nvmm_x86_vmx.c revision 1.28 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.28 2019/04/27 08:16:19 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.28 2019/04/27 08:16:19 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 #define VMX_MSRLIST_STAR 0
558 #define VMX_MSRLIST_LSTAR 1
559 #define VMX_MSRLIST_CSTAR 2
560 #define VMX_MSRLIST_SFMASK 3
561 #define VMX_MSRLIST_KERNELGSBASE 4
562 #define VMX_MSRLIST_EXIT_NMSR 5
563 #define VMX_MSRLIST_L1DFLUSH 5
564
565 /* On entry, we may do +1 to include L1DFLUSH. */
566 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
567
568 struct vmxon {
569 uint32_t ident;
570 #define VMXON_IDENT_REVISION __BITS(30,0)
571
572 uint8_t data[PAGE_SIZE - 4];
573 } __packed;
574
575 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
576
577 struct vmxoncpu {
578 vaddr_t va;
579 paddr_t pa;
580 };
581
582 static struct vmxoncpu vmxoncpu[MAXCPUS];
583
584 struct vmcs {
585 uint32_t ident;
586 #define VMCS_IDENT_REVISION __BITS(30,0)
587 #define VMCS_IDENT_SHADOW __BIT(31)
588
589 uint32_t abort;
590 uint8_t data[PAGE_SIZE - 8];
591 } __packed;
592
593 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
594
595 struct msr_entry {
596 uint32_t msr;
597 uint32_t rsvd;
598 uint64_t val;
599 } __packed;
600
601 #define VPID_MAX 0xFFFF
602
603 /* Make sure we never run out of VPIDs. */
604 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
605
606 static uint64_t vmx_tlb_flush_op __read_mostly;
607 static uint64_t vmx_ept_flush_op __read_mostly;
608 static uint64_t vmx_eptp_type __read_mostly;
609
610 static uint64_t vmx_pinbased_ctls __read_mostly;
611 static uint64_t vmx_procbased_ctls __read_mostly;
612 static uint64_t vmx_procbased_ctls2 __read_mostly;
613 static uint64_t vmx_entry_ctls __read_mostly;
614 static uint64_t vmx_exit_ctls __read_mostly;
615
616 static uint64_t vmx_cr0_fixed0 __read_mostly;
617 static uint64_t vmx_cr0_fixed1 __read_mostly;
618 static uint64_t vmx_cr4_fixed0 __read_mostly;
619 static uint64_t vmx_cr4_fixed1 __read_mostly;
620
621 extern bool pmap_ept_has_ad;
622
623 #define VMX_PINBASED_CTLS_ONE \
624 (PIN_CTLS_INT_EXITING| \
625 PIN_CTLS_NMI_EXITING| \
626 PIN_CTLS_VIRTUAL_NMIS)
627
628 #define VMX_PINBASED_CTLS_ZERO 0
629
630 #define VMX_PROCBASED_CTLS_ONE \
631 (PROC_CTLS_USE_TSC_OFFSETTING| \
632 PROC_CTLS_HLT_EXITING| \
633 PROC_CTLS_MWAIT_EXITING | \
634 PROC_CTLS_RDPMC_EXITING | \
635 PROC_CTLS_RCR8_EXITING | \
636 PROC_CTLS_LCR8_EXITING | \
637 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
638 PROC_CTLS_USE_MSR_BITMAPS | \
639 PROC_CTLS_MONITOR_EXITING | \
640 PROC_CTLS_ACTIVATE_CTLS2)
641
642 #define VMX_PROCBASED_CTLS_ZERO \
643 (PROC_CTLS_RCR3_EXITING| \
644 PROC_CTLS_LCR3_EXITING)
645
646 #define VMX_PROCBASED_CTLS2_ONE \
647 (PROC_CTLS2_ENABLE_EPT| \
648 PROC_CTLS2_ENABLE_VPID| \
649 PROC_CTLS2_UNRESTRICTED_GUEST)
650
651 #define VMX_PROCBASED_CTLS2_ZERO 0
652
653 #define VMX_ENTRY_CTLS_ONE \
654 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
655 ENTRY_CTLS_LOAD_EFER| \
656 ENTRY_CTLS_LOAD_PAT)
657
658 #define VMX_ENTRY_CTLS_ZERO \
659 (ENTRY_CTLS_SMM| \
660 ENTRY_CTLS_DISABLE_DUAL)
661
662 #define VMX_EXIT_CTLS_ONE \
663 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
664 EXIT_CTLS_HOST_LONG_MODE| \
665 EXIT_CTLS_SAVE_PAT| \
666 EXIT_CTLS_LOAD_PAT| \
667 EXIT_CTLS_SAVE_EFER| \
668 EXIT_CTLS_LOAD_EFER)
669
670 #define VMX_EXIT_CTLS_ZERO 0
671
672 static uint8_t *vmx_asidmap __read_mostly;
673 static uint32_t vmx_maxasid __read_mostly;
674 static kmutex_t vmx_asidlock __cacheline_aligned;
675
676 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
677 static uint64_t vmx_xcr0_mask __read_mostly;
678
679 #define VMX_NCPUIDS 32
680
681 #define VMCS_NPAGES 1
682 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
683
684 #define MSRBM_NPAGES 1
685 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
686
687 #define EFER_TLB_FLUSH \
688 (EFER_NXE|EFER_LMA|EFER_LME)
689 #define CR0_TLB_FLUSH \
690 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
691 #define CR4_TLB_FLUSH \
692 (CR4_PGE|CR4_PAE|CR4_PSE)
693
694 /* -------------------------------------------------------------------------- */
695
696 struct vmx_machdata {
697 bool cpuidpresent[VMX_NCPUIDS];
698 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
699 volatile uint64_t mach_htlb_gen;
700 };
701
702 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
703 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
704 };
705
706 struct vmx_cpudata {
707 /* General */
708 uint64_t asid;
709 bool gtlb_want_flush;
710 bool gtsc_want_update;
711 uint64_t vcpu_htlb_gen;
712 kcpuset_t *htlb_want_flush;
713
714 /* VMCS */
715 struct vmcs *vmcs;
716 paddr_t vmcs_pa;
717 size_t vmcs_refcnt;
718 struct cpu_info *vmcs_ci;
719 bool vmcs_launched;
720
721 /* MSR bitmap */
722 uint8_t *msrbm;
723 paddr_t msrbm_pa;
724
725 /* Host state */
726 uint64_t hxcr0;
727 uint64_t star;
728 uint64_t lstar;
729 uint64_t cstar;
730 uint64_t sfmask;
731 uint64_t kernelgsbase;
732 bool ts_set;
733 struct xsave_header hfpu __aligned(64);
734
735 /* Intr state */
736 bool int_window_exit;
737 bool nmi_window_exit;
738 bool evt_pending;
739
740 /* Guest state */
741 struct msr_entry *gmsr;
742 paddr_t gmsr_pa;
743 uint64_t gmsr_misc_enable;
744 uint64_t gcr2;
745 uint64_t gcr8;
746 uint64_t gxcr0;
747 uint64_t gprs[NVMM_X64_NGPR];
748 uint64_t drs[NVMM_X64_NDR];
749 uint64_t gtsc;
750 struct xsave_header gfpu __aligned(64);
751 };
752
753 static const struct {
754 uint64_t selector;
755 uint64_t attrib;
756 uint64_t limit;
757 uint64_t base;
758 } vmx_guest_segs[NVMM_X64_NSEG] = {
759 [NVMM_X64_SEG_ES] = {
760 VMCS_GUEST_ES_SELECTOR,
761 VMCS_GUEST_ES_ACCESS_RIGHTS,
762 VMCS_GUEST_ES_LIMIT,
763 VMCS_GUEST_ES_BASE
764 },
765 [NVMM_X64_SEG_CS] = {
766 VMCS_GUEST_CS_SELECTOR,
767 VMCS_GUEST_CS_ACCESS_RIGHTS,
768 VMCS_GUEST_CS_LIMIT,
769 VMCS_GUEST_CS_BASE
770 },
771 [NVMM_X64_SEG_SS] = {
772 VMCS_GUEST_SS_SELECTOR,
773 VMCS_GUEST_SS_ACCESS_RIGHTS,
774 VMCS_GUEST_SS_LIMIT,
775 VMCS_GUEST_SS_BASE
776 },
777 [NVMM_X64_SEG_DS] = {
778 VMCS_GUEST_DS_SELECTOR,
779 VMCS_GUEST_DS_ACCESS_RIGHTS,
780 VMCS_GUEST_DS_LIMIT,
781 VMCS_GUEST_DS_BASE
782 },
783 [NVMM_X64_SEG_FS] = {
784 VMCS_GUEST_FS_SELECTOR,
785 VMCS_GUEST_FS_ACCESS_RIGHTS,
786 VMCS_GUEST_FS_LIMIT,
787 VMCS_GUEST_FS_BASE
788 },
789 [NVMM_X64_SEG_GS] = {
790 VMCS_GUEST_GS_SELECTOR,
791 VMCS_GUEST_GS_ACCESS_RIGHTS,
792 VMCS_GUEST_GS_LIMIT,
793 VMCS_GUEST_GS_BASE
794 },
795 [NVMM_X64_SEG_GDT] = {
796 0, /* doesn't exist */
797 0, /* doesn't exist */
798 VMCS_GUEST_GDTR_LIMIT,
799 VMCS_GUEST_GDTR_BASE
800 },
801 [NVMM_X64_SEG_IDT] = {
802 0, /* doesn't exist */
803 0, /* doesn't exist */
804 VMCS_GUEST_IDTR_LIMIT,
805 VMCS_GUEST_IDTR_BASE
806 },
807 [NVMM_X64_SEG_LDT] = {
808 VMCS_GUEST_LDTR_SELECTOR,
809 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
810 VMCS_GUEST_LDTR_LIMIT,
811 VMCS_GUEST_LDTR_BASE
812 },
813 [NVMM_X64_SEG_TR] = {
814 VMCS_GUEST_TR_SELECTOR,
815 VMCS_GUEST_TR_ACCESS_RIGHTS,
816 VMCS_GUEST_TR_LIMIT,
817 VMCS_GUEST_TR_BASE
818 }
819 };
820
821 /* -------------------------------------------------------------------------- */
822
823 static uint64_t
824 vmx_get_revision(void)
825 {
826 uint64_t msr;
827
828 msr = rdmsr(MSR_IA32_VMX_BASIC);
829 msr &= IA32_VMX_BASIC_IDENT;
830
831 return msr;
832 }
833
834 static void
835 vmx_vmclear_ipi(void *arg1, void *arg2)
836 {
837 paddr_t vmcs_pa = (paddr_t)arg1;
838 vmx_vmclear(&vmcs_pa);
839 }
840
841 static void
842 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
843 {
844 uint64_t xc;
845 int bound;
846
847 KASSERT(kpreempt_disabled());
848
849 bound = curlwp_bind();
850 kpreempt_enable();
851
852 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
853 xc_wait(xc);
854
855 kpreempt_disable();
856 curlwp_bindx(bound);
857 }
858
859 static void
860 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
861 {
862 struct vmx_cpudata *cpudata = vcpu->cpudata;
863 struct cpu_info *vmcs_ci;
864 paddr_t oldpa __diagused;
865
866 cpudata->vmcs_refcnt++;
867 if (cpudata->vmcs_refcnt > 1) {
868 #ifdef DIAGNOSTIC
869 KASSERT(kpreempt_disabled());
870 oldpa = vmx_vmptrst();
871 KASSERT(oldpa == cpudata->vmcs_pa);
872 #endif
873 return;
874 }
875
876 vmcs_ci = cpudata->vmcs_ci;
877 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
878
879 kpreempt_disable();
880
881 if (vmcs_ci == NULL) {
882 /* This VMCS is loaded for the first time. */
883 vmx_vmclear(&cpudata->vmcs_pa);
884 cpudata->vmcs_launched = false;
885 } else if (vmcs_ci != curcpu()) {
886 /* This VMCS is active on a remote CPU. */
887 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
888 cpudata->vmcs_launched = false;
889 } else {
890 /* This VMCS is active on curcpu, nothing to do. */
891 }
892
893 vmx_vmptrld(&cpudata->vmcs_pa);
894 }
895
896 static void
897 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
898 {
899 struct vmx_cpudata *cpudata = vcpu->cpudata;
900
901 KASSERT(kpreempt_disabled());
902 #ifdef DIAGNOSTIC
903 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
904 #endif
905 KASSERT(cpudata->vmcs_refcnt > 0);
906 cpudata->vmcs_refcnt--;
907
908 if (cpudata->vmcs_refcnt > 0) {
909 return;
910 }
911
912 cpudata->vmcs_ci = curcpu();
913 kpreempt_enable();
914 }
915
916 static void
917 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
918 {
919 struct vmx_cpudata *cpudata = vcpu->cpudata;
920
921 KASSERT(kpreempt_disabled());
922 #ifdef DIAGNOSTIC
923 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
924 #endif
925 KASSERT(cpudata->vmcs_refcnt == 1);
926 cpudata->vmcs_refcnt--;
927
928 vmx_vmclear(&cpudata->vmcs_pa);
929 kpreempt_enable();
930 }
931
932 /* -------------------------------------------------------------------------- */
933
934 static void
935 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
936 {
937 struct vmx_cpudata *cpudata = vcpu->cpudata;
938 uint64_t ctls1;
939
940 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
941
942 if (nmi) {
943 // XXX INT_STATE_NMI?
944 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
945 cpudata->nmi_window_exit = true;
946 } else {
947 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
948 cpudata->int_window_exit = true;
949 }
950
951 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
952 }
953
954 static void
955 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
956 {
957 struct vmx_cpudata *cpudata = vcpu->cpudata;
958 uint64_t ctls1;
959
960 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
961
962 if (nmi) {
963 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
964 cpudata->nmi_window_exit = false;
965 } else {
966 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
967 cpudata->int_window_exit = false;
968 }
969
970 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
971 }
972
973 static inline int
974 vmx_event_has_error(uint64_t vector)
975 {
976 switch (vector) {
977 case 8: /* #DF */
978 case 10: /* #TS */
979 case 11: /* #NP */
980 case 12: /* #SS */
981 case 13: /* #GP */
982 case 14: /* #PF */
983 case 17: /* #AC */
984 case 30: /* #SX */
985 return 1;
986 default:
987 return 0;
988 }
989 }
990
991 static int
992 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
993 struct nvmm_event *event)
994 {
995 struct vmx_cpudata *cpudata = vcpu->cpudata;
996 int type = 0, err = 0, ret = 0;
997 uint64_t info, intstate, rflags;
998
999 if (event->vector >= 256) {
1000 return EINVAL;
1001 }
1002
1003 vmx_vmcs_enter(vcpu);
1004
1005 switch (event->type) {
1006 case NVMM_EVENT_INTERRUPT_HW:
1007 type = INTR_TYPE_EXT_INT;
1008 if (event->vector == 2) {
1009 type = INTR_TYPE_NMI;
1010 }
1011 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1012 if (type == INTR_TYPE_NMI) {
1013 if (cpudata->nmi_window_exit) {
1014 ret = EAGAIN;
1015 goto out;
1016 }
1017 vmx_event_waitexit_enable(vcpu, true);
1018 } else {
1019 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1020 if ((rflags & PSL_I) == 0 ||
1021 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
1022 vmx_event_waitexit_enable(vcpu, false);
1023 ret = EAGAIN;
1024 goto out;
1025 }
1026 }
1027 err = 0;
1028 break;
1029 case NVMM_EVENT_INTERRUPT_SW:
1030 ret = EINVAL;
1031 goto out;
1032 case NVMM_EVENT_EXCEPTION:
1033 if (event->vector == 2 || event->vector >= 32) {
1034 ret = EINVAL;
1035 goto out;
1036 }
1037 if (event->vector == 3 || event->vector == 0) {
1038 ret = EINVAL;
1039 goto out;
1040 }
1041 type = INTR_TYPE_HW_EXC;
1042 err = vmx_event_has_error(event->vector);
1043 break;
1044 default:
1045 ret = EAGAIN;
1046 goto out;
1047 }
1048
1049 info =
1050 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
1051 __SHIFTIN(type, INTR_INFO_TYPE) |
1052 __SHIFTIN(err, INTR_INFO_ERROR) |
1053 __SHIFTIN(1, INTR_INFO_VALID);
1054 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1055 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
1056
1057 cpudata->evt_pending = true;
1058
1059 out:
1060 vmx_vmcs_leave(vcpu);
1061 return ret;
1062 }
1063
1064 static void
1065 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1066 {
1067 struct nvmm_event event;
1068 int ret __diagused;
1069
1070 event.type = NVMM_EVENT_EXCEPTION;
1071 event.vector = 6;
1072 event.u.error = 0;
1073
1074 ret = vmx_vcpu_inject(mach, vcpu, &event);
1075 KASSERT(ret == 0);
1076 }
1077
1078 static void
1079 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1080 {
1081 struct nvmm_event event;
1082 int ret __diagused;
1083
1084 event.type = NVMM_EVENT_EXCEPTION;
1085 event.vector = 13;
1086 event.u.error = 0;
1087
1088 ret = vmx_vcpu_inject(mach, vcpu, &event);
1089 KASSERT(ret == 0);
1090 }
1091
1092 static inline void
1093 vmx_inkernel_advance(void)
1094 {
1095 uint64_t rip, inslen, intstate;
1096
1097 /*
1098 * Maybe we should also apply single-stepping and debug exceptions.
1099 * Matters for guest-ring3, because it can execute 'cpuid' under a
1100 * debugger.
1101 */
1102 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1103 rip = vmx_vmread(VMCS_GUEST_RIP);
1104 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1105 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1106 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1107 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1108 }
1109
1110 static void
1111 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1112 struct nvmm_exit *exit)
1113 {
1114 uint64_t qual;
1115
1116 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1117
1118 if ((qual & INTR_INFO_VALID) == 0) {
1119 goto error;
1120 }
1121 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1122 goto error;
1123 }
1124
1125 exit->reason = NVMM_EXIT_NONE;
1126 return;
1127
1128 error:
1129 exit->reason = NVMM_EXIT_INVALID;
1130 }
1131
1132 static void
1133 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1134 {
1135 struct vmx_cpudata *cpudata = vcpu->cpudata;
1136 uint64_t cr4;
1137
1138 switch (eax) {
1139 case 0x00000001:
1140 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1141
1142 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1143 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1144 CPUID_LOCAL_APIC_ID);
1145
1146 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1147 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1148
1149 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1150
1151 /* CPUID2_OSXSAVE depends on CR4. */
1152 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1153 if (!(cr4 & CR4_OSXSAVE)) {
1154 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1155 }
1156 break;
1157 case 0x00000005:
1158 case 0x00000006:
1159 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1160 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1161 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1162 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1163 break;
1164 case 0x00000007:
1165 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1166 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1167 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1168 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1169 break;
1170 case 0x0000000D:
1171 if (vmx_xcr0_mask == 0) {
1172 break;
1173 }
1174 switch (ecx) {
1175 case 0:
1176 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1177 if (cpudata->gxcr0 & XCR0_SSE) {
1178 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1179 } else {
1180 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1181 }
1182 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1183 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1184 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1185 break;
1186 case 1:
1187 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1188 break;
1189 }
1190 break;
1191 case 0x40000000:
1192 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1193 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1194 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1195 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1196 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1197 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1198 break;
1199 case 0x80000001:
1200 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1201 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1202 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1203 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1204 break;
1205 default:
1206 break;
1207 }
1208 }
1209
1210 static void
1211 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1212 struct nvmm_exit *exit)
1213 {
1214 struct vmx_machdata *machdata = mach->machdata;
1215 struct vmx_cpudata *cpudata = vcpu->cpudata;
1216 struct nvmm_x86_conf_cpuid *cpuid;
1217 uint64_t eax, ecx;
1218 u_int descs[4];
1219 size_t i;
1220
1221 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1222 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1223 x86_cpuid2(eax, ecx, descs);
1224
1225 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1226 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1227 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1228 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1229
1230 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1231
1232 for (i = 0; i < VMX_NCPUIDS; i++) {
1233 cpuid = &machdata->cpuid[i];
1234 if (!machdata->cpuidpresent[i]) {
1235 continue;
1236 }
1237 if (cpuid->leaf != eax) {
1238 continue;
1239 }
1240
1241 /* del */
1242 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1243 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1244 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1245 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1246
1247 /* set */
1248 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1249 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1250 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1251 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1252
1253 break;
1254 }
1255
1256 vmx_inkernel_advance();
1257 exit->reason = NVMM_EXIT_NONE;
1258 }
1259
1260 static void
1261 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1262 struct nvmm_exit *exit)
1263 {
1264 struct vmx_cpudata *cpudata = vcpu->cpudata;
1265 uint64_t rflags;
1266
1267 if (cpudata->int_window_exit) {
1268 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1269 if (rflags & PSL_I) {
1270 vmx_event_waitexit_disable(vcpu, false);
1271 }
1272 }
1273
1274 vmx_inkernel_advance();
1275 exit->reason = NVMM_EXIT_HALTED;
1276 }
1277
1278 #define VMX_QUAL_CR_NUM __BITS(3,0)
1279 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1280 #define CR_TYPE_WRITE 0
1281 #define CR_TYPE_READ 1
1282 #define CR_TYPE_CLTS 2
1283 #define CR_TYPE_LMSW 3
1284 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1285 #define VMX_QUAL_CR_GPR __BITS(11,8)
1286 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1287
1288 static inline int
1289 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1290 {
1291 /* Bits set to 1 in fixed0 are fixed to 1. */
1292 if ((crval & fixed0) != fixed0) {
1293 return -1;
1294 }
1295 /* Bits set to 0 in fixed1 are fixed to 0. */
1296 if (crval & ~fixed1) {
1297 return -1;
1298 }
1299 return 0;
1300 }
1301
1302 static int
1303 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1304 uint64_t qual)
1305 {
1306 struct vmx_cpudata *cpudata = vcpu->cpudata;
1307 uint64_t type, gpr, cr0;
1308 uint64_t efer, ctls1;
1309
1310 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1311 if (type != CR_TYPE_WRITE) {
1312 return -1;
1313 }
1314
1315 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1316 KASSERT(gpr < 16);
1317
1318 if (gpr == NVMM_X64_GPR_RSP) {
1319 gpr = vmx_vmread(VMCS_GUEST_RSP);
1320 } else {
1321 gpr = cpudata->gprs[gpr];
1322 }
1323
1324 cr0 = gpr | CR0_NE | CR0_ET;
1325 cr0 &= ~(CR0_NW|CR0_CD);
1326
1327 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1328 return -1;
1329 }
1330
1331 /*
1332 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1333 * from CR3.
1334 */
1335
1336 if (cr0 & CR0_PG) {
1337 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1338 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1339 if (efer & EFER_LME) {
1340 ctls1 |= ENTRY_CTLS_LONG_MODE;
1341 efer |= EFER_LMA;
1342 } else {
1343 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1344 efer &= ~EFER_LMA;
1345 }
1346 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1347 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1348 }
1349
1350 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1351 vmx_inkernel_advance();
1352 return 0;
1353 }
1354
1355 static int
1356 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1357 uint64_t qual)
1358 {
1359 struct vmx_cpudata *cpudata = vcpu->cpudata;
1360 uint64_t type, gpr, cr4;
1361
1362 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1363 if (type != CR_TYPE_WRITE) {
1364 return -1;
1365 }
1366
1367 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1368 KASSERT(gpr < 16);
1369
1370 if (gpr == NVMM_X64_GPR_RSP) {
1371 gpr = vmx_vmread(VMCS_GUEST_RSP);
1372 } else {
1373 gpr = cpudata->gprs[gpr];
1374 }
1375
1376 cr4 = gpr | CR4_VMXE;
1377
1378 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1379 return -1;
1380 }
1381
1382 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1383 vmx_inkernel_advance();
1384 return 0;
1385 }
1386
1387 static int
1388 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1389 uint64_t qual)
1390 {
1391 struct vmx_cpudata *cpudata = vcpu->cpudata;
1392 uint64_t type, gpr;
1393 bool write;
1394
1395 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1396 if (type == CR_TYPE_WRITE) {
1397 write = true;
1398 } else if (type == CR_TYPE_READ) {
1399 write = false;
1400 } else {
1401 return -1;
1402 }
1403
1404 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1405 KASSERT(gpr < 16);
1406
1407 if (write) {
1408 if (gpr == NVMM_X64_GPR_RSP) {
1409 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1410 } else {
1411 cpudata->gcr8 = cpudata->gprs[gpr];
1412 }
1413 } else {
1414 if (gpr == NVMM_X64_GPR_RSP) {
1415 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1416 } else {
1417 cpudata->gprs[gpr] = cpudata->gcr8;
1418 }
1419 }
1420
1421 vmx_inkernel_advance();
1422 return 0;
1423 }
1424
1425 static void
1426 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1427 struct nvmm_exit *exit)
1428 {
1429 uint64_t qual;
1430 int ret;
1431
1432 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1433
1434 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1435 case 0:
1436 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1437 break;
1438 case 4:
1439 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1440 break;
1441 case 8:
1442 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1443 break;
1444 default:
1445 ret = -1;
1446 break;
1447 }
1448
1449 if (ret == -1) {
1450 vmx_inject_gp(mach, vcpu);
1451 }
1452
1453 exit->reason = NVMM_EXIT_NONE;
1454 }
1455
1456 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1457 #define IO_SIZE_8 0
1458 #define IO_SIZE_16 1
1459 #define IO_SIZE_32 3
1460 #define VMX_QUAL_IO_IN __BIT(3)
1461 #define VMX_QUAL_IO_STR __BIT(4)
1462 #define VMX_QUAL_IO_REP __BIT(5)
1463 #define VMX_QUAL_IO_DX __BIT(6)
1464 #define VMX_QUAL_IO_PORT __BITS(31,16)
1465
1466 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1467 #define IO_ADRSIZE_16 0
1468 #define IO_ADRSIZE_32 1
1469 #define IO_ADRSIZE_64 2
1470 #define VMX_INFO_IO_SEG __BITS(17,15)
1471
1472 static void
1473 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1474 struct nvmm_exit *exit)
1475 {
1476 uint64_t qual, info, inslen, rip;
1477
1478 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1479 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1480
1481 exit->reason = NVMM_EXIT_IO;
1482
1483 if (qual & VMX_QUAL_IO_IN) {
1484 exit->u.io.type = NVMM_EXIT_IO_IN;
1485 } else {
1486 exit->u.io.type = NVMM_EXIT_IO_OUT;
1487 }
1488
1489 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1490
1491 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1492 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1493
1494 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1495 exit->u.io.address_size = 8;
1496 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1497 exit->u.io.address_size = 4;
1498 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1499 exit->u.io.address_size = 2;
1500 }
1501
1502 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1503 exit->u.io.operand_size = 4;
1504 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1505 exit->u.io.operand_size = 2;
1506 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1507 exit->u.io.operand_size = 1;
1508 }
1509
1510 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1511 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1512
1513 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1514 exit->u.io.seg = NVMM_X64_SEG_ES;
1515 }
1516
1517 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1518 rip = vmx_vmread(VMCS_GUEST_RIP);
1519 exit->u.io.npc = rip + inslen;
1520 }
1521
1522 static const uint64_t msr_ignore_list[] = {
1523 MSR_BIOS_SIGN,
1524 MSR_IA32_PLATFORM_ID
1525 };
1526
1527 static bool
1528 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1529 struct nvmm_exit *exit)
1530 {
1531 struct vmx_cpudata *cpudata = vcpu->cpudata;
1532 uint64_t val;
1533 size_t i;
1534
1535 switch (exit->u.msr.type) {
1536 case NVMM_EXIT_MSR_RDMSR:
1537 if (exit->u.msr.msr == MSR_CR_PAT) {
1538 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1539 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1540 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1541 goto handled;
1542 }
1543 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1544 val = cpudata->gmsr_misc_enable;
1545 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1546 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1547 goto handled;
1548 }
1549 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1550 if (msr_ignore_list[i] != exit->u.msr.msr)
1551 continue;
1552 val = 0;
1553 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1554 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1555 goto handled;
1556 }
1557 break;
1558 case NVMM_EXIT_MSR_WRMSR:
1559 if (exit->u.msr.msr == MSR_TSC) {
1560 cpudata->gtsc = exit->u.msr.val;
1561 cpudata->gtsc_want_update = true;
1562 goto handled;
1563 }
1564 if (exit->u.msr.msr == MSR_CR_PAT) {
1565 val = exit->u.msr.val;
1566 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1567 goto error;
1568 }
1569 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1570 goto handled;
1571 }
1572 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1573 /* Don't care. */
1574 goto handled;
1575 }
1576 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1577 if (msr_ignore_list[i] != exit->u.msr.msr)
1578 continue;
1579 goto handled;
1580 }
1581 break;
1582 }
1583
1584 return false;
1585
1586 handled:
1587 vmx_inkernel_advance();
1588 return true;
1589
1590 error:
1591 vmx_inject_gp(mach, vcpu);
1592 return true;
1593 }
1594
1595 static void
1596 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1597 struct nvmm_exit *exit, bool rdmsr)
1598 {
1599 struct vmx_cpudata *cpudata = vcpu->cpudata;
1600 uint64_t inslen, rip;
1601
1602 if (rdmsr) {
1603 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1604 } else {
1605 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1606 }
1607
1608 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1609
1610 if (rdmsr) {
1611 exit->u.msr.val = 0;
1612 } else {
1613 uint64_t rdx, rax;
1614 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1615 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1616 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1617 }
1618
1619 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1620 exit->reason = NVMM_EXIT_NONE;
1621 return;
1622 }
1623
1624 exit->reason = NVMM_EXIT_MSR;
1625 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1626 rip = vmx_vmread(VMCS_GUEST_RIP);
1627 exit->u.msr.npc = rip + inslen;
1628 }
1629
1630 static void
1631 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1632 struct nvmm_exit *exit)
1633 {
1634 struct vmx_cpudata *cpudata = vcpu->cpudata;
1635 uint16_t val;
1636
1637 exit->reason = NVMM_EXIT_NONE;
1638
1639 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1640 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1641
1642 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1643 goto error;
1644 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1645 goto error;
1646 } else if (__predict_false((val & XCR0_X87) == 0)) {
1647 goto error;
1648 }
1649
1650 cpudata->gxcr0 = val;
1651
1652 vmx_inkernel_advance();
1653 return;
1654
1655 error:
1656 vmx_inject_gp(mach, vcpu);
1657 }
1658
1659 #define VMX_EPT_VIOLATION_READ __BIT(0)
1660 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1661 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1662
1663 static void
1664 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1665 struct nvmm_exit *exit)
1666 {
1667 uint64_t perm;
1668 gpaddr_t gpa;
1669
1670 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1671
1672 exit->reason = NVMM_EXIT_MEMORY;
1673 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1674 if (perm & VMX_EPT_VIOLATION_WRITE)
1675 exit->u.mem.prot = PROT_WRITE;
1676 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1677 exit->u.mem.prot = PROT_EXEC;
1678 else
1679 exit->u.mem.prot = PROT_READ;
1680 exit->u.mem.gpa = gpa;
1681 exit->u.mem.inst_len = 0;
1682 }
1683
1684 static void
1685 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1686 {
1687 exit->u.inv.hwcode = code;
1688 exit->reason = NVMM_EXIT_INVALID;
1689 }
1690
1691 /* -------------------------------------------------------------------------- */
1692
1693 static void
1694 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1695 {
1696 struct vmx_cpudata *cpudata = vcpu->cpudata;
1697
1698 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1699
1700 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1701 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1702
1703 if (vmx_xcr0_mask != 0) {
1704 cpudata->hxcr0 = rdxcr(0);
1705 wrxcr(0, cpudata->gxcr0);
1706 }
1707 }
1708
1709 static void
1710 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1711 {
1712 struct vmx_cpudata *cpudata = vcpu->cpudata;
1713
1714 if (vmx_xcr0_mask != 0) {
1715 cpudata->gxcr0 = rdxcr(0);
1716 wrxcr(0, cpudata->hxcr0);
1717 }
1718
1719 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1720 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1721
1722 if (cpudata->ts_set) {
1723 stts();
1724 }
1725 }
1726
1727 static void
1728 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1729 {
1730 struct vmx_cpudata *cpudata = vcpu->cpudata;
1731
1732 x86_dbregs_save(curlwp);
1733
1734 ldr7(0);
1735
1736 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1737 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1738 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1739 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1740 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1741 }
1742
1743 static void
1744 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1745 {
1746 struct vmx_cpudata *cpudata = vcpu->cpudata;
1747
1748 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1749 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1750 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1751 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1752 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1753
1754 x86_dbregs_restore(curlwp);
1755 }
1756
1757 static void
1758 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1759 {
1760 struct vmx_cpudata *cpudata = vcpu->cpudata;
1761
1762 /* This gets restored automatically by the CPU. */
1763 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1764 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1765 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1766
1767 /* Note: MSR_LSTAR is not static, because of SVS. */
1768 cpudata->lstar = rdmsr(MSR_LSTAR);
1769 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1770 }
1771
1772 static void
1773 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1774 {
1775 struct vmx_cpudata *cpudata = vcpu->cpudata;
1776
1777 wrmsr(MSR_STAR, cpudata->star);
1778 wrmsr(MSR_LSTAR, cpudata->lstar);
1779 wrmsr(MSR_CSTAR, cpudata->cstar);
1780 wrmsr(MSR_SFMASK, cpudata->sfmask);
1781 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1782 }
1783
1784 /* -------------------------------------------------------------------------- */
1785
1786 #define VMX_INVVPID_ADDRESS 0
1787 #define VMX_INVVPID_CONTEXT 1
1788 #define VMX_INVVPID_ALL 2
1789 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1790
1791 #define VMX_INVEPT_CONTEXT 1
1792 #define VMX_INVEPT_ALL 2
1793
1794 static inline void
1795 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1796 {
1797 struct vmx_cpudata *cpudata = vcpu->cpudata;
1798
1799 if (vcpu->hcpu_last != hcpu) {
1800 cpudata->gtlb_want_flush = true;
1801 }
1802 }
1803
1804 static inline void
1805 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1806 {
1807 struct vmx_cpudata *cpudata = vcpu->cpudata;
1808 struct ept_desc ept_desc;
1809
1810 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1811 return;
1812 }
1813
1814 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1815 ept_desc.mbz = 0;
1816 vmx_invept(vmx_ept_flush_op, &ept_desc);
1817 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1818 }
1819
1820 static inline uint64_t
1821 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1822 {
1823 struct ept_desc ept_desc;
1824 uint64_t machgen;
1825
1826 machgen = machdata->mach_htlb_gen;
1827 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1828 return machgen;
1829 }
1830
1831 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1832
1833 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1834 ept_desc.mbz = 0;
1835 vmx_invept(vmx_ept_flush_op, &ept_desc);
1836
1837 return machgen;
1838 }
1839
1840 static inline void
1841 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1842 {
1843 cpudata->vcpu_htlb_gen = machgen;
1844 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1845 }
1846
1847 static int
1848 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1849 struct nvmm_exit *exit)
1850 {
1851 struct vmx_machdata *machdata = mach->machdata;
1852 struct vmx_cpudata *cpudata = vcpu->cpudata;
1853 struct vpid_desc vpid_desc;
1854 struct cpu_info *ci;
1855 uint64_t exitcode;
1856 uint64_t intstate;
1857 uint64_t machgen;
1858 int hcpu, s, ret;
1859 bool launched;
1860
1861 vmx_vmcs_enter(vcpu);
1862 ci = curcpu();
1863 hcpu = cpu_number();
1864 launched = cpudata->vmcs_launched;
1865
1866 vmx_gtlb_catchup(vcpu, hcpu);
1867 vmx_htlb_catchup(vcpu, hcpu);
1868
1869 if (vcpu->hcpu_last != hcpu) {
1870 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1871 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1872 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1873 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1874 cpudata->gtsc_want_update = true;
1875 vcpu->hcpu_last = hcpu;
1876 }
1877
1878 vmx_vcpu_guest_dbregs_enter(vcpu);
1879 vmx_vcpu_guest_misc_enter(vcpu);
1880
1881 while (1) {
1882 if (cpudata->gtlb_want_flush) {
1883 vpid_desc.vpid = cpudata->asid;
1884 vpid_desc.addr = 0;
1885 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1886 cpudata->gtlb_want_flush = false;
1887 }
1888
1889 if (__predict_false(cpudata->gtsc_want_update)) {
1890 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1891 cpudata->gtsc_want_update = false;
1892 }
1893
1894 s = splhigh();
1895 machgen = vmx_htlb_flush(machdata, cpudata);
1896 vmx_vcpu_guest_fpu_enter(vcpu);
1897 lcr2(cpudata->gcr2);
1898 if (launched) {
1899 ret = vmx_vmresume(cpudata->gprs);
1900 } else {
1901 ret = vmx_vmlaunch(cpudata->gprs);
1902 }
1903 cpudata->gcr2 = rcr2();
1904 vmx_vcpu_guest_fpu_leave(vcpu);
1905 vmx_htlb_flush_ack(cpudata, machgen);
1906 splx(s);
1907
1908 if (__predict_false(ret != 0)) {
1909 exit->reason = NVMM_EXIT_INVALID;
1910 break;
1911 }
1912 cpudata->evt_pending = false;
1913
1914 launched = true;
1915
1916 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1917 exitcode &= __BITS(15,0);
1918
1919 switch (exitcode) {
1920 case VMCS_EXITCODE_EXC_NMI:
1921 vmx_exit_exc_nmi(mach, vcpu, exit);
1922 break;
1923 case VMCS_EXITCODE_EXT_INT:
1924 exit->reason = NVMM_EXIT_NONE;
1925 break;
1926 case VMCS_EXITCODE_CPUID:
1927 vmx_exit_cpuid(mach, vcpu, exit);
1928 break;
1929 case VMCS_EXITCODE_HLT:
1930 vmx_exit_hlt(mach, vcpu, exit);
1931 break;
1932 case VMCS_EXITCODE_CR:
1933 vmx_exit_cr(mach, vcpu, exit);
1934 break;
1935 case VMCS_EXITCODE_IO:
1936 vmx_exit_io(mach, vcpu, exit);
1937 break;
1938 case VMCS_EXITCODE_RDMSR:
1939 vmx_exit_msr(mach, vcpu, exit, true);
1940 break;
1941 case VMCS_EXITCODE_WRMSR:
1942 vmx_exit_msr(mach, vcpu, exit, false);
1943 break;
1944 case VMCS_EXITCODE_SHUTDOWN:
1945 exit->reason = NVMM_EXIT_SHUTDOWN;
1946 break;
1947 case VMCS_EXITCODE_MONITOR:
1948 exit->reason = NVMM_EXIT_MONITOR;
1949 break;
1950 case VMCS_EXITCODE_MWAIT:
1951 exit->reason = NVMM_EXIT_MWAIT;
1952 break;
1953 case VMCS_EXITCODE_XSETBV:
1954 vmx_exit_xsetbv(mach, vcpu, exit);
1955 break;
1956 case VMCS_EXITCODE_RDPMC:
1957 case VMCS_EXITCODE_RDTSCP:
1958 case VMCS_EXITCODE_INVVPID:
1959 case VMCS_EXITCODE_INVEPT:
1960 case VMCS_EXITCODE_VMCALL:
1961 case VMCS_EXITCODE_VMCLEAR:
1962 case VMCS_EXITCODE_VMLAUNCH:
1963 case VMCS_EXITCODE_VMPTRLD:
1964 case VMCS_EXITCODE_VMPTRST:
1965 case VMCS_EXITCODE_VMREAD:
1966 case VMCS_EXITCODE_VMRESUME:
1967 case VMCS_EXITCODE_VMWRITE:
1968 case VMCS_EXITCODE_VMXOFF:
1969 case VMCS_EXITCODE_VMXON:
1970 vmx_inject_ud(mach, vcpu);
1971 exit->reason = NVMM_EXIT_NONE;
1972 break;
1973 case VMCS_EXITCODE_EPT_VIOLATION:
1974 vmx_exit_epf(mach, vcpu, exit);
1975 break;
1976 case VMCS_EXITCODE_INT_WINDOW:
1977 vmx_event_waitexit_disable(vcpu, false);
1978 exit->reason = NVMM_EXIT_INT_READY;
1979 break;
1980 case VMCS_EXITCODE_NMI_WINDOW:
1981 vmx_event_waitexit_disable(vcpu, true);
1982 exit->reason = NVMM_EXIT_NMI_READY;
1983 break;
1984 default:
1985 vmx_exit_invalid(exit, exitcode);
1986 break;
1987 }
1988
1989 /* If no reason to return to userland, keep rolling. */
1990 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
1991 break;
1992 }
1993 if (curcpu()->ci_data.cpu_softints != 0) {
1994 break;
1995 }
1996 if (curlwp->l_flag & LW_USERRET) {
1997 break;
1998 }
1999 if (exit->reason != NVMM_EXIT_NONE) {
2000 break;
2001 }
2002 }
2003
2004 cpudata->vmcs_launched = launched;
2005
2006 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2007
2008 vmx_vcpu_guest_misc_leave(vcpu);
2009 vmx_vcpu_guest_dbregs_leave(vcpu);
2010
2011 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2012 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2013 vmx_vmread(VMCS_GUEST_RFLAGS);
2014 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2015 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2016 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2017 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2018 cpudata->int_window_exit;
2019 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2020 cpudata->nmi_window_exit;
2021 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2022 cpudata->evt_pending;
2023
2024 vmx_vmcs_leave(vcpu);
2025
2026 return 0;
2027 }
2028
2029 /* -------------------------------------------------------------------------- */
2030
2031 static int
2032 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2033 {
2034 struct pglist pglist;
2035 paddr_t _pa;
2036 vaddr_t _va;
2037 size_t i;
2038 int ret;
2039
2040 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2041 &pglist, 1, 0);
2042 if (ret != 0)
2043 return ENOMEM;
2044 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2045 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2046 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2047 if (_va == 0)
2048 goto error;
2049
2050 for (i = 0; i < npages; i++) {
2051 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2052 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2053 }
2054 pmap_update(pmap_kernel());
2055
2056 memset((void *)_va, 0, npages * PAGE_SIZE);
2057
2058 *pa = _pa;
2059 *va = _va;
2060 return 0;
2061
2062 error:
2063 for (i = 0; i < npages; i++) {
2064 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2065 }
2066 return ENOMEM;
2067 }
2068
2069 static void
2070 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2071 {
2072 size_t i;
2073
2074 pmap_kremove(va, npages * PAGE_SIZE);
2075 pmap_update(pmap_kernel());
2076 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2077 for (i = 0; i < npages; i++) {
2078 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2079 }
2080 }
2081
2082 /* -------------------------------------------------------------------------- */
2083
2084 static void
2085 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2086 {
2087 uint64_t byte;
2088 uint8_t bitoff;
2089
2090 if (msr < 0x00002000) {
2091 /* Range 1 */
2092 byte = ((msr - 0x00000000) / 8) + 0;
2093 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2094 /* Range 2 */
2095 byte = ((msr - 0xC0000000) / 8) + 1024;
2096 } else {
2097 panic("%s: wrong range", __func__);
2098 }
2099
2100 bitoff = (msr & 0x7);
2101
2102 if (read) {
2103 bitmap[byte] &= ~__BIT(bitoff);
2104 }
2105 if (write) {
2106 bitmap[2048 + byte] &= ~__BIT(bitoff);
2107 }
2108 }
2109
2110 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2111 #define VMX_SEG_ATTRIB_S __BIT(4)
2112 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2113 #define VMX_SEG_ATTRIB_P __BIT(7)
2114 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2115 #define VMX_SEG_ATTRIB_L __BIT(13)
2116 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2117 #define VMX_SEG_ATTRIB_G __BIT(15)
2118 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2119
2120 static void
2121 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2122 {
2123 uint64_t attrib;
2124
2125 attrib =
2126 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2127 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2128 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2129 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2130 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2131 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2132 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2133 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2134 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2135
2136 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2137 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2138 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2139 }
2140 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2141 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2142 }
2143
2144 static void
2145 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2146 {
2147 uint64_t selector = 0, attrib = 0, base, limit;
2148
2149 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2150 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2151 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2152 }
2153 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2154 base = vmx_vmread(vmx_guest_segs[idx].base);
2155
2156 segs[idx].selector = selector;
2157 segs[idx].limit = limit;
2158 segs[idx].base = base;
2159 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2160 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2161 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2162 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2163 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2164 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2165 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2166 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2167 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2168 segs[idx].attrib.p = 0;
2169 }
2170 }
2171
2172 static inline bool
2173 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2174 {
2175 uint64_t cr0, cr3, cr4, efer;
2176
2177 if (flags & NVMM_X64_STATE_CRS) {
2178 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2179 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2180 return true;
2181 }
2182 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2183 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2184 return true;
2185 }
2186 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2187 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2188 return true;
2189 }
2190 }
2191
2192 if (flags & NVMM_X64_STATE_MSRS) {
2193 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2194 if ((efer ^
2195 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2196 return true;
2197 }
2198 }
2199
2200 return false;
2201 }
2202
2203 static void
2204 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2205 {
2206 const struct nvmm_x64_state *state = data;
2207 struct vmx_cpudata *cpudata = vcpu->cpudata;
2208 struct fxsave *fpustate;
2209 uint64_t ctls1, intstate;
2210
2211 vmx_vmcs_enter(vcpu);
2212
2213 if (vmx_state_tlb_flush(state, flags)) {
2214 cpudata->gtlb_want_flush = true;
2215 }
2216
2217 if (flags & NVMM_X64_STATE_SEGS) {
2218 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2219 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2220 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2221 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2222 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2223 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2224 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2225 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2226 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2227 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2228 }
2229
2230 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2231 if (flags & NVMM_X64_STATE_GPRS) {
2232 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2233
2234 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2235 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2236 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2237 }
2238
2239 if (flags & NVMM_X64_STATE_CRS) {
2240 /*
2241 * CR0_NE and CR4_VMXE are mandatory.
2242 */
2243 vmx_vmwrite(VMCS_GUEST_CR0,
2244 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2245 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2246 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2247 vmx_vmwrite(VMCS_GUEST_CR4,
2248 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2249 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2250
2251 if (vmx_xcr0_mask != 0) {
2252 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2253 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2254 cpudata->gxcr0 &= vmx_xcr0_mask;
2255 cpudata->gxcr0 |= XCR0_X87;
2256 }
2257 }
2258
2259 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2260 if (flags & NVMM_X64_STATE_DRS) {
2261 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2262
2263 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2264 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2265 }
2266
2267 if (flags & NVMM_X64_STATE_MSRS) {
2268 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2269 state->msrs[NVMM_X64_MSR_STAR];
2270 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2271 state->msrs[NVMM_X64_MSR_LSTAR];
2272 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2273 state->msrs[NVMM_X64_MSR_CSTAR];
2274 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2275 state->msrs[NVMM_X64_MSR_SFMASK];
2276 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2277 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2278
2279 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2280 state->msrs[NVMM_X64_MSR_EFER]);
2281 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2282 state->msrs[NVMM_X64_MSR_PAT]);
2283 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2284 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2285 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2286 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2287 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2288 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2289
2290 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2291 cpudata->gtsc_want_update = true;
2292
2293 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2294 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2295 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2296 ctls1 |= ENTRY_CTLS_LONG_MODE;
2297 } else {
2298 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2299 }
2300 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2301 }
2302
2303 if (flags & NVMM_X64_STATE_INTR) {
2304 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2305 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2306 if (state->intr.int_shadow) {
2307 intstate |= INT_STATE_MOVSS;
2308 }
2309 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2310
2311 if (state->intr.int_window_exiting) {
2312 vmx_event_waitexit_enable(vcpu, false);
2313 } else {
2314 vmx_event_waitexit_disable(vcpu, false);
2315 }
2316
2317 if (state->intr.nmi_window_exiting) {
2318 vmx_event_waitexit_enable(vcpu, true);
2319 } else {
2320 vmx_event_waitexit_disable(vcpu, true);
2321 }
2322 }
2323
2324 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2325 if (flags & NVMM_X64_STATE_FPU) {
2326 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2327 sizeof(state->fpu));
2328
2329 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2330 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2331 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2332
2333 if (vmx_xcr0_mask != 0) {
2334 /* Reset XSTATE_BV, to force a reload. */
2335 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2336 }
2337 }
2338
2339 vmx_vmcs_leave(vcpu);
2340 }
2341
2342 static void
2343 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2344 {
2345 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2346 struct vmx_cpudata *cpudata = vcpu->cpudata;
2347 uint64_t intstate;
2348
2349 vmx_vmcs_enter(vcpu);
2350
2351 if (flags & NVMM_X64_STATE_SEGS) {
2352 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2353 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2354 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2355 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2356 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2357 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2358 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2359 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2360 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2361 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2362 }
2363
2364 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2365 if (flags & NVMM_X64_STATE_GPRS) {
2366 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2367
2368 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2369 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2370 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2371 }
2372
2373 if (flags & NVMM_X64_STATE_CRS) {
2374 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2375 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2376 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2377 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2378 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2379 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2380
2381 /* Hide VMXE. */
2382 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2383 }
2384
2385 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2386 if (flags & NVMM_X64_STATE_DRS) {
2387 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2388
2389 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2390 }
2391
2392 if (flags & NVMM_X64_STATE_MSRS) {
2393 state->msrs[NVMM_X64_MSR_STAR] =
2394 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2395 state->msrs[NVMM_X64_MSR_LSTAR] =
2396 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2397 state->msrs[NVMM_X64_MSR_CSTAR] =
2398 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2399 state->msrs[NVMM_X64_MSR_SFMASK] =
2400 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2401 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2402 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2403 state->msrs[NVMM_X64_MSR_EFER] =
2404 vmx_vmread(VMCS_GUEST_IA32_EFER);
2405 state->msrs[NVMM_X64_MSR_PAT] =
2406 vmx_vmread(VMCS_GUEST_IA32_PAT);
2407 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2408 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2409 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2410 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2411 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2412 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2413 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2414 }
2415
2416 if (flags & NVMM_X64_STATE_INTR) {
2417 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2418 state->intr.int_shadow =
2419 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2420 state->intr.int_window_exiting = cpudata->int_window_exit;
2421 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2422 state->intr.evt_pending = cpudata->evt_pending;
2423 }
2424
2425 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2426 if (flags & NVMM_X64_STATE_FPU) {
2427 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2428 sizeof(state->fpu));
2429 }
2430
2431 vmx_vmcs_leave(vcpu);
2432 }
2433
2434 /* -------------------------------------------------------------------------- */
2435
2436 static void
2437 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2438 {
2439 struct vmx_cpudata *cpudata = vcpu->cpudata;
2440 size_t i, oct, bit;
2441
2442 mutex_enter(&vmx_asidlock);
2443
2444 for (i = 0; i < vmx_maxasid; i++) {
2445 oct = i / 8;
2446 bit = i % 8;
2447
2448 if (vmx_asidmap[oct] & __BIT(bit)) {
2449 continue;
2450 }
2451
2452 cpudata->asid = i;
2453
2454 vmx_asidmap[oct] |= __BIT(bit);
2455 vmx_vmwrite(VMCS_VPID, i);
2456 mutex_exit(&vmx_asidlock);
2457 return;
2458 }
2459
2460 mutex_exit(&vmx_asidlock);
2461
2462 panic("%s: impossible", __func__);
2463 }
2464
2465 static void
2466 vmx_asid_free(struct nvmm_cpu *vcpu)
2467 {
2468 size_t oct, bit;
2469 uint64_t asid;
2470
2471 asid = vmx_vmread(VMCS_VPID);
2472
2473 oct = asid / 8;
2474 bit = asid % 8;
2475
2476 mutex_enter(&vmx_asidlock);
2477 vmx_asidmap[oct] &= ~__BIT(bit);
2478 mutex_exit(&vmx_asidlock);
2479 }
2480
2481 static void
2482 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2483 {
2484 struct vmx_cpudata *cpudata = vcpu->cpudata;
2485 struct vmcs *vmcs = cpudata->vmcs;
2486 struct msr_entry *gmsr = cpudata->gmsr;
2487 extern uint8_t vmx_resume_rip;
2488 uint64_t rev, eptp;
2489
2490 rev = vmx_get_revision();
2491
2492 memset(vmcs, 0, VMCS_SIZE);
2493 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2494 vmcs->abort = 0;
2495
2496 vmx_vmcs_enter(vcpu);
2497
2498 /* No link pointer. */
2499 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2500
2501 /* Install the CTLSs. */
2502 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2503 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2504 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2505 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2506 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2507
2508 /* Allow direct access to certain MSRs. */
2509 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2510 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2511 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2512 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2513 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2514 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2515 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2516 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2517 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2518 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2519 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2520 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2521 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2522 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2523 true, false);
2524 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2525
2526 /*
2527 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2528 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2529 */
2530 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2531 gmsr[VMX_MSRLIST_STAR].val = 0;
2532 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2533 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2534 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2535 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2536 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2537 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2538 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2539 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2540 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2541 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2542 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2543 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2544 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2545 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2546
2547 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2548 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2549 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2550
2551 /* Force CR4_VMXE to zero. */
2552 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2553
2554 /* Set the Host state for resuming. */
2555 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2556 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2557 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2558 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2559 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2560 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2561 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2562 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2563 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2564 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2565 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2566 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2567 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2568 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2569
2570 /* Generate ASID. */
2571 vmx_asid_alloc(vcpu);
2572
2573 /* Enable Extended Paging, 4-Level. */
2574 eptp =
2575 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2576 __SHIFTIN(4-1, EPTP_WALKLEN) |
2577 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2578 mach->vm->vm_map.pmap->pm_pdirpa[0];
2579 vmx_vmwrite(VMCS_EPTP, eptp);
2580
2581 /* Init IA32_MISC_ENABLE. */
2582 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2583 cpudata->gmsr_misc_enable &=
2584 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2585 cpudata->gmsr_misc_enable |=
2586 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2587
2588 /* Init XSAVE header. */
2589 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2590 cpudata->gfpu.xsh_xcomp_bv = 0;
2591
2592 /* These MSRs are static. */
2593 cpudata->star = rdmsr(MSR_STAR);
2594 cpudata->cstar = rdmsr(MSR_CSTAR);
2595 cpudata->sfmask = rdmsr(MSR_SFMASK);
2596
2597 /* Install the RESET state. */
2598 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2599
2600 vmx_vmcs_leave(vcpu);
2601 }
2602
2603 static int
2604 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2605 {
2606 struct vmx_cpudata *cpudata;
2607 int error;
2608
2609 /* Allocate the VMX cpudata. */
2610 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2611 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2612 UVM_KMF_WIRED|UVM_KMF_ZERO);
2613 vcpu->cpudata = cpudata;
2614
2615 /* VMCS */
2616 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2617 VMCS_NPAGES);
2618 if (error)
2619 goto error;
2620
2621 /* MSR Bitmap */
2622 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2623 MSRBM_NPAGES);
2624 if (error)
2625 goto error;
2626
2627 /* Guest MSR List */
2628 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2629 if (error)
2630 goto error;
2631
2632 kcpuset_create(&cpudata->htlb_want_flush, true);
2633
2634 /* Init the VCPU info. */
2635 vmx_vcpu_init(mach, vcpu);
2636
2637 return 0;
2638
2639 error:
2640 if (cpudata->vmcs_pa) {
2641 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2642 VMCS_NPAGES);
2643 }
2644 if (cpudata->msrbm_pa) {
2645 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2646 MSRBM_NPAGES);
2647 }
2648 if (cpudata->gmsr_pa) {
2649 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2650 }
2651
2652 kmem_free(cpudata, sizeof(*cpudata));
2653 return error;
2654 }
2655
2656 static void
2657 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2658 {
2659 struct vmx_cpudata *cpudata = vcpu->cpudata;
2660
2661 vmx_vmcs_enter(vcpu);
2662 vmx_asid_free(vcpu);
2663 vmx_vmcs_destroy(vcpu);
2664
2665 kcpuset_destroy(cpudata->htlb_want_flush);
2666
2667 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2668 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2669 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2670 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2671 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2672 }
2673
2674 /* -------------------------------------------------------------------------- */
2675
2676 static void
2677 vmx_tlb_flush(struct pmap *pm)
2678 {
2679 struct nvmm_machine *mach = pm->pm_data;
2680 struct vmx_machdata *machdata = mach->machdata;
2681
2682 atomic_inc_64(&machdata->mach_htlb_gen);
2683
2684 /* Generates IPIs, which cause #VMEXITs. */
2685 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2686 }
2687
2688 static void
2689 vmx_machine_create(struct nvmm_machine *mach)
2690 {
2691 struct pmap *pmap = mach->vm->vm_map.pmap;
2692 struct vmx_machdata *machdata;
2693
2694 /* Convert to EPT. */
2695 pmap_ept_transform(pmap);
2696
2697 /* Fill in pmap info. */
2698 pmap->pm_data = (void *)mach;
2699 pmap->pm_tlb_flush = vmx_tlb_flush;
2700
2701 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2702 mach->machdata = machdata;
2703
2704 /* Start with an hTLB flush everywhere. */
2705 machdata->mach_htlb_gen = 1;
2706 }
2707
2708 static void
2709 vmx_machine_destroy(struct nvmm_machine *mach)
2710 {
2711 struct vmx_machdata *machdata = mach->machdata;
2712
2713 kmem_free(machdata, sizeof(struct vmx_machdata));
2714 }
2715
2716 static int
2717 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2718 {
2719 struct nvmm_x86_conf_cpuid *cpuid = data;
2720 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2721 size_t i;
2722
2723 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2724 return EINVAL;
2725 }
2726
2727 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2728 (cpuid->set.ebx & cpuid->del.ebx) ||
2729 (cpuid->set.ecx & cpuid->del.ecx) ||
2730 (cpuid->set.edx & cpuid->del.edx))) {
2731 return EINVAL;
2732 }
2733
2734 /* If already here, replace. */
2735 for (i = 0; i < VMX_NCPUIDS; i++) {
2736 if (!machdata->cpuidpresent[i]) {
2737 continue;
2738 }
2739 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2740 memcpy(&machdata->cpuid[i], cpuid,
2741 sizeof(struct nvmm_x86_conf_cpuid));
2742 return 0;
2743 }
2744 }
2745
2746 /* Not here, insert. */
2747 for (i = 0; i < VMX_NCPUIDS; i++) {
2748 if (!machdata->cpuidpresent[i]) {
2749 machdata->cpuidpresent[i] = true;
2750 memcpy(&machdata->cpuid[i], cpuid,
2751 sizeof(struct nvmm_x86_conf_cpuid));
2752 return 0;
2753 }
2754 }
2755
2756 return ENOBUFS;
2757 }
2758
2759 /* -------------------------------------------------------------------------- */
2760
2761 static int
2762 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2763 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2764 {
2765 uint64_t basic, val, true_val;
2766 bool one_allowed, zero_allowed, has_true;
2767 size_t i;
2768
2769 basic = rdmsr(MSR_IA32_VMX_BASIC);
2770 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2771
2772 val = rdmsr(msr_ctls);
2773 if (has_true) {
2774 true_val = rdmsr(msr_true_ctls);
2775 } else {
2776 true_val = val;
2777 }
2778
2779 #define ONE_ALLOWED(msrval, bitoff) \
2780 ((msrval & __BIT(32 + bitoff)) != 0)
2781 #define ZERO_ALLOWED(msrval, bitoff) \
2782 ((msrval & __BIT(bitoff)) == 0)
2783
2784 for (i = 0; i < 32; i++) {
2785 one_allowed = ONE_ALLOWED(true_val, i);
2786 zero_allowed = ZERO_ALLOWED(true_val, i);
2787
2788 if (zero_allowed && !one_allowed) {
2789 if (set_one & __BIT(i))
2790 return -1;
2791 *res &= ~__BIT(i);
2792 } else if (one_allowed && !zero_allowed) {
2793 if (set_zero & __BIT(i))
2794 return -1;
2795 *res |= __BIT(i);
2796 } else {
2797 if (set_zero & __BIT(i)) {
2798 *res &= ~__BIT(i);
2799 } else if (set_one & __BIT(i)) {
2800 *res |= __BIT(i);
2801 } else if (!has_true) {
2802 *res &= ~__BIT(i);
2803 } else if (ZERO_ALLOWED(val, i)) {
2804 *res &= ~__BIT(i);
2805 } else if (ONE_ALLOWED(val, i)) {
2806 *res |= __BIT(i);
2807 } else {
2808 return -1;
2809 }
2810 }
2811 }
2812
2813 return 0;
2814 }
2815
2816 static bool
2817 vmx_ident(void)
2818 {
2819 uint64_t msr;
2820 int ret;
2821
2822 if (!(cpu_feature[1] & CPUID2_VMX)) {
2823 return false;
2824 }
2825
2826 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2827 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2828 return false;
2829 }
2830
2831 msr = rdmsr(MSR_IA32_VMX_BASIC);
2832 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2833 return false;
2834 }
2835 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2836 return false;
2837 }
2838
2839 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2840 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2841 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2842 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2843 if (ret == -1) {
2844 return false;
2845 }
2846
2847 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2848 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2849 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2850 if (ret == -1) {
2851 return false;
2852 }
2853
2854 /* Init the CTLSs right now, and check for errors. */
2855 ret = vmx_init_ctls(
2856 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2857 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2858 &vmx_pinbased_ctls);
2859 if (ret == -1) {
2860 return false;
2861 }
2862 ret = vmx_init_ctls(
2863 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2864 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2865 &vmx_procbased_ctls);
2866 if (ret == -1) {
2867 return false;
2868 }
2869 ret = vmx_init_ctls(
2870 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2871 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2872 &vmx_procbased_ctls2);
2873 if (ret == -1) {
2874 return false;
2875 }
2876 ret = vmx_init_ctls(
2877 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2878 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2879 &vmx_entry_ctls);
2880 if (ret == -1) {
2881 return false;
2882 }
2883 ret = vmx_init_ctls(
2884 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2885 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2886 &vmx_exit_ctls);
2887 if (ret == -1) {
2888 return false;
2889 }
2890
2891 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2892 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2893 return false;
2894 }
2895 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2896 return false;
2897 }
2898 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2899 return false;
2900 }
2901 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2902 pmap_ept_has_ad = true;
2903 } else {
2904 pmap_ept_has_ad = false;
2905 }
2906 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2907 return false;
2908 }
2909
2910 return true;
2911 }
2912
2913 static void
2914 vmx_init_asid(uint32_t maxasid)
2915 {
2916 size_t allocsz;
2917
2918 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2919
2920 vmx_maxasid = maxasid;
2921 allocsz = roundup(maxasid, 8) / 8;
2922 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2923
2924 /* ASID 0 is reserved for the host. */
2925 vmx_asidmap[0] |= __BIT(0);
2926 }
2927
2928 static void
2929 vmx_change_cpu(void *arg1, void *arg2)
2930 {
2931 struct cpu_info *ci = curcpu();
2932 bool enable = (bool)arg1;
2933 uint64_t cr4;
2934
2935 if (!enable) {
2936 vmx_vmxoff();
2937 }
2938
2939 cr4 = rcr4();
2940 if (enable) {
2941 cr4 |= CR4_VMXE;
2942 } else {
2943 cr4 &= ~CR4_VMXE;
2944 }
2945 lcr4(cr4);
2946
2947 if (enable) {
2948 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2949 }
2950 }
2951
2952 static void
2953 vmx_init_l1tf(void)
2954 {
2955 u_int descs[4];
2956 uint64_t msr;
2957
2958 if (cpuid_level < 7) {
2959 return;
2960 }
2961
2962 x86_cpuid(7, descs);
2963
2964 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2965 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2966 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2967 /* No mitigation needed. */
2968 return;
2969 }
2970 }
2971
2972 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2973 /* Enable hardware mitigation. */
2974 vmx_msrlist_entry_nmsr += 1;
2975 }
2976 }
2977
2978 static void
2979 vmx_init(void)
2980 {
2981 CPU_INFO_ITERATOR cii;
2982 struct cpu_info *ci;
2983 uint64_t xc, msr;
2984 struct vmxon *vmxon;
2985 uint32_t revision;
2986 paddr_t pa;
2987 vaddr_t va;
2988 int error;
2989
2990 /* Init the ASID bitmap (VPID). */
2991 vmx_init_asid(VPID_MAX);
2992
2993 /* Init the XCR0 mask. */
2994 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
2995
2996 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
2997 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2998 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
2999 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3000 } else {
3001 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3002 }
3003 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3004 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3005 } else {
3006 vmx_ept_flush_op = VMX_INVEPT_ALL;
3007 }
3008 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3009 vmx_eptp_type = EPTP_TYPE_WB;
3010 } else {
3011 vmx_eptp_type = EPTP_TYPE_UC;
3012 }
3013
3014 /* Init the L1TF mitigation. */
3015 vmx_init_l1tf();
3016
3017 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3018 revision = vmx_get_revision();
3019
3020 for (CPU_INFO_FOREACH(cii, ci)) {
3021 error = vmx_memalloc(&pa, &va, 1);
3022 if (error) {
3023 panic("%s: out of memory", __func__);
3024 }
3025 vmxoncpu[cpu_index(ci)].pa = pa;
3026 vmxoncpu[cpu_index(ci)].va = va;
3027
3028 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3029 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3030 }
3031
3032 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3033 xc_wait(xc);
3034 }
3035
3036 static void
3037 vmx_fini_asid(void)
3038 {
3039 size_t allocsz;
3040
3041 allocsz = roundup(vmx_maxasid, 8) / 8;
3042 kmem_free(vmx_asidmap, allocsz);
3043
3044 mutex_destroy(&vmx_asidlock);
3045 }
3046
3047 static void
3048 vmx_fini(void)
3049 {
3050 uint64_t xc;
3051 size_t i;
3052
3053 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3054 xc_wait(xc);
3055
3056 for (i = 0; i < MAXCPUS; i++) {
3057 if (vmxoncpu[i].pa != 0)
3058 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3059 }
3060
3061 vmx_fini_asid();
3062 }
3063
3064 static void
3065 vmx_capability(struct nvmm_capability *cap)
3066 {
3067 cap->u.x86.xcr0_mask = vmx_xcr0_mask;
3068 cap->u.x86.mxcsr_mask = x86_fpu_mxcsr_mask;
3069 cap->u.x86.conf_cpuid_maxops = VMX_NCPUIDS;
3070 }
3071
3072 const struct nvmm_impl nvmm_x86_vmx = {
3073 .ident = vmx_ident,
3074 .init = vmx_init,
3075 .fini = vmx_fini,
3076 .capability = vmx_capability,
3077 .conf_max = NVMM_X86_NCONF,
3078 .conf_sizes = vmx_conf_sizes,
3079 .state_size = sizeof(struct nvmm_x64_state),
3080 .machine_create = vmx_machine_create,
3081 .machine_destroy = vmx_machine_destroy,
3082 .machine_configure = vmx_machine_configure,
3083 .vcpu_create = vmx_vcpu_create,
3084 .vcpu_destroy = vmx_vcpu_destroy,
3085 .vcpu_setstate = vmx_vcpu_setstate,
3086 .vcpu_getstate = vmx_vcpu_getstate,
3087 .vcpu_inject = vmx_vcpu_inject,
3088 .vcpu_run = vmx_vcpu_run
3089 };
3090