Home | History | Annotate | Line # | Download | only in x86
nvmm_x86_vmx.c revision 1.28
      1 /*	$NetBSD: nvmm_x86_vmx.c,v 1.28 2019/04/27 08:16:19 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Maxime Villard.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.28 2019/04/27 08:16:19 maxv Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/kernel.h>
     38 #include <sys/kmem.h>
     39 #include <sys/cpu.h>
     40 #include <sys/xcall.h>
     41 #include <sys/mman.h>
     42 
     43 #include <uvm/uvm.h>
     44 #include <uvm/uvm_page.h>
     45 
     46 #include <x86/cputypes.h>
     47 #include <x86/specialreg.h>
     48 #include <x86/pmap.h>
     49 #include <x86/dbregs.h>
     50 #include <x86/cpu_counter.h>
     51 #include <machine/cpuvar.h>
     52 
     53 #include <dev/nvmm/nvmm.h>
     54 #include <dev/nvmm/nvmm_internal.h>
     55 #include <dev/nvmm/x86/nvmm_x86.h>
     56 
     57 int _vmx_vmxon(paddr_t *pa);
     58 int _vmx_vmxoff(void);
     59 int vmx_vmlaunch(uint64_t *gprs);
     60 int vmx_vmresume(uint64_t *gprs);
     61 
     62 #define vmx_vmxon(a) \
     63 	if (__predict_false(_vmx_vmxon(a) != 0)) { \
     64 		panic("%s: VMXON failed", __func__); \
     65 	}
     66 #define vmx_vmxoff() \
     67 	if (__predict_false(_vmx_vmxoff() != 0)) { \
     68 		panic("%s: VMXOFF failed", __func__); \
     69 	}
     70 
     71 struct ept_desc {
     72 	uint64_t eptp;
     73 	uint64_t mbz;
     74 } __packed;
     75 
     76 struct vpid_desc {
     77 	uint64_t vpid;
     78 	uint64_t addr;
     79 } __packed;
     80 
     81 static inline void
     82 vmx_invept(uint64_t op, struct ept_desc *desc)
     83 {
     84 	asm volatile (
     85 		"invept		%[desc],%[op];"
     86 		"jz		vmx_insn_failvalid;"
     87 		"jc		vmx_insn_failinvalid;"
     88 		:
     89 		: [desc] "m" (*desc), [op] "r" (op)
     90 		: "memory", "cc"
     91 	);
     92 }
     93 
     94 static inline void
     95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
     96 {
     97 	asm volatile (
     98 		"invvpid	%[desc],%[op];"
     99 		"jz		vmx_insn_failvalid;"
    100 		"jc		vmx_insn_failinvalid;"
    101 		:
    102 		: [desc] "m" (*desc), [op] "r" (op)
    103 		: "memory", "cc"
    104 	);
    105 }
    106 
    107 static inline uint64_t
    108 vmx_vmread(uint64_t field)
    109 {
    110 	uint64_t value;
    111 
    112 	asm volatile (
    113 		"vmread		%[field],%[value];"
    114 		"jz		vmx_insn_failvalid;"
    115 		"jc		vmx_insn_failinvalid;"
    116 		: [value] "=r" (value)
    117 		: [field] "r" (field)
    118 		: "cc"
    119 	);
    120 
    121 	return value;
    122 }
    123 
    124 static inline void
    125 vmx_vmwrite(uint64_t field, uint64_t value)
    126 {
    127 	asm volatile (
    128 		"vmwrite	%[value],%[field];"
    129 		"jz		vmx_insn_failvalid;"
    130 		"jc		vmx_insn_failinvalid;"
    131 		:
    132 		: [field] "r" (field), [value] "r" (value)
    133 		: "cc"
    134 	);
    135 }
    136 
    137 static inline paddr_t
    138 vmx_vmptrst(void)
    139 {
    140 	paddr_t pa;
    141 
    142 	asm volatile (
    143 		"vmptrst	%[pa];"
    144 		:
    145 		: [pa] "m" (*(paddr_t *)&pa)
    146 		: "memory"
    147 	);
    148 
    149 	return pa;
    150 }
    151 
    152 static inline void
    153 vmx_vmptrld(paddr_t *pa)
    154 {
    155 	asm volatile (
    156 		"vmptrld	%[pa];"
    157 		"jz		vmx_insn_failvalid;"
    158 		"jc		vmx_insn_failinvalid;"
    159 		:
    160 		: [pa] "m" (*pa)
    161 		: "memory", "cc"
    162 	);
    163 }
    164 
    165 static inline void
    166 vmx_vmclear(paddr_t *pa)
    167 {
    168 	asm volatile (
    169 		"vmclear	%[pa];"
    170 		"jz		vmx_insn_failvalid;"
    171 		"jc		vmx_insn_failinvalid;"
    172 		:
    173 		: [pa] "m" (*pa)
    174 		: "memory", "cc"
    175 	);
    176 }
    177 
    178 #define MSR_IA32_FEATURE_CONTROL	0x003A
    179 #define		IA32_FEATURE_CONTROL_LOCK	__BIT(0)
    180 #define		IA32_FEATURE_CONTROL_IN_SMX	__BIT(1)
    181 #define		IA32_FEATURE_CONTROL_OUT_SMX	__BIT(2)
    182 
    183 #define MSR_IA32_VMX_BASIC		0x0480
    184 #define		IA32_VMX_BASIC_IDENT		__BITS(30,0)
    185 #define		IA32_VMX_BASIC_DATA_SIZE	__BITS(44,32)
    186 #define		IA32_VMX_BASIC_MEM_WIDTH	__BIT(48)
    187 #define		IA32_VMX_BASIC_DUAL		__BIT(49)
    188 #define		IA32_VMX_BASIC_MEM_TYPE		__BITS(53,50)
    189 #define			MEM_TYPE_UC		0
    190 #define			MEM_TYPE_WB		6
    191 #define		IA32_VMX_BASIC_IO_REPORT	__BIT(54)
    192 #define		IA32_VMX_BASIC_TRUE_CTLS	__BIT(55)
    193 
    194 #define MSR_IA32_VMX_PINBASED_CTLS		0x0481
    195 #define MSR_IA32_VMX_PROCBASED_CTLS		0x0482
    196 #define MSR_IA32_VMX_EXIT_CTLS			0x0483
    197 #define MSR_IA32_VMX_ENTRY_CTLS			0x0484
    198 #define MSR_IA32_VMX_PROCBASED_CTLS2		0x048B
    199 
    200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS		0x048D
    201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS	0x048E
    202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS		0x048F
    203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS		0x0490
    204 
    205 #define MSR_IA32_VMX_CR0_FIXED0			0x0486
    206 #define MSR_IA32_VMX_CR0_FIXED1			0x0487
    207 #define MSR_IA32_VMX_CR4_FIXED0			0x0488
    208 #define MSR_IA32_VMX_CR4_FIXED1			0x0489
    209 
    210 #define MSR_IA32_VMX_EPT_VPID_CAP	0x048C
    211 #define		IA32_VMX_EPT_VPID_WALKLENGTH_4		__BIT(6)
    212 #define		IA32_VMX_EPT_VPID_UC			__BIT(8)
    213 #define		IA32_VMX_EPT_VPID_WB			__BIT(14)
    214 #define		IA32_VMX_EPT_VPID_INVEPT		__BIT(20)
    215 #define		IA32_VMX_EPT_VPID_FLAGS_AD		__BIT(21)
    216 #define		IA32_VMX_EPT_VPID_INVEPT_CONTEXT	__BIT(25)
    217 #define		IA32_VMX_EPT_VPID_INVEPT_ALL		__BIT(26)
    218 #define		IA32_VMX_EPT_VPID_INVVPID		__BIT(32)
    219 #define		IA32_VMX_EPT_VPID_INVVPID_ADDR		__BIT(40)
    220 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT	__BIT(41)
    221 #define		IA32_VMX_EPT_VPID_INVVPID_ALL		__BIT(42)
    222 #define		IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG	__BIT(43)
    223 
    224 /* -------------------------------------------------------------------------- */
    225 
    226 /* 16-bit control fields */
    227 #define VMCS_VPID				0x00000000
    228 #define VMCS_PIR_VECTOR				0x00000002
    229 #define VMCS_EPTP_INDEX				0x00000004
    230 /* 16-bit guest-state fields */
    231 #define VMCS_GUEST_ES_SELECTOR			0x00000800
    232 #define VMCS_GUEST_CS_SELECTOR			0x00000802
    233 #define VMCS_GUEST_SS_SELECTOR			0x00000804
    234 #define VMCS_GUEST_DS_SELECTOR			0x00000806
    235 #define VMCS_GUEST_FS_SELECTOR			0x00000808
    236 #define VMCS_GUEST_GS_SELECTOR			0x0000080A
    237 #define VMCS_GUEST_LDTR_SELECTOR		0x0000080C
    238 #define VMCS_GUEST_TR_SELECTOR			0x0000080E
    239 #define VMCS_GUEST_INTR_STATUS			0x00000810
    240 #define VMCS_PML_INDEX				0x00000812
    241 /* 16-bit host-state fields */
    242 #define VMCS_HOST_ES_SELECTOR			0x00000C00
    243 #define VMCS_HOST_CS_SELECTOR			0x00000C02
    244 #define VMCS_HOST_SS_SELECTOR			0x00000C04
    245 #define VMCS_HOST_DS_SELECTOR			0x00000C06
    246 #define VMCS_HOST_FS_SELECTOR			0x00000C08
    247 #define VMCS_HOST_GS_SELECTOR			0x00000C0A
    248 #define VMCS_HOST_TR_SELECTOR			0x00000C0C
    249 /* 64-bit control fields */
    250 #define VMCS_IO_BITMAP_A			0x00002000
    251 #define VMCS_IO_BITMAP_B			0x00002002
    252 #define VMCS_MSR_BITMAP				0x00002004
    253 #define VMCS_EXIT_MSR_STORE_ADDRESS		0x00002006
    254 #define VMCS_EXIT_MSR_LOAD_ADDRESS		0x00002008
    255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS		0x0000200A
    256 #define VMCS_EXECUTIVE_VMCS			0x0000200C
    257 #define VMCS_PML_ADDRESS			0x0000200E
    258 #define VMCS_TSC_OFFSET				0x00002010
    259 #define VMCS_VIRTUAL_APIC			0x00002012
    260 #define VMCS_APIC_ACCESS			0x00002014
    261 #define VMCS_PIR_DESC				0x00002016
    262 #define VMCS_VM_CONTROL				0x00002018
    263 #define VMCS_EPTP				0x0000201A
    264 #define		EPTP_TYPE			__BITS(2,0)
    265 #define			EPTP_TYPE_UC		0
    266 #define			EPTP_TYPE_WB		6
    267 #define		EPTP_WALKLEN			__BITS(5,3)
    268 #define		EPTP_FLAGS_AD			__BIT(6)
    269 #define		EPTP_PHYSADDR			__BITS(63,12)
    270 #define VMCS_EOI_EXIT0				0x0000201C
    271 #define VMCS_EOI_EXIT1				0x0000201E
    272 #define VMCS_EOI_EXIT2				0x00002020
    273 #define VMCS_EOI_EXIT3				0x00002022
    274 #define VMCS_EPTP_LIST				0x00002024
    275 #define VMCS_VMREAD_BITMAP			0x00002026
    276 #define VMCS_VMWRITE_BITMAP			0x00002028
    277 #define VMCS_VIRTUAL_EXCEPTION			0x0000202A
    278 #define VMCS_XSS_EXIT_BITMAP			0x0000202C
    279 #define VMCS_ENCLS_EXIT_BITMAP			0x0000202E
    280 #define VMCS_SUBPAGE_PERM_TABLE_PTR		0x00002030
    281 #define VMCS_TSC_MULTIPLIER			0x00002032
    282 /* 64-bit read-only fields */
    283 #define VMCS_GUEST_PHYSICAL_ADDRESS		0x00002400
    284 /* 64-bit guest-state fields */
    285 #define VMCS_LINK_POINTER			0x00002800
    286 #define VMCS_GUEST_IA32_DEBUGCTL		0x00002802
    287 #define VMCS_GUEST_IA32_PAT			0x00002804
    288 #define VMCS_GUEST_IA32_EFER			0x00002806
    289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL	0x00002808
    290 #define VMCS_GUEST_PDPTE0			0x0000280A
    291 #define VMCS_GUEST_PDPTE1			0x0000280C
    292 #define VMCS_GUEST_PDPTE2			0x0000280E
    293 #define VMCS_GUEST_PDPTE3			0x00002810
    294 #define VMCS_GUEST_BNDCFGS			0x00002812
    295 /* 64-bit host-state fields */
    296 #define VMCS_HOST_IA32_PAT			0x00002C00
    297 #define VMCS_HOST_IA32_EFER			0x00002C02
    298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL		0x00002C04
    299 /* 32-bit control fields */
    300 #define VMCS_PINBASED_CTLS			0x00004000
    301 #define		PIN_CTLS_INT_EXITING		__BIT(0)
    302 #define		PIN_CTLS_NMI_EXITING		__BIT(3)
    303 #define		PIN_CTLS_VIRTUAL_NMIS		__BIT(5)
    304 #define		PIN_CTLS_ACTIVATE_PREEMPT_TIMER	__BIT(6)
    305 #define		PIN_CTLS_PROCESS_POSTED_INTS	__BIT(7)
    306 #define VMCS_PROCBASED_CTLS			0x00004002
    307 #define		PROC_CTLS_INT_WINDOW_EXITING	__BIT(2)
    308 #define		PROC_CTLS_USE_TSC_OFFSETTING	__BIT(3)
    309 #define		PROC_CTLS_HLT_EXITING		__BIT(7)
    310 #define		PROC_CTLS_INVLPG_EXITING	__BIT(9)
    311 #define		PROC_CTLS_MWAIT_EXITING		__BIT(10)
    312 #define		PROC_CTLS_RDPMC_EXITING		__BIT(11)
    313 #define		PROC_CTLS_RDTSC_EXITING		__BIT(12)
    314 #define		PROC_CTLS_RCR3_EXITING		__BIT(15)
    315 #define		PROC_CTLS_LCR3_EXITING		__BIT(16)
    316 #define		PROC_CTLS_RCR8_EXITING		__BIT(19)
    317 #define		PROC_CTLS_LCR8_EXITING		__BIT(20)
    318 #define		PROC_CTLS_USE_TPR_SHADOW	__BIT(21)
    319 #define		PROC_CTLS_NMI_WINDOW_EXITING	__BIT(22)
    320 #define		PROC_CTLS_DR_EXITING		__BIT(23)
    321 #define		PROC_CTLS_UNCOND_IO_EXITING	__BIT(24)
    322 #define		PROC_CTLS_USE_IO_BITMAPS	__BIT(25)
    323 #define		PROC_CTLS_MONITOR_TRAP_FLAG	__BIT(27)
    324 #define		PROC_CTLS_USE_MSR_BITMAPS	__BIT(28)
    325 #define		PROC_CTLS_MONITOR_EXITING	__BIT(29)
    326 #define		PROC_CTLS_PAUSE_EXITING		__BIT(30)
    327 #define		PROC_CTLS_ACTIVATE_CTLS2	__BIT(31)
    328 #define VMCS_EXCEPTION_BITMAP			0x00004004
    329 #define VMCS_PF_ERROR_MASK			0x00004006
    330 #define VMCS_PF_ERROR_MATCH			0x00004008
    331 #define VMCS_CR3_TARGET_COUNT			0x0000400A
    332 #define VMCS_EXIT_CTLS				0x0000400C
    333 #define		EXIT_CTLS_SAVE_DEBUG_CONTROLS	__BIT(2)
    334 #define		EXIT_CTLS_HOST_LONG_MODE	__BIT(9)
    335 #define		EXIT_CTLS_LOAD_PERFGLOBALCTRL	__BIT(12)
    336 #define		EXIT_CTLS_ACK_INTERRUPT		__BIT(15)
    337 #define		EXIT_CTLS_SAVE_PAT		__BIT(18)
    338 #define		EXIT_CTLS_LOAD_PAT		__BIT(19)
    339 #define		EXIT_CTLS_SAVE_EFER		__BIT(20)
    340 #define		EXIT_CTLS_LOAD_EFER		__BIT(21)
    341 #define		EXIT_CTLS_SAVE_PREEMPT_TIMER	__BIT(22)
    342 #define		EXIT_CTLS_CLEAR_BNDCFGS		__BIT(23)
    343 #define		EXIT_CTLS_CONCEAL_PT		__BIT(24)
    344 #define VMCS_EXIT_MSR_STORE_COUNT		0x0000400E
    345 #define VMCS_EXIT_MSR_LOAD_COUNT		0x00004010
    346 #define VMCS_ENTRY_CTLS				0x00004012
    347 #define		ENTRY_CTLS_LOAD_DEBUG_CONTROLS	__BIT(2)
    348 #define		ENTRY_CTLS_LONG_MODE		__BIT(9)
    349 #define		ENTRY_CTLS_SMM			__BIT(10)
    350 #define		ENTRY_CTLS_DISABLE_DUAL		__BIT(11)
    351 #define		ENTRY_CTLS_LOAD_PERFGLOBALCTRL	__BIT(13)
    352 #define		ENTRY_CTLS_LOAD_PAT		__BIT(14)
    353 #define		ENTRY_CTLS_LOAD_EFER		__BIT(15)
    354 #define		ENTRY_CTLS_LOAD_BNDCFGS		__BIT(16)
    355 #define		ENTRY_CTLS_CONCEAL_PT		__BIT(17)
    356 #define VMCS_ENTRY_MSR_LOAD_COUNT		0x00004014
    357 #define VMCS_ENTRY_INTR_INFO			0x00004016
    358 #define		INTR_INFO_VECTOR		__BITS(7,0)
    359 #define		INTR_INFO_TYPE			__BITS(10,8)
    360 #define			INTR_TYPE_EXT_INT	0
    361 #define			INTR_TYPE_NMI		2
    362 #define			INTR_TYPE_HW_EXC	3
    363 #define			INTR_TYPE_SW_INT	4
    364 #define			INTR_TYPE_PRIV_SW_EXC	5
    365 #define			INTR_TYPE_SW_EXC	6
    366 #define			INTR_TYPE_OTHER		7
    367 #define		INTR_INFO_ERROR			__BIT(11)
    368 #define		INTR_INFO_VALID			__BIT(31)
    369 #define VMCS_ENTRY_EXCEPTION_ERROR		0x00004018
    370 #define VMCS_ENTRY_INST_LENGTH			0x0000401A
    371 #define VMCS_TPR_THRESHOLD			0x0000401C
    372 #define VMCS_PROCBASED_CTLS2			0x0000401E
    373 #define		PROC_CTLS2_VIRT_APIC_ACCESSES	__BIT(0)
    374 #define		PROC_CTLS2_ENABLE_EPT		__BIT(1)
    375 #define		PROC_CTLS2_DESC_TABLE_EXITING	__BIT(2)
    376 #define		PROC_CTLS2_ENABLE_RDTSCP	__BIT(3)
    377 #define		PROC_CTLS2_VIRT_X2APIC		__BIT(4)
    378 #define		PROC_CTLS2_ENABLE_VPID		__BIT(5)
    379 #define		PROC_CTLS2_WBINVD_EXITING	__BIT(6)
    380 #define		PROC_CTLS2_UNRESTRICTED_GUEST	__BIT(7)
    381 #define		PROC_CTLS2_APIC_REG_VIRT	__BIT(8)
    382 #define		PROC_CTLS2_VIRT_INT_DELIVERY	__BIT(9)
    383 #define		PROC_CTLS2_PAUSE_LOOP_EXITING	__BIT(10)
    384 #define		PROC_CTLS2_RDRAND_EXITING	__BIT(11)
    385 #define		PROC_CTLS2_INVPCID_ENABLE	__BIT(12)
    386 #define		PROC_CTLS2_VMFUNC_ENABLE	__BIT(13)
    387 #define		PROC_CTLS2_VMCS_SHADOWING	__BIT(14)
    388 #define		PROC_CTLS2_ENCLS_EXITING	__BIT(15)
    389 #define		PROC_CTLS2_RDSEED_EXITING	__BIT(16)
    390 #define		PROC_CTLS2_PML_ENABLE		__BIT(17)
    391 #define		PROC_CTLS2_EPT_VIOLATION	__BIT(18)
    392 #define		PROC_CTLS2_CONCEAL_VMX_FROM_PT	__BIT(19)
    393 #define		PROC_CTLS2_XSAVES_ENABLE	__BIT(20)
    394 #define		PROC_CTLS2_MODE_BASED_EXEC_EPT	__BIT(22)
    395 #define		PROC_CTLS2_SUBPAGE_PERMISSIONS	__BIT(23)
    396 #define		PROC_CTLS2_USE_TSC_SCALING	__BIT(25)
    397 #define		PROC_CTLS2_ENCLV_EXITING	__BIT(28)
    398 #define VMCS_PLE_GAP				0x00004020
    399 #define VMCS_PLE_WINDOW				0x00004022
    400 /* 32-bit read-only data fields */
    401 #define VMCS_INSTRUCTION_ERROR			0x00004400
    402 #define VMCS_EXIT_REASON			0x00004402
    403 #define VMCS_EXIT_INTR_INFO			0x00004404
    404 #define VMCS_EXIT_INTR_ERRCODE			0x00004406
    405 #define VMCS_IDT_VECTORING_INFO			0x00004408
    406 #define VMCS_IDT_VECTORING_ERROR		0x0000440A
    407 #define VMCS_EXIT_INSTRUCTION_LENGTH		0x0000440C
    408 #define VMCS_EXIT_INSTRUCTION_INFO		0x0000440E
    409 /* 32-bit guest-state fields */
    410 #define VMCS_GUEST_ES_LIMIT			0x00004800
    411 #define VMCS_GUEST_CS_LIMIT			0x00004802
    412 #define VMCS_GUEST_SS_LIMIT			0x00004804
    413 #define VMCS_GUEST_DS_LIMIT			0x00004806
    414 #define VMCS_GUEST_FS_LIMIT			0x00004808
    415 #define VMCS_GUEST_GS_LIMIT			0x0000480A
    416 #define VMCS_GUEST_LDTR_LIMIT			0x0000480C
    417 #define VMCS_GUEST_TR_LIMIT			0x0000480E
    418 #define VMCS_GUEST_GDTR_LIMIT			0x00004810
    419 #define VMCS_GUEST_IDTR_LIMIT			0x00004812
    420 #define VMCS_GUEST_ES_ACCESS_RIGHTS		0x00004814
    421 #define VMCS_GUEST_CS_ACCESS_RIGHTS		0x00004816
    422 #define VMCS_GUEST_SS_ACCESS_RIGHTS		0x00004818
    423 #define VMCS_GUEST_DS_ACCESS_RIGHTS		0x0000481A
    424 #define VMCS_GUEST_FS_ACCESS_RIGHTS		0x0000481C
    425 #define VMCS_GUEST_GS_ACCESS_RIGHTS		0x0000481E
    426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS		0x00004820
    427 #define VMCS_GUEST_TR_ACCESS_RIGHTS		0x00004822
    428 #define VMCS_GUEST_INTERRUPTIBILITY		0x00004824
    429 #define		INT_STATE_STI			__BIT(0)
    430 #define		INT_STATE_MOVSS			__BIT(1)
    431 #define		INT_STATE_SMI			__BIT(2)
    432 #define		INT_STATE_NMI			__BIT(3)
    433 #define		INT_STATE_ENCLAVE		__BIT(4)
    434 #define VMCS_GUEST_ACTIVITY			0x00004826
    435 #define VMCS_GUEST_SMBASE			0x00004828
    436 #define VMCS_GUEST_IA32_SYSENTER_CS		0x0000482A
    437 #define VMCS_PREEMPTION_TIMER_VALUE		0x0000482E
    438 /* 32-bit host state fields */
    439 #define VMCS_HOST_IA32_SYSENTER_CS		0x00004C00
    440 /* Natural-Width control fields */
    441 #define VMCS_CR0_MASK				0x00006000
    442 #define VMCS_CR4_MASK				0x00006002
    443 #define VMCS_CR0_SHADOW				0x00006004
    444 #define VMCS_CR4_SHADOW				0x00006006
    445 #define VMCS_CR3_TARGET0			0x00006008
    446 #define VMCS_CR3_TARGET1			0x0000600A
    447 #define VMCS_CR3_TARGET2			0x0000600C
    448 #define VMCS_CR3_TARGET3			0x0000600E
    449 /* Natural-Width read-only fields */
    450 #define VMCS_EXIT_QUALIFICATION			0x00006400
    451 #define VMCS_IO_RCX				0x00006402
    452 #define VMCS_IO_RSI				0x00006404
    453 #define VMCS_IO_RDI				0x00006406
    454 #define VMCS_IO_RIP				0x00006408
    455 #define VMCS_GUEST_LINEAR_ADDRESS		0x0000640A
    456 /* Natural-Width guest-state fields */
    457 #define VMCS_GUEST_CR0				0x00006800
    458 #define VMCS_GUEST_CR3				0x00006802
    459 #define VMCS_GUEST_CR4				0x00006804
    460 #define VMCS_GUEST_ES_BASE			0x00006806
    461 #define VMCS_GUEST_CS_BASE			0x00006808
    462 #define VMCS_GUEST_SS_BASE			0x0000680A
    463 #define VMCS_GUEST_DS_BASE			0x0000680C
    464 #define VMCS_GUEST_FS_BASE			0x0000680E
    465 #define VMCS_GUEST_GS_BASE			0x00006810
    466 #define VMCS_GUEST_LDTR_BASE			0x00006812
    467 #define VMCS_GUEST_TR_BASE			0x00006814
    468 #define VMCS_GUEST_GDTR_BASE			0x00006816
    469 #define VMCS_GUEST_IDTR_BASE			0x00006818
    470 #define VMCS_GUEST_DR7				0x0000681A
    471 #define VMCS_GUEST_RSP				0x0000681C
    472 #define VMCS_GUEST_RIP				0x0000681E
    473 #define VMCS_GUEST_RFLAGS			0x00006820
    474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS	0x00006822
    475 #define VMCS_GUEST_IA32_SYSENTER_ESP		0x00006824
    476 #define VMCS_GUEST_IA32_SYSENTER_EIP		0x00006826
    477 /* Natural-Width host-state fields */
    478 #define VMCS_HOST_CR0				0x00006C00
    479 #define VMCS_HOST_CR3				0x00006C02
    480 #define VMCS_HOST_CR4				0x00006C04
    481 #define VMCS_HOST_FS_BASE			0x00006C06
    482 #define VMCS_HOST_GS_BASE			0x00006C08
    483 #define VMCS_HOST_TR_BASE			0x00006C0A
    484 #define VMCS_HOST_GDTR_BASE			0x00006C0C
    485 #define VMCS_HOST_IDTR_BASE			0x00006C0E
    486 #define VMCS_HOST_IA32_SYSENTER_ESP		0x00006C10
    487 #define VMCS_HOST_IA32_SYSENTER_EIP		0x00006C12
    488 #define VMCS_HOST_RSP				0x00006C14
    489 #define VMCS_HOST_RIP				0x00006c16
    490 
    491 /* VMX basic exit reasons. */
    492 #define VMCS_EXITCODE_EXC_NMI			0
    493 #define VMCS_EXITCODE_EXT_INT			1
    494 #define VMCS_EXITCODE_SHUTDOWN			2
    495 #define VMCS_EXITCODE_INIT			3
    496 #define VMCS_EXITCODE_SIPI			4
    497 #define VMCS_EXITCODE_SMI			5
    498 #define VMCS_EXITCODE_OTHER_SMI			6
    499 #define VMCS_EXITCODE_INT_WINDOW		7
    500 #define VMCS_EXITCODE_NMI_WINDOW		8
    501 #define VMCS_EXITCODE_TASK_SWITCH		9
    502 #define VMCS_EXITCODE_CPUID			10
    503 #define VMCS_EXITCODE_GETSEC			11
    504 #define VMCS_EXITCODE_HLT			12
    505 #define VMCS_EXITCODE_INVD			13
    506 #define VMCS_EXITCODE_INVLPG			14
    507 #define VMCS_EXITCODE_RDPMC			15
    508 #define VMCS_EXITCODE_RDTSC			16
    509 #define VMCS_EXITCODE_RSM			17
    510 #define VMCS_EXITCODE_VMCALL			18
    511 #define VMCS_EXITCODE_VMCLEAR			19
    512 #define VMCS_EXITCODE_VMLAUNCH			20
    513 #define VMCS_EXITCODE_VMPTRLD			21
    514 #define VMCS_EXITCODE_VMPTRST			22
    515 #define VMCS_EXITCODE_VMREAD			23
    516 #define VMCS_EXITCODE_VMRESUME			24
    517 #define VMCS_EXITCODE_VMWRITE			25
    518 #define VMCS_EXITCODE_VMXOFF			26
    519 #define VMCS_EXITCODE_VMXON			27
    520 #define VMCS_EXITCODE_CR			28
    521 #define VMCS_EXITCODE_DR			29
    522 #define VMCS_EXITCODE_IO			30
    523 #define VMCS_EXITCODE_RDMSR			31
    524 #define VMCS_EXITCODE_WRMSR			32
    525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID	33
    526 #define VMCS_EXITCODE_FAIL_MSR_INVALID		34
    527 #define VMCS_EXITCODE_MWAIT			36
    528 #define VMCS_EXITCODE_TRAP_FLAG			37
    529 #define VMCS_EXITCODE_MONITOR			39
    530 #define VMCS_EXITCODE_PAUSE			40
    531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK	41
    532 #define VMCS_EXITCODE_TPR_BELOW			43
    533 #define VMCS_EXITCODE_APIC_ACCESS		44
    534 #define VMCS_EXITCODE_VEOI			45
    535 #define VMCS_EXITCODE_GDTR_IDTR			46
    536 #define VMCS_EXITCODE_LDTR_TR			47
    537 #define VMCS_EXITCODE_EPT_VIOLATION		48
    538 #define VMCS_EXITCODE_EPT_MISCONFIG		49
    539 #define VMCS_EXITCODE_INVEPT			50
    540 #define VMCS_EXITCODE_RDTSCP			51
    541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT		52
    542 #define VMCS_EXITCODE_INVVPID			53
    543 #define VMCS_EXITCODE_WBINVD			54
    544 #define VMCS_EXITCODE_XSETBV			55
    545 #define VMCS_EXITCODE_APIC_WRITE		56
    546 #define VMCS_EXITCODE_RDRAND			57
    547 #define VMCS_EXITCODE_INVPCID			58
    548 #define VMCS_EXITCODE_VMFUNC			59
    549 #define VMCS_EXITCODE_ENCLS			60
    550 #define VMCS_EXITCODE_RDSEED			61
    551 #define VMCS_EXITCODE_PAGE_LOG_FULL		62
    552 #define VMCS_EXITCODE_XSAVES			63
    553 #define VMCS_EXITCODE_XRSTORS			64
    554 
    555 /* -------------------------------------------------------------------------- */
    556 
    557 #define VMX_MSRLIST_STAR		0
    558 #define VMX_MSRLIST_LSTAR		1
    559 #define VMX_MSRLIST_CSTAR		2
    560 #define VMX_MSRLIST_SFMASK		3
    561 #define VMX_MSRLIST_KERNELGSBASE	4
    562 #define VMX_MSRLIST_EXIT_NMSR		5
    563 #define VMX_MSRLIST_L1DFLUSH		5
    564 
    565 /* On entry, we may do +1 to include L1DFLUSH. */
    566 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
    567 
    568 struct vmxon {
    569 	uint32_t ident;
    570 #define VMXON_IDENT_REVISION	__BITS(30,0)
    571 
    572 	uint8_t data[PAGE_SIZE - 4];
    573 } __packed;
    574 
    575 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
    576 
    577 struct vmxoncpu {
    578 	vaddr_t va;
    579 	paddr_t pa;
    580 };
    581 
    582 static struct vmxoncpu vmxoncpu[MAXCPUS];
    583 
    584 struct vmcs {
    585 	uint32_t ident;
    586 #define VMCS_IDENT_REVISION	__BITS(30,0)
    587 #define VMCS_IDENT_SHADOW	__BIT(31)
    588 
    589 	uint32_t abort;
    590 	uint8_t data[PAGE_SIZE - 8];
    591 } __packed;
    592 
    593 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
    594 
    595 struct msr_entry {
    596 	uint32_t msr;
    597 	uint32_t rsvd;
    598 	uint64_t val;
    599 } __packed;
    600 
    601 #define VPID_MAX	0xFFFF
    602 
    603 /* Make sure we never run out of VPIDs. */
    604 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
    605 
    606 static uint64_t vmx_tlb_flush_op __read_mostly;
    607 static uint64_t vmx_ept_flush_op __read_mostly;
    608 static uint64_t vmx_eptp_type __read_mostly;
    609 
    610 static uint64_t vmx_pinbased_ctls __read_mostly;
    611 static uint64_t vmx_procbased_ctls __read_mostly;
    612 static uint64_t vmx_procbased_ctls2 __read_mostly;
    613 static uint64_t vmx_entry_ctls __read_mostly;
    614 static uint64_t vmx_exit_ctls __read_mostly;
    615 
    616 static uint64_t vmx_cr0_fixed0 __read_mostly;
    617 static uint64_t vmx_cr0_fixed1 __read_mostly;
    618 static uint64_t vmx_cr4_fixed0 __read_mostly;
    619 static uint64_t vmx_cr4_fixed1 __read_mostly;
    620 
    621 extern bool pmap_ept_has_ad;
    622 
    623 #define VMX_PINBASED_CTLS_ONE	\
    624 	(PIN_CTLS_INT_EXITING| \
    625 	 PIN_CTLS_NMI_EXITING| \
    626 	 PIN_CTLS_VIRTUAL_NMIS)
    627 
    628 #define VMX_PINBASED_CTLS_ZERO	0
    629 
    630 #define VMX_PROCBASED_CTLS_ONE	\
    631 	(PROC_CTLS_USE_TSC_OFFSETTING| \
    632 	 PROC_CTLS_HLT_EXITING| \
    633 	 PROC_CTLS_MWAIT_EXITING | \
    634 	 PROC_CTLS_RDPMC_EXITING | \
    635 	 PROC_CTLS_RCR8_EXITING | \
    636 	 PROC_CTLS_LCR8_EXITING | \
    637 	 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
    638 	 PROC_CTLS_USE_MSR_BITMAPS | \
    639 	 PROC_CTLS_MONITOR_EXITING | \
    640 	 PROC_CTLS_ACTIVATE_CTLS2)
    641 
    642 #define VMX_PROCBASED_CTLS_ZERO	\
    643 	(PROC_CTLS_RCR3_EXITING| \
    644 	 PROC_CTLS_LCR3_EXITING)
    645 
    646 #define VMX_PROCBASED_CTLS2_ONE	\
    647 	(PROC_CTLS2_ENABLE_EPT| \
    648 	 PROC_CTLS2_ENABLE_VPID| \
    649 	 PROC_CTLS2_UNRESTRICTED_GUEST)
    650 
    651 #define VMX_PROCBASED_CTLS2_ZERO	0
    652 
    653 #define VMX_ENTRY_CTLS_ONE	\
    654 	(ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
    655 	 ENTRY_CTLS_LOAD_EFER| \
    656 	 ENTRY_CTLS_LOAD_PAT)
    657 
    658 #define VMX_ENTRY_CTLS_ZERO	\
    659 	(ENTRY_CTLS_SMM| \
    660 	 ENTRY_CTLS_DISABLE_DUAL)
    661 
    662 #define VMX_EXIT_CTLS_ONE	\
    663 	(EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
    664 	 EXIT_CTLS_HOST_LONG_MODE| \
    665 	 EXIT_CTLS_SAVE_PAT| \
    666 	 EXIT_CTLS_LOAD_PAT| \
    667 	 EXIT_CTLS_SAVE_EFER| \
    668 	 EXIT_CTLS_LOAD_EFER)
    669 
    670 #define VMX_EXIT_CTLS_ZERO	0
    671 
    672 static uint8_t *vmx_asidmap __read_mostly;
    673 static uint32_t vmx_maxasid __read_mostly;
    674 static kmutex_t vmx_asidlock __cacheline_aligned;
    675 
    676 #define VMX_XCR0_MASK_DEFAULT	(XCR0_X87|XCR0_SSE)
    677 static uint64_t vmx_xcr0_mask __read_mostly;
    678 
    679 #define VMX_NCPUIDS	32
    680 
    681 #define VMCS_NPAGES	1
    682 #define VMCS_SIZE	(VMCS_NPAGES * PAGE_SIZE)
    683 
    684 #define MSRBM_NPAGES	1
    685 #define MSRBM_SIZE	(MSRBM_NPAGES * PAGE_SIZE)
    686 
    687 #define EFER_TLB_FLUSH \
    688 	(EFER_NXE|EFER_LMA|EFER_LME)
    689 #define CR0_TLB_FLUSH \
    690 	(CR0_PG|CR0_WP|CR0_CD|CR0_NW)
    691 #define CR4_TLB_FLUSH \
    692 	(CR4_PGE|CR4_PAE|CR4_PSE)
    693 
    694 /* -------------------------------------------------------------------------- */
    695 
    696 struct vmx_machdata {
    697 	bool cpuidpresent[VMX_NCPUIDS];
    698 	struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
    699 	volatile uint64_t mach_htlb_gen;
    700 };
    701 
    702 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
    703 	[NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
    704 };
    705 
    706 struct vmx_cpudata {
    707 	/* General */
    708 	uint64_t asid;
    709 	bool gtlb_want_flush;
    710 	bool gtsc_want_update;
    711 	uint64_t vcpu_htlb_gen;
    712 	kcpuset_t *htlb_want_flush;
    713 
    714 	/* VMCS */
    715 	struct vmcs *vmcs;
    716 	paddr_t vmcs_pa;
    717 	size_t vmcs_refcnt;
    718 	struct cpu_info *vmcs_ci;
    719 	bool vmcs_launched;
    720 
    721 	/* MSR bitmap */
    722 	uint8_t *msrbm;
    723 	paddr_t msrbm_pa;
    724 
    725 	/* Host state */
    726 	uint64_t hxcr0;
    727 	uint64_t star;
    728 	uint64_t lstar;
    729 	uint64_t cstar;
    730 	uint64_t sfmask;
    731 	uint64_t kernelgsbase;
    732 	bool ts_set;
    733 	struct xsave_header hfpu __aligned(64);
    734 
    735 	/* Intr state */
    736 	bool int_window_exit;
    737 	bool nmi_window_exit;
    738 	bool evt_pending;
    739 
    740 	/* Guest state */
    741 	struct msr_entry *gmsr;
    742 	paddr_t gmsr_pa;
    743 	uint64_t gmsr_misc_enable;
    744 	uint64_t gcr2;
    745 	uint64_t gcr8;
    746 	uint64_t gxcr0;
    747 	uint64_t gprs[NVMM_X64_NGPR];
    748 	uint64_t drs[NVMM_X64_NDR];
    749 	uint64_t gtsc;
    750 	struct xsave_header gfpu __aligned(64);
    751 };
    752 
    753 static const struct {
    754 	uint64_t selector;
    755 	uint64_t attrib;
    756 	uint64_t limit;
    757 	uint64_t base;
    758 } vmx_guest_segs[NVMM_X64_NSEG] = {
    759 	[NVMM_X64_SEG_ES] = {
    760 		VMCS_GUEST_ES_SELECTOR,
    761 		VMCS_GUEST_ES_ACCESS_RIGHTS,
    762 		VMCS_GUEST_ES_LIMIT,
    763 		VMCS_GUEST_ES_BASE
    764 	},
    765 	[NVMM_X64_SEG_CS] = {
    766 		VMCS_GUEST_CS_SELECTOR,
    767 		VMCS_GUEST_CS_ACCESS_RIGHTS,
    768 		VMCS_GUEST_CS_LIMIT,
    769 		VMCS_GUEST_CS_BASE
    770 	},
    771 	[NVMM_X64_SEG_SS] = {
    772 		VMCS_GUEST_SS_SELECTOR,
    773 		VMCS_GUEST_SS_ACCESS_RIGHTS,
    774 		VMCS_GUEST_SS_LIMIT,
    775 		VMCS_GUEST_SS_BASE
    776 	},
    777 	[NVMM_X64_SEG_DS] = {
    778 		VMCS_GUEST_DS_SELECTOR,
    779 		VMCS_GUEST_DS_ACCESS_RIGHTS,
    780 		VMCS_GUEST_DS_LIMIT,
    781 		VMCS_GUEST_DS_BASE
    782 	},
    783 	[NVMM_X64_SEG_FS] = {
    784 		VMCS_GUEST_FS_SELECTOR,
    785 		VMCS_GUEST_FS_ACCESS_RIGHTS,
    786 		VMCS_GUEST_FS_LIMIT,
    787 		VMCS_GUEST_FS_BASE
    788 	},
    789 	[NVMM_X64_SEG_GS] = {
    790 		VMCS_GUEST_GS_SELECTOR,
    791 		VMCS_GUEST_GS_ACCESS_RIGHTS,
    792 		VMCS_GUEST_GS_LIMIT,
    793 		VMCS_GUEST_GS_BASE
    794 	},
    795 	[NVMM_X64_SEG_GDT] = {
    796 		0, /* doesn't exist */
    797 		0, /* doesn't exist */
    798 		VMCS_GUEST_GDTR_LIMIT,
    799 		VMCS_GUEST_GDTR_BASE
    800 	},
    801 	[NVMM_X64_SEG_IDT] = {
    802 		0, /* doesn't exist */
    803 		0, /* doesn't exist */
    804 		VMCS_GUEST_IDTR_LIMIT,
    805 		VMCS_GUEST_IDTR_BASE
    806 	},
    807 	[NVMM_X64_SEG_LDT] = {
    808 		VMCS_GUEST_LDTR_SELECTOR,
    809 		VMCS_GUEST_LDTR_ACCESS_RIGHTS,
    810 		VMCS_GUEST_LDTR_LIMIT,
    811 		VMCS_GUEST_LDTR_BASE
    812 	},
    813 	[NVMM_X64_SEG_TR] = {
    814 		VMCS_GUEST_TR_SELECTOR,
    815 		VMCS_GUEST_TR_ACCESS_RIGHTS,
    816 		VMCS_GUEST_TR_LIMIT,
    817 		VMCS_GUEST_TR_BASE
    818 	}
    819 };
    820 
    821 /* -------------------------------------------------------------------------- */
    822 
    823 static uint64_t
    824 vmx_get_revision(void)
    825 {
    826 	uint64_t msr;
    827 
    828 	msr = rdmsr(MSR_IA32_VMX_BASIC);
    829 	msr &= IA32_VMX_BASIC_IDENT;
    830 
    831 	return msr;
    832 }
    833 
    834 static void
    835 vmx_vmclear_ipi(void *arg1, void *arg2)
    836 {
    837 	paddr_t vmcs_pa = (paddr_t)arg1;
    838 	vmx_vmclear(&vmcs_pa);
    839 }
    840 
    841 static void
    842 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
    843 {
    844 	uint64_t xc;
    845 	int bound;
    846 
    847 	KASSERT(kpreempt_disabled());
    848 
    849 	bound = curlwp_bind();
    850 	kpreempt_enable();
    851 
    852 	xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
    853 	xc_wait(xc);
    854 
    855 	kpreempt_disable();
    856 	curlwp_bindx(bound);
    857 }
    858 
    859 static void
    860 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
    861 {
    862 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    863 	struct cpu_info *vmcs_ci;
    864 	paddr_t oldpa __diagused;
    865 
    866 	cpudata->vmcs_refcnt++;
    867 	if (cpudata->vmcs_refcnt > 1) {
    868 #ifdef DIAGNOSTIC
    869 		KASSERT(kpreempt_disabled());
    870 		oldpa = vmx_vmptrst();
    871 		KASSERT(oldpa == cpudata->vmcs_pa);
    872 #endif
    873 		return;
    874 	}
    875 
    876 	vmcs_ci = cpudata->vmcs_ci;
    877 	cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
    878 
    879 	kpreempt_disable();
    880 
    881 	if (vmcs_ci == NULL) {
    882 		/* This VMCS is loaded for the first time. */
    883 		vmx_vmclear(&cpudata->vmcs_pa);
    884 		cpudata->vmcs_launched = false;
    885 	} else if (vmcs_ci != curcpu()) {
    886 		/* This VMCS is active on a remote CPU. */
    887 		vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
    888 		cpudata->vmcs_launched = false;
    889 	} else {
    890 		/* This VMCS is active on curcpu, nothing to do. */
    891 	}
    892 
    893 	vmx_vmptrld(&cpudata->vmcs_pa);
    894 }
    895 
    896 static void
    897 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
    898 {
    899 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    900 
    901 	KASSERT(kpreempt_disabled());
    902 #ifdef DIAGNOSTIC
    903 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    904 #endif
    905 	KASSERT(cpudata->vmcs_refcnt > 0);
    906 	cpudata->vmcs_refcnt--;
    907 
    908 	if (cpudata->vmcs_refcnt > 0) {
    909 		return;
    910 	}
    911 
    912 	cpudata->vmcs_ci = curcpu();
    913 	kpreempt_enable();
    914 }
    915 
    916 static void
    917 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
    918 {
    919 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    920 
    921 	KASSERT(kpreempt_disabled());
    922 #ifdef DIAGNOSTIC
    923 	KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
    924 #endif
    925 	KASSERT(cpudata->vmcs_refcnt == 1);
    926 	cpudata->vmcs_refcnt--;
    927 
    928 	vmx_vmclear(&cpudata->vmcs_pa);
    929 	kpreempt_enable();
    930 }
    931 
    932 /* -------------------------------------------------------------------------- */
    933 
    934 static void
    935 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
    936 {
    937 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    938 	uint64_t ctls1;
    939 
    940 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
    941 
    942 	if (nmi) {
    943 		// XXX INT_STATE_NMI?
    944 		ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
    945 		cpudata->nmi_window_exit = true;
    946 	} else {
    947 		ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
    948 		cpudata->int_window_exit = true;
    949 	}
    950 
    951 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    952 }
    953 
    954 static void
    955 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
    956 {
    957 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    958 	uint64_t ctls1;
    959 
    960 	ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
    961 
    962 	if (nmi) {
    963 		ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
    964 		cpudata->nmi_window_exit = false;
    965 	} else {
    966 		ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
    967 		cpudata->int_window_exit = false;
    968 	}
    969 
    970 	vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
    971 }
    972 
    973 static inline int
    974 vmx_event_has_error(uint64_t vector)
    975 {
    976 	switch (vector) {
    977 	case 8:		/* #DF */
    978 	case 10:	/* #TS */
    979 	case 11:	/* #NP */
    980 	case 12:	/* #SS */
    981 	case 13:	/* #GP */
    982 	case 14:	/* #PF */
    983 	case 17:	/* #AC */
    984 	case 30:	/* #SX */
    985 		return 1;
    986 	default:
    987 		return 0;
    988 	}
    989 }
    990 
    991 static int
    992 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
    993     struct nvmm_event *event)
    994 {
    995 	struct vmx_cpudata *cpudata = vcpu->cpudata;
    996 	int type = 0, err = 0, ret = 0;
    997 	uint64_t info, intstate, rflags;
    998 
    999 	if (event->vector >= 256) {
   1000 		return EINVAL;
   1001 	}
   1002 
   1003 	vmx_vmcs_enter(vcpu);
   1004 
   1005 	switch (event->type) {
   1006 	case NVMM_EVENT_INTERRUPT_HW:
   1007 		type = INTR_TYPE_EXT_INT;
   1008 		if (event->vector == 2) {
   1009 			type = INTR_TYPE_NMI;
   1010 		}
   1011 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   1012 		if (type == INTR_TYPE_NMI) {
   1013 			if (cpudata->nmi_window_exit) {
   1014 				ret = EAGAIN;
   1015 				goto out;
   1016 			}
   1017 			vmx_event_waitexit_enable(vcpu, true);
   1018 		} else {
   1019 			rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1020 			if ((rflags & PSL_I) == 0 ||
   1021 			    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
   1022 				vmx_event_waitexit_enable(vcpu, false);
   1023 				ret = EAGAIN;
   1024 				goto out;
   1025 			}
   1026 		}
   1027 		err = 0;
   1028 		break;
   1029 	case NVMM_EVENT_INTERRUPT_SW:
   1030 		ret = EINVAL;
   1031 		goto out;
   1032 	case NVMM_EVENT_EXCEPTION:
   1033 		if (event->vector == 2 || event->vector >= 32) {
   1034 			ret = EINVAL;
   1035 			goto out;
   1036 		}
   1037 		if (event->vector == 3 || event->vector == 0) {
   1038 			ret = EINVAL;
   1039 			goto out;
   1040 		}
   1041 		type = INTR_TYPE_HW_EXC;
   1042 		err = vmx_event_has_error(event->vector);
   1043 		break;
   1044 	default:
   1045 		ret = EAGAIN;
   1046 		goto out;
   1047 	}
   1048 
   1049 	info =
   1050 	    __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
   1051 	    __SHIFTIN(type, INTR_INFO_TYPE) |
   1052 	    __SHIFTIN(err, INTR_INFO_ERROR) |
   1053 	    __SHIFTIN(1, INTR_INFO_VALID);
   1054 	vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
   1055 	vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
   1056 
   1057 	cpudata->evt_pending = true;
   1058 
   1059 out:
   1060 	vmx_vmcs_leave(vcpu);
   1061 	return ret;
   1062 }
   1063 
   1064 static void
   1065 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1066 {
   1067 	struct nvmm_event event;
   1068 	int ret __diagused;
   1069 
   1070 	event.type = NVMM_EVENT_EXCEPTION;
   1071 	event.vector = 6;
   1072 	event.u.error = 0;
   1073 
   1074 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1075 	KASSERT(ret == 0);
   1076 }
   1077 
   1078 static void
   1079 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   1080 {
   1081 	struct nvmm_event event;
   1082 	int ret __diagused;
   1083 
   1084 	event.type = NVMM_EVENT_EXCEPTION;
   1085 	event.vector = 13;
   1086 	event.u.error = 0;
   1087 
   1088 	ret = vmx_vcpu_inject(mach, vcpu, &event);
   1089 	KASSERT(ret == 0);
   1090 }
   1091 
   1092 static inline void
   1093 vmx_inkernel_advance(void)
   1094 {
   1095 	uint64_t rip, inslen, intstate;
   1096 
   1097 	/*
   1098 	 * Maybe we should also apply single-stepping and debug exceptions.
   1099 	 * Matters for guest-ring3, because it can execute 'cpuid' under a
   1100 	 * debugger.
   1101 	 */
   1102 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1103 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1104 	vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
   1105 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   1106 	vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
   1107 	    intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
   1108 }
   1109 
   1110 static void
   1111 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1112     struct nvmm_exit *exit)
   1113 {
   1114 	uint64_t qual;
   1115 
   1116 	qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
   1117 
   1118 	if ((qual & INTR_INFO_VALID) == 0) {
   1119 		goto error;
   1120 	}
   1121 	if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
   1122 		goto error;
   1123 	}
   1124 
   1125 	exit->reason = NVMM_EXIT_NONE;
   1126 	return;
   1127 
   1128 error:
   1129 	exit->reason = NVMM_EXIT_INVALID;
   1130 }
   1131 
   1132 static void
   1133 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
   1134 {
   1135 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1136 	uint64_t cr4;
   1137 
   1138 	switch (eax) {
   1139 	case 0x00000001:
   1140 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
   1141 
   1142 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
   1143 		cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
   1144 		    CPUID_LOCAL_APIC_ID);
   1145 
   1146 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
   1147 		cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
   1148 
   1149 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
   1150 
   1151 		/* CPUID2_OSXSAVE depends on CR4. */
   1152 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   1153 		if (!(cr4 & CR4_OSXSAVE)) {
   1154 			cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
   1155 		}
   1156 		break;
   1157 	case 0x00000005:
   1158 	case 0x00000006:
   1159 		cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
   1160 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1161 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1162 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1163 		break;
   1164 	case 0x00000007:
   1165 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
   1166 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
   1167 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
   1168 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
   1169 		break;
   1170 	case 0x0000000D:
   1171 		if (vmx_xcr0_mask == 0) {
   1172 			break;
   1173 		}
   1174 		switch (ecx) {
   1175 		case 0:
   1176 			cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
   1177 			if (cpudata->gxcr0 & XCR0_SSE) {
   1178 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
   1179 			} else {
   1180 				cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
   1181 			}
   1182 			cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
   1183 			cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
   1184 			cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
   1185 			break;
   1186 		case 1:
   1187 			cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
   1188 			break;
   1189 		}
   1190 		break;
   1191 	case 0x40000000:
   1192 		cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
   1193 		cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
   1194 		cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
   1195 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
   1196 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
   1197 		memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
   1198 		break;
   1199 	case 0x80000001:
   1200 		cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
   1201 		cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
   1202 		cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
   1203 		cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
   1204 		break;
   1205 	default:
   1206 		break;
   1207 	}
   1208 }
   1209 
   1210 static void
   1211 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1212     struct nvmm_exit *exit)
   1213 {
   1214 	struct vmx_machdata *machdata = mach->machdata;
   1215 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1216 	struct nvmm_x86_conf_cpuid *cpuid;
   1217 	uint64_t eax, ecx;
   1218 	u_int descs[4];
   1219 	size_t i;
   1220 
   1221 	eax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1222 	ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
   1223 	x86_cpuid2(eax, ecx, descs);
   1224 
   1225 	cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
   1226 	cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
   1227 	cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
   1228 	cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
   1229 
   1230 	vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
   1231 
   1232 	for (i = 0; i < VMX_NCPUIDS; i++) {
   1233 		cpuid = &machdata->cpuid[i];
   1234 		if (!machdata->cpuidpresent[i]) {
   1235 			continue;
   1236 		}
   1237 		if (cpuid->leaf != eax) {
   1238 			continue;
   1239 		}
   1240 
   1241 		/* del */
   1242 		cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
   1243 		cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
   1244 		cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
   1245 		cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
   1246 
   1247 		/* set */
   1248 		cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
   1249 		cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
   1250 		cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
   1251 		cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
   1252 
   1253 		break;
   1254 	}
   1255 
   1256 	vmx_inkernel_advance();
   1257 	exit->reason = NVMM_EXIT_NONE;
   1258 }
   1259 
   1260 static void
   1261 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1262     struct nvmm_exit *exit)
   1263 {
   1264 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1265 	uint64_t rflags;
   1266 
   1267 	if (cpudata->int_window_exit) {
   1268 		rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
   1269 		if (rflags & PSL_I) {
   1270 			vmx_event_waitexit_disable(vcpu, false);
   1271 		}
   1272 	}
   1273 
   1274 	vmx_inkernel_advance();
   1275 	exit->reason = NVMM_EXIT_HALTED;
   1276 }
   1277 
   1278 #define VMX_QUAL_CR_NUM		__BITS(3,0)
   1279 #define VMX_QUAL_CR_TYPE	__BITS(5,4)
   1280 #define		CR_TYPE_WRITE	0
   1281 #define		CR_TYPE_READ	1
   1282 #define		CR_TYPE_CLTS	2
   1283 #define		CR_TYPE_LMSW	3
   1284 #define VMX_QUAL_CR_LMSW_OPMEM	__BIT(6)
   1285 #define VMX_QUAL_CR_GPR		__BITS(11,8)
   1286 #define VMX_QUAL_CR_LMSW_SRC	__BIT(31,16)
   1287 
   1288 static inline int
   1289 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
   1290 {
   1291 	/* Bits set to 1 in fixed0 are fixed to 1. */
   1292 	if ((crval & fixed0) != fixed0) {
   1293 		return -1;
   1294 	}
   1295 	/* Bits set to 0 in fixed1 are fixed to 0. */
   1296 	if (crval & ~fixed1) {
   1297 		return -1;
   1298 	}
   1299 	return 0;
   1300 }
   1301 
   1302 static int
   1303 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1304     uint64_t qual)
   1305 {
   1306 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1307 	uint64_t type, gpr, cr0;
   1308 	uint64_t efer, ctls1;
   1309 
   1310 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1311 	if (type != CR_TYPE_WRITE) {
   1312 		return -1;
   1313 	}
   1314 
   1315 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1316 	KASSERT(gpr < 16);
   1317 
   1318 	if (gpr == NVMM_X64_GPR_RSP) {
   1319 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1320 	} else {
   1321 		gpr = cpudata->gprs[gpr];
   1322 	}
   1323 
   1324 	cr0 = gpr | CR0_NE | CR0_ET;
   1325 	cr0 &= ~(CR0_NW|CR0_CD);
   1326 
   1327 	if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
   1328 		return -1;
   1329 	}
   1330 
   1331 	/*
   1332 	 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
   1333 	 * from CR3.
   1334 	 */
   1335 
   1336 	if (cr0 & CR0_PG) {
   1337 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   1338 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   1339 		if (efer & EFER_LME) {
   1340 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   1341 			efer |= EFER_LMA;
   1342 		} else {
   1343 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   1344 			efer &= ~EFER_LMA;
   1345 		}
   1346 		vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
   1347 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   1348 	}
   1349 
   1350 	vmx_vmwrite(VMCS_GUEST_CR0, cr0);
   1351 	vmx_inkernel_advance();
   1352 	return 0;
   1353 }
   1354 
   1355 static int
   1356 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1357     uint64_t qual)
   1358 {
   1359 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1360 	uint64_t type, gpr, cr4;
   1361 
   1362 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1363 	if (type != CR_TYPE_WRITE) {
   1364 		return -1;
   1365 	}
   1366 
   1367 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1368 	KASSERT(gpr < 16);
   1369 
   1370 	if (gpr == NVMM_X64_GPR_RSP) {
   1371 		gpr = vmx_vmread(VMCS_GUEST_RSP);
   1372 	} else {
   1373 		gpr = cpudata->gprs[gpr];
   1374 	}
   1375 
   1376 	cr4 = gpr | CR4_VMXE;
   1377 
   1378 	if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
   1379 		return -1;
   1380 	}
   1381 
   1382 	vmx_vmwrite(VMCS_GUEST_CR4, cr4);
   1383 	vmx_inkernel_advance();
   1384 	return 0;
   1385 }
   1386 
   1387 static int
   1388 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1389     uint64_t qual)
   1390 {
   1391 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1392 	uint64_t type, gpr;
   1393 	bool write;
   1394 
   1395 	type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
   1396 	if (type == CR_TYPE_WRITE) {
   1397 		write = true;
   1398 	} else if (type == CR_TYPE_READ) {
   1399 		write = false;
   1400 	} else {
   1401 		return -1;
   1402 	}
   1403 
   1404 	gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
   1405 	KASSERT(gpr < 16);
   1406 
   1407 	if (write) {
   1408 		if (gpr == NVMM_X64_GPR_RSP) {
   1409 			cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
   1410 		} else {
   1411 			cpudata->gcr8 = cpudata->gprs[gpr];
   1412 		}
   1413 	} else {
   1414 		if (gpr == NVMM_X64_GPR_RSP) {
   1415 			vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
   1416 		} else {
   1417 			cpudata->gprs[gpr] = cpudata->gcr8;
   1418 		}
   1419 	}
   1420 
   1421 	vmx_inkernel_advance();
   1422 	return 0;
   1423 }
   1424 
   1425 static void
   1426 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1427     struct nvmm_exit *exit)
   1428 {
   1429 	uint64_t qual;
   1430 	int ret;
   1431 
   1432 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1433 
   1434 	switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
   1435 	case 0:
   1436 		ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
   1437 		break;
   1438 	case 4:
   1439 		ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
   1440 		break;
   1441 	case 8:
   1442 		ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
   1443 		break;
   1444 	default:
   1445 		ret = -1;
   1446 		break;
   1447 	}
   1448 
   1449 	if (ret == -1) {
   1450 		vmx_inject_gp(mach, vcpu);
   1451 	}
   1452 
   1453 	exit->reason = NVMM_EXIT_NONE;
   1454 }
   1455 
   1456 #define VMX_QUAL_IO_SIZE	__BITS(2,0)
   1457 #define		IO_SIZE_8	0
   1458 #define		IO_SIZE_16	1
   1459 #define		IO_SIZE_32	3
   1460 #define VMX_QUAL_IO_IN		__BIT(3)
   1461 #define VMX_QUAL_IO_STR		__BIT(4)
   1462 #define VMX_QUAL_IO_REP		__BIT(5)
   1463 #define VMX_QUAL_IO_DX		__BIT(6)
   1464 #define VMX_QUAL_IO_PORT	__BITS(31,16)
   1465 
   1466 #define VMX_INFO_IO_ADRSIZE	__BITS(9,7)
   1467 #define		IO_ADRSIZE_16	0
   1468 #define		IO_ADRSIZE_32	1
   1469 #define		IO_ADRSIZE_64	2
   1470 #define VMX_INFO_IO_SEG		__BITS(17,15)
   1471 
   1472 static void
   1473 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1474     struct nvmm_exit *exit)
   1475 {
   1476 	uint64_t qual, info, inslen, rip;
   1477 
   1478 	qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1479 	info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
   1480 
   1481 	exit->reason = NVMM_EXIT_IO;
   1482 
   1483 	if (qual & VMX_QUAL_IO_IN) {
   1484 		exit->u.io.type = NVMM_EXIT_IO_IN;
   1485 	} else {
   1486 		exit->u.io.type = NVMM_EXIT_IO_OUT;
   1487 	}
   1488 
   1489 	exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
   1490 
   1491 	KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
   1492 	exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
   1493 
   1494 	if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
   1495 		exit->u.io.address_size = 8;
   1496 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
   1497 		exit->u.io.address_size = 4;
   1498 	} else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
   1499 		exit->u.io.address_size = 2;
   1500 	}
   1501 
   1502 	if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
   1503 		exit->u.io.operand_size = 4;
   1504 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
   1505 		exit->u.io.operand_size = 2;
   1506 	} else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
   1507 		exit->u.io.operand_size = 1;
   1508 	}
   1509 
   1510 	exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
   1511 	exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
   1512 
   1513 	if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
   1514 		exit->u.io.seg = NVMM_X64_SEG_ES;
   1515 	}
   1516 
   1517 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1518 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1519 	exit->u.io.npc = rip + inslen;
   1520 }
   1521 
   1522 static const uint64_t msr_ignore_list[] = {
   1523 	MSR_BIOS_SIGN,
   1524 	MSR_IA32_PLATFORM_ID
   1525 };
   1526 
   1527 static bool
   1528 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1529     struct nvmm_exit *exit)
   1530 {
   1531 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1532 	uint64_t val;
   1533 	size_t i;
   1534 
   1535 	switch (exit->u.msr.type) {
   1536 	case NVMM_EXIT_MSR_RDMSR:
   1537 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1538 			val = vmx_vmread(VMCS_GUEST_IA32_PAT);
   1539 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1540 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1541 			goto handled;
   1542 		}
   1543 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1544 			val = cpudata->gmsr_misc_enable;
   1545 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1546 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1547 			goto handled;
   1548 		}
   1549 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1550 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1551 				continue;
   1552 			val = 0;
   1553 			cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
   1554 			cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
   1555 			goto handled;
   1556 		}
   1557 		break;
   1558 	case NVMM_EXIT_MSR_WRMSR:
   1559 		if (exit->u.msr.msr == MSR_TSC) {
   1560 			cpudata->gtsc = exit->u.msr.val;
   1561 			cpudata->gtsc_want_update = true;
   1562 			goto handled;
   1563 		}
   1564 		if (exit->u.msr.msr == MSR_CR_PAT) {
   1565 			val = exit->u.msr.val;
   1566 			if (__predict_false(!nvmm_x86_pat_validate(val))) {
   1567 				goto error;
   1568 			}
   1569 			vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
   1570 			goto handled;
   1571 		}
   1572 		if (exit->u.msr.msr == MSR_MISC_ENABLE) {
   1573 			/* Don't care. */
   1574 			goto handled;
   1575 		}
   1576 		for (i = 0; i < __arraycount(msr_ignore_list); i++) {
   1577 			if (msr_ignore_list[i] != exit->u.msr.msr)
   1578 				continue;
   1579 			goto handled;
   1580 		}
   1581 		break;
   1582 	}
   1583 
   1584 	return false;
   1585 
   1586 handled:
   1587 	vmx_inkernel_advance();
   1588 	return true;
   1589 
   1590 error:
   1591 	vmx_inject_gp(mach, vcpu);
   1592 	return true;
   1593 }
   1594 
   1595 static void
   1596 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1597     struct nvmm_exit *exit, bool rdmsr)
   1598 {
   1599 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1600 	uint64_t inslen, rip;
   1601 
   1602 	if (rdmsr) {
   1603 		exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
   1604 	} else {
   1605 		exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
   1606 	}
   1607 
   1608 	exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
   1609 
   1610 	if (rdmsr) {
   1611 		exit->u.msr.val = 0;
   1612 	} else {
   1613 		uint64_t rdx, rax;
   1614 		rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
   1615 		rax = cpudata->gprs[NVMM_X64_GPR_RAX];
   1616 		exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
   1617 	}
   1618 
   1619 	if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
   1620 		exit->reason = NVMM_EXIT_NONE;
   1621 		return;
   1622 	}
   1623 
   1624 	exit->reason = NVMM_EXIT_MSR;
   1625 	inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
   1626 	rip = vmx_vmread(VMCS_GUEST_RIP);
   1627 	exit->u.msr.npc = rip + inslen;
   1628 }
   1629 
   1630 static void
   1631 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1632     struct nvmm_exit *exit)
   1633 {
   1634 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1635 	uint16_t val;
   1636 
   1637 	exit->reason = NVMM_EXIT_NONE;
   1638 
   1639 	val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
   1640 	    (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
   1641 
   1642 	if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
   1643 		goto error;
   1644 	} else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
   1645 		goto error;
   1646 	} else if (__predict_false((val & XCR0_X87) == 0)) {
   1647 		goto error;
   1648 	}
   1649 
   1650 	cpudata->gxcr0 = val;
   1651 
   1652 	vmx_inkernel_advance();
   1653 	return;
   1654 
   1655 error:
   1656 	vmx_inject_gp(mach, vcpu);
   1657 }
   1658 
   1659 #define VMX_EPT_VIOLATION_READ		__BIT(0)
   1660 #define VMX_EPT_VIOLATION_WRITE		__BIT(1)
   1661 #define VMX_EPT_VIOLATION_EXECUTE	__BIT(2)
   1662 
   1663 static void
   1664 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1665     struct nvmm_exit *exit)
   1666 {
   1667 	uint64_t perm;
   1668 	gpaddr_t gpa;
   1669 
   1670 	gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
   1671 
   1672 	exit->reason = NVMM_EXIT_MEMORY;
   1673 	perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
   1674 	if (perm & VMX_EPT_VIOLATION_WRITE)
   1675 		exit->u.mem.prot = PROT_WRITE;
   1676 	else if (perm & VMX_EPT_VIOLATION_EXECUTE)
   1677 		exit->u.mem.prot = PROT_EXEC;
   1678 	else
   1679 		exit->u.mem.prot = PROT_READ;
   1680 	exit->u.mem.gpa = gpa;
   1681 	exit->u.mem.inst_len = 0;
   1682 }
   1683 
   1684 static void
   1685 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
   1686 {
   1687 	exit->u.inv.hwcode = code;
   1688 	exit->reason = NVMM_EXIT_INVALID;
   1689 }
   1690 
   1691 /* -------------------------------------------------------------------------- */
   1692 
   1693 static void
   1694 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
   1695 {
   1696 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1697 
   1698 	cpudata->ts_set = (rcr0() & CR0_TS) != 0;
   1699 
   1700 	fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
   1701 	fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
   1702 
   1703 	if (vmx_xcr0_mask != 0) {
   1704 		cpudata->hxcr0 = rdxcr(0);
   1705 		wrxcr(0, cpudata->gxcr0);
   1706 	}
   1707 }
   1708 
   1709 static void
   1710 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
   1711 {
   1712 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1713 
   1714 	if (vmx_xcr0_mask != 0) {
   1715 		cpudata->gxcr0 = rdxcr(0);
   1716 		wrxcr(0, cpudata->hxcr0);
   1717 	}
   1718 
   1719 	fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
   1720 	fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
   1721 
   1722 	if (cpudata->ts_set) {
   1723 		stts();
   1724 	}
   1725 }
   1726 
   1727 static void
   1728 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
   1729 {
   1730 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1731 
   1732 	x86_dbregs_save(curlwp);
   1733 
   1734 	ldr7(0);
   1735 
   1736 	ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
   1737 	ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
   1738 	ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
   1739 	ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
   1740 	ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
   1741 }
   1742 
   1743 static void
   1744 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
   1745 {
   1746 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1747 
   1748 	cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
   1749 	cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
   1750 	cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
   1751 	cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
   1752 	cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
   1753 
   1754 	x86_dbregs_restore(curlwp);
   1755 }
   1756 
   1757 static void
   1758 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
   1759 {
   1760 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1761 
   1762 	/* This gets restored automatically by the CPU. */
   1763 	vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
   1764 	vmx_vmwrite(VMCS_HOST_CR3, rcr3());
   1765 	vmx_vmwrite(VMCS_HOST_CR4, rcr4());
   1766 
   1767 	/* Note: MSR_LSTAR is not static, because of SVS. */
   1768 	cpudata->lstar = rdmsr(MSR_LSTAR);
   1769 	cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
   1770 }
   1771 
   1772 static void
   1773 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
   1774 {
   1775 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1776 
   1777 	wrmsr(MSR_STAR, cpudata->star);
   1778 	wrmsr(MSR_LSTAR, cpudata->lstar);
   1779 	wrmsr(MSR_CSTAR, cpudata->cstar);
   1780 	wrmsr(MSR_SFMASK, cpudata->sfmask);
   1781 	wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
   1782 }
   1783 
   1784 /* -------------------------------------------------------------------------- */
   1785 
   1786 #define VMX_INVVPID_ADDRESS		0
   1787 #define VMX_INVVPID_CONTEXT		1
   1788 #define VMX_INVVPID_ALL			2
   1789 #define VMX_INVVPID_CONTEXT_NOGLOBAL	3
   1790 
   1791 #define VMX_INVEPT_CONTEXT		1
   1792 #define VMX_INVEPT_ALL			2
   1793 
   1794 static inline void
   1795 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1796 {
   1797 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1798 
   1799 	if (vcpu->hcpu_last != hcpu) {
   1800 		cpudata->gtlb_want_flush = true;
   1801 	}
   1802 }
   1803 
   1804 static inline void
   1805 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
   1806 {
   1807 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1808 	struct ept_desc ept_desc;
   1809 
   1810 	if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
   1811 		return;
   1812 	}
   1813 
   1814 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   1815 	ept_desc.mbz = 0;
   1816 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1817 	kcpuset_clear(cpudata->htlb_want_flush, hcpu);
   1818 }
   1819 
   1820 static inline uint64_t
   1821 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
   1822 {
   1823 	struct ept_desc ept_desc;
   1824 	uint64_t machgen;
   1825 
   1826 	machgen = machdata->mach_htlb_gen;
   1827 	if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
   1828 		return machgen;
   1829 	}
   1830 
   1831 	kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
   1832 
   1833 	ept_desc.eptp = vmx_vmread(VMCS_EPTP);
   1834 	ept_desc.mbz = 0;
   1835 	vmx_invept(vmx_ept_flush_op, &ept_desc);
   1836 
   1837 	return machgen;
   1838 }
   1839 
   1840 static inline void
   1841 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
   1842 {
   1843 	cpudata->vcpu_htlb_gen = machgen;
   1844 	kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
   1845 }
   1846 
   1847 static int
   1848 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
   1849     struct nvmm_exit *exit)
   1850 {
   1851 	struct vmx_machdata *machdata = mach->machdata;
   1852 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   1853 	struct vpid_desc vpid_desc;
   1854 	struct cpu_info *ci;
   1855 	uint64_t exitcode;
   1856 	uint64_t intstate;
   1857 	uint64_t machgen;
   1858 	int hcpu, s, ret;
   1859 	bool launched;
   1860 
   1861 	vmx_vmcs_enter(vcpu);
   1862 	ci = curcpu();
   1863 	hcpu = cpu_number();
   1864 	launched = cpudata->vmcs_launched;
   1865 
   1866 	vmx_gtlb_catchup(vcpu, hcpu);
   1867 	vmx_htlb_catchup(vcpu, hcpu);
   1868 
   1869 	if (vcpu->hcpu_last != hcpu) {
   1870 		vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
   1871 		vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
   1872 		vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
   1873 		vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
   1874 		cpudata->gtsc_want_update = true;
   1875 		vcpu->hcpu_last = hcpu;
   1876 	}
   1877 
   1878 	vmx_vcpu_guest_dbregs_enter(vcpu);
   1879 	vmx_vcpu_guest_misc_enter(vcpu);
   1880 
   1881 	while (1) {
   1882 		if (cpudata->gtlb_want_flush) {
   1883 			vpid_desc.vpid = cpudata->asid;
   1884 			vpid_desc.addr = 0;
   1885 			vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
   1886 			cpudata->gtlb_want_flush = false;
   1887 		}
   1888 
   1889 		if (__predict_false(cpudata->gtsc_want_update)) {
   1890 			vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
   1891 			cpudata->gtsc_want_update = false;
   1892 		}
   1893 
   1894 		s = splhigh();
   1895 		machgen = vmx_htlb_flush(machdata, cpudata);
   1896 		vmx_vcpu_guest_fpu_enter(vcpu);
   1897 		lcr2(cpudata->gcr2);
   1898 		if (launched) {
   1899 			ret = vmx_vmresume(cpudata->gprs);
   1900 		} else {
   1901 			ret = vmx_vmlaunch(cpudata->gprs);
   1902 		}
   1903 		cpudata->gcr2 = rcr2();
   1904 		vmx_vcpu_guest_fpu_leave(vcpu);
   1905 		vmx_htlb_flush_ack(cpudata, machgen);
   1906 		splx(s);
   1907 
   1908 		if (__predict_false(ret != 0)) {
   1909 			exit->reason = NVMM_EXIT_INVALID;
   1910 			break;
   1911 		}
   1912 		cpudata->evt_pending = false;
   1913 
   1914 		launched = true;
   1915 
   1916 		exitcode = vmx_vmread(VMCS_EXIT_REASON);
   1917 		exitcode &= __BITS(15,0);
   1918 
   1919 		switch (exitcode) {
   1920 		case VMCS_EXITCODE_EXC_NMI:
   1921 			vmx_exit_exc_nmi(mach, vcpu, exit);
   1922 			break;
   1923 		case VMCS_EXITCODE_EXT_INT:
   1924 			exit->reason = NVMM_EXIT_NONE;
   1925 			break;
   1926 		case VMCS_EXITCODE_CPUID:
   1927 			vmx_exit_cpuid(mach, vcpu, exit);
   1928 			break;
   1929 		case VMCS_EXITCODE_HLT:
   1930 			vmx_exit_hlt(mach, vcpu, exit);
   1931 			break;
   1932 		case VMCS_EXITCODE_CR:
   1933 			vmx_exit_cr(mach, vcpu, exit);
   1934 			break;
   1935 		case VMCS_EXITCODE_IO:
   1936 			vmx_exit_io(mach, vcpu, exit);
   1937 			break;
   1938 		case VMCS_EXITCODE_RDMSR:
   1939 			vmx_exit_msr(mach, vcpu, exit, true);
   1940 			break;
   1941 		case VMCS_EXITCODE_WRMSR:
   1942 			vmx_exit_msr(mach, vcpu, exit, false);
   1943 			break;
   1944 		case VMCS_EXITCODE_SHUTDOWN:
   1945 			exit->reason = NVMM_EXIT_SHUTDOWN;
   1946 			break;
   1947 		case VMCS_EXITCODE_MONITOR:
   1948 			exit->reason = NVMM_EXIT_MONITOR;
   1949 			break;
   1950 		case VMCS_EXITCODE_MWAIT:
   1951 			exit->reason = NVMM_EXIT_MWAIT;
   1952 			break;
   1953 		case VMCS_EXITCODE_XSETBV:
   1954 			vmx_exit_xsetbv(mach, vcpu, exit);
   1955 			break;
   1956 		case VMCS_EXITCODE_RDPMC:
   1957 		case VMCS_EXITCODE_RDTSCP:
   1958 		case VMCS_EXITCODE_INVVPID:
   1959 		case VMCS_EXITCODE_INVEPT:
   1960 		case VMCS_EXITCODE_VMCALL:
   1961 		case VMCS_EXITCODE_VMCLEAR:
   1962 		case VMCS_EXITCODE_VMLAUNCH:
   1963 		case VMCS_EXITCODE_VMPTRLD:
   1964 		case VMCS_EXITCODE_VMPTRST:
   1965 		case VMCS_EXITCODE_VMREAD:
   1966 		case VMCS_EXITCODE_VMRESUME:
   1967 		case VMCS_EXITCODE_VMWRITE:
   1968 		case VMCS_EXITCODE_VMXOFF:
   1969 		case VMCS_EXITCODE_VMXON:
   1970 			vmx_inject_ud(mach, vcpu);
   1971 			exit->reason = NVMM_EXIT_NONE;
   1972 			break;
   1973 		case VMCS_EXITCODE_EPT_VIOLATION:
   1974 			vmx_exit_epf(mach, vcpu, exit);
   1975 			break;
   1976 		case VMCS_EXITCODE_INT_WINDOW:
   1977 			vmx_event_waitexit_disable(vcpu, false);
   1978 			exit->reason = NVMM_EXIT_INT_READY;
   1979 			break;
   1980 		case VMCS_EXITCODE_NMI_WINDOW:
   1981 			vmx_event_waitexit_disable(vcpu, true);
   1982 			exit->reason = NVMM_EXIT_NMI_READY;
   1983 			break;
   1984 		default:
   1985 			vmx_exit_invalid(exit, exitcode);
   1986 			break;
   1987 		}
   1988 
   1989 		/* If no reason to return to userland, keep rolling. */
   1990 		if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
   1991 			break;
   1992 		}
   1993 		if (curcpu()->ci_data.cpu_softints != 0) {
   1994 			break;
   1995 		}
   1996 		if (curlwp->l_flag & LW_USERRET) {
   1997 			break;
   1998 		}
   1999 		if (exit->reason != NVMM_EXIT_NONE) {
   2000 			break;
   2001 		}
   2002 	}
   2003 
   2004 	cpudata->vmcs_launched = launched;
   2005 
   2006 	cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
   2007 
   2008 	vmx_vcpu_guest_misc_leave(vcpu);
   2009 	vmx_vcpu_guest_dbregs_leave(vcpu);
   2010 
   2011 	exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
   2012 	exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
   2013 	    vmx_vmread(VMCS_GUEST_RFLAGS);
   2014 	intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2015 	exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
   2016 	    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2017 	exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
   2018 	    cpudata->int_window_exit;
   2019 	exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
   2020 	    cpudata->nmi_window_exit;
   2021 	exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
   2022 	    cpudata->evt_pending;
   2023 
   2024 	vmx_vmcs_leave(vcpu);
   2025 
   2026 	return 0;
   2027 }
   2028 
   2029 /* -------------------------------------------------------------------------- */
   2030 
   2031 static int
   2032 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
   2033 {
   2034 	struct pglist pglist;
   2035 	paddr_t _pa;
   2036 	vaddr_t _va;
   2037 	size_t i;
   2038 	int ret;
   2039 
   2040 	ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
   2041 	    &pglist, 1, 0);
   2042 	if (ret != 0)
   2043 		return ENOMEM;
   2044 	_pa = TAILQ_FIRST(&pglist)->phys_addr;
   2045 	_va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
   2046 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
   2047 	if (_va == 0)
   2048 		goto error;
   2049 
   2050 	for (i = 0; i < npages; i++) {
   2051 		pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
   2052 		    VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
   2053 	}
   2054 	pmap_update(pmap_kernel());
   2055 
   2056 	memset((void *)_va, 0, npages * PAGE_SIZE);
   2057 
   2058 	*pa = _pa;
   2059 	*va = _va;
   2060 	return 0;
   2061 
   2062 error:
   2063 	for (i = 0; i < npages; i++) {
   2064 		uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
   2065 	}
   2066 	return ENOMEM;
   2067 }
   2068 
   2069 static void
   2070 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
   2071 {
   2072 	size_t i;
   2073 
   2074 	pmap_kremove(va, npages * PAGE_SIZE);
   2075 	pmap_update(pmap_kernel());
   2076 	uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
   2077 	for (i = 0; i < npages; i++) {
   2078 		uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
   2079 	}
   2080 }
   2081 
   2082 /* -------------------------------------------------------------------------- */
   2083 
   2084 static void
   2085 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
   2086 {
   2087 	uint64_t byte;
   2088 	uint8_t bitoff;
   2089 
   2090 	if (msr < 0x00002000) {
   2091 		/* Range 1 */
   2092 		byte = ((msr - 0x00000000) / 8) + 0;
   2093 	} else if (msr >= 0xC0000000 && msr < 0xC0002000) {
   2094 		/* Range 2 */
   2095 		byte = ((msr - 0xC0000000) / 8) + 1024;
   2096 	} else {
   2097 		panic("%s: wrong range", __func__);
   2098 	}
   2099 
   2100 	bitoff = (msr & 0x7);
   2101 
   2102 	if (read) {
   2103 		bitmap[byte] &= ~__BIT(bitoff);
   2104 	}
   2105 	if (write) {
   2106 		bitmap[2048 + byte] &= ~__BIT(bitoff);
   2107 	}
   2108 }
   2109 
   2110 #define VMX_SEG_ATTRIB_TYPE		__BITS(3,0)
   2111 #define VMX_SEG_ATTRIB_S		__BIT(4)
   2112 #define VMX_SEG_ATTRIB_DPL		__BITS(6,5)
   2113 #define VMX_SEG_ATTRIB_P		__BIT(7)
   2114 #define VMX_SEG_ATTRIB_AVL		__BIT(12)
   2115 #define VMX_SEG_ATTRIB_L		__BIT(13)
   2116 #define VMX_SEG_ATTRIB_DEF		__BIT(14)
   2117 #define VMX_SEG_ATTRIB_G		__BIT(15)
   2118 #define VMX_SEG_ATTRIB_UNUSABLE		__BIT(16)
   2119 
   2120 static void
   2121 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
   2122 {
   2123 	uint64_t attrib;
   2124 
   2125 	attrib =
   2126 	    __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
   2127 	    __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
   2128 	    __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
   2129 	    __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
   2130 	    __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
   2131 	    __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
   2132 	    __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
   2133 	    __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
   2134 	    (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
   2135 
   2136 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2137 		vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
   2138 		vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
   2139 	}
   2140 	vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
   2141 	vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
   2142 }
   2143 
   2144 static void
   2145 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
   2146 {
   2147 	uint64_t selector = 0, attrib = 0, base, limit;
   2148 
   2149 	if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
   2150 		selector = vmx_vmread(vmx_guest_segs[idx].selector);
   2151 		attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
   2152 	}
   2153 	limit = vmx_vmread(vmx_guest_segs[idx].limit);
   2154 	base = vmx_vmread(vmx_guest_segs[idx].base);
   2155 
   2156 	segs[idx].selector = selector;
   2157 	segs[idx].limit = limit;
   2158 	segs[idx].base = base;
   2159 	segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
   2160 	segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
   2161 	segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
   2162 	segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
   2163 	segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
   2164 	segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
   2165 	segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
   2166 	segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
   2167 	if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
   2168 		segs[idx].attrib.p = 0;
   2169 	}
   2170 }
   2171 
   2172 static inline bool
   2173 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
   2174 {
   2175 	uint64_t cr0, cr3, cr4, efer;
   2176 
   2177 	if (flags & NVMM_X64_STATE_CRS) {
   2178 		cr0 = vmx_vmread(VMCS_GUEST_CR0);
   2179 		if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
   2180 			return true;
   2181 		}
   2182 		cr3 = vmx_vmread(VMCS_GUEST_CR3);
   2183 		if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
   2184 			return true;
   2185 		}
   2186 		cr4 = vmx_vmread(VMCS_GUEST_CR4);
   2187 		if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
   2188 			return true;
   2189 		}
   2190 	}
   2191 
   2192 	if (flags & NVMM_X64_STATE_MSRS) {
   2193 		efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
   2194 		if ((efer ^
   2195 		     state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
   2196 			return true;
   2197 		}
   2198 	}
   2199 
   2200 	return false;
   2201 }
   2202 
   2203 static void
   2204 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
   2205 {
   2206 	const struct nvmm_x64_state *state = data;
   2207 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2208 	struct fxsave *fpustate;
   2209 	uint64_t ctls1, intstate;
   2210 
   2211 	vmx_vmcs_enter(vcpu);
   2212 
   2213 	if (vmx_state_tlb_flush(state, flags)) {
   2214 		cpudata->gtlb_want_flush = true;
   2215 	}
   2216 
   2217 	if (flags & NVMM_X64_STATE_SEGS) {
   2218 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
   2219 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
   2220 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
   2221 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
   2222 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
   2223 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
   2224 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2225 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2226 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2227 		vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
   2228 	}
   2229 
   2230 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2231 	if (flags & NVMM_X64_STATE_GPRS) {
   2232 		memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
   2233 
   2234 		vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
   2235 		vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
   2236 		vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
   2237 	}
   2238 
   2239 	if (flags & NVMM_X64_STATE_CRS) {
   2240 		/*
   2241 		 * CR0_NE and CR4_VMXE are mandatory.
   2242 		 */
   2243 		vmx_vmwrite(VMCS_GUEST_CR0,
   2244 		    state->crs[NVMM_X64_CR_CR0] | CR0_NE);
   2245 		cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
   2246 		vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
   2247 		vmx_vmwrite(VMCS_GUEST_CR4,
   2248 		    state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
   2249 		cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
   2250 
   2251 		if (vmx_xcr0_mask != 0) {
   2252 			/* Clear illegal XCR0 bits, set mandatory X87 bit. */
   2253 			cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
   2254 			cpudata->gxcr0 &= vmx_xcr0_mask;
   2255 			cpudata->gxcr0 |= XCR0_X87;
   2256 		}
   2257 	}
   2258 
   2259 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2260 	if (flags & NVMM_X64_STATE_DRS) {
   2261 		memcpy(cpudata->drs, state->drs, sizeof(state->drs));
   2262 
   2263 		cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
   2264 		vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
   2265 	}
   2266 
   2267 	if (flags & NVMM_X64_STATE_MSRS) {
   2268 		cpudata->gmsr[VMX_MSRLIST_STAR].val =
   2269 		    state->msrs[NVMM_X64_MSR_STAR];
   2270 		cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
   2271 		    state->msrs[NVMM_X64_MSR_LSTAR];
   2272 		cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
   2273 		    state->msrs[NVMM_X64_MSR_CSTAR];
   2274 		cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
   2275 		    state->msrs[NVMM_X64_MSR_SFMASK];
   2276 		cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
   2277 		    state->msrs[NVMM_X64_MSR_KERNELGSBASE];
   2278 
   2279 		vmx_vmwrite(VMCS_GUEST_IA32_EFER,
   2280 		    state->msrs[NVMM_X64_MSR_EFER]);
   2281 		vmx_vmwrite(VMCS_GUEST_IA32_PAT,
   2282 		    state->msrs[NVMM_X64_MSR_PAT]);
   2283 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
   2284 		    state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
   2285 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
   2286 		    state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
   2287 		vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
   2288 		    state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
   2289 
   2290 		cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
   2291 		cpudata->gtsc_want_update = true;
   2292 
   2293 		/* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
   2294 		ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
   2295 		if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
   2296 			ctls1 |= ENTRY_CTLS_LONG_MODE;
   2297 		} else {
   2298 			ctls1 &= ~ENTRY_CTLS_LONG_MODE;
   2299 		}
   2300 		vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
   2301 	}
   2302 
   2303 	if (flags & NVMM_X64_STATE_INTR) {
   2304 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2305 		intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
   2306 		if (state->intr.int_shadow) {
   2307 			intstate |= INT_STATE_MOVSS;
   2308 		}
   2309 		vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
   2310 
   2311 		if (state->intr.int_window_exiting) {
   2312 			vmx_event_waitexit_enable(vcpu, false);
   2313 		} else {
   2314 			vmx_event_waitexit_disable(vcpu, false);
   2315 		}
   2316 
   2317 		if (state->intr.nmi_window_exiting) {
   2318 			vmx_event_waitexit_enable(vcpu, true);
   2319 		} else {
   2320 			vmx_event_waitexit_disable(vcpu, true);
   2321 		}
   2322 	}
   2323 
   2324 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2325 	if (flags & NVMM_X64_STATE_FPU) {
   2326 		memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
   2327 		    sizeof(state->fpu));
   2328 
   2329 		fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
   2330 		fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
   2331 		fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
   2332 
   2333 		if (vmx_xcr0_mask != 0) {
   2334 			/* Reset XSTATE_BV, to force a reload. */
   2335 			cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2336 		}
   2337 	}
   2338 
   2339 	vmx_vmcs_leave(vcpu);
   2340 }
   2341 
   2342 static void
   2343 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
   2344 {
   2345 	struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
   2346 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2347 	uint64_t intstate;
   2348 
   2349 	vmx_vmcs_enter(vcpu);
   2350 
   2351 	if (flags & NVMM_X64_STATE_SEGS) {
   2352 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
   2353 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
   2354 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
   2355 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
   2356 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
   2357 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
   2358 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
   2359 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
   2360 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
   2361 		vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
   2362 	}
   2363 
   2364 	CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
   2365 	if (flags & NVMM_X64_STATE_GPRS) {
   2366 		memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
   2367 
   2368 		state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
   2369 		state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
   2370 		state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
   2371 	}
   2372 
   2373 	if (flags & NVMM_X64_STATE_CRS) {
   2374 		state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
   2375 		state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
   2376 		state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
   2377 		state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
   2378 		state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
   2379 		state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
   2380 
   2381 		/* Hide VMXE. */
   2382 		state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
   2383 	}
   2384 
   2385 	CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
   2386 	if (flags & NVMM_X64_STATE_DRS) {
   2387 		memcpy(state->drs, cpudata->drs, sizeof(state->drs));
   2388 
   2389 		state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
   2390 	}
   2391 
   2392 	if (flags & NVMM_X64_STATE_MSRS) {
   2393 		state->msrs[NVMM_X64_MSR_STAR] =
   2394 		    cpudata->gmsr[VMX_MSRLIST_STAR].val;
   2395 		state->msrs[NVMM_X64_MSR_LSTAR] =
   2396 		    cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
   2397 		state->msrs[NVMM_X64_MSR_CSTAR] =
   2398 		    cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
   2399 		state->msrs[NVMM_X64_MSR_SFMASK] =
   2400 		    cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
   2401 		state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
   2402 		    cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
   2403 		state->msrs[NVMM_X64_MSR_EFER] =
   2404 		    vmx_vmread(VMCS_GUEST_IA32_EFER);
   2405 		state->msrs[NVMM_X64_MSR_PAT] =
   2406 		    vmx_vmread(VMCS_GUEST_IA32_PAT);
   2407 		state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
   2408 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
   2409 		state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
   2410 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
   2411 		state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
   2412 		    vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
   2413 		state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
   2414 	}
   2415 
   2416 	if (flags & NVMM_X64_STATE_INTR) {
   2417 		intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
   2418 		state->intr.int_shadow =
   2419 		    (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
   2420 		state->intr.int_window_exiting = cpudata->int_window_exit;
   2421 		state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
   2422 		state->intr.evt_pending = cpudata->evt_pending;
   2423 	}
   2424 
   2425 	CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
   2426 	if (flags & NVMM_X64_STATE_FPU) {
   2427 		memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
   2428 		    sizeof(state->fpu));
   2429 	}
   2430 
   2431 	vmx_vmcs_leave(vcpu);
   2432 }
   2433 
   2434 /* -------------------------------------------------------------------------- */
   2435 
   2436 static void
   2437 vmx_asid_alloc(struct nvmm_cpu *vcpu)
   2438 {
   2439 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2440 	size_t i, oct, bit;
   2441 
   2442 	mutex_enter(&vmx_asidlock);
   2443 
   2444 	for (i = 0; i < vmx_maxasid; i++) {
   2445 		oct = i / 8;
   2446 		bit = i % 8;
   2447 
   2448 		if (vmx_asidmap[oct] & __BIT(bit)) {
   2449 			continue;
   2450 		}
   2451 
   2452 		cpudata->asid = i;
   2453 
   2454 		vmx_asidmap[oct] |= __BIT(bit);
   2455 		vmx_vmwrite(VMCS_VPID, i);
   2456 		mutex_exit(&vmx_asidlock);
   2457 		return;
   2458 	}
   2459 
   2460 	mutex_exit(&vmx_asidlock);
   2461 
   2462 	panic("%s: impossible", __func__);
   2463 }
   2464 
   2465 static void
   2466 vmx_asid_free(struct nvmm_cpu *vcpu)
   2467 {
   2468 	size_t oct, bit;
   2469 	uint64_t asid;
   2470 
   2471 	asid = vmx_vmread(VMCS_VPID);
   2472 
   2473 	oct = asid / 8;
   2474 	bit = asid % 8;
   2475 
   2476 	mutex_enter(&vmx_asidlock);
   2477 	vmx_asidmap[oct] &= ~__BIT(bit);
   2478 	mutex_exit(&vmx_asidlock);
   2479 }
   2480 
   2481 static void
   2482 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2483 {
   2484 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2485 	struct vmcs *vmcs = cpudata->vmcs;
   2486 	struct msr_entry *gmsr = cpudata->gmsr;
   2487 	extern uint8_t vmx_resume_rip;
   2488 	uint64_t rev, eptp;
   2489 
   2490 	rev = vmx_get_revision();
   2491 
   2492 	memset(vmcs, 0, VMCS_SIZE);
   2493 	vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
   2494 	vmcs->abort = 0;
   2495 
   2496 	vmx_vmcs_enter(vcpu);
   2497 
   2498 	/* No link pointer. */
   2499 	vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
   2500 
   2501 	/* Install the CTLSs. */
   2502 	vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
   2503 	vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
   2504 	vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
   2505 	vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
   2506 	vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
   2507 
   2508 	/* Allow direct access to certain MSRs. */
   2509 	memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
   2510 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
   2511 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
   2512 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
   2513 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
   2514 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
   2515 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
   2516 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
   2517 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
   2518 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
   2519 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
   2520 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
   2521 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
   2522 	vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
   2523 	    true, false);
   2524 	vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
   2525 
   2526 	/*
   2527 	 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
   2528 	 * includes the L1D_FLUSH MSR, to mitigate L1TF.
   2529 	 */
   2530 	gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
   2531 	gmsr[VMX_MSRLIST_STAR].val = 0;
   2532 	gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
   2533 	gmsr[VMX_MSRLIST_LSTAR].val = 0;
   2534 	gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
   2535 	gmsr[VMX_MSRLIST_CSTAR].val = 0;
   2536 	gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
   2537 	gmsr[VMX_MSRLIST_SFMASK].val = 0;
   2538 	gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
   2539 	gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
   2540 	gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
   2541 	gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
   2542 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
   2543 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
   2544 	vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
   2545 	vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
   2546 
   2547 	/* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
   2548 	vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
   2549 	vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
   2550 
   2551 	/* Force CR4_VMXE to zero. */
   2552 	vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
   2553 
   2554 	/* Set the Host state for resuming. */
   2555 	vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
   2556 	vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
   2557 	vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2558 	vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2559 	vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
   2560 	vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
   2561 	vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
   2562 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
   2563 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
   2564 	vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
   2565 	vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
   2566 	vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
   2567 	vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
   2568 	vmx_vmwrite(VMCS_HOST_CR0, rcr0());
   2569 
   2570 	/* Generate ASID. */
   2571 	vmx_asid_alloc(vcpu);
   2572 
   2573 	/* Enable Extended Paging, 4-Level. */
   2574 	eptp =
   2575 	    __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
   2576 	    __SHIFTIN(4-1, EPTP_WALKLEN) |
   2577 	    (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
   2578 	    mach->vm->vm_map.pmap->pm_pdirpa[0];
   2579 	vmx_vmwrite(VMCS_EPTP, eptp);
   2580 
   2581 	/* Init IA32_MISC_ENABLE. */
   2582 	cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
   2583 	cpudata->gmsr_misc_enable &=
   2584 	    ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
   2585 	cpudata->gmsr_misc_enable |=
   2586 	    (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
   2587 
   2588 	/* Init XSAVE header. */
   2589 	cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
   2590 	cpudata->gfpu.xsh_xcomp_bv = 0;
   2591 
   2592 	/* These MSRs are static. */
   2593 	cpudata->star = rdmsr(MSR_STAR);
   2594 	cpudata->cstar = rdmsr(MSR_CSTAR);
   2595 	cpudata->sfmask = rdmsr(MSR_SFMASK);
   2596 
   2597 	/* Install the RESET state. */
   2598 	vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
   2599 
   2600 	vmx_vmcs_leave(vcpu);
   2601 }
   2602 
   2603 static int
   2604 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2605 {
   2606 	struct vmx_cpudata *cpudata;
   2607 	int error;
   2608 
   2609 	/* Allocate the VMX cpudata. */
   2610 	cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
   2611 	    roundup(sizeof(*cpudata), PAGE_SIZE), 0,
   2612 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
   2613 	vcpu->cpudata = cpudata;
   2614 
   2615 	/* VMCS */
   2616 	error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
   2617 	    VMCS_NPAGES);
   2618 	if (error)
   2619 		goto error;
   2620 
   2621 	/* MSR Bitmap */
   2622 	error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
   2623 	    MSRBM_NPAGES);
   2624 	if (error)
   2625 		goto error;
   2626 
   2627 	/* Guest MSR List */
   2628 	error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
   2629 	if (error)
   2630 		goto error;
   2631 
   2632 	kcpuset_create(&cpudata->htlb_want_flush, true);
   2633 
   2634 	/* Init the VCPU info. */
   2635 	vmx_vcpu_init(mach, vcpu);
   2636 
   2637 	return 0;
   2638 
   2639 error:
   2640 	if (cpudata->vmcs_pa) {
   2641 		vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
   2642 		    VMCS_NPAGES);
   2643 	}
   2644 	if (cpudata->msrbm_pa) {
   2645 		vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
   2646 		    MSRBM_NPAGES);
   2647 	}
   2648 	if (cpudata->gmsr_pa) {
   2649 		vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2650 	}
   2651 
   2652 	kmem_free(cpudata, sizeof(*cpudata));
   2653 	return error;
   2654 }
   2655 
   2656 static void
   2657 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
   2658 {
   2659 	struct vmx_cpudata *cpudata = vcpu->cpudata;
   2660 
   2661 	vmx_vmcs_enter(vcpu);
   2662 	vmx_asid_free(vcpu);
   2663 	vmx_vmcs_destroy(vcpu);
   2664 
   2665 	kcpuset_destroy(cpudata->htlb_want_flush);
   2666 
   2667 	vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
   2668 	vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
   2669 	vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
   2670 	uvm_km_free(kernel_map, (vaddr_t)cpudata,
   2671 	    roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
   2672 }
   2673 
   2674 /* -------------------------------------------------------------------------- */
   2675 
   2676 static void
   2677 vmx_tlb_flush(struct pmap *pm)
   2678 {
   2679 	struct nvmm_machine *mach = pm->pm_data;
   2680 	struct vmx_machdata *machdata = mach->machdata;
   2681 
   2682 	atomic_inc_64(&machdata->mach_htlb_gen);
   2683 
   2684 	/* Generates IPIs, which cause #VMEXITs. */
   2685 	pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
   2686 }
   2687 
   2688 static void
   2689 vmx_machine_create(struct nvmm_machine *mach)
   2690 {
   2691 	struct pmap *pmap = mach->vm->vm_map.pmap;
   2692 	struct vmx_machdata *machdata;
   2693 
   2694 	/* Convert to EPT. */
   2695 	pmap_ept_transform(pmap);
   2696 
   2697 	/* Fill in pmap info. */
   2698 	pmap->pm_data = (void *)mach;
   2699 	pmap->pm_tlb_flush = vmx_tlb_flush;
   2700 
   2701 	machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
   2702 	mach->machdata = machdata;
   2703 
   2704 	/* Start with an hTLB flush everywhere. */
   2705 	machdata->mach_htlb_gen = 1;
   2706 }
   2707 
   2708 static void
   2709 vmx_machine_destroy(struct nvmm_machine *mach)
   2710 {
   2711 	struct vmx_machdata *machdata = mach->machdata;
   2712 
   2713 	kmem_free(machdata, sizeof(struct vmx_machdata));
   2714 }
   2715 
   2716 static int
   2717 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
   2718 {
   2719 	struct nvmm_x86_conf_cpuid *cpuid = data;
   2720 	struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
   2721 	size_t i;
   2722 
   2723 	if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
   2724 		return EINVAL;
   2725 	}
   2726 
   2727 	if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
   2728 	    (cpuid->set.ebx & cpuid->del.ebx) ||
   2729 	    (cpuid->set.ecx & cpuid->del.ecx) ||
   2730 	    (cpuid->set.edx & cpuid->del.edx))) {
   2731 		return EINVAL;
   2732 	}
   2733 
   2734 	/* If already here, replace. */
   2735 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2736 		if (!machdata->cpuidpresent[i]) {
   2737 			continue;
   2738 		}
   2739 		if (machdata->cpuid[i].leaf == cpuid->leaf) {
   2740 			memcpy(&machdata->cpuid[i], cpuid,
   2741 			    sizeof(struct nvmm_x86_conf_cpuid));
   2742 			return 0;
   2743 		}
   2744 	}
   2745 
   2746 	/* Not here, insert. */
   2747 	for (i = 0; i < VMX_NCPUIDS; i++) {
   2748 		if (!machdata->cpuidpresent[i]) {
   2749 			machdata->cpuidpresent[i] = true;
   2750 			memcpy(&machdata->cpuid[i], cpuid,
   2751 			    sizeof(struct nvmm_x86_conf_cpuid));
   2752 			return 0;
   2753 		}
   2754 	}
   2755 
   2756 	return ENOBUFS;
   2757 }
   2758 
   2759 /* -------------------------------------------------------------------------- */
   2760 
   2761 static int
   2762 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
   2763     uint64_t set_one, uint64_t set_zero, uint64_t *res)
   2764 {
   2765 	uint64_t basic, val, true_val;
   2766 	bool one_allowed, zero_allowed, has_true;
   2767 	size_t i;
   2768 
   2769 	basic = rdmsr(MSR_IA32_VMX_BASIC);
   2770 	has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
   2771 
   2772 	val = rdmsr(msr_ctls);
   2773 	if (has_true) {
   2774 		true_val = rdmsr(msr_true_ctls);
   2775 	} else {
   2776 		true_val = val;
   2777 	}
   2778 
   2779 #define ONE_ALLOWED(msrval, bitoff) \
   2780 	((msrval & __BIT(32 + bitoff)) != 0)
   2781 #define ZERO_ALLOWED(msrval, bitoff) \
   2782 	((msrval & __BIT(bitoff)) == 0)
   2783 
   2784 	for (i = 0; i < 32; i++) {
   2785 		one_allowed = ONE_ALLOWED(true_val, i);
   2786 		zero_allowed = ZERO_ALLOWED(true_val, i);
   2787 
   2788 		if (zero_allowed && !one_allowed) {
   2789 			if (set_one & __BIT(i))
   2790 				return -1;
   2791 			*res &= ~__BIT(i);
   2792 		} else if (one_allowed && !zero_allowed) {
   2793 			if (set_zero & __BIT(i))
   2794 				return -1;
   2795 			*res |= __BIT(i);
   2796 		} else {
   2797 			if (set_zero & __BIT(i)) {
   2798 				*res &= ~__BIT(i);
   2799 			} else if (set_one & __BIT(i)) {
   2800 				*res |= __BIT(i);
   2801 			} else if (!has_true) {
   2802 				*res &= ~__BIT(i);
   2803 			} else if (ZERO_ALLOWED(val, i)) {
   2804 				*res &= ~__BIT(i);
   2805 			} else if (ONE_ALLOWED(val, i)) {
   2806 				*res |= __BIT(i);
   2807 			} else {
   2808 				return -1;
   2809 			}
   2810 		}
   2811 	}
   2812 
   2813 	return 0;
   2814 }
   2815 
   2816 static bool
   2817 vmx_ident(void)
   2818 {
   2819 	uint64_t msr;
   2820 	int ret;
   2821 
   2822 	if (!(cpu_feature[1] & CPUID2_VMX)) {
   2823 		return false;
   2824 	}
   2825 
   2826 	msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
   2827 	if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
   2828 		return false;
   2829 	}
   2830 
   2831 	msr = rdmsr(MSR_IA32_VMX_BASIC);
   2832 	if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
   2833 		return false;
   2834 	}
   2835 	if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
   2836 		return false;
   2837 	}
   2838 
   2839 	/* PG and PE are reported, even if Unrestricted Guests is supported. */
   2840 	vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
   2841 	vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
   2842 	ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
   2843 	if (ret == -1) {
   2844 		return false;
   2845 	}
   2846 
   2847 	vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
   2848 	vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
   2849 	ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
   2850 	if (ret == -1) {
   2851 		return false;
   2852 	}
   2853 
   2854 	/* Init the CTLSs right now, and check for errors. */
   2855 	ret = vmx_init_ctls(
   2856 	    MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
   2857 	    VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
   2858 	    &vmx_pinbased_ctls);
   2859 	if (ret == -1) {
   2860 		return false;
   2861 	}
   2862 	ret = vmx_init_ctls(
   2863 	    MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
   2864 	    VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
   2865 	    &vmx_procbased_ctls);
   2866 	if (ret == -1) {
   2867 		return false;
   2868 	}
   2869 	ret = vmx_init_ctls(
   2870 	    MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
   2871 	    VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
   2872 	    &vmx_procbased_ctls2);
   2873 	if (ret == -1) {
   2874 		return false;
   2875 	}
   2876 	ret = vmx_init_ctls(
   2877 	    MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
   2878 	    VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
   2879 	    &vmx_entry_ctls);
   2880 	if (ret == -1) {
   2881 		return false;
   2882 	}
   2883 	ret = vmx_init_ctls(
   2884 	    MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
   2885 	    VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
   2886 	    &vmx_exit_ctls);
   2887 	if (ret == -1) {
   2888 		return false;
   2889 	}
   2890 
   2891 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2892 	if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
   2893 		return false;
   2894 	}
   2895 	if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
   2896 		return false;
   2897 	}
   2898 	if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
   2899 		return false;
   2900 	}
   2901 	if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
   2902 		pmap_ept_has_ad = true;
   2903 	} else {
   2904 		pmap_ept_has_ad = false;
   2905 	}
   2906 	if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
   2907 		return false;
   2908 	}
   2909 
   2910 	return true;
   2911 }
   2912 
   2913 static void
   2914 vmx_init_asid(uint32_t maxasid)
   2915 {
   2916 	size_t allocsz;
   2917 
   2918 	mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
   2919 
   2920 	vmx_maxasid = maxasid;
   2921 	allocsz = roundup(maxasid, 8) / 8;
   2922 	vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
   2923 
   2924 	/* ASID 0 is reserved for the host. */
   2925 	vmx_asidmap[0] |= __BIT(0);
   2926 }
   2927 
   2928 static void
   2929 vmx_change_cpu(void *arg1, void *arg2)
   2930 {
   2931 	struct cpu_info *ci = curcpu();
   2932 	bool enable = (bool)arg1;
   2933 	uint64_t cr4;
   2934 
   2935 	if (!enable) {
   2936 		vmx_vmxoff();
   2937 	}
   2938 
   2939 	cr4 = rcr4();
   2940 	if (enable) {
   2941 		cr4 |= CR4_VMXE;
   2942 	} else {
   2943 		cr4 &= ~CR4_VMXE;
   2944 	}
   2945 	lcr4(cr4);
   2946 
   2947 	if (enable) {
   2948 		vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
   2949 	}
   2950 }
   2951 
   2952 static void
   2953 vmx_init_l1tf(void)
   2954 {
   2955 	u_int descs[4];
   2956 	uint64_t msr;
   2957 
   2958 	if (cpuid_level < 7) {
   2959 		return;
   2960 	}
   2961 
   2962 	x86_cpuid(7, descs);
   2963 
   2964 	if (descs[3] & CPUID_SEF_ARCH_CAP) {
   2965 		msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
   2966 		if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
   2967 			/* No mitigation needed. */
   2968 			return;
   2969 		}
   2970 	}
   2971 
   2972 	if (descs[3] & CPUID_SEF_L1D_FLUSH) {
   2973 		/* Enable hardware mitigation. */
   2974 		vmx_msrlist_entry_nmsr += 1;
   2975 	}
   2976 }
   2977 
   2978 static void
   2979 vmx_init(void)
   2980 {
   2981 	CPU_INFO_ITERATOR cii;
   2982 	struct cpu_info *ci;
   2983 	uint64_t xc, msr;
   2984 	struct vmxon *vmxon;
   2985 	uint32_t revision;
   2986 	paddr_t pa;
   2987 	vaddr_t va;
   2988 	int error;
   2989 
   2990 	/* Init the ASID bitmap (VPID). */
   2991 	vmx_init_asid(VPID_MAX);
   2992 
   2993 	/* Init the XCR0 mask. */
   2994 	vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
   2995 
   2996 	/* Init the TLB flush op, the EPT flush op and the EPTP type. */
   2997 	msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
   2998 	if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
   2999 		vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
   3000 	} else {
   3001 		vmx_tlb_flush_op = VMX_INVVPID_ALL;
   3002 	}
   3003 	if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
   3004 		vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
   3005 	} else {
   3006 		vmx_ept_flush_op = VMX_INVEPT_ALL;
   3007 	}
   3008 	if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
   3009 		vmx_eptp_type = EPTP_TYPE_WB;
   3010 	} else {
   3011 		vmx_eptp_type = EPTP_TYPE_UC;
   3012 	}
   3013 
   3014 	/* Init the L1TF mitigation. */
   3015 	vmx_init_l1tf();
   3016 
   3017 	memset(vmxoncpu, 0, sizeof(vmxoncpu));
   3018 	revision = vmx_get_revision();
   3019 
   3020 	for (CPU_INFO_FOREACH(cii, ci)) {
   3021 		error = vmx_memalloc(&pa, &va, 1);
   3022 		if (error) {
   3023 			panic("%s: out of memory", __func__);
   3024 		}
   3025 		vmxoncpu[cpu_index(ci)].pa = pa;
   3026 		vmxoncpu[cpu_index(ci)].va = va;
   3027 
   3028 		vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
   3029 		vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
   3030 	}
   3031 
   3032 	xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
   3033 	xc_wait(xc);
   3034 }
   3035 
   3036 static void
   3037 vmx_fini_asid(void)
   3038 {
   3039 	size_t allocsz;
   3040 
   3041 	allocsz = roundup(vmx_maxasid, 8) / 8;
   3042 	kmem_free(vmx_asidmap, allocsz);
   3043 
   3044 	mutex_destroy(&vmx_asidlock);
   3045 }
   3046 
   3047 static void
   3048 vmx_fini(void)
   3049 {
   3050 	uint64_t xc;
   3051 	size_t i;
   3052 
   3053 	xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
   3054 	xc_wait(xc);
   3055 
   3056 	for (i = 0; i < MAXCPUS; i++) {
   3057 		if (vmxoncpu[i].pa != 0)
   3058 			vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
   3059 	}
   3060 
   3061 	vmx_fini_asid();
   3062 }
   3063 
   3064 static void
   3065 vmx_capability(struct nvmm_capability *cap)
   3066 {
   3067 	cap->u.x86.xcr0_mask = vmx_xcr0_mask;
   3068 	cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
   3069 	cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
   3070 }
   3071 
   3072 const struct nvmm_impl nvmm_x86_vmx = {
   3073 	.ident = vmx_ident,
   3074 	.init = vmx_init,
   3075 	.fini = vmx_fini,
   3076 	.capability = vmx_capability,
   3077 	.conf_max = NVMM_X86_NCONF,
   3078 	.conf_sizes = vmx_conf_sizes,
   3079 	.state_size = sizeof(struct nvmm_x64_state),
   3080 	.machine_create = vmx_machine_create,
   3081 	.machine_destroy = vmx_machine_destroy,
   3082 	.machine_configure = vmx_machine_configure,
   3083 	.vcpu_create = vmx_vcpu_create,
   3084 	.vcpu_destroy = vmx_vcpu_destroy,
   3085 	.vcpu_setstate = vmx_vcpu_setstate,
   3086 	.vcpu_getstate = vmx_vcpu_getstate,
   3087 	.vcpu_inject = vmx_vcpu_inject,
   3088 	.vcpu_run = vmx_vcpu_run
   3089 };
   3090