 #define EPTP_WALKLEN __BITS(5,3)
196 #define EPTP_FLAGS_AD __BIT(6)
197 #define EPTP_PHYSADDR __BITS(63,12)
198 #define VMCS_EOI_EXIT0 0x0000201C
199 #define VMCS_EOI_EXIT1 0x0000201E
200 #define VMCS_EOI_EXIT2 0x00002020
201 #define VMCS_EOI_EXIT3 0x00002022
202 #define VMCS_EPTP_LIST 0x00002024
203 #define VMCS_VMREAD_BITMAP 0x00002026
204 #define VMCS_VMWRITE_BITMAP 0x00002028
205 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
206 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
207 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
208 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
209 #define VMCS_TSC_MULTIPLIER 0x00002032
210 /* 64-bit read-only fields */
211 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
212 /* 64-bit guest-state fields */
213 #define VMCS_LINK_POINTER 0x00002800
214 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
215 #define VMCS_GUEST_IA32_PAT 0x00002804
216 #define VMCS_GUEST_IA32_EFER 0x00002806
217 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
218 #define VMCS_GUEST_PDPTE0 0x0000280A
219 #define VMCS_GUEST_PDPTE1 0x0000280C
220 #define VMCS_GUEST_PDPTE2 0x0000280E
221 #define VMCS_GUEST_PDPTE3 0x00002810
222 #define VMCS_GUEST_BNDCFGS 0x00002812
223 /* 64-bit host-state fields */
224 #define VMCS_HOST_IA32_PAT 0x00002C00
225 #define VMCS_HOST_IA32_EFER 0x00002C02
226 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
227 /* 32-bit control fields */
228 #define VMCS_PINBASED_CTLS 0x00004000
229 #define PIN_CTLS_INT_EXITING __BIT(0)
230 #define PIN_CTLS_NMI_EXITING __BIT(3)
231 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
232 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
233 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
234 #define VMCS_PROCBASED_CTLS 0x00004002
235 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
236 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
237 #define PROC_CTLS_HLT_EXITING __BIT(7)
238 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
239 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
240 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
241 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
242 #define PROC_CTLS_RCR3_EXITING __BIT(15)
243 #define PROC_CTLS_LCR3_EXITING __BIT(16)
244 #define PROC_CTLS_RCR8_EXITING __BIT(19)
245 #define PROC_CTLS_LCR8_EXITING __BIT(20)
246 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
247 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
248 #define PROC_CTLS_DR_EXITING __BIT(23)
249 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
250 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
251 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
252 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
253 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
254 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
255 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
256 #define VMCS_EXCEPTION_BITMAP 0x00004004
257 #define VMCS_PF_ERROR_MASK 0x00004006
258 #define VMCS_PF_ERROR_MATCH 0x00004008
259 #define VMCS_CR3_TARGET_COUNT 0x0000400A
260 #define VMCS_EXIT_CTLS 0x0000400C
261 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
262 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
263 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
264 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
265 #define EXIT_CTLS_SAVE_PAT __BIT(18)
266 #define EXIT_CTLS_LOAD_PAT __BIT(19)
267 #define EXIT_CTLS_SAVE_EFER __BIT(20)
268 #define EXIT_CTLS_LOAD_EFER __BIT(21)
269 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
270 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
271 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
272 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
273 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
274 #define VMCS_ENTRY_CTLS 0x00004012
275 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
276 #define ENTRY_CTLS_LONG_MODE __BIT(9)
277 #define ENTRY_CTLS_SMM __BIT(10)
278 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
279 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
280 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
281 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
282 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
283 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
284 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
285 #define VMCS_ENTRY_INTR_INFO 0x00004016
286 #define INTR_INFO_VECTOR __BITS(7,0)
287 #define INTR_INFO_TYPE __BITS(10,8)
288 #define INTR_TYPE_EXT_INT 0
289 #define INTR_TYPE_NMI 2
290 #define INTR_TYPE_HW_EXC 3
291 #define INTR_TYPE_SW_INT 4
292 #define INTR_TYPE_PRIV_SW_EXC 5
293 #define INTR_TYPE_SW_EXC 6
294 #define INTR_TYPE_OTHER 7
295 #define INTR_INFO_ERROR __BIT(11)
296 #define INTR_INFO_VALID __BIT(31)
297 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
298 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
299 #define VMCS_TPR_THRESHOLD 0x0000401C
300 #define VMCS_PROCBASED_CTLS2 0x0000401E
301 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
302 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
303 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
304 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
305 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
306 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
307 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
308 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
309 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
310 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
311 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
312 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
313 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
314 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
315 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
316 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
317 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
318 #define PROC_CTLS2_PML_ENABLE __BIT(17)
319 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
320 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
321 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
322 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
323 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
324 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
325 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
326 #define VMCS_PLE_GAP 0x00004020
327 #define VMCS_PLE_WINDOW 0x00004022
328 /* 32-bit read-only data fields */
329 #define VMCS_INSTRUCTION_ERROR 0x00004400
330 #define VMCS_EXIT_REASON 0x00004402
331 #define VMCS_EXIT_INTR_INFO 0x00004404
332 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
333 #define VMCS_IDT_VECTORING_INFO 0x00004408
334 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
335 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
336 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
337 /* 32-bit guest-state fields */
338 #define VMCS_GUEST_ES_LIMIT 0x00004800
339 #define VMCS_GUEST_CS_LIMIT 0x00004802
340 #define VMCS_GUEST_SS_LIMIT 0x00004804
341 #define VMCS_GUEST_DS_LIMIT 0x00004806
342 #define VMCS_GUEST_FS_LIMIT 0x00004808
343 #define VMCS_GUEST_GS_LIMIT 0x0000480A
344 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
345 #define VMCS_GUEST_TR_LIMIT 0x0000480E
346 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
347 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
348 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
349 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
350 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
351 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
352 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
353 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
354 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
355 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
356 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
357 #define INT_STATE_STI __BIT(0)
358 #define INT_STATE_MOVSS __BIT(1)
359 #define INT_STATE_SMI __BIT(2)
360 #define INT_STATE_NMI __BIT(3)
361 #define INT_STATE_ENCLAVE __BIT(4)
362 #define VMCS_GUEST_ACTIVITY 0x00004826
363 #define VMCS_GUEST_SMBASE 0x00004828
364 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
365 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
366 /* 32-bit host state fields */
367 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
368 /* Natural-Width control fields */
369 #define VMCS_CR0_MASK 0x00006000
370 #define VMCS_CR4_MASK 0x00006002
371 #define VMCS_CR0_SHADOW 0x00006004
372 #define VMCS_CR4_SHADOW 0x00006006
373 #define VMCS_CR3_TARGET0 0x00006008
374 #define VMCS_CR3_TARGET1 0x0000600A
375 #define VMCS_CR3_TARGET2 0x0000600C
376 #define VMCS_CR3_TARGET3 0x0000600E
377 /* Natural-Width read-only fields */
378 #define VMCS_EXIT_QUALIFICATION 0x00006400
379 #define VMCS_IO_RCX 0x00006402
380 #define VMCS_IO_RSI 0x00006404
381 #define VMCS_IO_RDI 0x00006406
382 #define VMCS_IO_RIP 0x00006408
383 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
384 /* Natural-Width guest-state fields */
385 #define VMCS_GUEST_CR0 0x00006800
386 #define VMCS_GUEST_CR3 0x00006802
387 #define VMCS_GUEST_CR4 0x00006804
388 #define VMCS_GUEST_ES_BASE 0x00006806
389 #define VMCS_GUEST_CS_BASE 0x00006808
390 #define VMCS_GUEST_SS_BASE 0x0000680A
391 #define VMCS_GUEST_DS_BASE 0x0000680C
392 #define VMCS_GUEST_FS_BASE 0x0000680E
393 #define VMCS_GUEST_GS_BASE 0x00006810
394 #define VMCS_GUEST_LDTR_BASE 0x00006812
395 #define VMCS_GUEST_TR_BASE 0x00006814
396 #define VMCS_GUEST_GDTR_BASE 0x00006816
397 #define VMCS_GUEST_IDTR_BASE 0x00006818
398 #define VMCS_GUEST_DR7 0x0000681A
399 #define VMCS_GUEST_RSP 0x0000681C
400 #define VMCS_GUEST_RIP 0x0000681E
401 #define VMCS_GUEST_RFLAGS 0x00006820
402 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
403 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
404 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
405 /* Natural-Width host-state fields */
406 #define VMCS_HOST_CR0 0x00006C00
407 #define VMCS_HOST_CR3 0x00006C02
408 #define VMCS_HOST_CR4 0x00006C04
409 #define VMCS_HOST_FS_BASE 0x00006C06
410 #define VMCS_HOST_GS_BASE 0x00006C08
411 #define VMCS_HOST_TR_BASE 0x00006C0A
412 #define VMCS_HOST_GDTR_BASE 0x00006C0C
413 #define VMCS_HOST_IDTR_BASE 0x00006C0E
414 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
415 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
416 #define VMCS_HOST_RSP 0x00006C14
417 #define VMCS_HOST_RIP 0x00006c16
418
419 /* VMX basic exit reasons. */
420 #define VMCS_EXITCODE_EXC_NMI 0
421 #define VMCS_EXITCODE_EXT_INT 1
422 #define VMCS_EXITCODE_SHUTDOWN 2
423 #define VMCS_EXITCODE_INIT 3
424 #define VMCS_EXITCODE_SIPI 4
425 #define VMCS_EXITCODE_SMI 5
426 #define VMCS_EXITCODE_OTHER_SMI 6
427 #define VMCS_EXITCODE_INT_WINDOW 7
428 #define VMCS_EXITCODE_NMI_WINDOW 8
429 #define VMCS_EXITCODE_TASK_SWITCH 9
430 #define VMCS_EXITCODE_CPUID 10
431 #define VMCS_EXITCODE_GETSEC 11
432 #define VMCS_EXITCODE_HLT 12
433 #define VMCS_EXITCODE_INVD 13
434 #define VMCS_EXITCODE_INVLPG 14
435 #define VMCS_EXITCODE_RDPMC 15
436 #define VMCS_EXITCODE_RDTSC 16
437 #define VMCS_EXITCODE_RSM 17
438 #define VMCS_EXITCODE_VMCALL 18
439 #define VMCS_EXITCODE_VMCLEAR 19
440 #define VMCS_EXITCODE_VMLAUNCH 20
441 #define VMCS_EXITCODE_VMPTRLD 21
442 #define VMCS_EXITCODE_VMPTRST 22
443 #define VMCS_EXITCODE_VMREAD 23
444 #define VMCS_EXITCODE_VMRESUME 24
445 #define VMCS_EXITCODE_VMWRITE 25
446 #define VMCS_EXITCODE_VMXOFF 26
447 #define VMCS_EXITCODE_VMXON 27
448 #define VMCS_EXITCODE_CR 28
449 #define VMCS_EXITCODE_DR 29
450 #define VMCS_EXITCODE_IO 30
451 #define VMCS_EXITCODE_RDMSR 31
452 #define VMCS_EXITCODE_WRMSR 32
453 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
454 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
455 #define VMCS_EXITCODE_MWAIT 36
456 #define VMCS_EXITCODE_TRAP_FLAG 37
457 #define VMCS_EXITCODE_MONITOR 39
458 #define VMCS_EXITCODE_PAUSE 40
459 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
460 #define VMCS_EXITCODE_TPR_BELOW 43
461 #define VMCS_EXITCODE_APIC_ACCESS 44
462 #define VMCS_EXITCODE_VEOI 45
463 #define VMCS_EXITCODE_GDTR_IDTR 46
464 #define VMCS_EXITCODE_LDTR_TR 47
465 #define VMCS_EXITCODE_EPT_VIOLATION 48
466 #define VMCS_EXITCODE_EPT_MISCONFIG 49
467 #define VMCS_EXITCODE_INVEPT 50
468 #define VMCS_EXITCODE_RDTSCP 51
469 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
470 #define VMCS_EXITCODE_INVVPID 53
471 #define VMCS_EXITCODE_WBINVD 54
472 #define VMCS_EXITCODE_XSETBV 55
473 #define VMCS_EXITCODE_APIC_WRITE 56
474 #define VMCS_EXITCODE_RDRAND 57
475 #define VMCS_EXITCODE_INVPCID 58
476 #define VMCS_EXITCODE_VMFUNC 59
477 #define VMCS_EXITCODE_ENCLS 60
478 #define VMCS_EXITCODE_RDSEED 61
479 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
480 #define VMCS_EXITCODE_XSAVES 63
481 #define VMCS_EXITCODE_XRSTORS 64
482
483 /* -------------------------------------------------------------------------- */
484
485 #define VMX_MSRLIST_STAR 0
486 #define VMX_MSRLIST_LSTAR 1
487 #define VMX_MSRLIST_CSTAR 2
488 #define VMX_MSRLIST_SFMASK 3
489 #define VMX_MSRLIST_KERNELGSBASE 4
490 #define VMX_MSRLIST_EXIT_NMSR 5
491 #define VMX_MSRLIST_L1DFLUSH 5
492
493 /* On entry, we may do +1 to include L1DFLUSH. */
494 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
495
496 struct vmxon {
497 uint32_t ident;
498 #define VMXON_IDENT_REVISION __BITS(30,0)
499
500 uint8_t data[PAGE_SIZE - 4];
501 } __packed;
502
503 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
504
505 struct vmxoncpu {
506 vaddr_t va;
507 paddr_t pa;
508 };
509
510 static struct vmxoncpu vmxoncpu[MAXCPUS];
511
512 struct vmcs {
513 uint32_t ident;
514 #define VMCS_IDENT_REVISION __BITS(30,0)
515 #define VMCS_IDENT_SHADOW __BIT(31)
516
517 uint32_t abort;
518 uint8_t data[PAGE_SIZE - 8];
519 } __packed;
520
521 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
522
523 struct msr_entry {
524 uint32_t msr;
525 uint32_t rsvd;
526 uint64_t val;
527 } __packed;
528
529 struct ept_desc {
530 uint64_t eptp;
531 uint64_t mbz;
532 } __packed;
533
534 struct vpid_desc {
535 uint64_t vpid;
536 uint64_t addr;
537 } __packed;
538
539 #define VPID_MAX 0xFFFF
540
541 /* Make sure we never run out of VPIDs. */
542 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
543
544 static uint64_t vmx_tlb_flush_op __read_mostly;
545 static uint64_t vmx_ept_flush_op __read_mostly;
546 static uint64_t vmx_eptp_type __read_mostly;
547
548 static uint64_t vmx_pinbased_ctls __read_mostly;
549 static uint64_t vmx_procbased_ctls __read_mostly;
550 static uint64_t vmx_procbased_ctls2 __read_mostly;
551 static uint64_t vmx_entry_ctls __read_mostly;
552 static uint64_t vmx_exit_ctls __read_mostly;
553
554 static uint64_t vmx_cr0_fixed0 __read_mostly;
555 static uint64_t vmx_cr0_fixed1 __read_mostly;
556 static uint64_t vmx_cr4_fixed0 __read_mostly;
557 static uint64_t vmx_cr4_fixed1 __read_mostly;
558
559 extern bool pmap_ept_has_ad;
560
561 #define VMX_PINBASED_CTLS_ONE \
562 (PIN_CTLS_INT_EXITING| \
563 PIN_CTLS_NMI_EXITING| \
564 PIN_CTLS_VIRTUAL_NMIS)
565
566 #define VMX_PINBASED_CTLS_ZERO 0
567
568 #define VMX_PROCBASED_CTLS_ONE \
569 (PROC_CTLS_USE_TSC_OFFSETTING| \
570 PROC_CTLS_HLT_EXITING| \
571 PROC_CTLS_MWAIT_EXITING | \
572 PROC_CTLS_RDPMC_EXITING | \
573 PROC_CTLS_RCR8_EXITING | \
574 PROC_CTLS_LCR8_EXITING | \
575 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
576 PROC_CTLS_USE_MSR_BITMAPS | \
577 PROC_CTLS_MONITOR_EXITING | \
578 PROC_CTLS_ACTIVATE_CTLS2)
579
580 #define VMX_PROCBASED_CTLS_ZERO \
581 (PROC_CTLS_RCR3_EXITING| \
582 PROC_CTLS_LCR3_EXITING)
583
584 #define VMX_PROCBASED_CTLS2_ONE \
585 (PROC_CTLS2_ENABLE_EPT| \
586 PROC_CTLS2_ENABLE_VPID| \
587 PROC_CTLS2_UNRESTRICTED_GUEST)
588
589 #define VMX_PROCBASED_CTLS2_ZERO 0
590
591 #define VMX_ENTRY_CTLS_ONE \
592 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
593 ENTRY_CTLS_LOAD_EFER| \
594 ENTRY_CTLS_LOAD_PAT)
595
596 #define VMX_ENTRY_CTLS_ZERO \
597 (ENTRY_CTLS_SMM| \
598 ENTRY_CTLS_DISABLE_DUAL)
599
600 #define VMX_EXIT_CTLS_ONE \
601 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
602 EXIT_CTLS_HOST_LONG_MODE| \
603 EXIT_CTLS_SAVE_PAT| \
604 EXIT_CTLS_LOAD_PAT| \
605 EXIT_CTLS_SAVE_EFER| \
606 EXIT_CTLS_LOAD_EFER)
607
608 #define VMX_EXIT_CTLS_ZERO 0
609
610 static uint8_t *vmx_asidmap __read_mostly;
611 static uint32_t vmx_maxasid __read_mostly;
612 static kmutex_t vmx_asidlock __cacheline_aligned;
613
614 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
615 static uint64_t vmx_xcr0_mask __read_mostly;
616
617 #define VMX_NCPUIDS 32
618
619 #define VMCS_NPAGES 1
620 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
621
622 #define MSRBM_NPAGES 1
623 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
624
625 #define EFER_TLB_FLUSH \
626 (EFER_NXE|EFER_LMA|EFER_LME)
627 #define CR0_TLB_FLUSH \
628 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
629 #define CR4_TLB_FLUSH \
630 (CR4_PGE|CR4_PAE|CR4_PSE)
631
632 /* -------------------------------------------------------------------------- */
633
634 struct vmx_machdata {
635 bool cpuidpresent[VMX_NCPUIDS];
636 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
637 volatile uint64_t mach_htlb_gen;
638 };
639
640 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
641 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
642 };
643
644 struct vmx_cpudata {
645 /* General */
646 uint64_t asid;
647 bool gtlb_want_flush;
648 bool gtsc_want_update;
649 uint64_t vcpu_htlb_gen;
650 kcpuset_t *htlb_want_flush;
651
652 /* VMCS */
653 struct vmcs *vmcs;
654 paddr_t vmcs_pa;
655 size_t vmcs_refcnt;
656 struct cpu_info *vmcs_ci;
657 bool vmcs_launched;
658
659 /* MSR bitmap */
660 uint8_t *msrbm;
661 paddr_t msrbm_pa;
662
663 /* Host state */
664 uint64_t hxcr0;
665 uint64_t star;
666 uint64_t lstar;
667 uint64_t cstar;
668 uint64_t sfmask;
669 uint64_t kernelgsbase;
670 bool ts_set;
671 struct xsave_header hfpu __aligned(64);
672
673 /* Intr state */
674 bool int_window_exit;
675 bool nmi_window_exit;
676 bool evt_pending;
677
678 /* Guest state */
679 struct msr_entry *gmsr;
680 paddr_t gmsr_pa;
681 uint64_t gmsr_misc_enable;
682 uint64_t gcr2;
683 uint64_t gcr8;
684 uint64_t gxcr0;
685 uint64_t gprs[NVMM_X64_NGPR];
686 uint64_t drs[NVMM_X64_NDR];
687 uint64_t gtsc;
688 struct xsave_header gfpu __aligned(64);
689 };
690
691 static const struct {
692 uint64_t selector;
693 uint64_t attrib;
694 uint64_t limit;
695 uint64_t base;
696 } vmx_guest_segs[NVMM_X64_NSEG] = {
697 [NVMM_X64_SEG_ES] = {
698 VMCS_GUEST_ES_SELECTOR,
699 VMCS_GUEST_ES_ACCESS_RIGHTS,
700 VMCS_GUEST_ES_LIMIT,
701 VMCS_GUEST_ES_BASE
702 },
703 [NVMM_X64_SEG_CS] = {
704 VMCS_GUEST_CS_SELECTOR,
705 VMCS_GUEST_CS_ACCESS_RIGHTS,
706 VMCS_GUEST_CS_LIMIT,
707 VMCS_GUEST_CS_BASE
708 },
709 [NVMM_X64_SEG_SS] = {
710 VMCS_GUEST_SS_SELECTOR,
711 VMCS_GUEST_SS_ACCESS_RIGHTS,
712 VMCS_GUEST_SS_LIMIT,
713 VMCS_GUEST_SS_BASE
714 },
715 [NVMM_X64_SEG_DS] = {
716 VMCS_GUEST_DS_SELECTOR,
717 VMCS_GUEST_DS_ACCESS_RIGHTS,
718 VMCS_GUEST_DS_LIMIT,
719 VMCS_GUEST_DS_BASE
720 },
721 [NVMM_X64_SEG_FS] = {
722 VMCS_GUEST_FS_SELECTOR,
723 VMCS_GUEST_FS_ACCESS_RIGHTS,
724 VMCS_GUEST_FS_LIMIT,
725 VMCS_GUEST_FS_BASE
726 },
727 [NVMM_X64_SEG_GS] = {
728 VMCS_GUEST_GS_SELECTOR,
729 VMCS_GUEST_GS_ACCESS_RIGHTS,
730 VMCS_GUEST_GS_LIMIT,
731 VMCS_GUEST_GS_BASE
732 },
733 [NVMM_X64_SEG_GDT] = {
734 0, /* doesn't exist */
735 0, /* doesn't exist */
736 VMCS_GUEST_GDTR_LIMIT,
737 VMCS_GUEST_GDTR_BASE
738 },
739 [NVMM_X64_SEG_IDT] = {
740 0, /* doesn't exist */
741 0, /* doesn't exist */
742 VMCS_GUEST_IDTR_LIMIT,
743 VMCS_GUEST_IDTR_BASE
744 },
745 [NVMM_X64_SEG_LDT] = {
746 VMCS_GUEST_LDTR_SELECTOR,
747 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
748 VMCS_GUEST_LDTR_LIMIT,
749 VMCS_GUEST_LDTR_BASE
750 },
751 [NVMM_X64_SEG_TR] = {
752 VMCS_GUEST_TR_SELECTOR,
753 VMCS_GUEST_TR_ACCESS_RIGHTS,
754 VMCS_GUEST_TR_LIMIT,
755 VMCS_GUEST_TR_BASE
756 }
757 };
758
759 /* -------------------------------------------------------------------------- */
760
761 static uint64_t
762 vmx_get_revision(void)
763 {
764 uint64_t msr;
765
766 msr = rdmsr(MSR_IA32_VMX_BASIC);
767 msr &= IA32_VMX_BASIC_IDENT;
768
769 return msr;
770 }
771
772 static void
773 vmx_vmclear_ipi(void *arg1, void *arg2)
774 {
775 paddr_t vmcs_pa = (paddr_t)arg1;
776 vmx_vmclear(&vmcs_pa);
777 }
778
779 static void
780 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
781 {
782 uint64_t xc;
783 int bound;
784
785 KASSERT(kpreempt_disabled());
786
787 bound = curlwp_bind();
788 kpreempt_enable();
789
790 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
791 xc_wait(xc);
792
793 kpreempt_disable();
794 curlwp_bindx(bound);
795 }
796
797 static void
798 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
799 {
800 struct vmx_cpudata *cpudata = vcpu->cpudata;
801 struct cpu_info *vmcs_ci;
802 paddr_t oldpa __diagused;
803
804 cpudata->vmcs_refcnt++;
805 if (cpudata->vmcs_refcnt > 1) {
806 #ifdef DIAGNOSTIC
807 KASSERT(kpreempt_disabled());
808 vmx_vmptrst(&oldpa);
809 KASSERT(oldpa == cpudata->vmcs_pa);
810 #endif
811 return;
812 }
813
814 vmcs_ci = cpudata->vmcs_ci;
815 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
816
817 kpreempt_disable();
818
819 if (vmcs_ci == NULL) {
820 /* This VMCS is loaded for the first time. */
821 vmx_vmclear(&cpudata->vmcs_pa);
822 cpudata->vmcs_launched = false;
823 } else if (vmcs_ci != curcpu()) {
824 /* This VMCS is active on a remote CPU. */
825 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
826 cpudata->vmcs_launched = false;
827 } else {
828 /* This VMCS is active on curcpu, nothing to do. */
829 }
830
831 vmx_vmptrld(&cpudata->vmcs_pa);
832 }
833
834 static void
835 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
836 {
837 struct vmx_cpudata *cpudata = vcpu->cpudata;
838 paddr_t oldpa __diagused;
839
840 KASSERT(kpreempt_disabled());
841 #ifdef DIAGNOSTIC
842 vmx_vmptrst(&oldpa);
843 KASSERT(oldpa == cpudata->vmcs_pa);
844 #endif
845 KASSERT(cpudata->vmcs_refcnt > 0);
846 cpudata->vmcs_refcnt--;
847
848 if (cpudata->vmcs_refcnt > 0) {
849 return;
850 }
851
852 cpudata->vmcs_ci = curcpu();
853 kpreempt_enable();
854 }
855
856 static void
857 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
858 {
859 struct vmx_cpudata *cpudata = vcpu->cpudata;
860 paddr_t oldpa __diagused;
861
862 KASSERT(kpreempt_disabled());
863 #ifdef DIAGNOSTIC
864 vmx_vmptrst(&oldpa);
865 KASSERT(oldpa == cpudata->vmcs_pa);
866 #endif
867 KASSERT(cpudata->vmcs_refcnt == 1);
868 cpudata->vmcs_refcnt--;
869
870 vmx_vmclear(&cpudata->vmcs_pa);
871 kpreempt_enable();
872 }
873
874 /* -------------------------------------------------------------------------- */
875
876 static void
877 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
878 {
879 struct vmx_cpudata *cpudata = vcpu->cpudata;
880 uint64_t ctls1;
881
882 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
883
884 if (nmi) {
885 // XXX INT_STATE_NMI?
886 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
887 cpudata->nmi_window_exit = true;
888 } else {
889 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
890 cpudata->int_window_exit = true;
891 }
892
893 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
894 }
895
896 static void
897 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
898 {
899 struct vmx_cpudata *cpudata = vcpu->cpudata;
900 uint64_t ctls1;
901
902 vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
903
904 if (nmi) {
905 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
906 cpudata->nmi_window_exit = false;
907 } else {
908 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
909 cpudata->int_window_exit = false;
910 }
911
912 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
913 }
914
915 static inline int
916 vmx_event_has_error(uint64_t vector)
917 {
918 switch (vector) {
919 case 8: /* #DF */
920 case 10: /* #TS */
921 case 11: /* #NP */
922 case 12: /* #SS */
923 case 13: /* #GP */
924 case 14: /* #PF */
925 case 17: /* #AC */
926 case 30: /* #SX */
927 return 1;
928 default:
929 return 0;
930 }
931 }
932
933 static int
934 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
935 struct nvmm_event *event)
936 {
937 struct vmx_cpudata *cpudata = vcpu->cpudata;
938 int type = 0, err = 0, ret = 0;
939 uint64_t info, intstate, rflags;
940
941 if (event->vector >= 256) {
942 return EINVAL;
943 }
944
945 vmx_vmcs_enter(vcpu);
946
947 switch (event->type) {
948 case NVMM_EVENT_INTERRUPT_HW:
949 type = INTR_TYPE_EXT_INT;
950 if (event->vector == 2) {
951 type = INTR_TYPE_NMI;
952 }
953 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
954 if (type == INTR_TYPE_NMI) {
955 if (cpudata->nmi_window_exit) {
956 ret = EAGAIN;
957 goto out;
958 }
959 vmx_event_waitexit_enable(vcpu, true);
960 } else {
961 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
962 if ((rflags & PSL_I) == 0 ||
963 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
964 vmx_event_waitexit_enable(vcpu, false);
965 ret = EAGAIN;
966 goto out;
967 }
968 }
969 err = 0;
970 break;
971 case NVMM_EVENT_INTERRUPT_SW:
972 ret = EINVAL;
973 goto out;
974 case NVMM_EVENT_EXCEPTION:
975 if (event->vector == 2 || event->vector >= 32) {
976 ret = EINVAL;
977 goto out;
978 }
979 if (event->vector == 3 || event->vector == 0) {
980 ret = EINVAL;
981 goto out;
982 }
983 type = INTR_TYPE_HW_EXC;
984 err = vmx_event_has_error(event->vector);
985 break;
986 default:
987 ret = EAGAIN;
988 goto out;
989 }
990
991 info =
992 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
993 __SHIFTIN(type, INTR_INFO_TYPE) |
994 __SHIFTIN(err, INTR_INFO_ERROR) |
995 __SHIFTIN(1, INTR_INFO_VALID);
996 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
997 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
998
999 cpudata->evt_pending = true;
1000
1001 out:
1002 vmx_vmcs_leave(vcpu);
1003 return ret;
1004 }
1005
1006 static void
1007 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1008 {
1009 struct nvmm_event event;
1010 int ret __diagused;
1011
1012 event.type = NVMM_EVENT_EXCEPTION;
1013 event.vector = 6;
1014 event.u.error = 0;
1015
1016 ret = vmx_vcpu_inject(mach, vcpu, &event);
1017 KASSERT(ret == 0);
1018 }
1019
1020 static void
1021 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1022 {
1023 struct nvmm_event event;
1024 int ret __diagused;
1025
1026 event.type = NVMM_EVENT_EXCEPTION;
1027 event.vector = 13;
1028 event.u.error = 0;
1029
1030 ret = vmx_vcpu_inject(mach, vcpu, &event);
1031 KASSERT(ret == 0);
1032 }
1033
1034 static inline void
1035 vmx_inkernel_advance(void)
1036 {
1037 uint64_t rip, inslen, intstate;
1038
1039 /*
1040 * Maybe we should also apply single-stepping and debug exceptions.
1041 * Matters for guest-ring3, because it can execute 'cpuid' under a
1042 * debugger.
1043 */
1044 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1045 vmx_vmread(VMCS_GUEST_RIP, &rip);
1046 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1047 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1048 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1049 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1050 }
1051
1052 static void
1053 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1054 struct nvmm_exit *exit)
1055 {
1056 uint64_t qual;
1057
1058 vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
1059
1060 if ((qual & INTR_INFO_VALID) == 0) {
1061 goto error;
1062 }
1063 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1064 goto error;
1065 }
1066
1067 exit->reason = NVMM_EXIT_NONE;
1068 return;
1069
1070 error:
1071 exit->reason = NVMM_EXIT_INVALID;
1072 }
1073
1074 static void
1075 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1076 {
1077 struct vmx_cpudata *cpudata = vcpu->cpudata;
1078 uint64_t cr4;
1079
1080 switch (eax) {
1081 case 0x00000001:
1082 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1083
1084 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1085 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1086 CPUID_LOCAL_APIC_ID);
1087
1088 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1089 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1090
1091 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1092
1093 /* CPUID2_OSXSAVE depends on CR4. */
1094 vmx_vmread(VMCS_GUEST_CR4, &cr4);
1095 if (!(cr4 & CR4_OSXSAVE)) {
1096 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1097 }
1098 break;
1099 case 0x00000005:
1100 case 0x00000006:
1101 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1102 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1103 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1104 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1105 break;
1106 case 0x00000007:
1107 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1108 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1109 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1110 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1111 break;
1112 case 0x0000000D:
1113 if (vmx_xcr0_mask == 0) {
1114 break;
1115 }
1116 switch (ecx) {
1117 case 0:
1118 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1119 if (cpudata->gxcr0 & XCR0_SSE) {
1120 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1121 } else {
1122 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1123 }
1124 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1125 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave);
1126 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1127 break;
1128 case 1:
1129 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1130 break;
1131 }
1132 break;
1133 case 0x40000000:
1134 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1135 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1136 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1137 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1138 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1139 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1140 break;
1141 case 0x80000001:
1142 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1143 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1144 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1145 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1146 break;
1147 default:
1148 break;
1149 }
1150 }
1151
1152 static void
1153 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1154 struct nvmm_exit *exit)
1155 {
1156 struct vmx_machdata *machdata = mach->machdata;
1157 struct vmx_cpudata *cpudata = vcpu->cpudata;
1158 struct nvmm_x86_conf_cpuid *cpuid;
1159 uint64_t eax, ecx;
1160 u_int descs[4];
1161 size_t i;
1162
1163 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1164 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1165 x86_cpuid2(eax, ecx, descs);
1166
1167 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1168 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1169 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1170 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1171
1172 for (i = 0; i < VMX_NCPUIDS; i++) {
1173 cpuid = &machdata->cpuid[i];
1174 if (!machdata->cpuidpresent[i]) {
1175 continue;
1176 }
1177 if (cpuid->leaf != eax) {
1178 continue;
1179 }
1180
1181 /* del */
1182 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1183 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1184 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1185 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1186
1187 /* set */
1188 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1189 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1190 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1191 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1192
1193 break;
1194 }
1195
1196 /* Overwrite non-tunable leaves. */
1197 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1198
1199 vmx_inkernel_advance();
1200 exit->reason = NVMM_EXIT_NONE;
1201 }
1202
1203 static void
1204 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1205 struct nvmm_exit *exit)
1206 {
1207 struct vmx_cpudata *cpudata = vcpu->cpudata;
1208 uint64_t rflags;
1209
1210 if (cpudata->int_window_exit) {
1211 vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
1212 if (rflags & PSL_I) {
1213 vmx_event_waitexit_disable(vcpu, false);
1214 }
1215 }
1216
1217 vmx_inkernel_advance();
1218 exit->reason = NVMM_EXIT_HALTED;
1219 }
1220
1221 #define VMX_QUAL_CR_NUM __BITS(3,0)
1222 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1223 #define CR_TYPE_WRITE 0
1224 #define CR_TYPE_READ 1
1225 #define CR_TYPE_CLTS 2
1226 #define CR_TYPE_LMSW 3
1227 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1228 #define VMX_QUAL_CR_GPR __BITS(11,8)
1229 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1230
1231 static inline int
1232 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1233 {
1234 /* Bits set to 1 in fixed0 are fixed to 1. */
1235 if ((crval & fixed0) != fixed0) {
1236 return -1;
1237 }
1238 /* Bits set to 0 in fixed1 are fixed to 0. */
1239 if (crval & ~fixed1) {
1240 return -1;
1241 }
1242 return 0;
1243 }
1244
1245 static int
1246 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1247 uint64_t qual)
1248 {
1249 struct vmx_cpudata *cpudata = vcpu->cpudata;
1250 uint64_t type, gpr, cr0;
1251 uint64_t efer, ctls1;
1252
1253 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1254 if (type != CR_TYPE_WRITE) {
1255 return -1;
1256 }
1257
1258 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1259 KASSERT(gpr < 16);
1260
1261 if (gpr == NVMM_X64_GPR_RSP) {
1262 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1263 } else {
1264 gpr = cpudata->gprs[gpr];
1265 }
1266
1267 cr0 = gpr | CR0_NE | CR0_ET;
1268 cr0 &= ~(CR0_NW|CR0_CD);
1269
1270 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1271 return -1;
1272 }
1273
1274 /*
1275 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1276 * from CR3.
1277 */
1278
1279 if (cr0 & CR0_PG) {
1280 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
1281 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
1282 if (efer & EFER_LME) {
1283 ctls1 |= ENTRY_CTLS_LONG_MODE;
1284 efer |= EFER_LMA;
1285 } else {
1286 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1287 efer &= ~EFER_LMA;
1288 }
1289 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1290 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1291 }
1292
1293 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1294 vmx_inkernel_advance();
1295 return 0;
1296 }
1297
1298 static int
1299 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1300 uint64_t qual)
1301 {
1302 struct vmx_cpudata *cpudata = vcpu->cpudata;
1303 uint64_t type, gpr, cr4;
1304
1305 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1306 if (type != CR_TYPE_WRITE) {
1307 return -1;
1308 }
1309
1310 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1311 KASSERT(gpr < 16);
1312
1313 if (gpr == NVMM_X64_GPR_RSP) {
1314 vmx_vmread(VMCS_GUEST_RSP, &gpr);
1315 } else {
1316 gpr = cpudata->gprs[gpr];
1317 }
1318
1319 cr4 = gpr | CR4_VMXE;
1320
1321 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1322 return -1;
1323 }
1324
1325 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1326 vmx_inkernel_advance();
1327 return 0;
1328 }
1329
1330 static int
1331 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1332 uint64_t qual)
1333 {
1334 struct vmx_cpudata *cpudata = vcpu->cpudata;
1335 uint64_t type, gpr;
1336 bool write;
1337
1338 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1339 if (type == CR_TYPE_WRITE) {
1340 write = true;
1341 } else if (type == CR_TYPE_READ) {
1342 write = false;
1343 } else {
1344 return -1;
1345 }
1346
1347 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1348 KASSERT(gpr < 16);
1349
1350 if (write) {
1351 if (gpr == NVMM_X64_GPR_RSP) {
1352 vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
1353 } else {
1354 cpudata->gcr8 = cpudata->gprs[gpr];
1355 }
1356 } else {
1357 if (gpr == NVMM_X64_GPR_RSP) {
1358 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1359 } else {
1360 cpudata->gprs[gpr] = cpudata->gcr8;
1361 }
1362 }
1363
1364 vmx_inkernel_advance();
1365 return 0;
1366 }
1367
1368 static void
1369 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1370 struct nvmm_exit *exit)
1371 {
1372 uint64_t qual;
1373 int ret;
1374
1375 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1376
1377 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1378 case 0:
1379 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1380 break;
1381 case 4:
1382 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1383 break;
1384 case 8:
1385 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1386 break;
1387 default:
1388 ret = -1;
1389 break;
1390 }
1391
1392 if (ret == -1) {
1393 vmx_inject_gp(mach, vcpu);
1394 }
1395
1396 exit->reason = NVMM_EXIT_NONE;
1397 }
1398
1399 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1400 #define IO_SIZE_8 0
1401 #define IO_SIZE_16 1
1402 #define IO_SIZE_32 3
1403 #define VMX_QUAL_IO_IN __BIT(3)
1404 #define VMX_QUAL_IO_STR __BIT(4)
1405 #define VMX_QUAL_IO_REP __BIT(5)
1406 #define VMX_QUAL_IO_DX __BIT(6)
1407 #define VMX_QUAL_IO_PORT __BITS(31,16)
1408
1409 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1410 #define IO_ADRSIZE_16 0
1411 #define IO_ADRSIZE_32 1
1412 #define IO_ADRSIZE_64 2
1413 #define VMX_INFO_IO_SEG __BITS(17,15)
1414
1415 static void
1416 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1417 struct nvmm_exit *exit)
1418 {
1419 uint64_t qual, info, inslen, rip;
1420
1421 vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
1422 vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
1423
1424 exit->reason = NVMM_EXIT_IO;
1425
1426 if (qual & VMX_QUAL_IO_IN) {
1427 exit->u.io.type = NVMM_EXIT_IO_IN;
1428 } else {
1429 exit->u.io.type = NVMM_EXIT_IO_OUT;
1430 }
1431
1432 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1433
1434 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1435 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1436
1437 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1438 exit->u.io.address_size = 8;
1439 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1440 exit->u.io.address_size = 4;
1441 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1442 exit->u.io.address_size = 2;
1443 }
1444
1445 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1446 exit->u.io.operand_size = 4;
1447 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1448 exit->u.io.operand_size = 2;
1449 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1450 exit->u.io.operand_size = 1;
1451 }
1452
1453 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1454 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1455
1456 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1457 exit->u.io.seg = NVMM_X64_SEG_ES;
1458 }
1459
1460 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1461 vmx_vmread(VMCS_GUEST_RIP, &rip);
1462 exit->u.io.npc = rip + inslen;
1463 }
1464
1465 static const uint64_t msr_ignore_list[] = {
1466 MSR_BIOS_SIGN,
1467 MSR_IA32_PLATFORM_ID
1468 };
1469
1470 static bool
1471 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1472 struct nvmm_exit *exit)
1473 {
1474 struct vmx_cpudata *cpudata = vcpu->cpudata;
1475 uint64_t val;
1476 size_t i;
1477
1478 switch (exit->u.msr.type) {
1479 case NVMM_EXIT_MSR_RDMSR:
1480 if (exit->u.msr.msr == MSR_CR_PAT) {
1481 vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
1482 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1483 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1484 goto handled;
1485 }
1486 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1487 val = cpudata->gmsr_misc_enable;
1488 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1489 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1490 goto handled;
1491 }
1492 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1493 if (msr_ignore_list[i] != exit->u.msr.msr)
1494 continue;
1495 val = 0;
1496 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1497 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1498 goto handled;
1499 }
1500 break;
1501 case NVMM_EXIT_MSR_WRMSR:
1502 if (exit->u.msr.msr == MSR_TSC) {
1503 cpudata->gtsc = exit->u.msr.val;
1504 cpudata->gtsc_want_update = true;
1505 goto handled;
1506 }
1507 if (exit->u.msr.msr == MSR_CR_PAT) {
1508 val = exit->u.msr.val;
1509 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1510 goto error;
1511 }
1512 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1513 goto handled;
1514 }
1515 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1516 /* Don't care. */
1517 goto handled;
1518 }
1519 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1520 if (msr_ignore_list[i] != exit->u.msr.msr)
1521 continue;
1522 goto handled;
1523 }
1524 break;
1525 }
1526
1527 return false;
1528
1529 handled:
1530 vmx_inkernel_advance();
1531 return true;
1532
1533 error:
1534 vmx_inject_gp(mach, vcpu);
1535 return true;
1536 }
1537
1538 static void
1539 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1540 struct nvmm_exit *exit, bool rdmsr)
1541 {
1542 struct vmx_cpudata *cpudata = vcpu->cpudata;
1543 uint64_t inslen, rip;
1544
1545 if (rdmsr) {
1546 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1547 } else {
1548 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1549 }
1550
1551 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1552
1553 if (rdmsr) {
1554 exit->u.msr.val = 0;
1555 } else {
1556 uint64_t rdx, rax;
1557 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1558 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1559 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1560 }
1561
1562 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1563 exit->reason = NVMM_EXIT_NONE;
1564 return;
1565 }
1566
1567 exit->reason = NVMM_EXIT_MSR;
1568 vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
1569 vmx_vmread(VMCS_GUEST_RIP, &rip);
1570 exit->u.msr.npc = rip + inslen;
1571 }
1572
1573 static void
1574 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1575 struct nvmm_exit *exit)
1576 {
1577 struct vmx_cpudata *cpudata = vcpu->cpudata;
1578 uint16_t val;
1579
1580 exit->reason = NVMM_EXIT_NONE;
1581
1582 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1583 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1584
1585 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1586 goto error;
1587 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1588 goto error;
1589 } else if (__predict_false((val & XCR0_X87) == 0)) {
1590 goto error;
1591 }
1592
1593 cpudata->gxcr0 = val;
1594
1595 vmx_inkernel_advance();
1596 return;
1597
1598 error:
1599 vmx_inject_gp(mach, vcpu);
1600 }
1601
1602 #define VMX_EPT_VIOLATION_READ __BIT(0)
1603 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1604 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1605
1606 static void
1607 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1608 struct nvmm_exit *exit)
1609 {
1610 uint64_t perm;
1611 gpaddr_t gpa;
1612
1613 vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
1614
1615 exit->reason = NVMM_EXIT_MEMORY;
1616 vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
1617 if (perm & VMX_EPT_VIOLATION_WRITE)
1618 exit->u.mem.prot = PROT_WRITE;
1619 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1620 exit->u.mem.prot = PROT_EXEC;
1621 else
1622 exit->u.mem.prot = PROT_READ;
1623 exit->u.mem.gpa = gpa;
1624 exit->u.mem.inst_len = 0;
1625 }
1626
1627 /* -------------------------------------------------------------------------- */
1628
1629 static void
1630 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1631 {
1632 struct vmx_cpudata *cpudata = vcpu->cpudata;
1633
1634 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1635
1636 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1637 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1638
1639 if (vmx_xcr0_mask != 0) {
1640 cpudata->hxcr0 = rdxcr(0);
1641 wrxcr(0, cpudata->gxcr0);
1642 }
1643 }
1644
1645 static void
1646 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1647 {
1648 struct vmx_cpudata *cpudata = vcpu->cpudata;
1649
1650 if (vmx_xcr0_mask != 0) {
1651 cpudata->gxcr0 = rdxcr(0);
1652 wrxcr(0, cpudata->hxcr0);
1653 }
1654
1655 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1656 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1657
1658 if (cpudata->ts_set) {
1659 stts();
1660 }
1661 }
1662
1663 static void
1664 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1665 {
1666 struct vmx_cpudata *cpudata = vcpu->cpudata;
1667
1668 x86_dbregs_save(curlwp);
1669
1670 ldr7(0);
1671
1672 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1673 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1674 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1675 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1676 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1677 }
1678
1679 static void
1680 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1681 {
1682 struct vmx_cpudata *cpudata = vcpu->cpudata;
1683
1684 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1685 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1686 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1687 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1688 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1689
1690 x86_dbregs_restore(curlwp);
1691 }
1692
1693 static void
1694 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1695 {
1696 struct vmx_cpudata *cpudata = vcpu->cpudata;
1697
1698 /* This gets restored automatically by the CPU. */
1699 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1700 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1701 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1702
1703 /* Note: MSR_LSTAR is not static, because of SVS. */
1704 cpudata->lstar = rdmsr(MSR_LSTAR);
1705 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1706 }
1707
1708 static void
1709 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1710 {
1711 struct vmx_cpudata *cpudata = vcpu->cpudata;
1712
1713 wrmsr(MSR_STAR, cpudata->star);
1714 wrmsr(MSR_LSTAR, cpudata->lstar);
1715 wrmsr(MSR_CSTAR, cpudata->cstar);
1716 wrmsr(MSR_SFMASK, cpudata->sfmask);
1717 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1718 }
1719
1720 /* -------------------------------------------------------------------------- */
1721
1722 #define VMX_INVVPID_ADDRESS 0
1723 #define VMX_INVVPID_CONTEXT 1
1724 #define VMX_INVVPID_ALL 2
1725 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1726
1727 #define VMX_INVEPT_CONTEXT 1
1728 #define VMX_INVEPT_ALL 2
1729
1730 static inline void
1731 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1732 {
1733 struct vmx_cpudata *cpudata = vcpu->cpudata;
1734
1735 if (vcpu->hcpu_last != hcpu) {
1736 cpudata->gtlb_want_flush = true;
1737 }
1738 }
1739
1740 static inline void
1741 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1742 {
1743 struct vmx_cpudata *cpudata = vcpu->cpudata;
1744 struct ept_desc ept_desc;
1745
1746 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1747 return;
1748 }
1749
1750 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1751 ept_desc.mbz = 0;
1752 vmx_invept(vmx_ept_flush_op, &ept_desc);
1753 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1754 }
1755
1756 static inline uint64_t
1757 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1758 {
1759 struct ept_desc ept_desc;
1760 uint64_t machgen;
1761
1762 machgen = machdata->mach_htlb_gen;
1763 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1764 return machgen;
1765 }
1766
1767 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1768
1769 vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
1770 ept_desc.mbz = 0;
1771 vmx_invept(vmx_ept_flush_op, &ept_desc);
1772
1773 return machgen;
1774 }
1775
1776 static inline void
1777 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1778 {
1779 cpudata->vcpu_htlb_gen = machgen;
1780 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1781 }
1782
1783 static int
1784 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1785 struct nvmm_exit *exit)
1786 {
1787 struct vmx_machdata *machdata = mach->machdata;
1788 struct vmx_cpudata *cpudata = vcpu->cpudata;
1789 struct vpid_desc vpid_desc;
1790 struct cpu_info *ci;
1791 uint64_t exitcode;
1792 uint64_t intstate;
1793 uint64_t machgen;
1794 int hcpu, s, ret;
1795 bool launched;
1796
1797 vmx_vmcs_enter(vcpu);
1798 ci = curcpu();
1799 hcpu = cpu_number();
1800 launched = cpudata->vmcs_launched;
1801
1802 vmx_gtlb_catchup(vcpu, hcpu);
1803 vmx_htlb_catchup(vcpu, hcpu);
1804
1805 if (vcpu->hcpu_last != hcpu) {
1806 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1807 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1808 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1809 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1810 cpudata->gtsc_want_update = true;
1811 vcpu->hcpu_last = hcpu;
1812 }
1813
1814 vmx_vcpu_guest_dbregs_enter(vcpu);
1815 vmx_vcpu_guest_misc_enter(vcpu);
1816
1817 while (1) {
1818 if (cpudata->gtlb_want_flush) {
1819 vpid_desc.vpid = cpudata->asid;
1820 vpid_desc.addr = 0;
1821 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1822 cpudata->gtlb_want_flush = false;
1823 }
1824
1825 if (__predict_false(cpudata->gtsc_want_update)) {
1826 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1827 cpudata->gtsc_want_update = false;
1828 }
1829
1830 s = splhigh();
1831 machgen = vmx_htlb_flush(machdata, cpudata);
1832 vmx_vcpu_guest_fpu_enter(vcpu);
1833 lcr2(cpudata->gcr2);
1834 if (launched) {
1835 ret = vmx_vmresume(cpudata->gprs);
1836 } else {
1837 ret = vmx_vmlaunch(cpudata->gprs);
1838 }
1839 cpudata->gcr2 = rcr2();
1840 vmx_vcpu_guest_fpu_leave(vcpu);
1841 vmx_htlb_flush_ack(cpudata, machgen);
1842 splx(s);
1843
1844 if (__predict_false(ret != 0)) {
1845 exit->reason = NVMM_EXIT_INVALID;
1846 break;
1847 }
1848 cpudata->evt_pending = false;
1849
1850 launched = true;
1851
1852 vmx_vmread(VMCS_EXIT_REASON, &exitcode);
1853 exitcode &= __BITS(15,0);
1854
1855 switch (exitcode) {
1856 case VMCS_EXITCODE_EXC_NMI:
1857 vmx_exit_exc_nmi(mach, vcpu, exit);
1858 break;
1859 case VMCS_EXITCODE_EXT_INT:
1860 exit->reason = NVMM_EXIT_NONE;
1861 break;
1862 case VMCS_EXITCODE_CPUID:
1863 vmx_exit_cpuid(mach, vcpu, exit);
1864 break;
1865 case VMCS_EXITCODE_HLT:
1866 vmx_exit_hlt(mach, vcpu, exit);
1867 break;
1868 case VMCS_EXITCODE_CR:
1869 vmx_exit_cr(mach, vcpu, exit);
1870 break;
1871 case VMCS_EXITCODE_IO:
1872 vmx_exit_io(mach, vcpu, exit);
1873 break;
1874 case VMCS_EXITCODE_RDMSR:
1875 vmx_exit_msr(mach, vcpu, exit, true);
1876 break;
1877 case VMCS_EXITCODE_WRMSR:
1878 vmx_exit_msr(mach, vcpu, exit, false);
1879 break;
1880 case VMCS_EXITCODE_SHUTDOWN:
1881 exit->reason = NVMM_EXIT_SHUTDOWN;
1882 break;
1883 case VMCS_EXITCODE_MONITOR:
1884 exit->reason = NVMM_EXIT_MONITOR;
1885 break;
1886 case VMCS_EXITCODE_MWAIT:
1887 exit->reason = NVMM_EXIT_MWAIT;
1888 break;
1889 case VMCS_EXITCODE_XSETBV:
1890 vmx_exit_xsetbv(mach, vcpu, exit);
1891 break;
1892 case VMCS_EXITCODE_RDPMC:
1893 case VMCS_EXITCODE_RDTSCP:
1894 case VMCS_EXITCODE_INVVPID:
1895 case VMCS_EXITCODE_INVEPT:
1896 case VMCS_EXITCODE_VMCALL:
1897 case VMCS_EXITCODE_VMCLEAR:
1898 case VMCS_EXITCODE_VMLAUNCH:
1899 case VMCS_EXITCODE_VMPTRLD:
1900 case VMCS_EXITCODE_VMPTRST:
1901 case VMCS_EXITCODE_VMREAD:
1902 case VMCS_EXITCODE_VMRESUME:
1903 case VMCS_EXITCODE_VMWRITE:
1904 case VMCS_EXITCODE_VMXOFF:
1905 case VMCS_EXITCODE_VMXON:
1906 vmx_inject_ud(mach, vcpu);
1907 exit->reason = NVMM_EXIT_NONE;
1908 break;
1909 case VMCS_EXITCODE_EPT_VIOLATION:
1910 vmx_exit_epf(mach, vcpu, exit);
1911 break;
1912 case VMCS_EXITCODE_INT_WINDOW:
1913 vmx_event_waitexit_disable(vcpu, false);
1914 exit->reason = NVMM_EXIT_INT_READY;
1915 break;
1916 case VMCS_EXITCODE_NMI_WINDOW:
1917 vmx_event_waitexit_disable(vcpu, true);
1918 exit->reason = NVMM_EXIT_NMI_READY;
1919 break;
1920 default:
1921 exit->reason = NVMM_EXIT_INVALID;
1922 break;
1923 }
1924
1925 /* If no reason to return to userland, keep rolling. */
1926 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1927 break;
1928 }
1929 if (curcpu()->ci_data.cpu_softints != 0) {
1930 break;
1931 }
1932 if (curlwp->l_flag & LW_USERRET) {
1933 break;
1934 }
1935 if (exit->reason != NVMM_EXIT_NONE) {
1936 break;
1937 }
1938 }
1939
1940 cpudata->vmcs_launched = launched;
1941
1942 vmx_vmread(VMCS_TSC_OFFSET, &cpudata->gtsc);
1943 cpudata->gtsc += rdtsc();
1944
1945 vmx_vcpu_guest_misc_leave(vcpu);
1946 vmx_vcpu_guest_dbregs_leave(vcpu);
1947
1948 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
1949 vmx_vmread(VMCS_GUEST_RFLAGS,
1950 &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
1951 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
1952 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
1953 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
1954 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
1955 cpudata->int_window_exit;
1956 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
1957 cpudata->nmi_window_exit;
1958 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
1959 cpudata->evt_pending;
1960
1961 vmx_vmcs_leave(vcpu);
1962
1963 return 0;
1964 }
1965
1966 /* -------------------------------------------------------------------------- */
1967
1968 static int
1969 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1970 {
1971 struct pglist pglist;
1972 paddr_t _pa;
1973 vaddr_t _va;
1974 size_t i;
1975 int ret;
1976
1977 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1978 &pglist, 1, 0);
1979 if (ret != 0)
1980 return ENOMEM;
1981 _pa = TAILQ_FIRST(&pglist)->phys_addr;
1982 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1983 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1984 if (_va == 0)
1985 goto error;
1986
1987 for (i = 0; i < npages; i++) {
1988 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1989 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1990 }
1991 pmap_update(pmap_kernel());
1992
1993 memset((void *)_va, 0, npages * PAGE_SIZE);
1994
1995 *pa = _pa;
1996 *va = _va;
1997 return 0;
1998
1999 error:
2000 for (i = 0; i < npages; i++) {
2001 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2002 }
2003 return ENOMEM;
2004 }
2005
2006 static void
2007 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2008 {
2009 size_t i;
2010
2011 pmap_kremove(va, npages * PAGE_SIZE);
2012 pmap_update(pmap_kernel());
2013 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2014 for (i = 0; i < npages; i++) {
2015 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2016 }
2017 }
2018
2019 /* -------------------------------------------------------------------------- */
2020
2021 static void
2022 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2023 {
2024 uint64_t byte;
2025 uint8_t bitoff;
2026
2027 if (msr < 0x00002000) {
2028 /* Range 1 */
2029 byte = ((msr - 0x00000000) / 8) + 0;
2030 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2031 /* Range 2 */
2032 byte = ((msr - 0xC0000000) / 8) + 1024;
2033 } else {
2034 panic("%s: wrong range", __func__);
2035 }
2036
2037 bitoff = (msr & 0x7);
2038
2039 if (read) {
2040 bitmap[byte] &= ~__BIT(bitoff);
2041 }
2042 if (write) {
2043 bitmap[2048 + byte] &= ~__BIT(bitoff);
2044 }
2045 }
2046
2047 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2048 #define VMX_SEG_ATTRIB_S __BIT(4)
2049 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2050 #define VMX_SEG_ATTRIB_P __BIT(7)
2051 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2052 #define VMX_SEG_ATTRIB_L __BIT(13)
2053 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2054 #define VMX_SEG_ATTRIB_G __BIT(15)
2055 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2056
2057 static void
2058 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2059 {
2060 uint64_t attrib;
2061
2062 attrib =
2063 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2064 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2065 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2066 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2067 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2068 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2069 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2070 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2071 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2072
2073 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2074 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2075 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2076 }
2077 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2078 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2079 }
2080
2081 static void
2082 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2083 {
2084 uint64_t selector, base, limit, attrib = 0;
2085
2086 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2087 vmx_vmread(vmx_guest_segs[idx].selector, &selector);
2088 vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
2089 }
2090 vmx_vmread(vmx_guest_segs[idx].limit, &limit);
2091 vmx_vmread(vmx_guest_segs[idx].base, &base);
2092
2093 segs[idx].selector = selector;
2094 segs[idx].limit = limit;
2095 segs[idx].base = base;
2096 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2097 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2098 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2099 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2100 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2101 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2102 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2103 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2104 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2105 segs[idx].attrib.p = 0;
2106 }
2107 }
2108
2109 static inline bool
2110 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2111 {
2112 uint64_t cr0, cr3, cr4, efer;
2113
2114 if (flags & NVMM_X64_STATE_CRS) {
2115 vmx_vmread(VMCS_GUEST_CR0, &cr0);
2116 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2117 return true;
2118 }
2119 vmx_vmread(VMCS_GUEST_CR3, &cr3);
2120 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2121 return true;
2122 }
2123 vmx_vmread(VMCS_GUEST_CR4, &cr4);
2124 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2125 return true;
2126 }
2127 }
2128
2129 if (flags & NVMM_X64_STATE_MSRS) {
2130 vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
2131 if ((efer ^
2132 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2133 return true;
2134 }
2135 }
2136
2137 return false;
2138 }
2139
2140 static void
2141 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2142 {
2143 const struct nvmm_x64_state *state = data;
2144 struct vmx_cpudata *cpudata = vcpu->cpudata;
2145 struct fxsave *fpustate;
2146 uint64_t ctls1, intstate;
2147
2148 vmx_vmcs_enter(vcpu);
2149
2150 if (vmx_state_tlb_flush(state, flags)) {
2151 cpudata->gtlb_want_flush = true;
2152 }
2153
2154 if (flags & NVMM_X64_STATE_SEGS) {
2155 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2156 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2157 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2158 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2159 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2160 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2161 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2162 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2163 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2164 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2165 }
2166
2167 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2168 if (flags & NVMM_X64_STATE_GPRS) {
2169 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2170
2171 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2172 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2173 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2174 }
2175
2176 if (flags & NVMM_X64_STATE_CRS) {
2177 /*
2178 * CR0_NE and CR4_VMXE are mandatory.
2179 */
2180 vmx_vmwrite(VMCS_GUEST_CR0,
2181 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2182 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2183 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2184 vmx_vmwrite(VMCS_GUEST_CR4,
2185 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2186 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2187
2188 if (vmx_xcr0_mask != 0) {
2189 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2190 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2191 cpudata->gxcr0 &= vmx_xcr0_mask;
2192 cpudata->gxcr0 |= XCR0_X87;
2193 }
2194 }
2195
2196 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2197 if (flags & NVMM_X64_STATE_DRS) {
2198 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2199
2200 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2201 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2202 }
2203
2204 if (flags & NVMM_X64_STATE_MSRS) {
2205 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2206 state->msrs[NVMM_X64_MSR_STAR];
2207 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2208 state->msrs[NVMM_X64_MSR_LSTAR];
2209 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2210 state->msrs[NVMM_X64_MSR_CSTAR];
2211 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2212 state->msrs[NVMM_X64_MSR_SFMASK];
2213 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2214 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2215
2216 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2217 state->msrs[NVMM_X64_MSR_EFER]);
2218 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2219 state->msrs[NVMM_X64_MSR_PAT]);
2220 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2221 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2222 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2223 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2224 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2225 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2226
2227 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2228 cpudata->gtsc_want_update = true;
2229
2230 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2231 vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
2232 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2233 ctls1 |= ENTRY_CTLS_LONG_MODE;
2234 } else {
2235 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2236 }
2237 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2238 }
2239
2240 if (flags & NVMM_X64_STATE_INTR) {
2241 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2242 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2243 if (state->intr.int_shadow) {
2244 intstate |= INT_STATE_MOVSS;
2245 }
2246 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2247
2248 if (state->intr.int_window_exiting) {
2249 vmx_event_waitexit_enable(vcpu, false);
2250 } else {
2251 vmx_event_waitexit_disable(vcpu, false);
2252 }
2253
2254 if (state->intr.nmi_window_exiting) {
2255 vmx_event_waitexit_enable(vcpu, true);
2256 } else {
2257 vmx_event_waitexit_disable(vcpu, true);
2258 }
2259 }
2260
2261 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2262 if (flags & NVMM_X64_STATE_FPU) {
2263 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2264 sizeof(state->fpu));
2265
2266 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2267 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2268 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2269
2270 if (vmx_xcr0_mask != 0) {
2271 /* Reset XSTATE_BV, to force a reload. */
2272 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2273 }
2274 }
2275
2276 vmx_vmcs_leave(vcpu);
2277 }
2278
2279 static void
2280 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2281 {
2282 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2283 struct vmx_cpudata *cpudata = vcpu->cpudata;
2284 uint64_t intstate;
2285
2286 vmx_vmcs_enter(vcpu);
2287
2288 if (flags & NVMM_X64_STATE_SEGS) {
2289 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2290 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2291 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2292 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2293 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2294 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2295 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2296 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2297 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2298 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2299 }
2300
2301 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2302 if (flags & NVMM_X64_STATE_GPRS) {
2303 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2304
2305 vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
2306 vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
2307 vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
2308 }
2309
2310 if (flags & NVMM_X64_STATE_CRS) {
2311 vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
2312 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2313 vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
2314 vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
2315 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2316 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2317
2318 /* Hide VMXE. */
2319 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2320 }
2321
2322 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2323 if (flags & NVMM_X64_STATE_DRS) {
2324 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2325
2326 vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
2327 }
2328
2329 if (flags & NVMM_X64_STATE_MSRS) {
2330 state->msrs[NVMM_X64_MSR_STAR] =
2331 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2332 state->msrs[NVMM_X64_MSR_LSTAR] =
2333 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2334 state->msrs[NVMM_X64_MSR_CSTAR] =
2335 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2336 state->msrs[NVMM_X64_MSR_SFMASK] =
2337 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2338 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2339 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2340
2341 vmx_vmread(VMCS_GUEST_IA32_EFER,
2342 &state->msrs[NVMM_X64_MSR_EFER]);
2343 vmx_vmread(VMCS_GUEST_IA32_PAT,
2344 &state->msrs[NVMM_X64_MSR_PAT]);
2345 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
2346 &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2347 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
2348 &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2349 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
2350 &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2351
2352 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2353 }
2354
2355 if (flags & NVMM_X64_STATE_INTR) {
2356 vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
2357 state->intr.int_shadow =
2358 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2359 state->intr.int_window_exiting = cpudata->int_window_exit;
2360 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2361 state->intr.evt_pending = cpudata->evt_pending;
2362 }
2363
2364 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2365 if (flags & NVMM_X64_STATE_FPU) {
2366 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2367 sizeof(state->fpu));
2368 }
2369
2370 vmx_vmcs_leave(vcpu);
2371 }
2372
2373 /* -------------------------------------------------------------------------- */
2374
2375 static void
2376 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2377 {
2378 struct vmx_cpudata *cpudata = vcpu->cpudata;
2379 size_t i, oct, bit;
2380
2381 mutex_enter(&vmx_asidlock);
2382
2383 for (i = 0; i < vmx_maxasid; i++) {
2384 oct = i / 8;
2385 bit = i % 8;
2386
2387 if (vmx_asidmap[oct] & __BIT(bit)) {
2388 continue;
2389 }
2390
2391 cpudata->asid = i;
2392
2393 vmx_asidmap[oct] |= __BIT(bit);
2394 vmx_vmwrite(VMCS_VPID, i);
2395 mutex_exit(&vmx_asidlock);
2396 return;
2397 }
2398
2399 mutex_exit(&vmx_asidlock);
2400
2401 panic("%s: impossible", __func__);
2402 }
2403
2404 static void
2405 vmx_asid_free(struct nvmm_cpu *vcpu)
2406 {
2407 size_t oct, bit;
2408 uint64_t asid;
2409
2410 vmx_vmread(VMCS_VPID, &asid);
2411
2412 oct = asid / 8;
2413 bit = asid % 8;
2414
2415 mutex_enter(&vmx_asidlock);
2416 vmx_asidmap[oct] &= ~__BIT(bit);
2417 mutex_exit(&vmx_asidlock);
2418 }
2419
2420 static void
2421 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2422 {
2423 struct vmx_cpudata *cpudata = vcpu->cpudata;
2424 struct vmcs *vmcs = cpudata->vmcs;
2425 struct msr_entry *gmsr = cpudata->gmsr;
2426 extern uint8_t vmx_resume_rip;
2427 uint64_t rev, eptp;
2428
2429 rev = vmx_get_revision();
2430
2431 memset(vmcs, 0, VMCS_SIZE);
2432 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2433 vmcs->abort = 0;
2434
2435 vmx_vmcs_enter(vcpu);
2436
2437 /* No link pointer. */
2438 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2439
2440 /* Install the CTLSs. */
2441 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2442 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2443 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2444 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2445 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2446
2447 /* Allow direct access to certain MSRs. */
2448 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2449 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2450 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2451 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2452 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2453 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2454 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2455 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2456 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2457 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2458 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2459 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2460 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2461 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2462 true, false);
2463 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2464
2465 /*
2466 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2467 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2468 */
2469 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2470 gmsr[VMX_MSRLIST_STAR].val = 0;
2471 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2472 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2473 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2474 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2475 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2476 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2477 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2478 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2479 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2480 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2481 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2482 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2483 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2484 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2485
2486 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2487 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2488 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2489
2490 /* Force CR4_VMXE to zero. */
2491 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2492
2493 /* Set the Host state for resuming. */
2494 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2495 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2496 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2497 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2498 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2499 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2500 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2501 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2502 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2503 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2504 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2505 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2506 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2507 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2508
2509 /* Generate ASID. */
2510 vmx_asid_alloc(vcpu);
2511
2512 /* Enable Extended Paging, 4-Level. */
2513 eptp =
2514 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2515 __SHIFTIN(4-1, EPTP_WALKLEN) |
2516 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2517 mach->vm->vm_map.pmap->pm_pdirpa[0];
2518 vmx_vmwrite(VMCS_EPTP, eptp);
2519
2520 /* Init IA32_MISC_ENABLE. */
2521 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2522 cpudata->gmsr_misc_enable &=
2523 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2524 cpudata->gmsr_misc_enable |=
2525 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2526
2527 /* Init XSAVE header. */
2528 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2529 cpudata->gfpu.xsh_xcomp_bv = 0;
2530
2531 /* These MSRs are static. */
2532 cpudata->star = rdmsr(MSR_STAR);
2533 cpudata->cstar = rdmsr(MSR_CSTAR);
2534 cpudata->sfmask = rdmsr(MSR_SFMASK);
2535
2536 /* Install the RESET state. */
2537 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2538
2539 vmx_vmcs_leave(vcpu);
2540 }
2541
2542 static int
2543 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2544 {
2545 struct vmx_cpudata *cpudata;
2546 int error;
2547
2548 /* Allocate the VMX cpudata. */
2549 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2550 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2551 UVM_KMF_WIRED|UVM_KMF_ZERO);
2552 vcpu->cpudata = cpudata;
2553
2554 /* VMCS */
2555 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2556 VMCS_NPAGES);
2557 if (error)
2558 goto error;
2559
2560 /* MSR Bitmap */
2561 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2562 MSRBM_NPAGES);
2563 if (error)
2564 goto error;
2565
2566 /* Guest MSR List */
2567 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2568 if (error)
2569 goto error;
2570
2571 kcpuset_create(&cpudata->htlb_want_flush, true);
2572
2573 /* Init the VCPU info. */
2574 vmx_vcpu_init(mach, vcpu);
2575
2576 return 0;
2577
2578 error:
2579 if (cpudata->vmcs_pa) {
2580 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2581 VMCS_NPAGES);
2582 }
2583 if (cpudata->msrbm_pa) {
2584 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2585 MSRBM_NPAGES);
2586 }
2587 if (cpudata->gmsr_pa) {
2588 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2589 }
2590
2591 kmem_free(cpudata, sizeof(*cpudata));
2592 return error;
2593 }
2594
2595 static void
2596 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2597 {
2598 struct vmx_cpudata *cpudata = vcpu->cpudata;
2599
2600 vmx_vmcs_enter(vcpu);
2601 vmx_asid_free(vcpu);
2602 vmx_vmcs_destroy(vcpu);
2603
2604 kcpuset_destroy(cpudata->htlb_want_flush);
2605
2606 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2607 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2608 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2609 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2610 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2611 }
2612
2613 /* -------------------------------------------------------------------------- */
2614
2615 static void
2616 vmx_tlb_flush(struct pmap *pm)
2617 {
2618 struct nvmm_machine *mach = pm->pm_data;
2619 struct vmx_machdata *machdata = mach->machdata;
2620
2621 atomic_inc_64(&machdata->mach_htlb_gen);
2622
2623 /* Generates IPIs, which cause #VMEXITs. */
2624 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2625 }
2626
2627 static void
2628 vmx_machine_create(struct nvmm_machine *mach)
2629 {
2630 struct pmap *pmap = mach->vm->vm_map.pmap;
2631 struct vmx_machdata *machdata;
2632
2633 /* Convert to EPT. */
2634 pmap_ept_transform(pmap);
2635
2636 /* Fill in pmap info. */
2637 pmap->pm_data = (void *)mach;
2638 pmap->pm_tlb_flush = vmx_tlb_flush;
2639
2640 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2641 mach->machdata = machdata;
2642
2643 /* Start with an hTLB flush everywhere. */
2644 machdata->mach_htlb_gen = 1;
2645 }
2646
2647 static void
2648 vmx_machine_destroy(struct nvmm_machine *mach)
2649 {
2650 struct vmx_machdata *machdata = mach->machdata;
2651
2652 kmem_free(machdata, sizeof(struct vmx_machdata));
2653 }
2654
2655 static int
2656 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2657 {
2658 struct nvmm_x86_conf_cpuid *cpuid = data;
2659 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2660 size_t i;
2661
2662 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2663 return EINVAL;
2664 }
2665
2666 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2667 (cpuid->set.ebx & cpuid->del.ebx) ||
2668 (cpuid->set.ecx & cpuid->del.ecx) ||
2669 (cpuid->set.edx & cpuid->del.edx))) {
2670 return EINVAL;
2671 }
2672
2673 /* If already here, replace. */
2674 for (i = 0; i < VMX_NCPUIDS; i++) {
2675 if (!machdata->cpuidpresent[i]) {
2676 continue;
2677 }
2678 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2679 memcpy(&machdata->cpuid[i], cpuid,
2680 sizeof(struct nvmm_x86_conf_cpuid));
2681 return 0;
2682 }
2683 }
2684
2685 /* Not here, insert. */
2686 for (i = 0; i < VMX_NCPUIDS; i++) {
2687 if (!machdata->cpuidpresent[i]) {
2688 machdata->cpuidpresent[i] = true;
2689 memcpy(&machdata->cpuid[i], cpuid,
2690 sizeof(struct nvmm_x86_conf_cpuid));
2691 return 0;
2692 }
2693 }
2694
2695 return ENOBUFS;
2696 }
2697
2698 /* -------------------------------------------------------------------------- */
2699
2700 static int
2701 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2702 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2703 {
2704 uint64_t basic, val, true_val;
2705 bool one_allowed, zero_allowed, has_true;
2706 size_t i;
2707
2708 basic = rdmsr(MSR_IA32_VMX_BASIC);
2709 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2710
2711 val = rdmsr(msr_ctls);
2712 if (has_true) {
2713 true_val = rdmsr(msr_true_ctls);
2714 } else {
2715 true_val = val;
2716 }
2717
2718 #define ONE_ALLOWED(msrval, bitoff) \
2719 ((msrval & __BIT(32 + bitoff)) != 0)
2720 #define ZERO_ALLOWED(msrval, bitoff) \
2721 ((msrval & __BIT(bitoff)) == 0)
2722
2723 for (i = 0; i < 32; i++) {
2724 one_allowed = ONE_ALLOWED(true_val, i);
2725 zero_allowed = ZERO_ALLOWED(true_val, i);
2726
2727 if (zero_allowed && !one_allowed) {
2728 if (set_one & __BIT(i))
2729 return -1;
2730 *res &= ~__BIT(i);
2731 } else if (one_allowed && !zero_allowed) {
2732 if (set_zero & __BIT(i))
2733 return -1;
2734 *res |= __BIT(i);
2735 } else {
2736 if (set_zero & __BIT(i)) {
2737 *res &= ~__BIT(i);
2738 } else if (set_one & __BIT(i)) {
2739 *res |= __BIT(i);
2740 } else if (!has_true) {
2741 *res &= ~__BIT(i);
2742 } else if (ZERO_ALLOWED(val, i)) {
2743 *res &= ~__BIT(i);
2744 } else if (ONE_ALLOWED(val, i)) {
2745 *res |= __BIT(i);
2746 } else {
2747 return -1;
2748 }
2749 }
2750 }
2751
2752 return 0;
2753 }
2754
2755 static bool
2756 vmx_ident(void)
2757 {
2758 uint64_t msr;
2759 int ret;
2760
2761 if (!(cpu_feature[1] & CPUID2_VMX)) {
2762 return false;
2763 }
2764
2765 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2766 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2767 return false;
2768 }
2769
2770 msr = rdmsr(MSR_IA32_VMX_BASIC);
2771 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2772 return false;
2773 }
2774 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2775 return false;
2776 }
2777
2778 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2779 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2780 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2781 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2782 if (ret == -1) {
2783 return false;
2784 }
2785
2786 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2787 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2788 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2789 if (ret == -1) {
2790 return false;
2791 }
2792
2793 /* Init the CTLSs right now, and check for errors. */
2794 ret = vmx_init_ctls(
2795 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2796 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2797 &vmx_pinbased_ctls);
2798 if (ret == -1) {
2799 return false;
2800 }
2801 ret = vmx_init_ctls(
2802 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2803 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2804 &vmx_procbased_ctls);
2805 if (ret == -1) {
2806 return false;
2807 }
2808 ret = vmx_init_ctls(
2809 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2810 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2811 &vmx_procbased_ctls2);
2812 if (ret == -1) {
2813 return false;
2814 }
2815 ret = vmx_init_ctls(
2816 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2817 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2818 &vmx_entry_ctls);
2819 if (ret == -1) {
2820 return false;
2821 }
2822 ret = vmx_init_ctls(
2823 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2824 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2825 &vmx_exit_ctls);
2826 if (ret == -1) {
2827 return false;
2828 }
2829
2830 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2831 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2832 return false;
2833 }
2834 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2835 return false;
2836 }
2837 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2838 return false;
2839 }
2840 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2841 pmap_ept_has_ad = true;
2842 } else {
2843 pmap_ept_has_ad = false;
2844 }
2845 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2846 return false;
2847 }
2848
2849 return true;
2850 }
2851
2852 static void
2853 vmx_init_asid(uint32_t maxasid)
2854 {
2855 size_t allocsz;
2856
2857 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2858
2859 vmx_maxasid = maxasid;
2860 allocsz = roundup(maxasid, 8) / 8;
2861 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2862
2863 /* ASID 0 is reserved for the host. */
2864 vmx_asidmap[0] |= __BIT(0);
2865 }
2866
2867 static void
2868 vmx_change_cpu(void *arg1, void *arg2)
2869 {
2870 struct cpu_info *ci = curcpu();
2871 bool enable = (bool)arg1;
2872 uint64_t cr4;
2873
2874 if (!enable) {
2875 vmx_vmxoff();
2876 }
2877
2878 cr4 = rcr4();
2879 if (enable) {
2880 cr4 |= CR4_VMXE;
2881 } else {
2882 cr4 &= ~CR4_VMXE;
2883 }
2884 lcr4(cr4);
2885
2886 if (enable) {
2887 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2888 }
2889 }
2890
2891 static void
2892 vmx_init_l1tf(void)
2893 {
2894 u_int descs[4];
2895 uint64_t msr;
2896
2897 if (cpuid_level < 7) {
2898 return;
2899 }
2900
2901 x86_cpuid(7, descs);
2902
2903 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2904 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2905 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2906 /* No mitigation needed. */
2907 return;
2908 }
2909 }
2910
2911 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2912 /* Enable hardware mitigation. */
2913 vmx_msrlist_entry_nmsr += 1;
2914 }
2915 }
2916
2917 static void
2918 vmx_init(void)
2919 {
2920 CPU_INFO_ITERATOR cii;
2921 struct cpu_info *ci;
2922 uint64_t xc, msr;
2923 struct vmxon *vmxon;
2924 uint32_t revision;
2925 paddr_t pa;
2926 vaddr_t va;
2927 int error;
2928
2929 /* Init the ASID bitmap (VPID). */
2930 vmx_init_asid(VPID_MAX);
2931
2932 /* Init the XCR0 mask. */
2933 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2934
2935 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2936 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2937 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2938 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
2939 } else {
2940 vmx_tlb_flush_op = VMX_INVVPID_ALL;
2941 }
2942 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
2943 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
2944 } else {
2945 vmx_ept_flush_op = VMX_INVEPT_ALL;
2946 }
2947 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
2948 vmx_eptp_type = EPTP_TYPE_WB;
2949 } else {
2950 vmx_eptp_type = EPTP_TYPE_UC;
2951 }
2952
2953 /* Init the L1TF mitigation. */
2954 vmx_init_l1tf();
2955
2956 memset(vmxoncpu, 0, sizeof(vmxoncpu));
2957 revision = vmx_get_revision();
2958
2959 for (CPU_INFO_FOREACH(cii, ci)) {
2960 error = vmx_memalloc(&pa, &va, 1);
2961 if (error) {
2962 panic("%s: out of memory", __func__);
2963 }
2964 vmxoncpu[cpu_index(ci)].pa = pa;
2965 vmxoncpu[cpu_index(ci)].va = va;
2966
2967 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
2968 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
2969 }
2970
2971 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
2972 xc_wait(xc);
2973 }
2974
2975 static void
2976 vmx_fini_asid(void)
2977 {
2978 size_t allocsz;
2979
2980 allocsz = roundup(vmx_maxasid, 8) / 8;
2981 kmem_free(vmx_asidmap, allocsz);
2982
2983 mutex_destroy(&vmx_asidlock);
2984 }
2985
2986 static void
2987 vmx_fini(void)
2988 {
2989 uint64_t xc;
2990 size_t i;
2991
2992 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
2993 xc_wait(xc);
2994
2995 for (i = 0; i < MAXCPUS; i++) {
2996 if (vmxoncpu[i].pa != 0)
2997 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
2998 }
2999
3000 vmx_fini_asid();
3001 }
3002
3003 static void
3004 vmx_capability(struct nvmm_capability *cap)
3005 {
3006 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
3007 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
3008 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
3009 }
3010
3011 const struct nvmm_impl nvmm_x86_vmx = {
3012 .ident = vmx_ident,
3013 .init = vmx_init,
3014 .fini = vmx_fini,
3015 .capability = vmx_capability,
3016 .conf_max = NVMM_X86_NCONF,
3017 .conf_sizes = vmx_conf_sizes,
3018 .state_size = sizeof(struct nvmm_x64_state),
3019 .machine_create = vmx_machine_create,
3020 .machine_destroy = vmx_machine_destroy,
3021 .machine_configure = vmx_machine_configure,
3022 .vcpu_create = vmx_vcpu_create,
3023 .vcpu_destroy = vmx_vcpu_destroy,
3024 .vcpu_setstate = vmx_vcpu_setstate,
3025 .vcpu_getstate = vmx_vcpu_getstate,
3026 .vcpu_inject = vmx_vcpu_inject,
3027 .vcpu_run = vmx_vcpu_run
3028 };
3029