Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.27
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.27 2019/04/24 18:19:28 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.27 2019/04/24 18:19:28 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int _vmx_vmxon(paddr_t *pa);
     58 int _vmx_vmxoff(void);
     59 int _vmx_invept(uint64_t op, void *desc);
     60 int _vmx_invvpid(uint64_t op, void *desc);
     61 int _vmx_vmread(uint64_t op, uint64_t *val);
     62 int _vmx_vmwrite(uint64_t op, uint64_t val);
     63 int _vmx_vmptrld(paddr_t *pa);
     64 int _vmx_vmptrst(paddr_t *pa);
     65 int _vmx_vmclear(paddr_t *pa);
     66 int vmx_vmlaunch(uint64_t *gprs);
     67 int vmx_vmresume(uint64_t *gprs);
     68 
     69 #define vmx_vmxon(a) \
     70 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     71 		panic("%s: VMXON failed", __func__); \
     72 	}
     73 #define vmx_vmxoff() \
     74 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     75 		panic("%s: VMXOFF failed", __func__); \
     76 	}
     77 #define vmx_invept(a, b) \
     78 	if (__predict_false(_vmx_invept(a, b) != 0)) { \
     79 		panic("%s: INVEPT failed", __func__); \
     80 	}
     81 #define vmx_invvpid(a, b) \
     82 	if (__predict_false(_vmx_invvpid(a, b) != 0)) { \
     83 		panic("%s: INVVPID failed", __func__); \
     84 	}
     85 #define vmx_vmread(a, b) \
     86 	if (__predict_false(_vmx_vmread(a, b) != 0)) { \
     87 		panic("%s: VMREAD failed", __func__); \
     88 	}
     89 #define vmx_vmwrite(a, b) \
     90 	if (__predict_false(_vmx_vmwrite(a, b) != 0)) { \
     91 		panic("%s: VMWRITE failed", __func__); \
     92 	}
     93 #define vmx_vmptrld(a) \
     94 	if (__predict_false(_vmx_vmptrld(a) != 0)) { \
     95 		panic("%s: VMPTRLD failed", __func__); \
     96 	}
     97 #define vmx_vmptrst(a) \
     98 	if (__predict_false(_vmx_vmptrst(a) != 0)) { \
     99 		panic("%s: VMPTRST failed", __func__); \
    100 	}
    101 #define vmx_vmclear(a) \
    102 	if (__predict_false(_vmx_vmclear(a) != 0)) { \
    103 		panic("%s: VMCLEAR failed", __func__); \
    104 	}
    105 
    106 #define MSR_IA32_FEATURE_CONTROL	0x003A
    107 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    108 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    109 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    110 
    111 #define MSR_IA32_VMX_BASIC		0x0480
    112 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    113 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    114 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    115 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    116 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    117 #define			MEM_TYPE_UC		0
    118 #define			MEM_TYPE_WB		6
    119 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    120 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    121 
    122 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    123 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    124 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    125 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    126 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    127 
    128 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    129 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    130 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    131 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    132 
    133 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    134 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    135 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    136 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    137 
    138 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    139 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    140 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    141 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    142 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    143 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    144 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    145 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    146 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    147 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    148 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    149 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    150 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    151 
    152 /* -------------------------------------------------------------------------- */
    153 
    154 /* 16-bit control fields */
    155 #define VMCS_VPID				0x00000000
    156 #define VMCS_PIR_VECTOR				0x00000002
    157 #define VMCS_EPTP_INDEX				0x00000004
    158 /* 16-bit guest-state fields */
    159 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    160 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    161 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    162 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    163 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    164 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    165 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    166 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    167 #define VMCS_GUEST_INTR_STATUS			0x00000810
    168 #define VMCS_PML_INDEX				0x00000812
    169 /* 16-bit host-state fields */
    170 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    171 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    172 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    173 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    174 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    175 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    176 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    177 /* 64-bit control fields */
    178 #define VMCS_IO_BITMAP_A			0x00002000
    179 #define VMCS_IO_BITMAP_B			0x00002002
    180 #define VMCS_MSR_BITMAP				0x00002004
    181 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    182 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    183 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    184 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    185 #define VMCS_PML_ADDRESS			0x0000200E
    186 #define VMCS_TSC_OFFSET				0x00002010
    187 #define VMCS_VIRTUAL_APIC			0x00002012
    188 #define VMCS_APIC_ACCESS			0x00002014
    189 #define VMCS_PIR_DESC				0x00002016
    190 #define VMCS_VM_CONTROL				0x00002018
    191 #define VMCS_EPTP				0x0000201A
    192 #define		EPTP_TYPE			__BITS(2,0)
    193 #define			EPTP_TYPE_UC		0
    194 #define			EPTP_TYPE_WB		6
    195 #define		EPTP_WALKLEN			__BITS(5,3)
    196 #define		EPTP_FLAGS_AD			__BIT(6)
    197 #define		EPTP_PHYSADDR			__BITS(63,12)
    198 #define VMCS_EOI_EXIT0				0x0000201C
    199 #define VMCS_EOI_EXIT1				0x0000201E
    200 #define VMCS_EOI_EXIT2				0x00002020
    201 #define VMCS_EOI_EXIT3				0x00002022
    202 #define VMCS_EPTP_LIST				0x00002024
    203 #define VMCS_VMREAD_BITMAP			0x00002026
    204 #define VMCS_VMWRITE_BITMAP			0x00002028
    205 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    206 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    207 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    208 #define VMCS_SUBPAGE_PERM_TABLE_PTR		0x00002030
    209 #define VMCS_TSC_MULTIPLIER			0x00002032
    210 /* 64-bit read-only fields */
    211 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    212 /* 64-bit guest-state fields */
    213 #define VMCS_LINK_POINTER			0x00002800
    214 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    215 #define VMCS_GUEST_IA32_PAT			0x00002804
    216 #define VMCS_GUEST_IA32_EFER			0x00002806
    217 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    218 #define VMCS_GUEST_PDPTE0			0x0000280A
    219 #define VMCS_GUEST_PDPTE1			0x0000280C
    220 #define VMCS_GUEST_PDPTE2			0x0000280E
    221 #define VMCS_GUEST_PDPTE3			0x00002810
    222 #define VMCS_GUEST_BNDCFGS			0x00002812
    223 /* 64-bit host-state fields */
    224 #define VMCS_HOST_IA32_PAT			0x00002C00
    225 #define VMCS_HOST_IA32_EFER			0x00002C02
    226 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    227 /* 32-bit control fields */
    228 #define VMCS_PINBASED_CTLS			0x00004000
    229 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    230 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    231 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    232 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    233 #define		PIN_CTLS_PROCESS_POSTED_INTS	__BIT(7)
    234 #define VMCS_PROCBASED_CTLS			0x00004002
    235 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    236 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    237 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    238 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    239 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    240 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    241 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    242 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    243 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    244 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    245 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    246 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    247 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    248 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    249 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    250 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    251 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    252 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    253 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    254 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    255 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    256 #define VMCS_EXCEPTION_BITMAP			0x00004004
    257 #define VMCS_PF_ERROR_MASK			0x00004006
    258 #define VMCS_PF_ERROR_MATCH			0x00004008
    259 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    260 #define VMCS_EXIT_CTLS				0x0000400C
    261 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    262 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    263 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    264 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    265 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    266 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    267 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    268 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    269 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    270 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    271 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    272 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    273 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    274 #define VMCS_ENTRY_CTLS				0x00004012
    275 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    276 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    277 #define		ENTRY_CTLS_SMM			__BIT(10)
    278 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    279 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    280 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    281 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    282 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    283 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    284 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    285 #define VMCS_ENTRY_INTR_INFO			0x00004016
    286 #define		INTR_INFO_VECTOR		__BITS(7,0)
    287 #define		INTR_INFO_TYPE			__BITS(10,8)
    288 #define			INTR_TYPE_EXT_INT	0
    289 #define			INTR_TYPE_NMI		2
    290 #define			INTR_TYPE_HW_EXC	3
    291 #define			INTR_TYPE_SW_INT	4
    292 #define			INTR_TYPE_PRIV_SW_EXC	5
    293 #define			INTR_TYPE_SW_EXC	6
    294 #define			INTR_TYPE_OTHER		7
    295 #define		INTR_INFO_ERROR			__BIT(11)
    296 #define		INTR_INFO_VALID			__BIT(31)
    297 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    298 #define VMCS_ENTRY_INST_LENGTH			0x0000401A
    299 #define VMCS_TPR_THRESHOLD			0x0000401C
    300 #define VMCS_PROCBASED_CTLS2			0x0000401E
    301 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    302 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    303 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    304 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    305 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    306 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    307 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    308 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    309 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    310 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    311 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    312 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    313 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    314 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    315 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    316 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    317 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    318 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    319 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    320 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    321 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    322 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    323 #define		PROC_CTLS2_SUBPAGE_PERMISSIONS	__BIT(23)
    324 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    325 #define		PROC_CTLS2_ENCLV_EXITING	__BIT(28)
    326 #define VMCS_PLE_GAP				0x00004020
    327 #define VMCS_PLE_WINDOW				0x00004022
    328 /* 32-bit read-only data fields */
    329 #define VMCS_INSTRUCTION_ERROR			0x00004400
    330 #define VMCS_EXIT_REASON			0x00004402
    331 #define VMCS_EXIT_INTR_INFO			0x00004404
    332 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    333 #define VMCS_IDT_VECTORING_INFO			0x00004408
    334 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    335 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    336 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    337 /* 32-bit guest-state fields */
    338 #define VMCS_GUEST_ES_LIMIT			0x00004800
    339 #define VMCS_GUEST_CS_LIMIT			0x00004802
    340 #define VMCS_GUEST_SS_LIMIT			0x00004804
    341 #define VMCS_GUEST_DS_LIMIT			0x00004806
    342 #define VMCS_GUEST_FS_LIMIT			0x00004808
    343 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    344 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    345 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    346 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    347 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    348 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    349 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    350 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    351 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    352 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    353 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    354 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    355 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    356 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    357 #define		INT_STATE_STI			__BIT(0)
    358 #define		INT_STATE_MOVSS			__BIT(1)
    359 #define		INT_STATE_SMI			__BIT(2)
    360 #define		INT_STATE_NMI			__BIT(3)
    361 #define		INT_STATE_ENCLAVE		__BIT(4)
    362 #define VMCS_GUEST_ACTIVITY			0x00004826
    363 #define VMCS_GUEST_SMBASE			0x00004828
    364 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    365 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    366 /* 32-bit host state fields */
    367 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    368 /* Natural-Width control fields */
    369 #define VMCS_CR0_MASK				0x00006000
    370 #define VMCS_CR4_MASK				0x00006002
    371 #define VMCS_CR0_SHADOW				0x00006004
    372 #define VMCS_CR4_SHADOW				0x00006006
    373 #define VMCS_CR3_TARGET0			0x00006008
    374 #define VMCS_CR3_TARGET1			0x0000600A
    375 #define VMCS_CR3_TARGET2			0x0000600C
    376 #define VMCS_CR3_TARGET3			0x0000600E
    377 /* Natural-Width read-only fields */
    378 #define VMCS_EXIT_QUALIFICATION			0x00006400
    379 #define VMCS_IO_RCX				0x00006402
    380 #define VMCS_IO_RSI				0x00006404
    381 #define VMCS_IO_RDI				0x00006406
    382 #define VMCS_IO_RIP				0x00006408
    383 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    384 /* Natural-Width guest-state fields */
    385 #define VMCS_GUEST_CR0				0x00006800
    386 #define VMCS_GUEST_CR3				0x00006802
    387 #define VMCS_GUEST_CR4				0x00006804
    388 #define VMCS_GUEST_ES_BASE			0x00006806
    389 #define VMCS_GUEST_CS_BASE			0x00006808
    390 #define VMCS_GUEST_SS_BASE			0x0000680A
    391 #define VMCS_GUEST_DS_BASE			0x0000680C
    392 #define VMCS_GUEST_FS_BASE			0x0000680E
    393 #define VMCS_GUEST_GS_BASE			0x00006810
    394 #define VMCS_GUEST_LDTR_BASE			0x00006812
    395 #define VMCS_GUEST_TR_BASE			0x00006814
    396 #define VMCS_GUEST_GDTR_BASE			0x00006816
    397 #define VMCS_GUEST_IDTR_BASE			0x00006818
    398 #define VMCS_GUEST_DR7				0x0000681A
    399 #define VMCS_GUEST_RSP				0x0000681C
    400 #define VMCS_GUEST_RIP				0x0000681E
    401 #define VMCS_GUEST_RFLAGS			0x00006820
    402 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    403 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    404 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    405 /* Natural-Width host-state fields */
    406 #define VMCS_HOST_CR0				0x00006C00
    407 #define VMCS_HOST_CR3				0x00006C02
    408 #define VMCS_HOST_CR4				0x00006C04
    409 #define VMCS_HOST_FS_BASE			0x00006C06
    410 #define VMCS_HOST_GS_BASE			0x00006C08
    411 #define VMCS_HOST_TR_BASE			0x00006C0A
    412 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    413 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    414 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    415 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    416 #define VMCS_HOST_RSP				0x00006C14
    417 #define VMCS_HOST_RIP				0x00006c16
    418 
    419 /* VMX basic exit reasons. */
    420 #define VMCS_EXITCODE_EXC_NMI			0
    421 #define VMCS_EXITCODE_EXT_INT			1
    422 #define VMCS_EXITCODE_SHUTDOWN			2
    423 #define VMCS_EXITCODE_INIT			3
    424 #define VMCS_EXITCODE_SIPI			4
    425 #define VMCS_EXITCODE_SMI			5
    426 #define VMCS_EXITCODE_OTHER_SMI			6
    427 #define VMCS_EXITCODE_INT_WINDOW		7
    428 #define VMCS_EXITCODE_NMI_WINDOW		8
    429 #define VMCS_EXITCODE_TASK_SWITCH		9
    430 #define VMCS_EXITCODE_CPUID			10
    431 #define VMCS_EXITCODE_GETSEC			11
    432 #define VMCS_EXITCODE_HLT			12
    433 #define VMCS_EXITCODE_INVD			13
    434 #define VMCS_EXITCODE_INVLPG			14
    435 #define VMCS_EXITCODE_RDPMC			15
    436 #define VMCS_EXITCODE_RDTSC			16
    437 #define VMCS_EXITCODE_RSM			17
    438 #define VMCS_EXITCODE_VMCALL			18
    439 #define VMCS_EXITCODE_VMCLEAR			19
    440 #define VMCS_EXITCODE_VMLAUNCH			20
    441 #define VMCS_EXITCODE_VMPTRLD			21
    442 #define VMCS_EXITCODE_VMPTRST			22
    443 #define VMCS_EXITCODE_VMREAD			23
    444 #define VMCS_EXITCODE_VMRESUME			24
    445 #define VMCS_EXITCODE_VMWRITE			25
    446 #define VMCS_EXITCODE_VMXOFF			26
    447 #define VMCS_EXITCODE_VMXON			27
    448 #define VMCS_EXITCODE_CR			28
    449 #define VMCS_EXITCODE_DR			29
    450 #define VMCS_EXITCODE_IO			30
    451 #define VMCS_EXITCODE_RDMSR			31
    452 #define VMCS_EXITCODE_WRMSR			32
    453 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    454 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    455 #define VMCS_EXITCODE_MWAIT			36
    456 #define VMCS_EXITCODE_TRAP_FLAG			37
    457 #define VMCS_EXITCODE_MONITOR			39
    458 #define VMCS_EXITCODE_PAUSE			40
    459 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    460 #define VMCS_EXITCODE_TPR_BELOW			43
    461 #define VMCS_EXITCODE_APIC_ACCESS		44
    462 #define VMCS_EXITCODE_VEOI			45
    463 #define VMCS_EXITCODE_GDTR_IDTR			46
    464 #define VMCS_EXITCODE_LDTR_TR			47
    465 #define VMCS_EXITCODE_EPT_VIOLATION		48
    466 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    467 #define VMCS_EXITCODE_INVEPT			50
    468 #define VMCS_EXITCODE_RDTSCP			51
    469 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    470 #define VMCS_EXITCODE_INVVPID			53
    471 #define VMCS_EXITCODE_WBINVD			54
    472 #define VMCS_EXITCODE_XSETBV			55
    473 #define VMCS_EXITCODE_APIC_WRITE		56
    474 #define VMCS_EXITCODE_RDRAND			57
    475 #define VMCS_EXITCODE_INVPCID			58
    476 #define VMCS_EXITCODE_VMFUNC			59
    477 #define VMCS_EXITCODE_ENCLS			60
    478 #define VMCS_EXITCODE_RDSEED			61
    479 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    480 #define VMCS_EXITCODE_XSAVES			63
    481 #define VMCS_EXITCODE_XRSTORS			64
    482 
    483 /* -------------------------------------------------------------------------- */
    484 
    485 #define VMX_MSRLIST_STAR		0
    486 #define VMX_MSRLIST_LSTAR		1
    487 #define VMX_MSRLIST_CSTAR		2
    488 #define VMX_MSRLIST_SFMASK		3
    489 #define VMX_MSRLIST_KERNELGSBASE	4
    490 #define VMX_MSRLIST_EXIT_NMSR		5
    491 #define VMX_MSRLIST_L1DFLUSH		5
    492 
    493 /* On entry, we may do +1 to include L1DFLUSH. */
    494 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    495 
    496 struct vmxon {
    497 	uint32_t ident;
    498 #define VMXON_IDENT_REVISION	__BITS(30,0)
    499 
    500 	uint8_t data[PAGE_SIZE - 4];
    501 } __packed;
    502 
    503 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    504 
    505 struct vmxoncpu {
    506 	vaddr_t va;
    507 	paddr_t pa;
    508 };
    509 
    510 static struct vmxoncpu vmxoncpu[MAXCPUS];
    511 
    512 struct vmcs {
    513 	uint32_t ident;
    514 #define VMCS_IDENT_REVISION	__BITS(30,0)
    515 #define VMCS_IDENT_SHADOW	__BIT(31)
    516 
    517 	uint32_t abort;
    518 	uint8_t data[PAGE_SIZE - 8];
    519 } __packed;
    520 
    521 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    522 
    523 struct msr_entry {
    524 	uint32_t msr;
    525 	uint32_t rsvd;
    526 	uint64_t val;
    527 } __packed;
    528 
    529 struct ept_desc {
    530 	uint64_t eptp;
    531 	uint64_t mbz;
    532 } __packed;
    533 
    534 struct vpid_desc {
    535 	uint64_t vpid;
    536 	uint64_t addr;
    537 } __packed;
    538 
    539 #define VPID_MAX	0xFFFF
    540 
    541 /* Make sure we never run out of VPIDs. */
    542 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    543 
    544 static uint64_t vmx_tlb_flush_op __read_mostly;
    545 static uint64_t vmx_ept_flush_op __read_mostly;
    546 static uint64_t vmx_eptp_type __read_mostly;
    547 
    548 static uint64_t vmx_pinbased_ctls __read_mostly;
    549 static uint64_t vmx_procbased_ctls __read_mostly;
    550 static uint64_t vmx_procbased_ctls2 __read_mostly;
    551 static uint64_t vmx_entry_ctls __read_mostly;
    552 static uint64_t vmx_exit_ctls __read_mostly;
    553 
    554 static uint64_t vmx_cr0_fixed0 __read_mostly;
    555 static uint64_t vmx_cr0_fixed1 __read_mostly;
    556 static uint64_t vmx_cr4_fixed0 __read_mostly;
    557 static uint64_t vmx_cr4_fixed1 __read_mostly;
    558 
    559 extern bool pmap_ept_has_ad;
    560 
    561 #define VMX_PINBASED_CTLS_ONE	\
    562 	(PIN_CTLS_INT_EXITING| \
    563 	 PIN_CTLS_NMI_EXITING| \
    564 	 PIN_CTLS_VIRTUAL_NMIS)
    565 
    566 #define VMX_PINBASED_CTLS_ZERO	0
    567 
    568 #define VMX_PROCBASED_CTLS_ONE	\
    569 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    570 	 PROC_CTLS_HLT_EXITING| \
    571 	 PROC_CTLS_MWAIT_EXITING | \
    572 	 PROC_CTLS_RDPMC_EXITING | \
    573 	 PROC_CTLS_RCR8_EXITING | \
    574 	 PROC_CTLS_LCR8_EXITING | \
    575 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    576 	 PROC_CTLS_USE_MSR_BITMAPS | \
    577 	 PROC_CTLS_MONITOR_EXITING | \
    578 	 PROC_CTLS_ACTIVATE_CTLS2)
    579 
    580 #define VMX_PROCBASED_CTLS_ZERO	\
    581 	(PROC_CTLS_RCR3_EXITING| \
    582 	 PROC_CTLS_LCR3_EXITING)
    583 
    584 #define VMX_PROCBASED_CTLS2_ONE	\
    585 	(PROC_CTLS2_ENABLE_EPT| \
    586 	 PROC_CTLS2_ENABLE_VPID| \
    587 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    588 
    589 #define VMX_PROCBASED_CTLS2_ZERO	0
    590 
    591 #define VMX_ENTRY_CTLS_ONE	\
    592 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    593 	 ENTRY_CTLS_LOAD_EFER| \
    594 	 ENTRY_CTLS_LOAD_PAT)
    595 
    596 #define VMX_ENTRY_CTLS_ZERO	\
    597 	(ENTRY_CTLS_SMM| \
    598 	 ENTRY_CTLS_DISABLE_DUAL)
    599 
    600 #define VMX_EXIT_CTLS_ONE	\
    601 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    602 	 EXIT_CTLS_HOST_LONG_MODE| \
    603 	 EXIT_CTLS_SAVE_PAT| \
    604 	 EXIT_CTLS_LOAD_PAT| \
    605 	 EXIT_CTLS_SAVE_EFER| \
    606 	 EXIT_CTLS_LOAD_EFER)
    607 
    608 #define VMX_EXIT_CTLS_ZERO	0
    609 
    610 static uint8_t *vmx_asidmap __read_mostly;
    611 static uint32_t vmx_maxasid __read_mostly;
    612 static kmutex_t vmx_asidlock __cacheline_aligned;
    613 
    614 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    615 static uint64_t vmx_xcr0_mask __read_mostly;
    616 
    617 #define VMX_NCPUIDS	32
    618 
    619 #define VMCS_NPAGES	1
    620 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    621 
    622 #define MSRBM_NPAGES	1
    623 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    624 
    625 #define EFER_TLB_FLUSH \
    626 	(EFER_NXE|EFER_LMA|EFER_LME)
    627 #define CR0_TLB_FLUSH \
    628 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    629 #define CR4_TLB_FLUSH \
    630 	(CR4_PGE|CR4_PAE|CR4_PSE)
    631 
    632 /* -------------------------------------------------------------------------- */
    633 
    634 struct vmx_machdata {
    635 	bool cpuidpresent[VMX_NCPUIDS];
    636 	struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
    637 	volatile uint64_t mach_htlb_gen;
    638 };
    639 
    640 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
    641 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    642 };
    643 
    644 struct vmx_cpudata {
    645 	/* General */
    646 	uint64_t asid;
    647 	bool gtlb_want_flush;
    648 	bool gtsc_want_update;
    649 	uint64_t vcpu_htlb_gen;
    650 	kcpuset_t *htlb_want_flush;
    651 
    652 	/* VMCS */
    653 	struct vmcs *vmcs;
    654 	paddr_t vmcs_pa;
    655 	size_t vmcs_refcnt;
    656 	struct cpu_info *vmcs_ci;
    657 	bool vmcs_launched;
    658 
    659 	/* MSR bitmap */
    660 	uint8_t *msrbm;
    661 	paddr_t msrbm_pa;
    662 
    663 	/* Host state */
    664 	uint64_t hxcr0;
    665 	uint64_t star;
    666 	uint64_t lstar;
    667 	uint64_t cstar;
    668 	uint64_t sfmask;
    669 	uint64_t kernelgsbase;
    670 	bool ts_set;
    671 	struct xsave_header hfpu __aligned(64);
    672 
    673 	/* Intr state */
    674 	bool int_window_exit;
    675 	bool nmi_window_exit;
    676 	bool evt_pending;
    677 
    678 	/* Guest state */
    679 	struct msr_entry *gmsr;
    680 	paddr_t gmsr_pa;
    681 	uint64_t gmsr_misc_enable;
    682 	uint64_t gcr2;
    683 	uint64_t gcr8;
    684 	uint64_t gxcr0;
    685 	uint64_t gprs[NVMM_X64_NGPR];
    686 	uint64_t drs[NVMM_X64_NDR];
    687 	uint64_t gtsc;
    688 	struct xsave_header gfpu __aligned(64);
    689 };
    690 
    691 static const struct {
    692 	uint64_t selector;
    693 	uint64_t attrib;
    694 	uint64_t limit;
    695 	uint64_t base;
    696 } vmx_guest_segs[NVMM_X64_NSEG] = {
    697 	[NVMM_X64_SEG_ES] = {
    698 		VMCS_GUEST_ES_SELECTOR,
    699 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    700 		VMCS_GUEST_ES_LIMIT,
    701 		VMCS_GUEST_ES_BASE
    702 	},
    703 	[NVMM_X64_SEG_CS] = {
    704 		VMCS_GUEST_CS_SELECTOR,
    705 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    706 		VMCS_GUEST_CS_LIMIT,
    707 		VMCS_GUEST_CS_BASE
    708 	},
    709 	[NVMM_X64_SEG_SS] = {
    710 		VMCS_GUEST_SS_SELECTOR,
    711 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    712 		VMCS_GUEST_SS_LIMIT,
    713 		VMCS_GUEST_SS_BASE
    714 	},
    715 	[NVMM_X64_SEG_DS] = {
    716 		VMCS_GUEST_DS_SELECTOR,
    717 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    718 		VMCS_GUEST_DS_LIMIT,
    719 		VMCS_GUEST_DS_BASE
    720 	},
    721 	[NVMM_X64_SEG_FS] = {
    722 		VMCS_GUEST_FS_SELECTOR,
    723 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    724 		VMCS_GUEST_FS_LIMIT,
    725 		VMCS_GUEST_FS_BASE
    726 	},
    727 	[NVMM_X64_SEG_GS] = {
    728 		VMCS_GUEST_GS_SELECTOR,
    729 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    730 		VMCS_GUEST_GS_LIMIT,
    731 		VMCS_GUEST_GS_BASE
    732 	},
    733 	[NVMM_X64_SEG_GDT] = {
    734 		0, /* doesn't exist */
    735 		0, /* doesn't exist */
    736 		VMCS_GUEST_GDTR_LIMIT,
    737 		VMCS_GUEST_GDTR_BASE
    738 	},
    739 	[NVMM_X64_SEG_IDT] = {
    740 		0, /* doesn't exist */
    741 		0, /* doesn't exist */
    742 		VMCS_GUEST_IDTR_LIMIT,
    743 		VMCS_GUEST_IDTR_BASE
    744 	},
    745 	[NVMM_X64_SEG_LDT] = {
    746 		VMCS_GUEST_LDTR_SELECTOR,
    747 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    748 		VMCS_GUEST_LDTR_LIMIT,
    749 		VMCS_GUEST_LDTR_BASE
    750 	},
    751 	[NVMM_X64_SEG_TR] = {
    752 		VMCS_GUEST_TR_SELECTOR,
    753 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    754 		VMCS_GUEST_TR_LIMIT,
    755 		VMCS_GUEST_TR_BASE
    756 	}
    757 };
    758 
    759 /* -------------------------------------------------------------------------- */
    760 
    761 static uint64_t
    762 vmx_get_revision(void)
    763 {
    764 	uint64_t msr;
    765 
    766 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    767 	msr &= IA32_VMX_BASIC_IDENT;
    768 
    769 	return msr;
    770 }
    771 
    772 static void
    773 vmx_vmclear_ipi(void *arg1, void *arg2)
    774 {
    775 	paddr_t vmcs_pa = (paddr_t)arg1;
    776 	vmx_vmclear(&vmcs_pa);
    777 }
    778 
    779 static void
    780 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    781 {
    782 	uint64_t xc;
    783 	int bound;
    784 
    785 	KASSERT(kpreempt_disabled());
    786 
    787 	bound = curlwp_bind();
    788 	kpreempt_enable();
    789 
    790 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    791 	xc_wait(xc);
    792 
    793 	kpreempt_disable();
    794 	curlwp_bindx(bound);
    795 }
    796 
    797 static void
    798 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    799 {
    800 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    801 	struct cpu_info *vmcs_ci;
    802 	paddr_t oldpa __diagused;
    803 
    804 	cpudata->vmcs_refcnt++;
    805 	if (cpudata->vmcs_refcnt > 1) {
    806 #ifdef DIAGNOSTIC
    807 		KASSERT(kpreempt_disabled());
    808 		vmx_vmptrst(&oldpa);
    809 		KASSERT(oldpa == cpudata->vmcs_pa);
    810 #endif
    811 		return;
    812 	}
    813 
    814 	vmcs_ci = cpudata->vmcs_ci;
    815 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    816 
    817 	kpreempt_disable();
    818 
    819 	if (vmcs_ci == NULL) {
    820 		/* This VMCS is loaded for the first time. */
    821 		vmx_vmclear(&cpudata->vmcs_pa);
    822 		cpudata->vmcs_launched = false;
    823 	} else if (vmcs_ci != curcpu()) {
    824 		/* This VMCS is active on a remote CPU. */
    825 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    826 		cpudata->vmcs_launched = false;
    827 	} else {
    828 		/* This VMCS is active on curcpu, nothing to do. */
    829 	}
    830 
    831 	vmx_vmptrld(&cpudata->vmcs_pa);
    832 }
    833 
    834 static void
    835 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    836 {
    837 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    838 	paddr_t oldpa __diagused;
    839 
    840 	KASSERT(kpreempt_disabled());
    841 #ifdef DIAGNOSTIC
    842 	vmx_vmptrst(&oldpa);
    843 	KASSERT(oldpa == cpudata->vmcs_pa);
    844 #endif
    845 	KASSERT(cpudata->vmcs_refcnt > 0);
    846 	cpudata->vmcs_refcnt--;
    847 
    848 	if (cpudata->vmcs_refcnt > 0) {
    849 		return;
    850 	}
    851 
    852 	cpudata->vmcs_ci = curcpu();
    853 	kpreempt_enable();
    854 }
    855 
    856 static void
    857 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    858 {
    859 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    860 	paddr_t oldpa __diagused;
    861 
    862 	KASSERT(kpreempt_disabled());
    863 #ifdef DIAGNOSTIC
    864 	vmx_vmptrst(&oldpa);
    865 	KASSERT(oldpa == cpudata->vmcs_pa);
    866 #endif
    867 	KASSERT(cpudata->vmcs_refcnt == 1);
    868 	cpudata->vmcs_refcnt--;
    869 
    870 	vmx_vmclear(&cpudata->vmcs_pa);
    871 	kpreempt_enable();
    872 }
    873 
    874 /* -------------------------------------------------------------------------- */
    875 
    876 static void
    877 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    878 {
    879 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    880 	uint64_t ctls1;
    881 
    882 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    883 
    884 	if (nmi) {
    885 		// XXX INT_STATE_NMI?
    886 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    887 		cpudata->nmi_window_exit = true;
    888 	} else {
    889 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    890 		cpudata->int_window_exit = true;
    891 	}
    892 
    893 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    894 }
    895 
    896 static void
    897 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    898 {
    899 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    900 	uint64_t ctls1;
    901 
    902 	vmx_vmread(VMCS_PROCBASED_CTLS, &ctls1);
    903 
    904 	if (nmi) {
    905 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    906 		cpudata->nmi_window_exit = false;
    907 	} else {
    908 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    909 		cpudata->int_window_exit = false;
    910 	}
    911 
    912 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    913 }
    914 
    915 static inline int
    916 vmx_event_has_error(uint64_t vector)
    917 {
    918 	switch (vector) {
    919 	case 8:		/* #DF */
    920 	case 10:	/* #TS */
    921 	case 11:	/* #NP */
    922 	case 12:	/* #SS */
    923 	case 13:	/* #GP */
    924 	case 14:	/* #PF */
    925 	case 17:	/* #AC */
    926 	case 30:	/* #SX */
    927 		return 1;
    928 	default:
    929 		return 0;
    930 	}
    931 }
    932 
    933 static int
    934 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    935     struct nvmm_event *event)
    936 {
    937 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    938 	int type = 0, err = 0, ret = 0;
    939 	uint64_t info, intstate, rflags;
    940 
    941 	if (event->vector >= 256) {
    942 		return EINVAL;
    943 	}
    944 
    945 	vmx_vmcs_enter(vcpu);
    946 
    947 	switch (event->type) {
    948 	case NVMM_EVENT_INTERRUPT_HW:
    949 		type = INTR_TYPE_EXT_INT;
    950 		if (event->vector == 2) {
    951 			type = INTR_TYPE_NMI;
    952 		}
    953 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
    954 		if (type == INTR_TYPE_NMI) {
    955 			if (cpudata->nmi_window_exit) {
    956 				ret = EAGAIN;
    957 				goto out;
    958 			}
    959 			vmx_event_waitexit_enable(vcpu, true);
    960 		} else {
    961 			vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
    962 			if ((rflags & PSL_I) == 0 ||
    963 			    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
    964 				vmx_event_waitexit_enable(vcpu, false);
    965 				ret = EAGAIN;
    966 				goto out;
    967 			}
    968 		}
    969 		err = 0;
    970 		break;
    971 	case NVMM_EVENT_INTERRUPT_SW:
    972 		ret = EINVAL;
    973 		goto out;
    974 	case NVMM_EVENT_EXCEPTION:
    975 		if (event->vector == 2 || event->vector >= 32) {
    976 			ret = EINVAL;
    977 			goto out;
    978 		}
    979 		if (event->vector == 3 || event->vector == 0) {
    980 			ret = EINVAL;
    981 			goto out;
    982 		}
    983 		type = INTR_TYPE_HW_EXC;
    984 		err = vmx_event_has_error(event->vector);
    985 		break;
    986 	default:
    987 		ret = EAGAIN;
    988 		goto out;
    989 	}
    990 
    991 	info =
    992 	    __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
    993 	    __SHIFTIN(type, INTR_INFO_TYPE) |
    994 	    __SHIFTIN(err, INTR_INFO_ERROR) |
    995 	    __SHIFTIN(1, INTR_INFO_VALID);
    996 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
    997 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
    998 
    999 	cpudata->evt_pending = true;
   1000 
   1001 out:
   1002 	vmx_vmcs_leave(vcpu);
   1003 	return ret;
   1004 }
   1005 
   1006 static void
   1007 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1008 {
   1009 	struct nvmm_event event;
   1010 	int ret __diagused;
   1011 
   1012 	event.type = NVMM_EVENT_EXCEPTION;
   1013 	event.vector = 6;
   1014 	event.u.error = 0;
   1015 
   1016 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1017 	KASSERT(ret == 0);
   1018 }
   1019 
   1020 static void
   1021 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1022 {
   1023 	struct nvmm_event event;
   1024 	int ret __diagused;
   1025 
   1026 	event.type = NVMM_EVENT_EXCEPTION;
   1027 	event.vector = 13;
   1028 	event.u.error = 0;
   1029 
   1030 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1031 	KASSERT(ret == 0);
   1032 }
   1033 
   1034 static inline void
   1035 vmx_inkernel_advance(void)
   1036 {
   1037 	uint64_t rip, inslen, intstate;
   1038 
   1039 	/*
   1040 	 * Maybe we should also apply single-stepping and debug exceptions.
   1041 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1042 	 * debugger.
   1043 	 */
   1044 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1045 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1046 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1047 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1048 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1049 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1050 }
   1051 
   1052 static void
   1053 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1054     struct nvmm_exit *exit)
   1055 {
   1056 	uint64_t qual;
   1057 
   1058 	vmx_vmread(VMCS_EXIT_INTR_INFO, &qual);
   1059 
   1060 	if ((qual & INTR_INFO_VALID) == 0) {
   1061 		goto error;
   1062 	}
   1063 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1064 		goto error;
   1065 	}
   1066 
   1067 	exit->reason = NVMM_EXIT_NONE;
   1068 	return;
   1069 
   1070 error:
   1071 	exit->reason = NVMM_EXIT_INVALID;
   1072 }
   1073 
   1074 static void
   1075 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
   1076 {
   1077 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1078 	uint64_t cr4;
   1079 
   1080 	switch (eax) {
   1081 	case 0x00000001:
   1082 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1083 
   1084 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1085 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1086 		    CPUID_LOCAL_APIC_ID);
   1087 
   1088 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1089 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1090 
   1091 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1092 
   1093 		/* CPUID2_OSXSAVE depends on CR4. */
   1094 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   1095 		if (!(cr4 & CR4_OSXSAVE)) {
   1096 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1097 		}
   1098 		break;
   1099 	case 0x00000005:
   1100 	case 0x00000006:
   1101 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1102 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1103 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1104 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1105 		break;
   1106 	case 0x00000007:
   1107 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
   1108 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1109 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1110 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1111 		break;
   1112 	case 0x0000000D:
   1113 		if (vmx_xcr0_mask == 0) {
   1114 			break;
   1115 		}
   1116 		switch (ecx) {
   1117 		case 0:
   1118 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1119 			if (cpudata->gxcr0 & XCR0_SSE) {
   1120 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1121 			} else {
   1122 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1123 			}
   1124 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1125 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
   1126 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1127 			break;
   1128 		case 1:
   1129 			cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
   1130 			break;
   1131 		}
   1132 		break;
   1133 	case 0x40000000:
   1134 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1135 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1136 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1137 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1138 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1139 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1140 		break;
   1141 	case 0x80000001:
   1142 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1143 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1144 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1145 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1146 		break;
   1147 	default:
   1148 		break;
   1149 	}
   1150 }
   1151 
   1152 static void
   1153 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1154     struct nvmm_exit *exit)
   1155 {
   1156 	struct vmx_machdata *machdata = mach->machdata;
   1157 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1158 	struct nvmm_x86_conf_cpuid *cpuid;
   1159 	uint64_t eax, ecx;
   1160 	u_int descs[4];
   1161 	size_t i;
   1162 
   1163 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1164 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1165 	x86_cpuid2(eax, ecx, descs);
   1166 
   1167 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1168 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1169 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1170 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1171 
   1172 	vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
   1173 
   1174 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1175 		cpuid = &machdata->cpuid[i];
   1176 		if (!machdata->cpuidpresent[i]) {
   1177 			continue;
   1178 		}
   1179 		if (cpuid->leaf != eax) {
   1180 			continue;
   1181 		}
   1182 
   1183 		/* del */
   1184 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
   1185 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
   1186 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
   1187 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
   1188 
   1189 		/* set */
   1190 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
   1191 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
   1192 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
   1193 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
   1194 
   1195 		break;
   1196 	}
   1197 
   1198 	vmx_inkernel_advance();
   1199 	exit->reason = NVMM_EXIT_NONE;
   1200 }
   1201 
   1202 static void
   1203 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1204     struct nvmm_exit *exit)
   1205 {
   1206 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1207 	uint64_t rflags;
   1208 
   1209 	if (cpudata->int_window_exit) {
   1210 		vmx_vmread(VMCS_GUEST_RFLAGS, &rflags);
   1211 		if (rflags & PSL_I) {
   1212 			vmx_event_waitexit_disable(vcpu, false);
   1213 		}
   1214 	}
   1215 
   1216 	vmx_inkernel_advance();
   1217 	exit->reason = NVMM_EXIT_HALTED;
   1218 }
   1219 
   1220 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1221 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1222 #define		CR_TYPE_WRITE	0
   1223 #define		CR_TYPE_READ	1
   1224 #define		CR_TYPE_CLTS	2
   1225 #define		CR_TYPE_LMSW	3
   1226 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1227 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1228 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1229 
   1230 static inline int
   1231 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1232 {
   1233 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1234 	if ((crval & fixed0) != fixed0) {
   1235 		return -1;
   1236 	}
   1237 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1238 	if (crval & ~fixed1) {
   1239 		return -1;
   1240 	}
   1241 	return 0;
   1242 }
   1243 
   1244 static int
   1245 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1246     uint64_t qual)
   1247 {
   1248 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1249 	uint64_t type, gpr, cr0;
   1250 	uint64_t efer, ctls1;
   1251 
   1252 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1253 	if (type != CR_TYPE_WRITE) {
   1254 		return -1;
   1255 	}
   1256 
   1257 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1258 	KASSERT(gpr < 16);
   1259 
   1260 	if (gpr == NVMM_X64_GPR_RSP) {
   1261 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1262 	} else {
   1263 		gpr = cpudata->gprs[gpr];
   1264 	}
   1265 
   1266 	cr0 = gpr | CR0_NE | CR0_ET;
   1267 	cr0 &= ~(CR0_NW|CR0_CD);
   1268 
   1269 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1270 		return -1;
   1271 	}
   1272 
   1273 	/*
   1274 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1275 	 * from CR3.
   1276 	 */
   1277 
   1278 	if (cr0 & CR0_PG) {
   1279 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   1280 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   1281 		if (efer & EFER_LME) {
   1282 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1283 			efer |= EFER_LMA;
   1284 		} else {
   1285 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1286 			efer &= ~EFER_LMA;
   1287 		}
   1288 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1289 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1290 	}
   1291 
   1292 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1293 	vmx_inkernel_advance();
   1294 	return 0;
   1295 }
   1296 
   1297 static int
   1298 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1299     uint64_t qual)
   1300 {
   1301 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1302 	uint64_t type, gpr, cr4;
   1303 
   1304 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1305 	if (type != CR_TYPE_WRITE) {
   1306 		return -1;
   1307 	}
   1308 
   1309 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1310 	KASSERT(gpr < 16);
   1311 
   1312 	if (gpr == NVMM_X64_GPR_RSP) {
   1313 		vmx_vmread(VMCS_GUEST_RSP, &gpr);
   1314 	} else {
   1315 		gpr = cpudata->gprs[gpr];
   1316 	}
   1317 
   1318 	cr4 = gpr | CR4_VMXE;
   1319 
   1320 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1321 		return -1;
   1322 	}
   1323 
   1324 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1325 	vmx_inkernel_advance();
   1326 	return 0;
   1327 }
   1328 
   1329 static int
   1330 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1331     uint64_t qual)
   1332 {
   1333 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1334 	uint64_t type, gpr;
   1335 	bool write;
   1336 
   1337 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1338 	if (type == CR_TYPE_WRITE) {
   1339 		write = true;
   1340 	} else if (type == CR_TYPE_READ) {
   1341 		write = false;
   1342 	} else {
   1343 		return -1;
   1344 	}
   1345 
   1346 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1347 	KASSERT(gpr < 16);
   1348 
   1349 	if (write) {
   1350 		if (gpr == NVMM_X64_GPR_RSP) {
   1351 			vmx_vmread(VMCS_GUEST_RSP, &cpudata->gcr8);
   1352 		} else {
   1353 			cpudata->gcr8 = cpudata->gprs[gpr];
   1354 		}
   1355 	} else {
   1356 		if (gpr == NVMM_X64_GPR_RSP) {
   1357 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1358 		} else {
   1359 			cpudata->gprs[gpr] = cpudata->gcr8;
   1360 		}
   1361 	}
   1362 
   1363 	vmx_inkernel_advance();
   1364 	return 0;
   1365 }
   1366 
   1367 static void
   1368 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1369     struct nvmm_exit *exit)
   1370 {
   1371 	uint64_t qual;
   1372 	int ret;
   1373 
   1374 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1375 
   1376 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1377 	case 0:
   1378 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1379 		break;
   1380 	case 4:
   1381 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1382 		break;
   1383 	case 8:
   1384 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
   1385 		break;
   1386 	default:
   1387 		ret = -1;
   1388 		break;
   1389 	}
   1390 
   1391 	if (ret == -1) {
   1392 		vmx_inject_gp(mach, vcpu);
   1393 	}
   1394 
   1395 	exit->reason = NVMM_EXIT_NONE;
   1396 }
   1397 
   1398 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1399 #define		IO_SIZE_8	0
   1400 #define		IO_SIZE_16	1
   1401 #define		IO_SIZE_32	3
   1402 #define VMX_QUAL_IO_IN		__BIT(3)
   1403 #define VMX_QUAL_IO_STR		__BIT(4)
   1404 #define VMX_QUAL_IO_REP		__BIT(5)
   1405 #define VMX_QUAL_IO_DX		__BIT(6)
   1406 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1407 
   1408 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1409 #define		IO_ADRSIZE_16	0
   1410 #define		IO_ADRSIZE_32	1
   1411 #define		IO_ADRSIZE_64	2
   1412 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1413 
   1414 static void
   1415 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1416     struct nvmm_exit *exit)
   1417 {
   1418 	uint64_t qual, info, inslen, rip;
   1419 
   1420 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &qual);
   1421 	vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO, &info);
   1422 
   1423 	exit->reason = NVMM_EXIT_IO;
   1424 
   1425 	if (qual & VMX_QUAL_IO_IN) {
   1426 		exit->u.io.type = NVMM_EXIT_IO_IN;
   1427 	} else {
   1428 		exit->u.io.type = NVMM_EXIT_IO_OUT;
   1429 	}
   1430 
   1431 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1432 
   1433 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1434 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1435 
   1436 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1437 		exit->u.io.address_size = 8;
   1438 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1439 		exit->u.io.address_size = 4;
   1440 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1441 		exit->u.io.address_size = 2;
   1442 	}
   1443 
   1444 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1445 		exit->u.io.operand_size = 4;
   1446 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1447 		exit->u.io.operand_size = 2;
   1448 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1449 		exit->u.io.operand_size = 1;
   1450 	}
   1451 
   1452 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1453 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1454 
   1455 	if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
   1456 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1457 	}
   1458 
   1459 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1460 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1461 	exit->u.io.npc = rip + inslen;
   1462 }
   1463 
   1464 static const uint64_t msr_ignore_list[] = {
   1465 	MSR_BIOS_SIGN,
   1466 	MSR_IA32_PLATFORM_ID
   1467 };
   1468 
   1469 static bool
   1470 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1471     struct nvmm_exit *exit)
   1472 {
   1473 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1474 	uint64_t val;
   1475 	size_t i;
   1476 
   1477 	switch (exit->u.msr.type) {
   1478 	case NVMM_EXIT_MSR_RDMSR:
   1479 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1480 			vmx_vmread(VMCS_GUEST_IA32_PAT, &val);
   1481 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1482 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1483 			goto handled;
   1484 		}
   1485 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1486 			val = cpudata->gmsr_misc_enable;
   1487 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1488 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1489 			goto handled;
   1490 		}
   1491 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1492 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1493 				continue;
   1494 			val = 0;
   1495 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1496 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1497 			goto handled;
   1498 		}
   1499 		break;
   1500 	case NVMM_EXIT_MSR_WRMSR:
   1501 		if (exit->u.msr.msr == MSR_TSC) {
   1502 			cpudata->gtsc = exit->u.msr.val;
   1503 			cpudata->gtsc_want_update = true;
   1504 			goto handled;
   1505 		}
   1506 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1507 			val = exit->u.msr.val;
   1508 			if (__predict_false(!nvmm_x86_pat_validate(val))) {
   1509 				goto error;
   1510 			}
   1511 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
   1512 			goto handled;
   1513 		}
   1514 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1515 			/* Don't care. */
   1516 			goto handled;
   1517 		}
   1518 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1519 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1520 				continue;
   1521 			goto handled;
   1522 		}
   1523 		break;
   1524 	}
   1525 
   1526 	return false;
   1527 
   1528 handled:
   1529 	vmx_inkernel_advance();
   1530 	return true;
   1531 
   1532 error:
   1533 	vmx_inject_gp(mach, vcpu);
   1534 	return true;
   1535 }
   1536 
   1537 static void
   1538 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1539     struct nvmm_exit *exit, bool rdmsr)
   1540 {
   1541 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1542 	uint64_t inslen, rip;
   1543 
   1544 	if (rdmsr) {
   1545 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1546 	} else {
   1547 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1548 	}
   1549 
   1550 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1551 
   1552 	if (rdmsr) {
   1553 		exit->u.msr.val = 0;
   1554 	} else {
   1555 		uint64_t rdx, rax;
   1556 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1557 		rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1558 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1559 	}
   1560 
   1561 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1562 		exit->reason = NVMM_EXIT_NONE;
   1563 		return;
   1564 	}
   1565 
   1566 	exit->reason = NVMM_EXIT_MSR;
   1567 	vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH, &inslen);
   1568 	vmx_vmread(VMCS_GUEST_RIP, &rip);
   1569 	exit->u.msr.npc = rip + inslen;
   1570 }
   1571 
   1572 static void
   1573 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1574     struct nvmm_exit *exit)
   1575 {
   1576 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1577 	uint16_t val;
   1578 
   1579 	exit->reason = NVMM_EXIT_NONE;
   1580 
   1581 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1582 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1583 
   1584 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1585 		goto error;
   1586 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1587 		goto error;
   1588 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1589 		goto error;
   1590 	}
   1591 
   1592 	cpudata->gxcr0 = val;
   1593 
   1594 	vmx_inkernel_advance();
   1595 	return;
   1596 
   1597 error:
   1598 	vmx_inject_gp(mach, vcpu);
   1599 }
   1600 
   1601 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1602 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1603 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1604 
   1605 static void
   1606 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1607     struct nvmm_exit *exit)
   1608 {
   1609 	uint64_t perm;
   1610 	gpaddr_t gpa;
   1611 
   1612 	vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS, &gpa);
   1613 
   1614 	exit->reason = NVMM_EXIT_MEMORY;
   1615 	vmx_vmread(VMCS_EXIT_QUALIFICATION, &perm);
   1616 	if (perm & VMX_EPT_VIOLATION_WRITE)
   1617 		exit->u.mem.prot = PROT_WRITE;
   1618 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1619 		exit->u.mem.prot = PROT_EXEC;
   1620 	else
   1621 		exit->u.mem.prot = PROT_READ;
   1622 	exit->u.mem.gpa = gpa;
   1623 	exit->u.mem.inst_len = 0;
   1624 }
   1625 
   1626 static void
   1627 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
   1628 {
   1629 	exit->u.inv.hwcode = code;
   1630 	exit->reason = NVMM_EXIT_INVALID;
   1631 }
   1632 
   1633 /* -------------------------------------------------------------------------- */
   1634 
   1635 static void
   1636 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1637 {
   1638 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1639 
   1640 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1641 
   1642 	fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
   1643 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1644 
   1645 	if (vmx_xcr0_mask != 0) {
   1646 		cpudata->hxcr0 = rdxcr(0);
   1647 		wrxcr(0, cpudata->gxcr0);
   1648 	}
   1649 }
   1650 
   1651 static void
   1652 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1653 {
   1654 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1655 
   1656 	if (vmx_xcr0_mask != 0) {
   1657 		cpudata->gxcr0 = rdxcr(0);
   1658 		wrxcr(0, cpudata->hxcr0);
   1659 	}
   1660 
   1661 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1662 	fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
   1663 
   1664 	if (cpudata->ts_set) {
   1665 		stts();
   1666 	}
   1667 }
   1668 
   1669 static void
   1670 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1671 {
   1672 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1673 
   1674 	x86_dbregs_save(curlwp);
   1675 
   1676 	ldr7(0);
   1677 
   1678 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1679 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1680 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1681 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1682 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1683 }
   1684 
   1685 static void
   1686 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1687 {
   1688 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1689 
   1690 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1691 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1692 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1693 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1694 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1695 
   1696 	x86_dbregs_restore(curlwp);
   1697 }
   1698 
   1699 static void
   1700 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1701 {
   1702 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1703 
   1704 	/* This gets restored automatically by the CPU. */
   1705 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1706 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1707 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1708 
   1709 	/* Note: MSR_LSTAR is not static, because of SVS. */
   1710 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1711 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1712 }
   1713 
   1714 static void
   1715 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1716 {
   1717 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1718 
   1719 	wrmsr(MSR_STAR, cpudata->star);
   1720 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1721 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1722 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1723 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1724 }
   1725 
   1726 /* -------------------------------------------------------------------------- */
   1727 
   1728 #define VMX_INVVPID_ADDRESS		0
   1729 #define VMX_INVVPID_CONTEXT		1
   1730 #define VMX_INVVPID_ALL			2
   1731 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1732 
   1733 #define VMX_INVEPT_CONTEXT		1
   1734 #define VMX_INVEPT_ALL			2
   1735 
   1736 static inline void
   1737 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1738 {
   1739 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1740 
   1741 	if (vcpu->hcpu_last != hcpu) {
   1742 		cpudata->gtlb_want_flush = true;
   1743 	}
   1744 }
   1745 
   1746 static inline void
   1747 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1748 {
   1749 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1750 	struct ept_desc ept_desc;
   1751 
   1752 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   1753 		return;
   1754 	}
   1755 
   1756 	vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1757 	ept_desc.mbz = 0;
   1758 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1759 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   1760 }
   1761 
   1762 static inline uint64_t
   1763 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   1764 {
   1765 	struct ept_desc ept_desc;
   1766 	uint64_t machgen;
   1767 
   1768 	machgen = machdata->mach_htlb_gen;
   1769 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1770 		return machgen;
   1771 	}
   1772 
   1773 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   1774 
   1775 	vmx_vmread(VMCS_EPTP, &ept_desc.eptp);
   1776 	ept_desc.mbz = 0;
   1777 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1778 
   1779 	return machgen;
   1780 }
   1781 
   1782 static inline void
   1783 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   1784 {
   1785 	cpudata->vcpu_htlb_gen = machgen;
   1786 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   1787 }
   1788 
   1789 static int
   1790 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1791     struct nvmm_exit *exit)
   1792 {
   1793 	struct vmx_machdata *machdata = mach->machdata;
   1794 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1795 	struct vpid_desc vpid_desc;
   1796 	struct cpu_info *ci;
   1797 	uint64_t exitcode;
   1798 	uint64_t intstate;
   1799 	uint64_t machgen;
   1800 	int hcpu, s, ret;
   1801 	bool launched;
   1802 
   1803 	vmx_vmcs_enter(vcpu);
   1804 	ci = curcpu();
   1805 	hcpu = cpu_number();
   1806 	launched = cpudata->vmcs_launched;
   1807 
   1808 	vmx_gtlb_catchup(vcpu, hcpu);
   1809 	vmx_htlb_catchup(vcpu, hcpu);
   1810 
   1811 	if (vcpu->hcpu_last != hcpu) {
   1812 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   1813 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   1814 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   1815 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   1816 		cpudata->gtsc_want_update = true;
   1817 		vcpu->hcpu_last = hcpu;
   1818 	}
   1819 
   1820 	vmx_vcpu_guest_dbregs_enter(vcpu);
   1821 	vmx_vcpu_guest_misc_enter(vcpu);
   1822 
   1823 	while (1) {
   1824 		if (cpudata->gtlb_want_flush) {
   1825 			vpid_desc.vpid = cpudata->asid;
   1826 			vpid_desc.addr = 0;
   1827 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   1828 			cpudata->gtlb_want_flush = false;
   1829 		}
   1830 
   1831 		if (__predict_false(cpudata->gtsc_want_update)) {
   1832 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
   1833 			cpudata->gtsc_want_update = false;
   1834 		}
   1835 
   1836 		s = splhigh();
   1837 		machgen = vmx_htlb_flush(machdata, cpudata);
   1838 		vmx_vcpu_guest_fpu_enter(vcpu);
   1839 		lcr2(cpudata->gcr2);
   1840 		if (launched) {
   1841 			ret = vmx_vmresume(cpudata->gprs);
   1842 		} else {
   1843 			ret = vmx_vmlaunch(cpudata->gprs);
   1844 		}
   1845 		cpudata->gcr2 = rcr2();
   1846 		vmx_vcpu_guest_fpu_leave(vcpu);
   1847 		vmx_htlb_flush_ack(cpudata, machgen);
   1848 		splx(s);
   1849 
   1850 		if (__predict_false(ret != 0)) {
   1851 			exit->reason = NVMM_EXIT_INVALID;
   1852 			break;
   1853 		}
   1854 		cpudata->evt_pending = false;
   1855 
   1856 		launched = true;
   1857 
   1858 		vmx_vmread(VMCS_EXIT_REASON, &exitcode);
   1859 		exitcode &= __BITS(15,0);
   1860 
   1861 		switch (exitcode) {
   1862 		case VMCS_EXITCODE_EXC_NMI:
   1863 			vmx_exit_exc_nmi(mach, vcpu, exit);
   1864 			break;
   1865 		case VMCS_EXITCODE_EXT_INT:
   1866 			exit->reason = NVMM_EXIT_NONE;
   1867 			break;
   1868 		case VMCS_EXITCODE_CPUID:
   1869 			vmx_exit_cpuid(mach, vcpu, exit);
   1870 			break;
   1871 		case VMCS_EXITCODE_HLT:
   1872 			vmx_exit_hlt(mach, vcpu, exit);
   1873 			break;
   1874 		case VMCS_EXITCODE_CR:
   1875 			vmx_exit_cr(mach, vcpu, exit);
   1876 			break;
   1877 		case VMCS_EXITCODE_IO:
   1878 			vmx_exit_io(mach, vcpu, exit);
   1879 			break;
   1880 		case VMCS_EXITCODE_RDMSR:
   1881 			vmx_exit_msr(mach, vcpu, exit, true);
   1882 			break;
   1883 		case VMCS_EXITCODE_WRMSR:
   1884 			vmx_exit_msr(mach, vcpu, exit, false);
   1885 			break;
   1886 		case VMCS_EXITCODE_SHUTDOWN:
   1887 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1888 			break;
   1889 		case VMCS_EXITCODE_MONITOR:
   1890 			exit->reason = NVMM_EXIT_MONITOR;
   1891 			break;
   1892 		case VMCS_EXITCODE_MWAIT:
   1893 			exit->reason = NVMM_EXIT_MWAIT;
   1894 			break;
   1895 		case VMCS_EXITCODE_XSETBV:
   1896 			vmx_exit_xsetbv(mach, vcpu, exit);
   1897 			break;
   1898 		case VMCS_EXITCODE_RDPMC:
   1899 		case VMCS_EXITCODE_RDTSCP:
   1900 		case VMCS_EXITCODE_INVVPID:
   1901 		case VMCS_EXITCODE_INVEPT:
   1902 		case VMCS_EXITCODE_VMCALL:
   1903 		case VMCS_EXITCODE_VMCLEAR:
   1904 		case VMCS_EXITCODE_VMLAUNCH:
   1905 		case VMCS_EXITCODE_VMPTRLD:
   1906 		case VMCS_EXITCODE_VMPTRST:
   1907 		case VMCS_EXITCODE_VMREAD:
   1908 		case VMCS_EXITCODE_VMRESUME:
   1909 		case VMCS_EXITCODE_VMWRITE:
   1910 		case VMCS_EXITCODE_VMXOFF:
   1911 		case VMCS_EXITCODE_VMXON:
   1912 			vmx_inject_ud(mach, vcpu);
   1913 			exit->reason = NVMM_EXIT_NONE;
   1914 			break;
   1915 		case VMCS_EXITCODE_EPT_VIOLATION:
   1916 			vmx_exit_epf(mach, vcpu, exit);
   1917 			break;
   1918 		case VMCS_EXITCODE_INT_WINDOW:
   1919 			vmx_event_waitexit_disable(vcpu, false);
   1920 			exit->reason = NVMM_EXIT_INT_READY;
   1921 			break;
   1922 		case VMCS_EXITCODE_NMI_WINDOW:
   1923 			vmx_event_waitexit_disable(vcpu, true);
   1924 			exit->reason = NVMM_EXIT_NMI_READY;
   1925 			break;
   1926 		default:
   1927 			vmx_exit_invalid(exit, exitcode);
   1928 			break;
   1929 		}
   1930 
   1931 		/* If no reason to return to userland, keep rolling. */
   1932 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1933 			break;
   1934 		}
   1935 		if (curcpu()->ci_data.cpu_softints != 0) {
   1936 			break;
   1937 		}
   1938 		if (curlwp->l_flag & LW_USERRET) {
   1939 			break;
   1940 		}
   1941 		if (exit->reason != NVMM_EXIT_NONE) {
   1942 			break;
   1943 		}
   1944 	}
   1945 
   1946 	cpudata->vmcs_launched = launched;
   1947 
   1948 	vmx_vmread(VMCS_TSC_OFFSET, &cpudata->gtsc);
   1949 	cpudata->gtsc += rdtsc();
   1950 
   1951 	vmx_vcpu_guest_misc_leave(vcpu);
   1952 	vmx_vcpu_guest_dbregs_leave(vcpu);
   1953 
   1954 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
   1955 	vmx_vmread(VMCS_GUEST_RFLAGS,
   1956 	    &exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS]);
   1957 	vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   1958 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   1959 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   1960 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   1961 	    cpudata->int_window_exit;
   1962 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   1963 	    cpudata->nmi_window_exit;
   1964 	exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
   1965 	    cpudata->evt_pending;
   1966 
   1967 	vmx_vmcs_leave(vcpu);
   1968 
   1969 	return 0;
   1970 }
   1971 
   1972 /* -------------------------------------------------------------------------- */
   1973 
   1974 static int
   1975 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   1976 {
   1977 	struct pglist pglist;
   1978 	paddr_t _pa;
   1979 	vaddr_t _va;
   1980 	size_t i;
   1981 	int ret;
   1982 
   1983 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   1984 	    &pglist, 1, 0);
   1985 	if (ret != 0)
   1986 		return ENOMEM;
   1987 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   1988 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   1989 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   1990 	if (_va == 0)
   1991 		goto error;
   1992 
   1993 	for (i = 0; i < npages; i++) {
   1994 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   1995 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   1996 	}
   1997 	pmap_update(pmap_kernel());
   1998 
   1999 	memset((void *)_va, 0, npages * PAGE_SIZE);
   2000 
   2001 	*pa = _pa;
   2002 	*va = _va;
   2003 	return 0;
   2004 
   2005 error:
   2006 	for (i = 0; i < npages; i++) {
   2007 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   2008 	}
   2009 	return ENOMEM;
   2010 }
   2011 
   2012 static void
   2013 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   2014 {
   2015 	size_t i;
   2016 
   2017 	pmap_kremove(va, npages * PAGE_SIZE);
   2018 	pmap_update(pmap_kernel());
   2019 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   2020 	for (i = 0; i < npages; i++) {
   2021 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   2022 	}
   2023 }
   2024 
   2025 /* -------------------------------------------------------------------------- */
   2026 
   2027 static void
   2028 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   2029 {
   2030 	uint64_t byte;
   2031 	uint8_t bitoff;
   2032 
   2033 	if (msr < 0x00002000) {
   2034 		/* Range 1 */
   2035 		byte = ((msr - 0x00000000) / 8) + 0;
   2036 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2037 		/* Range 2 */
   2038 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2039 	} else {
   2040 		panic("%s: wrong range", __func__);
   2041 	}
   2042 
   2043 	bitoff = (msr & 0x7);
   2044 
   2045 	if (read) {
   2046 		bitmap[byte] &= ~__BIT(bitoff);
   2047 	}
   2048 	if (write) {
   2049 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2050 	}
   2051 }
   2052 
   2053 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2054 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2055 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2056 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2057 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2058 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2059 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2060 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2061 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2062 
   2063 static void
   2064 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2065 {
   2066 	uint64_t attrib;
   2067 
   2068 	attrib =
   2069 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2070 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2071 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2072 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2073 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2074 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2075 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2076 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2077 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2078 
   2079 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2080 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2081 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2082 	}
   2083 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2084 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2085 }
   2086 
   2087 static void
   2088 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2089 {
   2090 	uint64_t selector, base, limit, attrib = 0;
   2091 
   2092 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2093 		vmx_vmread(vmx_guest_segs[idx].selector, &selector);
   2094 		vmx_vmread(vmx_guest_segs[idx].attrib, &attrib);
   2095 	}
   2096 	vmx_vmread(vmx_guest_segs[idx].limit, &limit);
   2097 	vmx_vmread(vmx_guest_segs[idx].base, &base);
   2098 
   2099 	segs[idx].selector = selector;
   2100 	segs[idx].limit = limit;
   2101 	segs[idx].base = base;
   2102 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2103 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2104 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2105 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2106 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2107 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2108 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2109 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2110 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2111 		segs[idx].attrib.p = 0;
   2112 	}
   2113 }
   2114 
   2115 static inline bool
   2116 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2117 {
   2118 	uint64_t cr0, cr3, cr4, efer;
   2119 
   2120 	if (flags & NVMM_X64_STATE_CRS) {
   2121 		vmx_vmread(VMCS_GUEST_CR0, &cr0);
   2122 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2123 			return true;
   2124 		}
   2125 		vmx_vmread(VMCS_GUEST_CR3, &cr3);
   2126 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2127 			return true;
   2128 		}
   2129 		vmx_vmread(VMCS_GUEST_CR4, &cr4);
   2130 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2131 			return true;
   2132 		}
   2133 	}
   2134 
   2135 	if (flags & NVMM_X64_STATE_MSRS) {
   2136 		vmx_vmread(VMCS_GUEST_IA32_EFER, &efer);
   2137 		if ((efer ^
   2138 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2139 			return true;
   2140 		}
   2141 	}
   2142 
   2143 	return false;
   2144 }
   2145 
   2146 static void
   2147 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   2148 {
   2149 	const struct nvmm_x64_state *state = data;
   2150 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2151 	struct fxsave *fpustate;
   2152 	uint64_t ctls1, intstate;
   2153 
   2154 	vmx_vmcs_enter(vcpu);
   2155 
   2156 	if (vmx_state_tlb_flush(state, flags)) {
   2157 		cpudata->gtlb_want_flush = true;
   2158 	}
   2159 
   2160 	if (flags & NVMM_X64_STATE_SEGS) {
   2161 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2162 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2163 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2164 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2165 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2166 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2167 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2168 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2169 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2170 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2171 	}
   2172 
   2173 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2174 	if (flags & NVMM_X64_STATE_GPRS) {
   2175 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2176 
   2177 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2178 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2179 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2180 	}
   2181 
   2182 	if (flags & NVMM_X64_STATE_CRS) {
   2183 		/*
   2184 		 * CR0_NE and CR4_VMXE are mandatory.
   2185 		 */
   2186 		vmx_vmwrite(VMCS_GUEST_CR0,
   2187 		    state->crs[NVMM_X64_CR_CR0] | CR0_NE);
   2188 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2189 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2190 		vmx_vmwrite(VMCS_GUEST_CR4,
   2191 		    state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
   2192 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2193 
   2194 		if (vmx_xcr0_mask != 0) {
   2195 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2196 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2197 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2198 			cpudata->gxcr0 |= XCR0_X87;
   2199 		}
   2200 	}
   2201 
   2202 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2203 	if (flags & NVMM_X64_STATE_DRS) {
   2204 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2205 
   2206 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2207 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2208 	}
   2209 
   2210 	if (flags & NVMM_X64_STATE_MSRS) {
   2211 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2212 		    state->msrs[NVMM_X64_MSR_STAR];
   2213 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2214 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2215 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2216 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2217 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2218 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2219 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2220 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2221 
   2222 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2223 		    state->msrs[NVMM_X64_MSR_EFER]);
   2224 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2225 		    state->msrs[NVMM_X64_MSR_PAT]);
   2226 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2227 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2228 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2229 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2230 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2231 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2232 
   2233 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   2234 		cpudata->gtsc_want_update = true;
   2235 
   2236 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2237 		vmx_vmread(VMCS_ENTRY_CTLS, &ctls1);
   2238 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2239 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2240 		} else {
   2241 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2242 		}
   2243 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2244 	}
   2245 
   2246 	if (flags & NVMM_X64_STATE_INTR) {
   2247 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2248 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2249 		if (state->intr.int_shadow) {
   2250 			intstate |= INT_STATE_MOVSS;
   2251 		}
   2252 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2253 
   2254 		if (state->intr.int_window_exiting) {
   2255 			vmx_event_waitexit_enable(vcpu, false);
   2256 		} else {
   2257 			vmx_event_waitexit_disable(vcpu, false);
   2258 		}
   2259 
   2260 		if (state->intr.nmi_window_exiting) {
   2261 			vmx_event_waitexit_enable(vcpu, true);
   2262 		} else {
   2263 			vmx_event_waitexit_disable(vcpu, true);
   2264 		}
   2265 	}
   2266 
   2267 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2268 	if (flags & NVMM_X64_STATE_FPU) {
   2269 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2270 		    sizeof(state->fpu));
   2271 
   2272 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2273 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2274 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2275 
   2276 		if (vmx_xcr0_mask != 0) {
   2277 			/* Reset XSTATE_BV, to force a reload. */
   2278 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2279 		}
   2280 	}
   2281 
   2282 	vmx_vmcs_leave(vcpu);
   2283 }
   2284 
   2285 static void
   2286 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2287 {
   2288 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2289 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2290 	uint64_t intstate;
   2291 
   2292 	vmx_vmcs_enter(vcpu);
   2293 
   2294 	if (flags & NVMM_X64_STATE_SEGS) {
   2295 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2296 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2297 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2298 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2299 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2300 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2301 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2302 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2303 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2304 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2305 	}
   2306 
   2307 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2308 	if (flags & NVMM_X64_STATE_GPRS) {
   2309 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2310 
   2311 		vmx_vmread(VMCS_GUEST_RIP, &state->gprs[NVMM_X64_GPR_RIP]);
   2312 		vmx_vmread(VMCS_GUEST_RSP, &state->gprs[NVMM_X64_GPR_RSP]);
   2313 		vmx_vmread(VMCS_GUEST_RFLAGS, &state->gprs[NVMM_X64_GPR_RFLAGS]);
   2314 	}
   2315 
   2316 	if (flags & NVMM_X64_STATE_CRS) {
   2317 		vmx_vmread(VMCS_GUEST_CR0, &state->crs[NVMM_X64_CR_CR0]);
   2318 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2319 		vmx_vmread(VMCS_GUEST_CR3, &state->crs[NVMM_X64_CR_CR3]);
   2320 		vmx_vmread(VMCS_GUEST_CR4, &state->crs[NVMM_X64_CR_CR4]);
   2321 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2322 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2323 
   2324 		/* Hide VMXE. */
   2325 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2326 	}
   2327 
   2328 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2329 	if (flags & NVMM_X64_STATE_DRS) {
   2330 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2331 
   2332 		vmx_vmread(VMCS_GUEST_DR7, &state->drs[NVMM_X64_DR_DR7]);
   2333 	}
   2334 
   2335 	if (flags & NVMM_X64_STATE_MSRS) {
   2336 		state->msrs[NVMM_X64_MSR_STAR] =
   2337 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2338 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2339 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2340 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2341 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2342 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2343 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2344 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2345 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2346 
   2347 		vmx_vmread(VMCS_GUEST_IA32_EFER,
   2348 		    &state->msrs[NVMM_X64_MSR_EFER]);
   2349 		vmx_vmread(VMCS_GUEST_IA32_PAT,
   2350 		    &state->msrs[NVMM_X64_MSR_PAT]);
   2351 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS,
   2352 		    &state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2353 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP,
   2354 		    &state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2355 		vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP,
   2356 		    &state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2357 
   2358 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2359 	}
   2360 
   2361 	if (flags & NVMM_X64_STATE_INTR) {
   2362 		vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY, &intstate);
   2363 		state->intr.int_shadow =
   2364 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2365 		state->intr.int_window_exiting = cpudata->int_window_exit;
   2366 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   2367 		state->intr.evt_pending = cpudata->evt_pending;
   2368 	}
   2369 
   2370 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2371 	if (flags & NVMM_X64_STATE_FPU) {
   2372 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2373 		    sizeof(state->fpu));
   2374 	}
   2375 
   2376 	vmx_vmcs_leave(vcpu);
   2377 }
   2378 
   2379 /* -------------------------------------------------------------------------- */
   2380 
   2381 static void
   2382 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2383 {
   2384 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2385 	size_t i, oct, bit;
   2386 
   2387 	mutex_enter(&vmx_asidlock);
   2388 
   2389 	for (i = 0; i < vmx_maxasid; i++) {
   2390 		oct = i / 8;
   2391 		bit = i % 8;
   2392 
   2393 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2394 			continue;
   2395 		}
   2396 
   2397 		cpudata->asid = i;
   2398 
   2399 		vmx_asidmap[oct] |= __BIT(bit);
   2400 		vmx_vmwrite(VMCS_VPID, i);
   2401 		mutex_exit(&vmx_asidlock);
   2402 		return;
   2403 	}
   2404 
   2405 	mutex_exit(&vmx_asidlock);
   2406 
   2407 	panic("%s: impossible", __func__);
   2408 }
   2409 
   2410 static void
   2411 vmx_asid_free(struct nvmm_cpu *vcpu)
   2412 {
   2413 	size_t oct, bit;
   2414 	uint64_t asid;
   2415 
   2416 	vmx_vmread(VMCS_VPID, &asid);
   2417 
   2418 	oct = asid / 8;
   2419 	bit = asid % 8;
   2420 
   2421 	mutex_enter(&vmx_asidlock);
   2422 	vmx_asidmap[oct] &= ~__BIT(bit);
   2423 	mutex_exit(&vmx_asidlock);
   2424 }
   2425 
   2426 static void
   2427 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2428 {
   2429 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2430 	struct vmcs *vmcs = cpudata->vmcs;
   2431 	struct msr_entry *gmsr = cpudata->gmsr;
   2432 	extern uint8_t vmx_resume_rip;
   2433 	uint64_t rev, eptp;
   2434 
   2435 	rev = vmx_get_revision();
   2436 
   2437 	memset(vmcs, 0, VMCS_SIZE);
   2438 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2439 	vmcs->abort = 0;
   2440 
   2441 	vmx_vmcs_enter(vcpu);
   2442 
   2443 	/* No link pointer. */
   2444 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2445 
   2446 	/* Install the CTLSs. */
   2447 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2448 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2449 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2450 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2451 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2452 
   2453 	/* Allow direct access to certain MSRs. */
   2454 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2455 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2456 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2457 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2458 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2459 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2460 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2461 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2462 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2463 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2464 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2465 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2466 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2467 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   2468 	    true, false);
   2469 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2470 
   2471 	/*
   2472 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2473 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2474 	 */
   2475 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2476 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2477 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2478 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2479 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2480 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2481 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2482 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2483 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2484 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2485 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2486 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2487 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2488 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2489 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2490 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2491 
   2492 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   2493 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
   2494 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   2495 
   2496 	/* Force CR4_VMXE to zero. */
   2497 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   2498 
   2499 	/* Set the Host state for resuming. */
   2500 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2501 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2502 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2503 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2504 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2505 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2506 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2507 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2508 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2509 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2510 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   2511 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2512 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2513 	vmx_vmwrite(VMCS_HOST_CR0, rcr0());
   2514 
   2515 	/* Generate ASID. */
   2516 	vmx_asid_alloc(vcpu);
   2517 
   2518 	/* Enable Extended Paging, 4-Level. */
   2519 	eptp =
   2520 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2521 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2522 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2523 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2524 	vmx_vmwrite(VMCS_EPTP, eptp);
   2525 
   2526 	/* Init IA32_MISC_ENABLE. */
   2527 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2528 	cpudata->gmsr_misc_enable &=
   2529 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2530 	cpudata->gmsr_misc_enable |=
   2531 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2532 
   2533 	/* Init XSAVE header. */
   2534 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2535 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2536 
   2537 	/* These MSRs are static. */
   2538 	cpudata->star = rdmsr(MSR_STAR);
   2539 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2540 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2541 
   2542 	/* Install the RESET state. */
   2543 	vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   2544 
   2545 	vmx_vmcs_leave(vcpu);
   2546 }
   2547 
   2548 static int
   2549 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2550 {
   2551 	struct vmx_cpudata *cpudata;
   2552 	int error;
   2553 
   2554 	/* Allocate the VMX cpudata. */
   2555 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2556 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2557 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2558 	vcpu->cpudata = cpudata;
   2559 
   2560 	/* VMCS */
   2561 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2562 	    VMCS_NPAGES);
   2563 	if (error)
   2564 		goto error;
   2565 
   2566 	/* MSR Bitmap */
   2567 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2568 	    MSRBM_NPAGES);
   2569 	if (error)
   2570 		goto error;
   2571 
   2572 	/* Guest MSR List */
   2573 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2574 	if (error)
   2575 		goto error;
   2576 
   2577 	kcpuset_create(&cpudata->htlb_want_flush, true);
   2578 
   2579 	/* Init the VCPU info. */
   2580 	vmx_vcpu_init(mach, vcpu);
   2581 
   2582 	return 0;
   2583 
   2584 error:
   2585 	if (cpudata->vmcs_pa) {
   2586 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2587 		    VMCS_NPAGES);
   2588 	}
   2589 	if (cpudata->msrbm_pa) {
   2590 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2591 		    MSRBM_NPAGES);
   2592 	}
   2593 	if (cpudata->gmsr_pa) {
   2594 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2595 	}
   2596 
   2597 	kmem_free(cpudata, sizeof(*cpudata));
   2598 	return error;
   2599 }
   2600 
   2601 static void
   2602 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2603 {
   2604 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2605 
   2606 	vmx_vmcs_enter(vcpu);
   2607 	vmx_asid_free(vcpu);
   2608 	vmx_vmcs_destroy(vcpu);
   2609 
   2610 	kcpuset_destroy(cpudata->htlb_want_flush);
   2611 
   2612 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2613 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2614 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2615 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2616 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2617 }
   2618 
   2619 /* -------------------------------------------------------------------------- */
   2620 
   2621 static void
   2622 vmx_tlb_flush(struct pmap *pm)
   2623 {
   2624 	struct nvmm_machine *mach = pm->pm_data;
   2625 	struct vmx_machdata *machdata = mach->machdata;
   2626 
   2627 	atomic_inc_64(&machdata->mach_htlb_gen);
   2628 
   2629 	/* Generates IPIs, which cause #VMEXITs. */
   2630 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2631 }
   2632 
   2633 static void
   2634 vmx_machine_create(struct nvmm_machine *mach)
   2635 {
   2636 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2637 	struct vmx_machdata *machdata;
   2638 
   2639 	/* Convert to EPT. */
   2640 	pmap_ept_transform(pmap);
   2641 
   2642 	/* Fill in pmap info. */
   2643 	pmap->pm_data = (void *)mach;
   2644 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2645 
   2646 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2647 	mach->machdata = machdata;
   2648 
   2649 	/* Start with an hTLB flush everywhere. */
   2650 	machdata->mach_htlb_gen = 1;
   2651 }
   2652 
   2653 static void
   2654 vmx_machine_destroy(struct nvmm_machine *mach)
   2655 {
   2656 	struct vmx_machdata *machdata = mach->machdata;
   2657 
   2658 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2659 }
   2660 
   2661 static int
   2662 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2663 {
   2664 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2665 	struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
   2666 	size_t i;
   2667 
   2668 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2669 		return EINVAL;
   2670 	}
   2671 
   2672 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2673 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2674 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2675 	    (cpuid->set.edx & cpuid->del.edx))) {
   2676 		return EINVAL;
   2677 	}
   2678 
   2679 	/* If already here, replace. */
   2680 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2681 		if (!machdata->cpuidpresent[i]) {
   2682 			continue;
   2683 		}
   2684 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2685 			memcpy(&machdata->cpuid[i], cpuid,
   2686 			    sizeof(struct nvmm_x86_conf_cpuid));
   2687 			return 0;
   2688 		}
   2689 	}
   2690 
   2691 	/* Not here, insert. */
   2692 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2693 		if (!machdata->cpuidpresent[i]) {
   2694 			machdata->cpuidpresent[i] = true;
   2695 			memcpy(&machdata->cpuid[i], cpuid,
   2696 			    sizeof(struct nvmm_x86_conf_cpuid));
   2697 			return 0;
   2698 		}
   2699 	}
   2700 
   2701 	return ENOBUFS;
   2702 }
   2703 
   2704 /* -------------------------------------------------------------------------- */
   2705 
   2706 static int
   2707 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   2708     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   2709 {
   2710 	uint64_t basic, val, true_val;
   2711 	bool one_allowed, zero_allowed, has_true;
   2712 	size_t i;
   2713 
   2714 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   2715 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   2716 
   2717 	val = rdmsr(msr_ctls);
   2718 	if (has_true) {
   2719 		true_val = rdmsr(msr_true_ctls);
   2720 	} else {
   2721 		true_val = val;
   2722 	}
   2723 
   2724 #define ONE_ALLOWED(msrval, bitoff) \
   2725 	((msrval & __BIT(32 + bitoff)) != 0)
   2726 #define ZERO_ALLOWED(msrval, bitoff) \
   2727 	((msrval & __BIT(bitoff)) == 0)
   2728 
   2729 	for (i = 0; i < 32; i++) {
   2730 		one_allowed = ONE_ALLOWED(true_val, i);
   2731 		zero_allowed = ZERO_ALLOWED(true_val, i);
   2732 
   2733 		if (zero_allowed && !one_allowed) {
   2734 			if (set_one & __BIT(i))
   2735 				return -1;
   2736 			*res &= ~__BIT(i);
   2737 		} else if (one_allowed && !zero_allowed) {
   2738 			if (set_zero & __BIT(i))
   2739 				return -1;
   2740 			*res |= __BIT(i);
   2741 		} else {
   2742 			if (set_zero & __BIT(i)) {
   2743 				*res &= ~__BIT(i);
   2744 			} else if (set_one & __BIT(i)) {
   2745 				*res |= __BIT(i);
   2746 			} else if (!has_true) {
   2747 				*res &= ~__BIT(i);
   2748 			} else if (ZERO_ALLOWED(val, i)) {
   2749 				*res &= ~__BIT(i);
   2750 			} else if (ONE_ALLOWED(val, i)) {
   2751 				*res |= __BIT(i);
   2752 			} else {
   2753 				return -1;
   2754 			}
   2755 		}
   2756 	}
   2757 
   2758 	return 0;
   2759 }
   2760 
   2761 static bool
   2762 vmx_ident(void)
   2763 {
   2764 	uint64_t msr;
   2765 	int ret;
   2766 
   2767 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   2768 		return false;
   2769 	}
   2770 
   2771 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   2772 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   2773 		return false;
   2774 	}
   2775 
   2776 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   2777 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   2778 		return false;
   2779 	}
   2780 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   2781 		return false;
   2782 	}
   2783 
   2784 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   2785 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   2786 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   2787 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   2788 	if (ret == -1) {
   2789 		return false;
   2790 	}
   2791 
   2792 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   2793 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   2794 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   2795 	if (ret == -1) {
   2796 		return false;
   2797 	}
   2798 
   2799 	/* Init the CTLSs right now, and check for errors. */
   2800 	ret = vmx_init_ctls(
   2801 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   2802 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   2803 	    &vmx_pinbased_ctls);
   2804 	if (ret == -1) {
   2805 		return false;
   2806 	}
   2807 	ret = vmx_init_ctls(
   2808 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   2809 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   2810 	    &vmx_procbased_ctls);
   2811 	if (ret == -1) {
   2812 		return false;
   2813 	}
   2814 	ret = vmx_init_ctls(
   2815 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   2816 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   2817 	    &vmx_procbased_ctls2);
   2818 	if (ret == -1) {
   2819 		return false;
   2820 	}
   2821 	ret = vmx_init_ctls(
   2822 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   2823 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   2824 	    &vmx_entry_ctls);
   2825 	if (ret == -1) {
   2826 		return false;
   2827 	}
   2828 	ret = vmx_init_ctls(
   2829 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   2830 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   2831 	    &vmx_exit_ctls);
   2832 	if (ret == -1) {
   2833 		return false;
   2834 	}
   2835 
   2836 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2837 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   2838 		return false;
   2839 	}
   2840 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   2841 		return false;
   2842 	}
   2843 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   2844 		return false;
   2845 	}
   2846 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   2847 		pmap_ept_has_ad = true;
   2848 	} else {
   2849 		pmap_ept_has_ad = false;
   2850 	}
   2851 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   2852 		return false;
   2853 	}
   2854 
   2855 	return true;
   2856 }
   2857 
   2858 static void
   2859 vmx_init_asid(uint32_t maxasid)
   2860 {
   2861 	size_t allocsz;
   2862 
   2863 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2864 
   2865 	vmx_maxasid = maxasid;
   2866 	allocsz = roundup(maxasid, 8) / 8;
   2867 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2868 
   2869 	/* ASID 0 is reserved for the host. */
   2870 	vmx_asidmap[0] |= __BIT(0);
   2871 }
   2872 
   2873 static void
   2874 vmx_change_cpu(void *arg1, void *arg2)
   2875 {
   2876 	struct cpu_info *ci = curcpu();
   2877 	bool enable = (bool)arg1;
   2878 	uint64_t cr4;
   2879 
   2880 	if (!enable) {
   2881 		vmx_vmxoff();
   2882 	}
   2883 
   2884 	cr4 = rcr4();
   2885 	if (enable) {
   2886 		cr4 |= CR4_VMXE;
   2887 	} else {
   2888 		cr4 &= ~CR4_VMXE;
   2889 	}
   2890 	lcr4(cr4);
   2891 
   2892 	if (enable) {
   2893 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   2894 	}
   2895 }
   2896 
   2897 static void
   2898 vmx_init_l1tf(void)
   2899 {
   2900 	u_int descs[4];
   2901 	uint64_t msr;
   2902 
   2903 	if (cpuid_level < 7) {
   2904 		return;
   2905 	}
   2906 
   2907 	x86_cpuid(7, descs);
   2908 
   2909 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   2910 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   2911 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   2912 			/* No mitigation needed. */
   2913 			return;
   2914 		}
   2915 	}
   2916 
   2917 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   2918 		/* Enable hardware mitigation. */
   2919 		vmx_msrlist_entry_nmsr += 1;
   2920 	}
   2921 }
   2922 
   2923 static void
   2924 vmx_init(void)
   2925 {
   2926 	CPU_INFO_ITERATOR cii;
   2927 	struct cpu_info *ci;
   2928 	uint64_t xc, msr;
   2929 	struct vmxon *vmxon;
   2930 	uint32_t revision;
   2931 	paddr_t pa;
   2932 	vaddr_t va;
   2933 	int error;
   2934 
   2935 	/* Init the ASID bitmap (VPID). */
   2936 	vmx_init_asid(VPID_MAX);
   2937 
   2938 	/* Init the XCR0 mask. */
   2939 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   2940 
   2941 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   2942 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2943 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   2944 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   2945 	} else {
   2946 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   2947 	}
   2948 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   2949 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   2950 	} else {
   2951 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   2952 	}
   2953 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   2954 		vmx_eptp_type = EPTP_TYPE_WB;
   2955 	} else {
   2956 		vmx_eptp_type = EPTP_TYPE_UC;
   2957 	}
   2958 
   2959 	/* Init the L1TF mitigation. */
   2960 	vmx_init_l1tf();
   2961 
   2962 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   2963 	revision = vmx_get_revision();
   2964 
   2965 	for (CPU_INFO_FOREACH(cii, ci)) {
   2966 		error = vmx_memalloc(&pa, &va, 1);
   2967 		if (error) {
   2968 			panic("%s: out of memory", __func__);
   2969 		}
   2970 		vmxoncpu[cpu_index(ci)].pa = pa;
   2971 		vmxoncpu[cpu_index(ci)].va = va;
   2972 
   2973 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   2974 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   2975 	}
   2976 
   2977 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   2978 	xc_wait(xc);
   2979 }
   2980 
   2981 static void
   2982 vmx_fini_asid(void)
   2983 {
   2984 	size_t allocsz;
   2985 
   2986 	allocsz = roundup(vmx_maxasid, 8) / 8;
   2987 	kmem_free(vmx_asidmap, allocsz);
   2988 
   2989 	mutex_destroy(&vmx_asidlock);
   2990 }
   2991 
   2992 static void
   2993 vmx_fini(void)
   2994 {
   2995 	uint64_t xc;
   2996 	size_t i;
   2997 
   2998 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   2999 	xc_wait(xc);
   3000 
   3001 	for (i = 0; i < MAXCPUS; i++) {
   3002 		if (vmxoncpu[i].pa != 0)
   3003 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   3004 	}
   3005 
   3006 	vmx_fini_asid();
   3007 }
   3008 
   3009 static void
   3010 vmx_capability(struct nvmm_capability *cap)
   3011 {
   3012 	cap->u.x86.xcr0_mask = vmx_xcr0_mask;
   3013 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   3014 	cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
   3015 }
   3016 
   3017 const struct nvmm_impl nvmm_x86_vmx = {
   3018 	.ident = vmx_ident,
   3019 	.init = vmx_init,
   3020 	.fini = vmx_fini,
   3021 	.capability = vmx_capability,
   3022 	.conf_max = NVMM_X86_NCONF,
   3023 	.conf_sizes = vmx_conf_sizes,
   3024 	.state_size = sizeof(struct nvmm_x64_state),
   3025 	.machine_create = vmx_machine_create,
   3026 	.machine_destroy = vmx_machine_destroy,
   3027 	.machine_configure = vmx_machine_configure,
   3028 	.vcpu_create = vmx_vcpu_create,
   3029 	.vcpu_destroy = vmx_vcpu_destroy,
   3030 	.vcpu_setstate = vmx_vcpu_setstate,
   3031 	.vcpu_getstate = vmx_vcpu_getstate,
   3032 	.vcpu_inject = vmx_vcpu_inject,
   3033 	.vcpu_run = vmx_vcpu_run
   3034 };
   3035