nvmm_x86_vmx.c revision 1.30 1 /* $NetBSD: nvmm_x86_vmx.c,v 1.30 2019/04/27 15:45:21 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Maxime Villard.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_vmx.c,v 1.30 2019/04/27 15:45:21 maxv Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/kmem.h>
39 #include <sys/cpu.h>
40 #include <sys/xcall.h>
41 #include <sys/mman.h>
42
43 #include <uvm/uvm.h>
44 #include <uvm/uvm_page.h>
45
46 #include <x86/cputypes.h>
47 #include <x86/specialreg.h>
48 #include <x86/pmap.h>
49 #include <x86/dbregs.h>
50 #include <x86/cpu_counter.h>
51 #include <machine/cpuvar.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int _vmx_vmxon(paddr_t *pa);
58 int _vmx_vmxoff(void);
59 int vmx_vmlaunch(uint64_t *gprs);
60 int vmx_vmresume(uint64_t *gprs);
61
62 #define vmx_vmxon(a) \
63 if (__predict_false(_vmx_vmxon(a) != 0)) { \
64 panic("%s: VMXON failed", __func__); \
65 }
66 #define vmx_vmxoff() \
67 if (__predict_false(_vmx_vmxoff() != 0)) { \
68 panic("%s: VMXOFF failed", __func__); \
69 }
70
71 struct ept_desc {
72 uint64_t eptp;
73 uint64_t mbz;
74 } __packed;
75
76 struct vpid_desc {
77 uint64_t vpid;
78 uint64_t addr;
79 } __packed;
80
81 static inline void
82 vmx_invept(uint64_t op, struct ept_desc *desc)
83 {
84 asm volatile (
85 "invept %[desc],%[op];"
86 "jz vmx_insn_failvalid;"
87 "jc vmx_insn_failinvalid;"
88 :
89 : [desc] "m" (*desc), [op] "r" (op)
90 : "memory", "cc"
91 );
92 }
93
94 static inline void
95 vmx_invvpid(uint64_t op, struct vpid_desc *desc)
96 {
97 asm volatile (
98 "invvpid %[desc],%[op];"
99 "jz vmx_insn_failvalid;"
100 "jc vmx_insn_failinvalid;"
101 :
102 : [desc] "m" (*desc), [op] "r" (op)
103 : "memory", "cc"
104 );
105 }
106
107 static inline uint64_t
108 vmx_vmread(uint64_t field)
109 {
110 uint64_t value;
111
112 asm volatile (
113 "vmread %[field],%[value];"
114 "jz vmx_insn_failvalid;"
115 "jc vmx_insn_failinvalid;"
116 : [value] "=r" (value)
117 : [field] "r" (field)
118 : "cc"
119 );
120
121 return value;
122 }
123
124 static inline void
125 vmx_vmwrite(uint64_t field, uint64_t value)
126 {
127 asm volatile (
128 "vmwrite %[value],%[field];"
129 "jz vmx_insn_failvalid;"
130 "jc vmx_insn_failinvalid;"
131 :
132 : [field] "r" (field), [value] "r" (value)
133 : "cc"
134 );
135 }
136
137 static inline paddr_t
138 vmx_vmptrst(void)
139 {
140 paddr_t pa;
141
142 asm volatile (
143 "vmptrst %[pa];"
144 :
145 : [pa] "m" (*(paddr_t *)&pa)
146 : "memory"
147 );
148
149 return pa;
150 }
151
152 static inline void
153 vmx_vmptrld(paddr_t *pa)
154 {
155 asm volatile (
156 "vmptrld %[pa];"
157 "jz vmx_insn_failvalid;"
158 "jc vmx_insn_failinvalid;"
159 :
160 : [pa] "m" (*pa)
161 : "memory", "cc"
162 );
163 }
164
165 static inline void
166 vmx_vmclear(paddr_t *pa)
167 {
168 asm volatile (
169 "vmclear %[pa];"
170 "jz vmx_insn_failvalid;"
171 "jc vmx_insn_failinvalid;"
172 :
173 : [pa] "m" (*pa)
174 : "memory", "cc"
175 );
176 }
177
178 #define MSR_IA32_FEATURE_CONTROL 0x003A
179 #define IA32_FEATURE_CONTROL_LOCK __BIT(0)
180 #define IA32_FEATURE_CONTROL_IN_SMX __BIT(1)
181 #define IA32_FEATURE_CONTROL_OUT_SMX __BIT(2)
182
183 #define MSR_IA32_VMX_BASIC 0x0480
184 #define IA32_VMX_BASIC_IDENT __BITS(30,0)
185 #define IA32_VMX_BASIC_DATA_SIZE __BITS(44,32)
186 #define IA32_VMX_BASIC_MEM_WIDTH __BIT(48)
187 #define IA32_VMX_BASIC_DUAL __BIT(49)
188 #define IA32_VMX_BASIC_MEM_TYPE __BITS(53,50)
189 #define MEM_TYPE_UC 0
190 #define MEM_TYPE_WB 6
191 #define IA32_VMX_BASIC_IO_REPORT __BIT(54)
192 #define IA32_VMX_BASIC_TRUE_CTLS __BIT(55)
193
194 #define MSR_IA32_VMX_PINBASED_CTLS 0x0481
195 #define MSR_IA32_VMX_PROCBASED_CTLS 0x0482
196 #define MSR_IA32_VMX_EXIT_CTLS 0x0483
197 #define MSR_IA32_VMX_ENTRY_CTLS 0x0484
198 #define MSR_IA32_VMX_PROCBASED_CTLS2 0x048B
199
200 #define MSR_IA32_VMX_TRUE_PINBASED_CTLS 0x048D
201 #define MSR_IA32_VMX_TRUE_PROCBASED_CTLS 0x048E
202 #define MSR_IA32_VMX_TRUE_EXIT_CTLS 0x048F
203 #define MSR_IA32_VMX_TRUE_ENTRY_CTLS 0x0490
204
205 #define MSR_IA32_VMX_CR0_FIXED0 0x0486
206 #define MSR_IA32_VMX_CR0_FIXED1 0x0487
207 #define MSR_IA32_VMX_CR4_FIXED0 0x0488
208 #define MSR_IA32_VMX_CR4_FIXED1 0x0489
209
210 #define MSR_IA32_VMX_EPT_VPID_CAP 0x048C
211 #define IA32_VMX_EPT_VPID_WALKLENGTH_4 __BIT(6)
212 #define IA32_VMX_EPT_VPID_UC __BIT(8)
213 #define IA32_VMX_EPT_VPID_WB __BIT(14)
214 #define IA32_VMX_EPT_VPID_INVEPT __BIT(20)
215 #define IA32_VMX_EPT_VPID_FLAGS_AD __BIT(21)
216 #define IA32_VMX_EPT_VPID_INVEPT_CONTEXT __BIT(25)
217 #define IA32_VMX_EPT_VPID_INVEPT_ALL __BIT(26)
218 #define IA32_VMX_EPT_VPID_INVVPID __BIT(32)
219 #define IA32_VMX_EPT_VPID_INVVPID_ADDR __BIT(40)
220 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT __BIT(41)
221 #define IA32_VMX_EPT_VPID_INVVPID_ALL __BIT(42)
222 #define IA32_VMX_EPT_VPID_INVVPID_CONTEXT_NOG __BIT(43)
223
224 /* -------------------------------------------------------------------------- */
225
226 /* 16-bit control fields */
227 #define VMCS_VPID 0x00000000
228 #define VMCS_PIR_VECTOR 0x00000002
229 #define VMCS_EPTP_INDEX 0x00000004
230 /* 16-bit guest-state fields */
231 #define VMCS_GUEST_ES_SELECTOR 0x00000800
232 #define VMCS_GUEST_CS_SELECTOR 0x00000802
233 #define VMCS_GUEST_SS_SELECTOR 0x00000804
234 #define VMCS_GUEST_DS_SELECTOR 0x00000806
235 #define VMCS_GUEST_FS_SELECTOR 0x00000808
236 #define VMCS_GUEST_GS_SELECTOR 0x0000080A
237 #define VMCS_GUEST_LDTR_SELECTOR 0x0000080C
238 #define VMCS_GUEST_TR_SELECTOR 0x0000080E
239 #define VMCS_GUEST_INTR_STATUS 0x00000810
240 #define VMCS_PML_INDEX 0x00000812
241 /* 16-bit host-state fields */
242 #define VMCS_HOST_ES_SELECTOR 0x00000C00
243 #define VMCS_HOST_CS_SELECTOR 0x00000C02
244 #define VMCS_HOST_SS_SELECTOR 0x00000C04
245 #define VMCS_HOST_DS_SELECTOR 0x00000C06
246 #define VMCS_HOST_FS_SELECTOR 0x00000C08
247 #define VMCS_HOST_GS_SELECTOR 0x00000C0A
248 #define VMCS_HOST_TR_SELECTOR 0x00000C0C
249 /* 64-bit control fields */
250 #define VMCS_IO_BITMAP_A 0x00002000
251 #define VMCS_IO_BITMAP_B 0x00002002
252 #define VMCS_MSR_BITMAP 0x00002004
253 #define VMCS_EXIT_MSR_STORE_ADDRESS 0x00002006
254 #define VMCS_EXIT_MSR_LOAD_ADDRESS 0x00002008
255 #define VMCS_ENTRY_MSR_LOAD_ADDRESS 0x0000200A
256 #define VMCS_EXECUTIVE_VMCS 0x0000200C
257 #define VMCS_PML_ADDRESS 0x0000200E
258 #define VMCS_TSC_OFFSET 0x00002010
259 #define VMCS_VIRTUAL_APIC 0x00002012
260 #define VMCS_APIC_ACCESS 0x00002014
261 #define VMCS_PIR_DESC 0x00002016
262 #define VMCS_VM_CONTROL 0x00002018
263 #define VMCS_EPTP 0x0000201A
264 #define EPTP_TYPE __BITS(2,0)
265 #define EPTP_TYPE_UC 0
266 #define EPTP_TYPE_WB 6
267 #define EPTP_WALKLEN __BITS(5,3)
268 #define EPTP_FLAGS_AD __BIT(6)
269 #define EPTP_PHYSADDR __BITS(63,12)
270 #define VMCS_EOI_EXIT0 0x0000201C
271 #define VMCS_EOI_EXIT1 0x0000201E
272 #define VMCS_EOI_EXIT2 0x00002020
273 #define VMCS_EOI_EXIT3 0x00002022
274 #define VMCS_EPTP_LIST 0x00002024
275 #define VMCS_VMREAD_BITMAP 0x00002026
276 #define VMCS_VMWRITE_BITMAP 0x00002028
277 #define VMCS_VIRTUAL_EXCEPTION 0x0000202A
278 #define VMCS_XSS_EXIT_BITMAP 0x0000202C
279 #define VMCS_ENCLS_EXIT_BITMAP 0x0000202E
280 #define VMCS_SUBPAGE_PERM_TABLE_PTR 0x00002030
281 #define VMCS_TSC_MULTIPLIER 0x00002032
282 /* 64-bit read-only fields */
283 #define VMCS_GUEST_PHYSICAL_ADDRESS 0x00002400
284 /* 64-bit guest-state fields */
285 #define VMCS_LINK_POINTER 0x00002800
286 #define VMCS_GUEST_IA32_DEBUGCTL 0x00002802
287 #define VMCS_GUEST_IA32_PAT 0x00002804
288 #define VMCS_GUEST_IA32_EFER 0x00002806
289 #define VMCS_GUEST_IA32_PERF_GLOBAL_CTRL 0x00002808
290 #define VMCS_GUEST_PDPTE0 0x0000280A
291 #define VMCS_GUEST_PDPTE1 0x0000280C
292 #define VMCS_GUEST_PDPTE2 0x0000280E
293 #define VMCS_GUEST_PDPTE3 0x00002810
294 #define VMCS_GUEST_BNDCFGS 0x00002812
295 /* 64-bit host-state fields */
296 #define VMCS_HOST_IA32_PAT 0x00002C00
297 #define VMCS_HOST_IA32_EFER 0x00002C02
298 #define VMCS_HOST_IA32_PERF_GLOBAL_CTRL 0x00002C04
299 /* 32-bit control fields */
300 #define VMCS_PINBASED_CTLS 0x00004000
301 #define PIN_CTLS_INT_EXITING __BIT(0)
302 #define PIN_CTLS_NMI_EXITING __BIT(3)
303 #define PIN_CTLS_VIRTUAL_NMIS __BIT(5)
304 #define PIN_CTLS_ACTIVATE_PREEMPT_TIMER __BIT(6)
305 #define PIN_CTLS_PROCESS_POSTED_INTS __BIT(7)
306 #define VMCS_PROCBASED_CTLS 0x00004002
307 #define PROC_CTLS_INT_WINDOW_EXITING __BIT(2)
308 #define PROC_CTLS_USE_TSC_OFFSETTING __BIT(3)
309 #define PROC_CTLS_HLT_EXITING __BIT(7)
310 #define PROC_CTLS_INVLPG_EXITING __BIT(9)
311 #define PROC_CTLS_MWAIT_EXITING __BIT(10)
312 #define PROC_CTLS_RDPMC_EXITING __BIT(11)
313 #define PROC_CTLS_RDTSC_EXITING __BIT(12)
314 #define PROC_CTLS_RCR3_EXITING __BIT(15)
315 #define PROC_CTLS_LCR3_EXITING __BIT(16)
316 #define PROC_CTLS_RCR8_EXITING __BIT(19)
317 #define PROC_CTLS_LCR8_EXITING __BIT(20)
318 #define PROC_CTLS_USE_TPR_SHADOW __BIT(21)
319 #define PROC_CTLS_NMI_WINDOW_EXITING __BIT(22)
320 #define PROC_CTLS_DR_EXITING __BIT(23)
321 #define PROC_CTLS_UNCOND_IO_EXITING __BIT(24)
322 #define PROC_CTLS_USE_IO_BITMAPS __BIT(25)
323 #define PROC_CTLS_MONITOR_TRAP_FLAG __BIT(27)
324 #define PROC_CTLS_USE_MSR_BITMAPS __BIT(28)
325 #define PROC_CTLS_MONITOR_EXITING __BIT(29)
326 #define PROC_CTLS_PAUSE_EXITING __BIT(30)
327 #define PROC_CTLS_ACTIVATE_CTLS2 __BIT(31)
328 #define VMCS_EXCEPTION_BITMAP 0x00004004
329 #define VMCS_PF_ERROR_MASK 0x00004006
330 #define VMCS_PF_ERROR_MATCH 0x00004008
331 #define VMCS_CR3_TARGET_COUNT 0x0000400A
332 #define VMCS_EXIT_CTLS 0x0000400C
333 #define EXIT_CTLS_SAVE_DEBUG_CONTROLS __BIT(2)
334 #define EXIT_CTLS_HOST_LONG_MODE __BIT(9)
335 #define EXIT_CTLS_LOAD_PERFGLOBALCTRL __BIT(12)
336 #define EXIT_CTLS_ACK_INTERRUPT __BIT(15)
337 #define EXIT_CTLS_SAVE_PAT __BIT(18)
338 #define EXIT_CTLS_LOAD_PAT __BIT(19)
339 #define EXIT_CTLS_SAVE_EFER __BIT(20)
340 #define EXIT_CTLS_LOAD_EFER __BIT(21)
341 #define EXIT_CTLS_SAVE_PREEMPT_TIMER __BIT(22)
342 #define EXIT_CTLS_CLEAR_BNDCFGS __BIT(23)
343 #define EXIT_CTLS_CONCEAL_PT __BIT(24)
344 #define VMCS_EXIT_MSR_STORE_COUNT 0x0000400E
345 #define VMCS_EXIT_MSR_LOAD_COUNT 0x00004010
346 #define VMCS_ENTRY_CTLS 0x00004012
347 #define ENTRY_CTLS_LOAD_DEBUG_CONTROLS __BIT(2)
348 #define ENTRY_CTLS_LONG_MODE __BIT(9)
349 #define ENTRY_CTLS_SMM __BIT(10)
350 #define ENTRY_CTLS_DISABLE_DUAL __BIT(11)
351 #define ENTRY_CTLS_LOAD_PERFGLOBALCTRL __BIT(13)
352 #define ENTRY_CTLS_LOAD_PAT __BIT(14)
353 #define ENTRY_CTLS_LOAD_EFER __BIT(15)
354 #define ENTRY_CTLS_LOAD_BNDCFGS __BIT(16)
355 #define ENTRY_CTLS_CONCEAL_PT __BIT(17)
356 #define VMCS_ENTRY_MSR_LOAD_COUNT 0x00004014
357 #define VMCS_ENTRY_INTR_INFO 0x00004016
358 #define INTR_INFO_VECTOR __BITS(7,0)
359 #define INTR_INFO_TYPE __BITS(10,8)
360 #define INTR_TYPE_EXT_INT 0
361 #define INTR_TYPE_NMI 2
362 #define INTR_TYPE_HW_EXC 3
363 #define INTR_TYPE_SW_INT 4
364 #define INTR_TYPE_PRIV_SW_EXC 5
365 #define INTR_TYPE_SW_EXC 6
366 #define INTR_TYPE_OTHER 7
367 #define INTR_INFO_ERROR __BIT(11)
368 #define INTR_INFO_VALID __BIT(31)
369 #define VMCS_ENTRY_EXCEPTION_ERROR 0x00004018
370 #define VMCS_ENTRY_INST_LENGTH 0x0000401A
371 #define VMCS_TPR_THRESHOLD 0x0000401C
372 #define VMCS_PROCBASED_CTLS2 0x0000401E
373 #define PROC_CTLS2_VIRT_APIC_ACCESSES __BIT(0)
374 #define PROC_CTLS2_ENABLE_EPT __BIT(1)
375 #define PROC_CTLS2_DESC_TABLE_EXITING __BIT(2)
376 #define PROC_CTLS2_ENABLE_RDTSCP __BIT(3)
377 #define PROC_CTLS2_VIRT_X2APIC __BIT(4)
378 #define PROC_CTLS2_ENABLE_VPID __BIT(5)
379 #define PROC_CTLS2_WBINVD_EXITING __BIT(6)
380 #define PROC_CTLS2_UNRESTRICTED_GUEST __BIT(7)
381 #define PROC_CTLS2_APIC_REG_VIRT __BIT(8)
382 #define PROC_CTLS2_VIRT_INT_DELIVERY __BIT(9)
383 #define PROC_CTLS2_PAUSE_LOOP_EXITING __BIT(10)
384 #define PROC_CTLS2_RDRAND_EXITING __BIT(11)
385 #define PROC_CTLS2_INVPCID_ENABLE __BIT(12)
386 #define PROC_CTLS2_VMFUNC_ENABLE __BIT(13)
387 #define PROC_CTLS2_VMCS_SHADOWING __BIT(14)
388 #define PROC_CTLS2_ENCLS_EXITING __BIT(15)
389 #define PROC_CTLS2_RDSEED_EXITING __BIT(16)
390 #define PROC_CTLS2_PML_ENABLE __BIT(17)
391 #define PROC_CTLS2_EPT_VIOLATION __BIT(18)
392 #define PROC_CTLS2_CONCEAL_VMX_FROM_PT __BIT(19)
393 #define PROC_CTLS2_XSAVES_ENABLE __BIT(20)
394 #define PROC_CTLS2_MODE_BASED_EXEC_EPT __BIT(22)
395 #define PROC_CTLS2_SUBPAGE_PERMISSIONS __BIT(23)
396 #define PROC_CTLS2_USE_TSC_SCALING __BIT(25)
397 #define PROC_CTLS2_ENCLV_EXITING __BIT(28)
398 #define VMCS_PLE_GAP 0x00004020
399 #define VMCS_PLE_WINDOW 0x00004022
400 /* 32-bit read-only data fields */
401 #define VMCS_INSTRUCTION_ERROR 0x00004400
402 #define VMCS_EXIT_REASON 0x00004402
403 #define VMCS_EXIT_INTR_INFO 0x00004404
404 #define VMCS_EXIT_INTR_ERRCODE 0x00004406
405 #define VMCS_IDT_VECTORING_INFO 0x00004408
406 #define VMCS_IDT_VECTORING_ERROR 0x0000440A
407 #define VMCS_EXIT_INSTRUCTION_LENGTH 0x0000440C
408 #define VMCS_EXIT_INSTRUCTION_INFO 0x0000440E
409 /* 32-bit guest-state fields */
410 #define VMCS_GUEST_ES_LIMIT 0x00004800
411 #define VMCS_GUEST_CS_LIMIT 0x00004802
412 #define VMCS_GUEST_SS_LIMIT 0x00004804
413 #define VMCS_GUEST_DS_LIMIT 0x00004806
414 #define VMCS_GUEST_FS_LIMIT 0x00004808
415 #define VMCS_GUEST_GS_LIMIT 0x0000480A
416 #define VMCS_GUEST_LDTR_LIMIT 0x0000480C
417 #define VMCS_GUEST_TR_LIMIT 0x0000480E
418 #define VMCS_GUEST_GDTR_LIMIT 0x00004810
419 #define VMCS_GUEST_IDTR_LIMIT 0x00004812
420 #define VMCS_GUEST_ES_ACCESS_RIGHTS 0x00004814
421 #define VMCS_GUEST_CS_ACCESS_RIGHTS 0x00004816
422 #define VMCS_GUEST_SS_ACCESS_RIGHTS 0x00004818
423 #define VMCS_GUEST_DS_ACCESS_RIGHTS 0x0000481A
424 #define VMCS_GUEST_FS_ACCESS_RIGHTS 0x0000481C
425 #define VMCS_GUEST_GS_ACCESS_RIGHTS 0x0000481E
426 #define VMCS_GUEST_LDTR_ACCESS_RIGHTS 0x00004820
427 #define VMCS_GUEST_TR_ACCESS_RIGHTS 0x00004822
428 #define VMCS_GUEST_INTERRUPTIBILITY 0x00004824
429 #define INT_STATE_STI __BIT(0)
430 #define INT_STATE_MOVSS __BIT(1)
431 #define INT_STATE_SMI __BIT(2)
432 #define INT_STATE_NMI __BIT(3)
433 #define INT_STATE_ENCLAVE __BIT(4)
434 #define VMCS_GUEST_ACTIVITY 0x00004826
435 #define VMCS_GUEST_SMBASE 0x00004828
436 #define VMCS_GUEST_IA32_SYSENTER_CS 0x0000482A
437 #define VMCS_PREEMPTION_TIMER_VALUE 0x0000482E
438 /* 32-bit host state fields */
439 #define VMCS_HOST_IA32_SYSENTER_CS 0x00004C00
440 /* Natural-Width control fields */
441 #define VMCS_CR0_MASK 0x00006000
442 #define VMCS_CR4_MASK 0x00006002
443 #define VMCS_CR0_SHADOW 0x00006004
444 #define VMCS_CR4_SHADOW 0x00006006
445 #define VMCS_CR3_TARGET0 0x00006008
446 #define VMCS_CR3_TARGET1 0x0000600A
447 #define VMCS_CR3_TARGET2 0x0000600C
448 #define VMCS_CR3_TARGET3 0x0000600E
449 /* Natural-Width read-only fields */
450 #define VMCS_EXIT_QUALIFICATION 0x00006400
451 #define VMCS_IO_RCX 0x00006402
452 #define VMCS_IO_RSI 0x00006404
453 #define VMCS_IO_RDI 0x00006406
454 #define VMCS_IO_RIP 0x00006408
455 #define VMCS_GUEST_LINEAR_ADDRESS 0x0000640A
456 /* Natural-Width guest-state fields */
457 #define VMCS_GUEST_CR0 0x00006800
458 #define VMCS_GUEST_CR3 0x00006802
459 #define VMCS_GUEST_CR4 0x00006804
460 #define VMCS_GUEST_ES_BASE 0x00006806
461 #define VMCS_GUEST_CS_BASE 0x00006808
462 #define VMCS_GUEST_SS_BASE 0x0000680A
463 #define VMCS_GUEST_DS_BASE 0x0000680C
464 #define VMCS_GUEST_FS_BASE 0x0000680E
465 #define VMCS_GUEST_GS_BASE 0x00006810
466 #define VMCS_GUEST_LDTR_BASE 0x00006812
467 #define VMCS_GUEST_TR_BASE 0x00006814
468 #define VMCS_GUEST_GDTR_BASE 0x00006816
469 #define VMCS_GUEST_IDTR_BASE 0x00006818
470 #define VMCS_GUEST_DR7 0x0000681A
471 #define VMCS_GUEST_RSP 0x0000681C
472 #define VMCS_GUEST_RIP 0x0000681E
473 #define VMCS_GUEST_RFLAGS 0x00006820
474 #define VMCS_GUEST_PENDING_DBG_EXCEPTIONS 0x00006822
475 #define VMCS_GUEST_IA32_SYSENTER_ESP 0x00006824
476 #define VMCS_GUEST_IA32_SYSENTER_EIP 0x00006826
477 /* Natural-Width host-state fields */
478 #define VMCS_HOST_CR0 0x00006C00
479 #define VMCS_HOST_CR3 0x00006C02
480 #define VMCS_HOST_CR4 0x00006C04
481 #define VMCS_HOST_FS_BASE 0x00006C06
482 #define VMCS_HOST_GS_BASE 0x00006C08
483 #define VMCS_HOST_TR_BASE 0x00006C0A
484 #define VMCS_HOST_GDTR_BASE 0x00006C0C
485 #define VMCS_HOST_IDTR_BASE 0x00006C0E
486 #define VMCS_HOST_IA32_SYSENTER_ESP 0x00006C10
487 #define VMCS_HOST_IA32_SYSENTER_EIP 0x00006C12
488 #define VMCS_HOST_RSP 0x00006C14
489 #define VMCS_HOST_RIP 0x00006c16
490
491 /* VMX basic exit reasons. */
492 #define VMCS_EXITCODE_EXC_NMI 0
493 #define VMCS_EXITCODE_EXT_INT 1
494 #define VMCS_EXITCODE_SHUTDOWN 2
495 #define VMCS_EXITCODE_INIT 3
496 #define VMCS_EXITCODE_SIPI 4
497 #define VMCS_EXITCODE_SMI 5
498 #define VMCS_EXITCODE_OTHER_SMI 6
499 #define VMCS_EXITCODE_INT_WINDOW 7
500 #define VMCS_EXITCODE_NMI_WINDOW 8
501 #define VMCS_EXITCODE_TASK_SWITCH 9
502 #define VMCS_EXITCODE_CPUID 10
503 #define VMCS_EXITCODE_GETSEC 11
504 #define VMCS_EXITCODE_HLT 12
505 #define VMCS_EXITCODE_INVD 13
506 #define VMCS_EXITCODE_INVLPG 14
507 #define VMCS_EXITCODE_RDPMC 15
508 #define VMCS_EXITCODE_RDTSC 16
509 #define VMCS_EXITCODE_RSM 17
510 #define VMCS_EXITCODE_VMCALL 18
511 #define VMCS_EXITCODE_VMCLEAR 19
512 #define VMCS_EXITCODE_VMLAUNCH 20
513 #define VMCS_EXITCODE_VMPTRLD 21
514 #define VMCS_EXITCODE_VMPTRST 22
515 #define VMCS_EXITCODE_VMREAD 23
516 #define VMCS_EXITCODE_VMRESUME 24
517 #define VMCS_EXITCODE_VMWRITE 25
518 #define VMCS_EXITCODE_VMXOFF 26
519 #define VMCS_EXITCODE_VMXON 27
520 #define VMCS_EXITCODE_CR 28
521 #define VMCS_EXITCODE_DR 29
522 #define VMCS_EXITCODE_IO 30
523 #define VMCS_EXITCODE_RDMSR 31
524 #define VMCS_EXITCODE_WRMSR 32
525 #define VMCS_EXITCODE_FAIL_GUEST_INVALID 33
526 #define VMCS_EXITCODE_FAIL_MSR_INVALID 34
527 #define VMCS_EXITCODE_MWAIT 36
528 #define VMCS_EXITCODE_TRAP_FLAG 37
529 #define VMCS_EXITCODE_MONITOR 39
530 #define VMCS_EXITCODE_PAUSE 40
531 #define VMCS_EXITCODE_FAIL_MACHINE_CHECK 41
532 #define VMCS_EXITCODE_TPR_BELOW 43
533 #define VMCS_EXITCODE_APIC_ACCESS 44
534 #define VMCS_EXITCODE_VEOI 45
535 #define VMCS_EXITCODE_GDTR_IDTR 46
536 #define VMCS_EXITCODE_LDTR_TR 47
537 #define VMCS_EXITCODE_EPT_VIOLATION 48
538 #define VMCS_EXITCODE_EPT_MISCONFIG 49
539 #define VMCS_EXITCODE_INVEPT 50
540 #define VMCS_EXITCODE_RDTSCP 51
541 #define VMCS_EXITCODE_PREEMPT_TIMEOUT 52
542 #define VMCS_EXITCODE_INVVPID 53
543 #define VMCS_EXITCODE_WBINVD 54
544 #define VMCS_EXITCODE_XSETBV 55
545 #define VMCS_EXITCODE_APIC_WRITE 56
546 #define VMCS_EXITCODE_RDRAND 57
547 #define VMCS_EXITCODE_INVPCID 58
548 #define VMCS_EXITCODE_VMFUNC 59
549 #define VMCS_EXITCODE_ENCLS 60
550 #define VMCS_EXITCODE_RDSEED 61
551 #define VMCS_EXITCODE_PAGE_LOG_FULL 62
552 #define VMCS_EXITCODE_XSAVES 63
553 #define VMCS_EXITCODE_XRSTORS 64
554
555 /* -------------------------------------------------------------------------- */
556
557 #define VMX_MSRLIST_STAR 0
558 #define VMX_MSRLIST_LSTAR 1
559 #define VMX_MSRLIST_CSTAR 2
560 #define VMX_MSRLIST_SFMASK 3
561 #define VMX_MSRLIST_KERNELGSBASE 4
562 #define VMX_MSRLIST_EXIT_NMSR 5
563 #define VMX_MSRLIST_L1DFLUSH 5
564
565 /* On entry, we may do +1 to include L1DFLUSH. */
566 static size_t vmx_msrlist_entry_nmsr __read_mostly = VMX_MSRLIST_EXIT_NMSR;
567
568 struct vmxon {
569 uint32_t ident;
570 #define VMXON_IDENT_REVISION __BITS(30,0)
571
572 uint8_t data[PAGE_SIZE - 4];
573 } __packed;
574
575 CTASSERT(sizeof(struct vmxon) == PAGE_SIZE);
576
577 struct vmxoncpu {
578 vaddr_t va;
579 paddr_t pa;
580 };
581
582 static struct vmxoncpu vmxoncpu[MAXCPUS];
583
584 struct vmcs {
585 uint32_t ident;
586 #define VMCS_IDENT_REVISION __BITS(30,0)
587 #define VMCS_IDENT_SHADOW __BIT(31)
588
589 uint32_t abort;
590 uint8_t data[PAGE_SIZE - 8];
591 } __packed;
592
593 CTASSERT(sizeof(struct vmcs) == PAGE_SIZE);
594
595 struct msr_entry {
596 uint32_t msr;
597 uint32_t rsvd;
598 uint64_t val;
599 } __packed;
600
601 #define VPID_MAX 0xFFFF
602
603 /* Make sure we never run out of VPIDs. */
604 CTASSERT(VPID_MAX-1 >= NVMM_MAX_MACHINES * NVMM_MAX_VCPUS);
605
606 static uint64_t vmx_tlb_flush_op __read_mostly;
607 static uint64_t vmx_ept_flush_op __read_mostly;
608 static uint64_t vmx_eptp_type __read_mostly;
609
610 static uint64_t vmx_pinbased_ctls __read_mostly;
611 static uint64_t vmx_procbased_ctls __read_mostly;
612 static uint64_t vmx_procbased_ctls2 __read_mostly;
613 static uint64_t vmx_entry_ctls __read_mostly;
614 static uint64_t vmx_exit_ctls __read_mostly;
615
616 static uint64_t vmx_cr0_fixed0 __read_mostly;
617 static uint64_t vmx_cr0_fixed1 __read_mostly;
618 static uint64_t vmx_cr4_fixed0 __read_mostly;
619 static uint64_t vmx_cr4_fixed1 __read_mostly;
620
621 extern bool pmap_ept_has_ad;
622
623 #define VMX_PINBASED_CTLS_ONE \
624 (PIN_CTLS_INT_EXITING| \
625 PIN_CTLS_NMI_EXITING| \
626 PIN_CTLS_VIRTUAL_NMIS)
627
628 #define VMX_PINBASED_CTLS_ZERO 0
629
630 #define VMX_PROCBASED_CTLS_ONE \
631 (PROC_CTLS_USE_TSC_OFFSETTING| \
632 PROC_CTLS_HLT_EXITING| \
633 PROC_CTLS_MWAIT_EXITING | \
634 PROC_CTLS_RDPMC_EXITING | \
635 PROC_CTLS_RCR8_EXITING | \
636 PROC_CTLS_LCR8_EXITING | \
637 PROC_CTLS_UNCOND_IO_EXITING | /* no I/O bitmap */ \
638 PROC_CTLS_USE_MSR_BITMAPS | \
639 PROC_CTLS_MONITOR_EXITING | \
640 PROC_CTLS_ACTIVATE_CTLS2)
641
642 #define VMX_PROCBASED_CTLS_ZERO \
643 (PROC_CTLS_RCR3_EXITING| \
644 PROC_CTLS_LCR3_EXITING)
645
646 #define VMX_PROCBASED_CTLS2_ONE \
647 (PROC_CTLS2_ENABLE_EPT| \
648 PROC_CTLS2_ENABLE_VPID| \
649 PROC_CTLS2_UNRESTRICTED_GUEST)
650
651 #define VMX_PROCBASED_CTLS2_ZERO 0
652
653 #define VMX_ENTRY_CTLS_ONE \
654 (ENTRY_CTLS_LOAD_DEBUG_CONTROLS| \
655 ENTRY_CTLS_LOAD_EFER| \
656 ENTRY_CTLS_LOAD_PAT)
657
658 #define VMX_ENTRY_CTLS_ZERO \
659 (ENTRY_CTLS_SMM| \
660 ENTRY_CTLS_DISABLE_DUAL)
661
662 #define VMX_EXIT_CTLS_ONE \
663 (EXIT_CTLS_SAVE_DEBUG_CONTROLS| \
664 EXIT_CTLS_HOST_LONG_MODE| \
665 EXIT_CTLS_SAVE_PAT| \
666 EXIT_CTLS_LOAD_PAT| \
667 EXIT_CTLS_SAVE_EFER| \
668 EXIT_CTLS_LOAD_EFER)
669
670 #define VMX_EXIT_CTLS_ZERO 0
671
672 static uint8_t *vmx_asidmap __read_mostly;
673 static uint32_t vmx_maxasid __read_mostly;
674 static kmutex_t vmx_asidlock __cacheline_aligned;
675
676 #define VMX_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
677 static uint64_t vmx_xcr0_mask __read_mostly;
678
679 #define VMX_NCPUIDS 32
680
681 #define VMCS_NPAGES 1
682 #define VMCS_SIZE (VMCS_NPAGES * PAGE_SIZE)
683
684 #define MSRBM_NPAGES 1
685 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
686
687 #define EFER_TLB_FLUSH \
688 (EFER_NXE|EFER_LMA|EFER_LME)
689 #define CR0_TLB_FLUSH \
690 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
691 #define CR4_TLB_FLUSH \
692 (CR4_PGE|CR4_PAE|CR4_PSE)
693
694 /* -------------------------------------------------------------------------- */
695
696 struct vmx_machdata {
697 bool cpuidpresent[VMX_NCPUIDS];
698 struct nvmm_x86_conf_cpuid cpuid[VMX_NCPUIDS];
699 volatile uint64_t mach_htlb_gen;
700 };
701
702 static const size_t vmx_conf_sizes[NVMM_X86_NCONF] = {
703 [NVMM_X86_CONF_CPUID] = sizeof(struct nvmm_x86_conf_cpuid)
704 };
705
706 struct vmx_cpudata {
707 /* General */
708 uint64_t asid;
709 bool gtlb_want_flush;
710 bool gtsc_want_update;
711 uint64_t vcpu_htlb_gen;
712 kcpuset_t *htlb_want_flush;
713
714 /* VMCS */
715 struct vmcs *vmcs;
716 paddr_t vmcs_pa;
717 size_t vmcs_refcnt;
718 struct cpu_info *vmcs_ci;
719 bool vmcs_launched;
720
721 /* MSR bitmap */
722 uint8_t *msrbm;
723 paddr_t msrbm_pa;
724
725 /* Host state */
726 uint64_t hxcr0;
727 uint64_t star;
728 uint64_t lstar;
729 uint64_t cstar;
730 uint64_t sfmask;
731 uint64_t kernelgsbase;
732 bool ts_set;
733 struct xsave_header hfpu __aligned(64);
734
735 /* Intr state */
736 bool int_window_exit;
737 bool nmi_window_exit;
738 bool evt_pending;
739
740 /* Guest state */
741 struct msr_entry *gmsr;
742 paddr_t gmsr_pa;
743 uint64_t gmsr_misc_enable;
744 uint64_t gcr2;
745 uint64_t gcr8;
746 uint64_t gxcr0;
747 uint64_t gprs[NVMM_X64_NGPR];
748 uint64_t drs[NVMM_X64_NDR];
749 uint64_t gtsc;
750 struct xsave_header gfpu __aligned(64);
751 };
752
753 static const struct {
754 uint64_t selector;
755 uint64_t attrib;
756 uint64_t limit;
757 uint64_t base;
758 } vmx_guest_segs[NVMM_X64_NSEG] = {
759 [NVMM_X64_SEG_ES] = {
760 VMCS_GUEST_ES_SELECTOR,
761 VMCS_GUEST_ES_ACCESS_RIGHTS,
762 VMCS_GUEST_ES_LIMIT,
763 VMCS_GUEST_ES_BASE
764 },
765 [NVMM_X64_SEG_CS] = {
766 VMCS_GUEST_CS_SELECTOR,
767 VMCS_GUEST_CS_ACCESS_RIGHTS,
768 VMCS_GUEST_CS_LIMIT,
769 VMCS_GUEST_CS_BASE
770 },
771 [NVMM_X64_SEG_SS] = {
772 VMCS_GUEST_SS_SELECTOR,
773 VMCS_GUEST_SS_ACCESS_RIGHTS,
774 VMCS_GUEST_SS_LIMIT,
775 VMCS_GUEST_SS_BASE
776 },
777 [NVMM_X64_SEG_DS] = {
778 VMCS_GUEST_DS_SELECTOR,
779 VMCS_GUEST_DS_ACCESS_RIGHTS,
780 VMCS_GUEST_DS_LIMIT,
781 VMCS_GUEST_DS_BASE
782 },
783 [NVMM_X64_SEG_FS] = {
784 VMCS_GUEST_FS_SELECTOR,
785 VMCS_GUEST_FS_ACCESS_RIGHTS,
786 VMCS_GUEST_FS_LIMIT,
787 VMCS_GUEST_FS_BASE
788 },
789 [NVMM_X64_SEG_GS] = {
790 VMCS_GUEST_GS_SELECTOR,
791 VMCS_GUEST_GS_ACCESS_RIGHTS,
792 VMCS_GUEST_GS_LIMIT,
793 VMCS_GUEST_GS_BASE
794 },
795 [NVMM_X64_SEG_GDT] = {
796 0, /* doesn't exist */
797 0, /* doesn't exist */
798 VMCS_GUEST_GDTR_LIMIT,
799 VMCS_GUEST_GDTR_BASE
800 },
801 [NVMM_X64_SEG_IDT] = {
802 0, /* doesn't exist */
803 0, /* doesn't exist */
804 VMCS_GUEST_IDTR_LIMIT,
805 VMCS_GUEST_IDTR_BASE
806 },
807 [NVMM_X64_SEG_LDT] = {
808 VMCS_GUEST_LDTR_SELECTOR,
809 VMCS_GUEST_LDTR_ACCESS_RIGHTS,
810 VMCS_GUEST_LDTR_LIMIT,
811 VMCS_GUEST_LDTR_BASE
812 },
813 [NVMM_X64_SEG_TR] = {
814 VMCS_GUEST_TR_SELECTOR,
815 VMCS_GUEST_TR_ACCESS_RIGHTS,
816 VMCS_GUEST_TR_LIMIT,
817 VMCS_GUEST_TR_BASE
818 }
819 };
820
821 /* -------------------------------------------------------------------------- */
822
823 static uint64_t
824 vmx_get_revision(void)
825 {
826 uint64_t msr;
827
828 msr = rdmsr(MSR_IA32_VMX_BASIC);
829 msr &= IA32_VMX_BASIC_IDENT;
830
831 return msr;
832 }
833
834 static void
835 vmx_vmclear_ipi(void *arg1, void *arg2)
836 {
837 paddr_t vmcs_pa = (paddr_t)arg1;
838 vmx_vmclear(&vmcs_pa);
839 }
840
841 static void
842 vmx_vmclear_remote(struct cpu_info *ci, paddr_t vmcs_pa)
843 {
844 uint64_t xc;
845 int bound;
846
847 KASSERT(kpreempt_disabled());
848
849 bound = curlwp_bind();
850 kpreempt_enable();
851
852 xc = xc_unicast(XC_HIGHPRI, vmx_vmclear_ipi, (void *)vmcs_pa, NULL, ci);
853 xc_wait(xc);
854
855 kpreempt_disable();
856 curlwp_bindx(bound);
857 }
858
859 static void
860 vmx_vmcs_enter(struct nvmm_cpu *vcpu)
861 {
862 struct vmx_cpudata *cpudata = vcpu->cpudata;
863 struct cpu_info *vmcs_ci;
864 paddr_t oldpa __diagused;
865
866 cpudata->vmcs_refcnt++;
867 if (cpudata->vmcs_refcnt > 1) {
868 #ifdef DIAGNOSTIC
869 KASSERT(kpreempt_disabled());
870 oldpa = vmx_vmptrst();
871 KASSERT(oldpa == cpudata->vmcs_pa);
872 #endif
873 return;
874 }
875
876 vmcs_ci = cpudata->vmcs_ci;
877 cpudata->vmcs_ci = (void *)0x00FFFFFFFFFFFFFF; /* clobber */
878
879 kpreempt_disable();
880
881 if (vmcs_ci == NULL) {
882 /* This VMCS is loaded for the first time. */
883 vmx_vmclear(&cpudata->vmcs_pa);
884 cpudata->vmcs_launched = false;
885 } else if (vmcs_ci != curcpu()) {
886 /* This VMCS is active on a remote CPU. */
887 vmx_vmclear_remote(vmcs_ci, cpudata->vmcs_pa);
888 cpudata->vmcs_launched = false;
889 } else {
890 /* This VMCS is active on curcpu, nothing to do. */
891 }
892
893 vmx_vmptrld(&cpudata->vmcs_pa);
894 }
895
896 static void
897 vmx_vmcs_leave(struct nvmm_cpu *vcpu)
898 {
899 struct vmx_cpudata *cpudata = vcpu->cpudata;
900
901 KASSERT(kpreempt_disabled());
902 #ifdef DIAGNOSTIC
903 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
904 #endif
905 KASSERT(cpudata->vmcs_refcnt > 0);
906 cpudata->vmcs_refcnt--;
907
908 if (cpudata->vmcs_refcnt > 0) {
909 return;
910 }
911
912 cpudata->vmcs_ci = curcpu();
913 kpreempt_enable();
914 }
915
916 static void
917 vmx_vmcs_destroy(struct nvmm_cpu *vcpu)
918 {
919 struct vmx_cpudata *cpudata = vcpu->cpudata;
920
921 KASSERT(kpreempt_disabled());
922 #ifdef DIAGNOSTIC
923 KASSERT(vmx_vmptrst() == cpudata->vmcs_pa);
924 #endif
925 KASSERT(cpudata->vmcs_refcnt == 1);
926 cpudata->vmcs_refcnt--;
927
928 vmx_vmclear(&cpudata->vmcs_pa);
929 kpreempt_enable();
930 }
931
932 /* -------------------------------------------------------------------------- */
933
934 static void
935 vmx_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
936 {
937 struct vmx_cpudata *cpudata = vcpu->cpudata;
938 uint64_t ctls1;
939
940 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
941
942 if (nmi) {
943 // XXX INT_STATE_NMI?
944 ctls1 |= PROC_CTLS_NMI_WINDOW_EXITING;
945 cpudata->nmi_window_exit = true;
946 } else {
947 ctls1 |= PROC_CTLS_INT_WINDOW_EXITING;
948 cpudata->int_window_exit = true;
949 }
950
951 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
952 }
953
954 static void
955 vmx_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
956 {
957 struct vmx_cpudata *cpudata = vcpu->cpudata;
958 uint64_t ctls1;
959
960 ctls1 = vmx_vmread(VMCS_PROCBASED_CTLS);
961
962 if (nmi) {
963 ctls1 &= ~PROC_CTLS_NMI_WINDOW_EXITING;
964 cpudata->nmi_window_exit = false;
965 } else {
966 ctls1 &= ~PROC_CTLS_INT_WINDOW_EXITING;
967 cpudata->int_window_exit = false;
968 }
969
970 vmx_vmwrite(VMCS_PROCBASED_CTLS, ctls1);
971 }
972
973 static inline int
974 vmx_event_has_error(uint64_t vector)
975 {
976 switch (vector) {
977 case 8: /* #DF */
978 case 10: /* #TS */
979 case 11: /* #NP */
980 case 12: /* #SS */
981 case 13: /* #GP */
982 case 14: /* #PF */
983 case 17: /* #AC */
984 case 30: /* #SX */
985 return 1;
986 default:
987 return 0;
988 }
989 }
990
991 static int
992 vmx_vcpu_inject(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
993 struct nvmm_event *event)
994 {
995 struct vmx_cpudata *cpudata = vcpu->cpudata;
996 int type = 0, err = 0, ret = 0;
997 uint64_t info, intstate, rflags;
998
999 if (event->vector >= 256) {
1000 return EINVAL;
1001 }
1002
1003 vmx_vmcs_enter(vcpu);
1004
1005 switch (event->type) {
1006 case NVMM_EVENT_INTERRUPT_HW:
1007 type = INTR_TYPE_EXT_INT;
1008 if (event->vector == 2) {
1009 type = INTR_TYPE_NMI;
1010 }
1011 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1012 if (type == INTR_TYPE_NMI) {
1013 if (cpudata->nmi_window_exit) {
1014 ret = EAGAIN;
1015 goto out;
1016 }
1017 vmx_event_waitexit_enable(vcpu, true);
1018 } else {
1019 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1020 if ((rflags & PSL_I) == 0 ||
1021 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0) {
1022 vmx_event_waitexit_enable(vcpu, false);
1023 ret = EAGAIN;
1024 goto out;
1025 }
1026 }
1027 err = 0;
1028 break;
1029 case NVMM_EVENT_INTERRUPT_SW:
1030 ret = EINVAL;
1031 goto out;
1032 case NVMM_EVENT_EXCEPTION:
1033 if (event->vector == 2 || event->vector >= 32) {
1034 ret = EINVAL;
1035 goto out;
1036 }
1037 if (event->vector == 3 || event->vector == 0) {
1038 ret = EINVAL;
1039 goto out;
1040 }
1041 type = INTR_TYPE_HW_EXC;
1042 err = vmx_event_has_error(event->vector);
1043 break;
1044 default:
1045 ret = EAGAIN;
1046 goto out;
1047 }
1048
1049 info =
1050 __SHIFTIN(event->vector, INTR_INFO_VECTOR) |
1051 __SHIFTIN(type, INTR_INFO_TYPE) |
1052 __SHIFTIN(err, INTR_INFO_ERROR) |
1053 __SHIFTIN(1, INTR_INFO_VALID);
1054 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1055 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, event->u.error);
1056
1057 cpudata->evt_pending = true;
1058
1059 out:
1060 vmx_vmcs_leave(vcpu);
1061 return ret;
1062 }
1063
1064 static void
1065 vmx_inject_ud(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1066 {
1067 struct nvmm_event event;
1068 int ret __diagused;
1069
1070 event.type = NVMM_EVENT_EXCEPTION;
1071 event.vector = 6;
1072 event.u.error = 0;
1073
1074 ret = vmx_vcpu_inject(mach, vcpu, &event);
1075 KASSERT(ret == 0);
1076 }
1077
1078 static void
1079 vmx_inject_gp(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
1080 {
1081 struct nvmm_event event;
1082 int ret __diagused;
1083
1084 event.type = NVMM_EVENT_EXCEPTION;
1085 event.vector = 13;
1086 event.u.error = 0;
1087
1088 ret = vmx_vcpu_inject(mach, vcpu, &event);
1089 KASSERT(ret == 0);
1090 }
1091
1092 static inline void
1093 vmx_inkernel_advance(void)
1094 {
1095 uint64_t rip, inslen, intstate;
1096
1097 /*
1098 * Maybe we should also apply single-stepping and debug exceptions.
1099 * Matters for guest-ring3, because it can execute 'cpuid' under a
1100 * debugger.
1101 */
1102 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1103 rip = vmx_vmread(VMCS_GUEST_RIP);
1104 vmx_vmwrite(VMCS_GUEST_RIP, rip + inslen);
1105 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
1106 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY,
1107 intstate & ~(INT_STATE_STI|INT_STATE_MOVSS));
1108 }
1109
1110 static void
1111 vmx_exit_exc_nmi(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1112 struct nvmm_exit *exit)
1113 {
1114 uint64_t qual;
1115
1116 qual = vmx_vmread(VMCS_EXIT_INTR_INFO);
1117
1118 if ((qual & INTR_INFO_VALID) == 0) {
1119 goto error;
1120 }
1121 if (__SHIFTOUT(qual, INTR_INFO_TYPE) != INTR_TYPE_NMI) {
1122 goto error;
1123 }
1124
1125 exit->reason = NVMM_EXIT_NONE;
1126 return;
1127
1128 error:
1129 exit->reason = NVMM_EXIT_INVALID;
1130 }
1131
1132 static void
1133 vmx_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
1134 {
1135 struct vmx_cpudata *cpudata = vcpu->cpudata;
1136 uint64_t cr4;
1137
1138 switch (eax) {
1139 case 0x00000001:
1140 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000001.eax;
1141
1142 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
1143 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
1144 CPUID_LOCAL_APIC_ID);
1145
1146 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
1147 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
1148
1149 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
1150
1151 /* CPUID2_OSXSAVE depends on CR4. */
1152 cr4 = vmx_vmread(VMCS_GUEST_CR4);
1153 if (!(cr4 & CR4_OSXSAVE)) {
1154 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
1155 }
1156 break;
1157 case 0x00000005:
1158 case 0x00000006:
1159 cpudata->gprs[NVMM_X64_GPR_RAX] = 0;
1160 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1161 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1162 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1163 break;
1164 case 0x00000007:
1165 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_00000007.eax;
1166 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
1167 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
1168 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
1169 break;
1170 case 0x0000000D:
1171 if (vmx_xcr0_mask == 0) {
1172 break;
1173 }
1174 switch (ecx) {
1175 case 0:
1176 cpudata->gprs[NVMM_X64_GPR_RAX] = vmx_xcr0_mask & 0xFFFFFFFF;
1177 if (cpudata->gxcr0 & XCR0_SSE) {
1178 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
1179 } else {
1180 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
1181 }
1182 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
1183 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
1184 cpudata->gprs[NVMM_X64_GPR_RDX] = vmx_xcr0_mask >> 32;
1185 break;
1186 case 1:
1187 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~CPUID_PES1_XSAVES;
1188 break;
1189 }
1190 break;
1191 case 0x40000000:
1192 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1193 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1194 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1195 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
1196 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
1197 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
1198 break;
1199 case 0x80000001:
1200 cpudata->gprs[NVMM_X64_GPR_RAX] &= nvmm_cpuid_80000001.eax;
1201 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
1202 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
1203 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
1204 break;
1205 default:
1206 break;
1207 }
1208 }
1209
1210 static void
1211 vmx_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1212 struct nvmm_exit *exit)
1213 {
1214 struct vmx_machdata *machdata = mach->machdata;
1215 struct vmx_cpudata *cpudata = vcpu->cpudata;
1216 struct nvmm_x86_conf_cpuid *cpuid;
1217 uint64_t eax, ecx;
1218 u_int descs[4];
1219 size_t i;
1220
1221 eax = cpudata->gprs[NVMM_X64_GPR_RAX];
1222 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1223 x86_cpuid2(eax, ecx, descs);
1224
1225 cpudata->gprs[NVMM_X64_GPR_RAX] = descs[0];
1226 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
1227 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
1228 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
1229
1230 vmx_inkernel_handle_cpuid(vcpu, eax, ecx);
1231
1232 for (i = 0; i < VMX_NCPUIDS; i++) {
1233 cpuid = &machdata->cpuid[i];
1234 if (!machdata->cpuidpresent[i]) {
1235 continue;
1236 }
1237 if (cpuid->leaf != eax) {
1238 continue;
1239 }
1240
1241 /* del */
1242 cpudata->gprs[NVMM_X64_GPR_RAX] &= ~cpuid->del.eax;
1243 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->del.ebx;
1244 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->del.ecx;
1245 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->del.edx;
1246
1247 /* set */
1248 cpudata->gprs[NVMM_X64_GPR_RAX] |= cpuid->set.eax;
1249 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->set.ebx;
1250 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->set.ecx;
1251 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->set.edx;
1252
1253 break;
1254 }
1255
1256 vmx_inkernel_advance();
1257 exit->reason = NVMM_EXIT_NONE;
1258 }
1259
1260 static void
1261 vmx_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1262 struct nvmm_exit *exit)
1263 {
1264 struct vmx_cpudata *cpudata = vcpu->cpudata;
1265 uint64_t rflags;
1266
1267 if (cpudata->int_window_exit) {
1268 rflags = vmx_vmread(VMCS_GUEST_RFLAGS);
1269 if (rflags & PSL_I) {
1270 vmx_event_waitexit_disable(vcpu, false);
1271 }
1272 }
1273
1274 vmx_inkernel_advance();
1275 exit->reason = NVMM_EXIT_HALTED;
1276 }
1277
1278 #define VMX_QUAL_CR_NUM __BITS(3,0)
1279 #define VMX_QUAL_CR_TYPE __BITS(5,4)
1280 #define CR_TYPE_WRITE 0
1281 #define CR_TYPE_READ 1
1282 #define CR_TYPE_CLTS 2
1283 #define CR_TYPE_LMSW 3
1284 #define VMX_QUAL_CR_LMSW_OPMEM __BIT(6)
1285 #define VMX_QUAL_CR_GPR __BITS(11,8)
1286 #define VMX_QUAL_CR_LMSW_SRC __BIT(31,16)
1287
1288 static inline int
1289 vmx_check_cr(uint64_t crval, uint64_t fixed0, uint64_t fixed1)
1290 {
1291 /* Bits set to 1 in fixed0 are fixed to 1. */
1292 if ((crval & fixed0) != fixed0) {
1293 return -1;
1294 }
1295 /* Bits set to 0 in fixed1 are fixed to 0. */
1296 if (crval & ~fixed1) {
1297 return -1;
1298 }
1299 return 0;
1300 }
1301
1302 static int
1303 vmx_inkernel_handle_cr0(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1304 uint64_t qual)
1305 {
1306 struct vmx_cpudata *cpudata = vcpu->cpudata;
1307 uint64_t type, gpr, cr0;
1308 uint64_t efer, ctls1;
1309
1310 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1311 if (type != CR_TYPE_WRITE) {
1312 return -1;
1313 }
1314
1315 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1316 KASSERT(gpr < 16);
1317
1318 if (gpr == NVMM_X64_GPR_RSP) {
1319 gpr = vmx_vmread(VMCS_GUEST_RSP);
1320 } else {
1321 gpr = cpudata->gprs[gpr];
1322 }
1323
1324 cr0 = gpr | CR0_NE | CR0_ET;
1325 cr0 &= ~(CR0_NW|CR0_CD);
1326
1327 if (vmx_check_cr(cr0, vmx_cr0_fixed0, vmx_cr0_fixed1) == -1) {
1328 return -1;
1329 }
1330
1331 /*
1332 * XXX Handle 32bit PAE paging, need to set PDPTEs, fetched manually
1333 * from CR3.
1334 */
1335
1336 if (cr0 & CR0_PG) {
1337 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
1338 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
1339 if (efer & EFER_LME) {
1340 ctls1 |= ENTRY_CTLS_LONG_MODE;
1341 efer |= EFER_LMA;
1342 } else {
1343 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
1344 efer &= ~EFER_LMA;
1345 }
1346 vmx_vmwrite(VMCS_GUEST_IA32_EFER, efer);
1347 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
1348 }
1349
1350 vmx_vmwrite(VMCS_GUEST_CR0, cr0);
1351 vmx_inkernel_advance();
1352 return 0;
1353 }
1354
1355 static int
1356 vmx_inkernel_handle_cr4(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1357 uint64_t qual)
1358 {
1359 struct vmx_cpudata *cpudata = vcpu->cpudata;
1360 uint64_t type, gpr, cr4;
1361
1362 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1363 if (type != CR_TYPE_WRITE) {
1364 return -1;
1365 }
1366
1367 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1368 KASSERT(gpr < 16);
1369
1370 if (gpr == NVMM_X64_GPR_RSP) {
1371 gpr = vmx_vmread(VMCS_GUEST_RSP);
1372 } else {
1373 gpr = cpudata->gprs[gpr];
1374 }
1375
1376 cr4 = gpr | CR4_VMXE;
1377
1378 if (vmx_check_cr(cr4, vmx_cr4_fixed0, vmx_cr4_fixed1) == -1) {
1379 return -1;
1380 }
1381
1382 vmx_vmwrite(VMCS_GUEST_CR4, cr4);
1383 vmx_inkernel_advance();
1384 return 0;
1385 }
1386
1387 static int
1388 vmx_inkernel_handle_cr8(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1389 uint64_t qual)
1390 {
1391 struct vmx_cpudata *cpudata = vcpu->cpudata;
1392 uint64_t type, gpr;
1393 bool write;
1394
1395 type = __SHIFTOUT(qual, VMX_QUAL_CR_TYPE);
1396 if (type == CR_TYPE_WRITE) {
1397 write = true;
1398 } else if (type == CR_TYPE_READ) {
1399 write = false;
1400 } else {
1401 return -1;
1402 }
1403
1404 gpr = __SHIFTOUT(qual, VMX_QUAL_CR_GPR);
1405 KASSERT(gpr < 16);
1406
1407 if (write) {
1408 if (gpr == NVMM_X64_GPR_RSP) {
1409 cpudata->gcr8 = vmx_vmread(VMCS_GUEST_RSP);
1410 } else {
1411 cpudata->gcr8 = cpudata->gprs[gpr];
1412 }
1413 } else {
1414 if (gpr == NVMM_X64_GPR_RSP) {
1415 vmx_vmwrite(VMCS_GUEST_RSP, cpudata->gcr8);
1416 } else {
1417 cpudata->gprs[gpr] = cpudata->gcr8;
1418 }
1419 }
1420
1421 vmx_inkernel_advance();
1422 return 0;
1423 }
1424
1425 static void
1426 vmx_exit_cr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1427 struct nvmm_exit *exit)
1428 {
1429 uint64_t qual;
1430 int ret;
1431
1432 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1433
1434 switch (__SHIFTOUT(qual, VMX_QUAL_CR_NUM)) {
1435 case 0:
1436 ret = vmx_inkernel_handle_cr0(mach, vcpu, qual);
1437 break;
1438 case 4:
1439 ret = vmx_inkernel_handle_cr4(mach, vcpu, qual);
1440 break;
1441 case 8:
1442 ret = vmx_inkernel_handle_cr8(mach, vcpu, qual);
1443 break;
1444 default:
1445 ret = -1;
1446 break;
1447 }
1448
1449 if (ret == -1) {
1450 vmx_inject_gp(mach, vcpu);
1451 }
1452
1453 exit->reason = NVMM_EXIT_NONE;
1454 }
1455
1456 #define VMX_QUAL_IO_SIZE __BITS(2,0)
1457 #define IO_SIZE_8 0
1458 #define IO_SIZE_16 1
1459 #define IO_SIZE_32 3
1460 #define VMX_QUAL_IO_IN __BIT(3)
1461 #define VMX_QUAL_IO_STR __BIT(4)
1462 #define VMX_QUAL_IO_REP __BIT(5)
1463 #define VMX_QUAL_IO_DX __BIT(6)
1464 #define VMX_QUAL_IO_PORT __BITS(31,16)
1465
1466 #define VMX_INFO_IO_ADRSIZE __BITS(9,7)
1467 #define IO_ADRSIZE_16 0
1468 #define IO_ADRSIZE_32 1
1469 #define IO_ADRSIZE_64 2
1470 #define VMX_INFO_IO_SEG __BITS(17,15)
1471
1472 static void
1473 vmx_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1474 struct nvmm_exit *exit)
1475 {
1476 uint64_t qual, info, inslen, rip;
1477
1478 qual = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1479 info = vmx_vmread(VMCS_EXIT_INSTRUCTION_INFO);
1480
1481 exit->reason = NVMM_EXIT_IO;
1482
1483 if (qual & VMX_QUAL_IO_IN) {
1484 exit->u.io.type = NVMM_EXIT_IO_IN;
1485 } else {
1486 exit->u.io.type = NVMM_EXIT_IO_OUT;
1487 }
1488
1489 exit->u.io.port = __SHIFTOUT(qual, VMX_QUAL_IO_PORT);
1490
1491 KASSERT(__SHIFTOUT(info, VMX_INFO_IO_SEG) < 6);
1492 exit->u.io.seg = __SHIFTOUT(info, VMX_INFO_IO_SEG);
1493
1494 if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_64) {
1495 exit->u.io.address_size = 8;
1496 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_32) {
1497 exit->u.io.address_size = 4;
1498 } else if (__SHIFTOUT(info, VMX_INFO_IO_ADRSIZE) == IO_ADRSIZE_16) {
1499 exit->u.io.address_size = 2;
1500 }
1501
1502 if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_32) {
1503 exit->u.io.operand_size = 4;
1504 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_16) {
1505 exit->u.io.operand_size = 2;
1506 } else if (__SHIFTOUT(qual, VMX_QUAL_IO_SIZE) == IO_SIZE_8) {
1507 exit->u.io.operand_size = 1;
1508 }
1509
1510 exit->u.io.rep = (qual & VMX_QUAL_IO_REP) != 0;
1511 exit->u.io.str = (qual & VMX_QUAL_IO_STR) != 0;
1512
1513 if ((exit->u.io.type == NVMM_EXIT_IO_IN) && exit->u.io.str) {
1514 exit->u.io.seg = NVMM_X64_SEG_ES;
1515 }
1516
1517 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1518 rip = vmx_vmread(VMCS_GUEST_RIP);
1519 exit->u.io.npc = rip + inslen;
1520 }
1521
1522 static const uint64_t msr_ignore_list[] = {
1523 MSR_BIOS_SIGN,
1524 MSR_IA32_PLATFORM_ID
1525 };
1526
1527 static bool
1528 vmx_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1529 struct nvmm_exit *exit)
1530 {
1531 struct vmx_cpudata *cpudata = vcpu->cpudata;
1532 uint64_t val;
1533 size_t i;
1534
1535 switch (exit->u.msr.type) {
1536 case NVMM_EXIT_MSR_RDMSR:
1537 if (exit->u.msr.msr == MSR_CR_PAT) {
1538 val = vmx_vmread(VMCS_GUEST_IA32_PAT);
1539 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1540 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1541 goto handled;
1542 }
1543 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1544 val = cpudata->gmsr_misc_enable;
1545 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1546 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1547 goto handled;
1548 }
1549 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1550 if (msr_ignore_list[i] != exit->u.msr.msr)
1551 continue;
1552 val = 0;
1553 cpudata->gprs[NVMM_X64_GPR_RAX] = (val & 0xFFFFFFFF);
1554 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1555 goto handled;
1556 }
1557 break;
1558 case NVMM_EXIT_MSR_WRMSR:
1559 if (exit->u.msr.msr == MSR_TSC) {
1560 cpudata->gtsc = exit->u.msr.val;
1561 cpudata->gtsc_want_update = true;
1562 goto handled;
1563 }
1564 if (exit->u.msr.msr == MSR_CR_PAT) {
1565 val = exit->u.msr.val;
1566 if (__predict_false(!nvmm_x86_pat_validate(val))) {
1567 goto error;
1568 }
1569 vmx_vmwrite(VMCS_GUEST_IA32_PAT, val);
1570 goto handled;
1571 }
1572 if (exit->u.msr.msr == MSR_MISC_ENABLE) {
1573 /* Don't care. */
1574 goto handled;
1575 }
1576 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1577 if (msr_ignore_list[i] != exit->u.msr.msr)
1578 continue;
1579 goto handled;
1580 }
1581 break;
1582 }
1583
1584 return false;
1585
1586 handled:
1587 vmx_inkernel_advance();
1588 return true;
1589
1590 error:
1591 vmx_inject_gp(mach, vcpu);
1592 return true;
1593 }
1594
1595 static void
1596 vmx_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1597 struct nvmm_exit *exit, bool rdmsr)
1598 {
1599 struct vmx_cpudata *cpudata = vcpu->cpudata;
1600 uint64_t inslen, rip;
1601
1602 if (rdmsr) {
1603 exit->u.msr.type = NVMM_EXIT_MSR_RDMSR;
1604 } else {
1605 exit->u.msr.type = NVMM_EXIT_MSR_WRMSR;
1606 }
1607
1608 exit->u.msr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1609
1610 if (rdmsr) {
1611 exit->u.msr.val = 0;
1612 } else {
1613 uint64_t rdx, rax;
1614 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1615 rax = cpudata->gprs[NVMM_X64_GPR_RAX];
1616 exit->u.msr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1617 }
1618
1619 if (vmx_inkernel_handle_msr(mach, vcpu, exit)) {
1620 exit->reason = NVMM_EXIT_NONE;
1621 return;
1622 }
1623
1624 exit->reason = NVMM_EXIT_MSR;
1625 inslen = vmx_vmread(VMCS_EXIT_INSTRUCTION_LENGTH);
1626 rip = vmx_vmread(VMCS_GUEST_RIP);
1627 exit->u.msr.npc = rip + inslen;
1628 }
1629
1630 static void
1631 vmx_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1632 struct nvmm_exit *exit)
1633 {
1634 struct vmx_cpudata *cpudata = vcpu->cpudata;
1635 uint16_t val;
1636
1637 exit->reason = NVMM_EXIT_NONE;
1638
1639 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1640 (cpudata->gprs[NVMM_X64_GPR_RAX] & 0xFFFFFFFF);
1641
1642 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1643 goto error;
1644 } else if (__predict_false((val & ~vmx_xcr0_mask) != 0)) {
1645 goto error;
1646 } else if (__predict_false((val & XCR0_X87) == 0)) {
1647 goto error;
1648 }
1649
1650 cpudata->gxcr0 = val;
1651
1652 vmx_inkernel_advance();
1653 return;
1654
1655 error:
1656 vmx_inject_gp(mach, vcpu);
1657 }
1658
1659 #define VMX_EPT_VIOLATION_READ __BIT(0)
1660 #define VMX_EPT_VIOLATION_WRITE __BIT(1)
1661 #define VMX_EPT_VIOLATION_EXECUTE __BIT(2)
1662
1663 static void
1664 vmx_exit_epf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1665 struct nvmm_exit *exit)
1666 {
1667 uint64_t perm;
1668 gpaddr_t gpa;
1669
1670 gpa = vmx_vmread(VMCS_GUEST_PHYSICAL_ADDRESS);
1671
1672 exit->reason = NVMM_EXIT_MEMORY;
1673 perm = vmx_vmread(VMCS_EXIT_QUALIFICATION);
1674 if (perm & VMX_EPT_VIOLATION_WRITE)
1675 exit->u.mem.prot = PROT_WRITE;
1676 else if (perm & VMX_EPT_VIOLATION_EXECUTE)
1677 exit->u.mem.prot = PROT_EXEC;
1678 else
1679 exit->u.mem.prot = PROT_READ;
1680 exit->u.mem.gpa = gpa;
1681 exit->u.mem.inst_len = 0;
1682 }
1683
1684 static void
1685 vmx_exit_invalid(struct nvmm_exit *exit, uint64_t code)
1686 {
1687 exit->u.inv.hwcode = code;
1688 exit->reason = NVMM_EXIT_INVALID;
1689 }
1690
1691 /* -------------------------------------------------------------------------- */
1692
1693 static void
1694 vmx_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1695 {
1696 struct vmx_cpudata *cpudata = vcpu->cpudata;
1697
1698 cpudata->ts_set = (rcr0() & CR0_TS) != 0;
1699
1700 fpu_area_save(&cpudata->hfpu, vmx_xcr0_mask);
1701 fpu_area_restore(&cpudata->gfpu, vmx_xcr0_mask);
1702
1703 if (vmx_xcr0_mask != 0) {
1704 cpudata->hxcr0 = rdxcr(0);
1705 wrxcr(0, cpudata->gxcr0);
1706 }
1707 }
1708
1709 static void
1710 vmx_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1711 {
1712 struct vmx_cpudata *cpudata = vcpu->cpudata;
1713
1714 if (vmx_xcr0_mask != 0) {
1715 cpudata->gxcr0 = rdxcr(0);
1716 wrxcr(0, cpudata->hxcr0);
1717 }
1718
1719 fpu_area_save(&cpudata->gfpu, vmx_xcr0_mask);
1720 fpu_area_restore(&cpudata->hfpu, vmx_xcr0_mask);
1721
1722 if (cpudata->ts_set) {
1723 stts();
1724 }
1725 }
1726
1727 static void
1728 vmx_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1729 {
1730 struct vmx_cpudata *cpudata = vcpu->cpudata;
1731
1732 x86_dbregs_save(curlwp);
1733
1734 ldr7(0);
1735
1736 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1737 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1738 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1739 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1740 ldr6(cpudata->drs[NVMM_X64_DR_DR6]);
1741 }
1742
1743 static void
1744 vmx_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1745 {
1746 struct vmx_cpudata *cpudata = vcpu->cpudata;
1747
1748 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1749 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1750 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1751 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1752 cpudata->drs[NVMM_X64_DR_DR6] = rdr6();
1753
1754 x86_dbregs_restore(curlwp);
1755 }
1756
1757 static void
1758 vmx_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1759 {
1760 struct vmx_cpudata *cpudata = vcpu->cpudata;
1761
1762 /* This gets restored automatically by the CPU. */
1763 vmx_vmwrite(VMCS_HOST_FS_BASE, rdmsr(MSR_FSBASE));
1764 vmx_vmwrite(VMCS_HOST_CR3, rcr3());
1765 vmx_vmwrite(VMCS_HOST_CR4, rcr4());
1766
1767 /* Note: MSR_LSTAR is not static, because of SVS. */
1768 cpudata->lstar = rdmsr(MSR_LSTAR);
1769 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1770 }
1771
1772 static void
1773 vmx_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1774 {
1775 struct vmx_cpudata *cpudata = vcpu->cpudata;
1776
1777 wrmsr(MSR_STAR, cpudata->star);
1778 wrmsr(MSR_LSTAR, cpudata->lstar);
1779 wrmsr(MSR_CSTAR, cpudata->cstar);
1780 wrmsr(MSR_SFMASK, cpudata->sfmask);
1781 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1782 }
1783
1784 /* -------------------------------------------------------------------------- */
1785
1786 #define VMX_INVVPID_ADDRESS 0
1787 #define VMX_INVVPID_CONTEXT 1
1788 #define VMX_INVVPID_ALL 2
1789 #define VMX_INVVPID_CONTEXT_NOGLOBAL 3
1790
1791 #define VMX_INVEPT_CONTEXT 1
1792 #define VMX_INVEPT_ALL 2
1793
1794 static inline void
1795 vmx_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1796 {
1797 struct vmx_cpudata *cpudata = vcpu->cpudata;
1798
1799 if (vcpu->hcpu_last != hcpu) {
1800 cpudata->gtlb_want_flush = true;
1801 }
1802 }
1803
1804 static inline void
1805 vmx_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1806 {
1807 struct vmx_cpudata *cpudata = vcpu->cpudata;
1808 struct ept_desc ept_desc;
1809
1810 if (__predict_true(!kcpuset_isset(cpudata->htlb_want_flush, hcpu))) {
1811 return;
1812 }
1813
1814 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1815 ept_desc.mbz = 0;
1816 vmx_invept(vmx_ept_flush_op, &ept_desc);
1817 kcpuset_clear(cpudata->htlb_want_flush, hcpu);
1818 }
1819
1820 static inline uint64_t
1821 vmx_htlb_flush(struct vmx_machdata *machdata, struct vmx_cpudata *cpudata)
1822 {
1823 struct ept_desc ept_desc;
1824 uint64_t machgen;
1825
1826 machgen = machdata->mach_htlb_gen;
1827 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1828 return machgen;
1829 }
1830
1831 kcpuset_copy(cpudata->htlb_want_flush, kcpuset_running);
1832
1833 ept_desc.eptp = vmx_vmread(VMCS_EPTP);
1834 ept_desc.mbz = 0;
1835 vmx_invept(vmx_ept_flush_op, &ept_desc);
1836
1837 return machgen;
1838 }
1839
1840 static inline void
1841 vmx_htlb_flush_ack(struct vmx_cpudata *cpudata, uint64_t machgen)
1842 {
1843 cpudata->vcpu_htlb_gen = machgen;
1844 kcpuset_clear(cpudata->htlb_want_flush, cpu_number());
1845 }
1846
1847 static inline void
1848 vmx_exit_evt(struct vmx_cpudata *cpudata)
1849 {
1850 uint64_t info, err;
1851
1852 cpudata->evt_pending = false;
1853
1854 info = vmx_vmread(VMCS_IDT_VECTORING_INFO);
1855 if (__predict_true((info & INTR_INFO_VALID) == 0)) {
1856 return;
1857 }
1858 err = vmx_vmread(VMCS_IDT_VECTORING_ERROR);
1859
1860 vmx_vmwrite(VMCS_ENTRY_INTR_INFO, info);
1861 vmx_vmwrite(VMCS_ENTRY_EXCEPTION_ERROR, err);
1862
1863 cpudata->evt_pending = true;
1864 }
1865
1866 static int
1867 vmx_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1868 struct nvmm_exit *exit)
1869 {
1870 struct vmx_machdata *machdata = mach->machdata;
1871 struct vmx_cpudata *cpudata = vcpu->cpudata;
1872 struct vpid_desc vpid_desc;
1873 struct cpu_info *ci;
1874 uint64_t exitcode;
1875 uint64_t intstate;
1876 uint64_t machgen;
1877 int hcpu, s, ret;
1878 bool launched;
1879
1880 vmx_vmcs_enter(vcpu);
1881 ci = curcpu();
1882 hcpu = cpu_number();
1883 launched = cpudata->vmcs_launched;
1884
1885 vmx_gtlb_catchup(vcpu, hcpu);
1886 vmx_htlb_catchup(vcpu, hcpu);
1887
1888 if (vcpu->hcpu_last != hcpu) {
1889 vmx_vmwrite(VMCS_HOST_TR_SELECTOR, ci->ci_tss_sel);
1890 vmx_vmwrite(VMCS_HOST_TR_BASE, (uint64_t)ci->ci_tss);
1891 vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uint64_t)ci->ci_gdt);
1892 vmx_vmwrite(VMCS_HOST_GS_BASE, rdmsr(MSR_GSBASE));
1893 cpudata->gtsc_want_update = true;
1894 vcpu->hcpu_last = hcpu;
1895 }
1896
1897 vmx_vcpu_guest_dbregs_enter(vcpu);
1898 vmx_vcpu_guest_misc_enter(vcpu);
1899
1900 while (1) {
1901 if (cpudata->gtlb_want_flush) {
1902 vpid_desc.vpid = cpudata->asid;
1903 vpid_desc.addr = 0;
1904 vmx_invvpid(vmx_tlb_flush_op, &vpid_desc);
1905 cpudata->gtlb_want_flush = false;
1906 }
1907
1908 if (__predict_false(cpudata->gtsc_want_update)) {
1909 vmx_vmwrite(VMCS_TSC_OFFSET, cpudata->gtsc - rdtsc());
1910 cpudata->gtsc_want_update = false;
1911 }
1912
1913 s = splhigh();
1914 machgen = vmx_htlb_flush(machdata, cpudata);
1915 vmx_vcpu_guest_fpu_enter(vcpu);
1916 lcr2(cpudata->gcr2);
1917 if (launched) {
1918 ret = vmx_vmresume(cpudata->gprs);
1919 } else {
1920 ret = vmx_vmlaunch(cpudata->gprs);
1921 }
1922 cpudata->gcr2 = rcr2();
1923 vmx_vcpu_guest_fpu_leave(vcpu);
1924 vmx_htlb_flush_ack(cpudata, machgen);
1925 splx(s);
1926
1927 if (__predict_false(ret != 0)) {
1928 exit->reason = NVMM_EXIT_INVALID;
1929 break;
1930 }
1931 vmx_exit_evt(cpudata);
1932
1933 launched = true;
1934
1935 exitcode = vmx_vmread(VMCS_EXIT_REASON);
1936 exitcode &= __BITS(15,0);
1937
1938 switch (exitcode) {
1939 case VMCS_EXITCODE_EXC_NMI:
1940 vmx_exit_exc_nmi(mach, vcpu, exit);
1941 break;
1942 case VMCS_EXITCODE_EXT_INT:
1943 exit->reason = NVMM_EXIT_NONE;
1944 break;
1945 case VMCS_EXITCODE_CPUID:
1946 vmx_exit_cpuid(mach, vcpu, exit);
1947 break;
1948 case VMCS_EXITCODE_HLT:
1949 vmx_exit_hlt(mach, vcpu, exit);
1950 break;
1951 case VMCS_EXITCODE_CR:
1952 vmx_exit_cr(mach, vcpu, exit);
1953 break;
1954 case VMCS_EXITCODE_IO:
1955 vmx_exit_io(mach, vcpu, exit);
1956 break;
1957 case VMCS_EXITCODE_RDMSR:
1958 vmx_exit_msr(mach, vcpu, exit, true);
1959 break;
1960 case VMCS_EXITCODE_WRMSR:
1961 vmx_exit_msr(mach, vcpu, exit, false);
1962 break;
1963 case VMCS_EXITCODE_SHUTDOWN:
1964 exit->reason = NVMM_EXIT_SHUTDOWN;
1965 break;
1966 case VMCS_EXITCODE_MONITOR:
1967 exit->reason = NVMM_EXIT_MONITOR;
1968 break;
1969 case VMCS_EXITCODE_MWAIT:
1970 exit->reason = NVMM_EXIT_MWAIT;
1971 break;
1972 case VMCS_EXITCODE_XSETBV:
1973 vmx_exit_xsetbv(mach, vcpu, exit);
1974 break;
1975 case VMCS_EXITCODE_RDPMC:
1976 case VMCS_EXITCODE_RDTSCP:
1977 case VMCS_EXITCODE_INVVPID:
1978 case VMCS_EXITCODE_INVEPT:
1979 case VMCS_EXITCODE_VMCALL:
1980 case VMCS_EXITCODE_VMCLEAR:
1981 case VMCS_EXITCODE_VMLAUNCH:
1982 case VMCS_EXITCODE_VMPTRLD:
1983 case VMCS_EXITCODE_VMPTRST:
1984 case VMCS_EXITCODE_VMREAD:
1985 case VMCS_EXITCODE_VMRESUME:
1986 case VMCS_EXITCODE_VMWRITE:
1987 case VMCS_EXITCODE_VMXOFF:
1988 case VMCS_EXITCODE_VMXON:
1989 vmx_inject_ud(mach, vcpu);
1990 exit->reason = NVMM_EXIT_NONE;
1991 break;
1992 case VMCS_EXITCODE_EPT_VIOLATION:
1993 vmx_exit_epf(mach, vcpu, exit);
1994 break;
1995 case VMCS_EXITCODE_INT_WINDOW:
1996 vmx_event_waitexit_disable(vcpu, false);
1997 exit->reason = NVMM_EXIT_INT_READY;
1998 break;
1999 case VMCS_EXITCODE_NMI_WINDOW:
2000 vmx_event_waitexit_disable(vcpu, true);
2001 exit->reason = NVMM_EXIT_NMI_READY;
2002 break;
2003 default:
2004 vmx_exit_invalid(exit, exitcode);
2005 break;
2006 }
2007
2008 /* If no reason to return to userland, keep rolling. */
2009 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
2010 break;
2011 }
2012 if (curcpu()->ci_data.cpu_softints != 0) {
2013 break;
2014 }
2015 if (curlwp->l_flag & LW_USERRET) {
2016 break;
2017 }
2018 if (exit->reason != NVMM_EXIT_NONE) {
2019 break;
2020 }
2021 }
2022
2023 cpudata->vmcs_launched = launched;
2024
2025 cpudata->gtsc = vmx_vmread(VMCS_TSC_OFFSET) + rdtsc();
2026
2027 vmx_vcpu_guest_misc_leave(vcpu);
2028 vmx_vcpu_guest_dbregs_leave(vcpu);
2029
2030 exit->exitstate[NVMM_X64_EXITSTATE_CR8] = cpudata->gcr8;
2031 exit->exitstate[NVMM_X64_EXITSTATE_RFLAGS] =
2032 vmx_vmread(VMCS_GUEST_RFLAGS);
2033 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2034 exit->exitstate[NVMM_X64_EXITSTATE_INT_SHADOW] =
2035 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2036 exit->exitstate[NVMM_X64_EXITSTATE_INT_WINDOW_EXIT] =
2037 cpudata->int_window_exit;
2038 exit->exitstate[NVMM_X64_EXITSTATE_NMI_WINDOW_EXIT] =
2039 cpudata->nmi_window_exit;
2040 exit->exitstate[NVMM_X64_EXITSTATE_EVT_PENDING] =
2041 cpudata->evt_pending;
2042
2043 vmx_vmcs_leave(vcpu);
2044
2045 return 0;
2046 }
2047
2048 /* -------------------------------------------------------------------------- */
2049
2050 static int
2051 vmx_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
2052 {
2053 struct pglist pglist;
2054 paddr_t _pa;
2055 vaddr_t _va;
2056 size_t i;
2057 int ret;
2058
2059 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
2060 &pglist, 1, 0);
2061 if (ret != 0)
2062 return ENOMEM;
2063 _pa = TAILQ_FIRST(&pglist)->phys_addr;
2064 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
2065 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
2066 if (_va == 0)
2067 goto error;
2068
2069 for (i = 0; i < npages; i++) {
2070 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
2071 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
2072 }
2073 pmap_update(pmap_kernel());
2074
2075 memset((void *)_va, 0, npages * PAGE_SIZE);
2076
2077 *pa = _pa;
2078 *va = _va;
2079 return 0;
2080
2081 error:
2082 for (i = 0; i < npages; i++) {
2083 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
2084 }
2085 return ENOMEM;
2086 }
2087
2088 static void
2089 vmx_memfree(paddr_t pa, vaddr_t va, size_t npages)
2090 {
2091 size_t i;
2092
2093 pmap_kremove(va, npages * PAGE_SIZE);
2094 pmap_update(pmap_kernel());
2095 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
2096 for (i = 0; i < npages; i++) {
2097 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
2098 }
2099 }
2100
2101 /* -------------------------------------------------------------------------- */
2102
2103 static void
2104 vmx_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
2105 {
2106 uint64_t byte;
2107 uint8_t bitoff;
2108
2109 if (msr < 0x00002000) {
2110 /* Range 1 */
2111 byte = ((msr - 0x00000000) / 8) + 0;
2112 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
2113 /* Range 2 */
2114 byte = ((msr - 0xC0000000) / 8) + 1024;
2115 } else {
2116 panic("%s: wrong range", __func__);
2117 }
2118
2119 bitoff = (msr & 0x7);
2120
2121 if (read) {
2122 bitmap[byte] &= ~__BIT(bitoff);
2123 }
2124 if (write) {
2125 bitmap[2048 + byte] &= ~__BIT(bitoff);
2126 }
2127 }
2128
2129 #define VMX_SEG_ATTRIB_TYPE __BITS(3,0)
2130 #define VMX_SEG_ATTRIB_S __BIT(4)
2131 #define VMX_SEG_ATTRIB_DPL __BITS(6,5)
2132 #define VMX_SEG_ATTRIB_P __BIT(7)
2133 #define VMX_SEG_ATTRIB_AVL __BIT(12)
2134 #define VMX_SEG_ATTRIB_L __BIT(13)
2135 #define VMX_SEG_ATTRIB_DEF __BIT(14)
2136 #define VMX_SEG_ATTRIB_G __BIT(15)
2137 #define VMX_SEG_ATTRIB_UNUSABLE __BIT(16)
2138
2139 static void
2140 vmx_vcpu_setstate_seg(const struct nvmm_x64_state_seg *segs, int idx)
2141 {
2142 uint64_t attrib;
2143
2144 attrib =
2145 __SHIFTIN(segs[idx].attrib.type, VMX_SEG_ATTRIB_TYPE) |
2146 __SHIFTIN(segs[idx].attrib.s, VMX_SEG_ATTRIB_S) |
2147 __SHIFTIN(segs[idx].attrib.dpl, VMX_SEG_ATTRIB_DPL) |
2148 __SHIFTIN(segs[idx].attrib.p, VMX_SEG_ATTRIB_P) |
2149 __SHIFTIN(segs[idx].attrib.avl, VMX_SEG_ATTRIB_AVL) |
2150 __SHIFTIN(segs[idx].attrib.l, VMX_SEG_ATTRIB_L) |
2151 __SHIFTIN(segs[idx].attrib.def, VMX_SEG_ATTRIB_DEF) |
2152 __SHIFTIN(segs[idx].attrib.g, VMX_SEG_ATTRIB_G) |
2153 (!segs[idx].attrib.p ? VMX_SEG_ATTRIB_UNUSABLE : 0);
2154
2155 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2156 vmx_vmwrite(vmx_guest_segs[idx].selector, segs[idx].selector);
2157 vmx_vmwrite(vmx_guest_segs[idx].attrib, attrib);
2158 }
2159 vmx_vmwrite(vmx_guest_segs[idx].limit, segs[idx].limit);
2160 vmx_vmwrite(vmx_guest_segs[idx].base, segs[idx].base);
2161 }
2162
2163 static void
2164 vmx_vcpu_getstate_seg(struct nvmm_x64_state_seg *segs, int idx)
2165 {
2166 uint64_t selector = 0, attrib = 0, base, limit;
2167
2168 if (idx != NVMM_X64_SEG_GDT && idx != NVMM_X64_SEG_IDT) {
2169 selector = vmx_vmread(vmx_guest_segs[idx].selector);
2170 attrib = vmx_vmread(vmx_guest_segs[idx].attrib);
2171 }
2172 limit = vmx_vmread(vmx_guest_segs[idx].limit);
2173 base = vmx_vmread(vmx_guest_segs[idx].base);
2174
2175 segs[idx].selector = selector;
2176 segs[idx].limit = limit;
2177 segs[idx].base = base;
2178 segs[idx].attrib.type = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_TYPE);
2179 segs[idx].attrib.s = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_S);
2180 segs[idx].attrib.dpl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DPL);
2181 segs[idx].attrib.p = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_P);
2182 segs[idx].attrib.avl = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_AVL);
2183 segs[idx].attrib.l = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_L);
2184 segs[idx].attrib.def = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_DEF);
2185 segs[idx].attrib.g = __SHIFTOUT(attrib, VMX_SEG_ATTRIB_G);
2186 if (attrib & VMX_SEG_ATTRIB_UNUSABLE) {
2187 segs[idx].attrib.p = 0;
2188 }
2189 }
2190
2191 static inline bool
2192 vmx_state_tlb_flush(const struct nvmm_x64_state *state, uint64_t flags)
2193 {
2194 uint64_t cr0, cr3, cr4, efer;
2195
2196 if (flags & NVMM_X64_STATE_CRS) {
2197 cr0 = vmx_vmread(VMCS_GUEST_CR0);
2198 if ((cr0 ^ state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
2199 return true;
2200 }
2201 cr3 = vmx_vmread(VMCS_GUEST_CR3);
2202 if (cr3 != state->crs[NVMM_X64_CR_CR3]) {
2203 return true;
2204 }
2205 cr4 = vmx_vmread(VMCS_GUEST_CR4);
2206 if ((cr4 ^ state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
2207 return true;
2208 }
2209 }
2210
2211 if (flags & NVMM_X64_STATE_MSRS) {
2212 efer = vmx_vmread(VMCS_GUEST_IA32_EFER);
2213 if ((efer ^
2214 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
2215 return true;
2216 }
2217 }
2218
2219 return false;
2220 }
2221
2222 static void
2223 vmx_vcpu_setstate(struct nvmm_cpu *vcpu, const void *data, uint64_t flags)
2224 {
2225 const struct nvmm_x64_state *state = data;
2226 struct vmx_cpudata *cpudata = vcpu->cpudata;
2227 struct fxsave *fpustate;
2228 uint64_t ctls1, intstate;
2229
2230 vmx_vmcs_enter(vcpu);
2231
2232 if (vmx_state_tlb_flush(state, flags)) {
2233 cpudata->gtlb_want_flush = true;
2234 }
2235
2236 if (flags & NVMM_X64_STATE_SEGS) {
2237 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_CS);
2238 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_DS);
2239 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_ES);
2240 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_FS);
2241 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GS);
2242 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_SS);
2243 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_GDT);
2244 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_IDT);
2245 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_LDT);
2246 vmx_vcpu_setstate_seg(state->segs, NVMM_X64_SEG_TR);
2247 }
2248
2249 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2250 if (flags & NVMM_X64_STATE_GPRS) {
2251 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
2252
2253 vmx_vmwrite(VMCS_GUEST_RIP, state->gprs[NVMM_X64_GPR_RIP]);
2254 vmx_vmwrite(VMCS_GUEST_RSP, state->gprs[NVMM_X64_GPR_RSP]);
2255 vmx_vmwrite(VMCS_GUEST_RFLAGS, state->gprs[NVMM_X64_GPR_RFLAGS]);
2256 }
2257
2258 if (flags & NVMM_X64_STATE_CRS) {
2259 /*
2260 * CR0_NE and CR4_VMXE are mandatory.
2261 */
2262 vmx_vmwrite(VMCS_GUEST_CR0,
2263 state->crs[NVMM_X64_CR_CR0] | CR0_NE);
2264 cpudata->gcr2 = state->crs[NVMM_X64_CR_CR2];
2265 vmx_vmwrite(VMCS_GUEST_CR3, state->crs[NVMM_X64_CR_CR3]); // XXX PDPTE?
2266 vmx_vmwrite(VMCS_GUEST_CR4,
2267 state->crs[NVMM_X64_CR_CR4] | CR4_VMXE);
2268 cpudata->gcr8 = state->crs[NVMM_X64_CR_CR8];
2269
2270 if (vmx_xcr0_mask != 0) {
2271 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
2272 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
2273 cpudata->gxcr0 &= vmx_xcr0_mask;
2274 cpudata->gxcr0 |= XCR0_X87;
2275 }
2276 }
2277
2278 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2279 if (flags & NVMM_X64_STATE_DRS) {
2280 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
2281
2282 cpudata->drs[NVMM_X64_DR_DR6] &= 0xFFFFFFFF;
2283 vmx_vmwrite(VMCS_GUEST_DR7, cpudata->drs[NVMM_X64_DR_DR7]);
2284 }
2285
2286 if (flags & NVMM_X64_STATE_MSRS) {
2287 cpudata->gmsr[VMX_MSRLIST_STAR].val =
2288 state->msrs[NVMM_X64_MSR_STAR];
2289 cpudata->gmsr[VMX_MSRLIST_LSTAR].val =
2290 state->msrs[NVMM_X64_MSR_LSTAR];
2291 cpudata->gmsr[VMX_MSRLIST_CSTAR].val =
2292 state->msrs[NVMM_X64_MSR_CSTAR];
2293 cpudata->gmsr[VMX_MSRLIST_SFMASK].val =
2294 state->msrs[NVMM_X64_MSR_SFMASK];
2295 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val =
2296 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
2297
2298 vmx_vmwrite(VMCS_GUEST_IA32_EFER,
2299 state->msrs[NVMM_X64_MSR_EFER]);
2300 vmx_vmwrite(VMCS_GUEST_IA32_PAT,
2301 state->msrs[NVMM_X64_MSR_PAT]);
2302 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_CS,
2303 state->msrs[NVMM_X64_MSR_SYSENTER_CS]);
2304 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_ESP,
2305 state->msrs[NVMM_X64_MSR_SYSENTER_ESP]);
2306 vmx_vmwrite(VMCS_GUEST_IA32_SYSENTER_EIP,
2307 state->msrs[NVMM_X64_MSR_SYSENTER_EIP]);
2308
2309 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
2310 cpudata->gtsc_want_update = true;
2311
2312 /* ENTRY_CTLS_LONG_MODE must match EFER_LMA. */
2313 ctls1 = vmx_vmread(VMCS_ENTRY_CTLS);
2314 if (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) {
2315 ctls1 |= ENTRY_CTLS_LONG_MODE;
2316 } else {
2317 ctls1 &= ~ENTRY_CTLS_LONG_MODE;
2318 }
2319 vmx_vmwrite(VMCS_ENTRY_CTLS, ctls1);
2320 }
2321
2322 if (flags & NVMM_X64_STATE_INTR) {
2323 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2324 intstate &= ~(INT_STATE_STI|INT_STATE_MOVSS);
2325 if (state->intr.int_shadow) {
2326 intstate |= INT_STATE_MOVSS;
2327 }
2328 vmx_vmwrite(VMCS_GUEST_INTERRUPTIBILITY, intstate);
2329
2330 if (state->intr.int_window_exiting) {
2331 vmx_event_waitexit_enable(vcpu, false);
2332 } else {
2333 vmx_event_waitexit_disable(vcpu, false);
2334 }
2335
2336 if (state->intr.nmi_window_exiting) {
2337 vmx_event_waitexit_enable(vcpu, true);
2338 } else {
2339 vmx_event_waitexit_disable(vcpu, true);
2340 }
2341 }
2342
2343 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2344 if (flags & NVMM_X64_STATE_FPU) {
2345 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
2346 sizeof(state->fpu));
2347
2348 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
2349 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
2350 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
2351
2352 if (vmx_xcr0_mask != 0) {
2353 /* Reset XSTATE_BV, to force a reload. */
2354 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2355 }
2356 }
2357
2358 vmx_vmcs_leave(vcpu);
2359 }
2360
2361 static void
2362 vmx_vcpu_getstate(struct nvmm_cpu *vcpu, void *data, uint64_t flags)
2363 {
2364 struct nvmm_x64_state *state = (struct nvmm_x64_state *)data;
2365 struct vmx_cpudata *cpudata = vcpu->cpudata;
2366 uint64_t intstate;
2367
2368 vmx_vmcs_enter(vcpu);
2369
2370 if (flags & NVMM_X64_STATE_SEGS) {
2371 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_CS);
2372 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_DS);
2373 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_ES);
2374 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_FS);
2375 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GS);
2376 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_SS);
2377 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_GDT);
2378 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_IDT);
2379 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_LDT);
2380 vmx_vcpu_getstate_seg(state->segs, NVMM_X64_SEG_TR);
2381 }
2382
2383 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2384 if (flags & NVMM_X64_STATE_GPRS) {
2385 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2386
2387 state->gprs[NVMM_X64_GPR_RIP] = vmx_vmread(VMCS_GUEST_RIP);
2388 state->gprs[NVMM_X64_GPR_RSP] = vmx_vmread(VMCS_GUEST_RSP);
2389 state->gprs[NVMM_X64_GPR_RFLAGS] = vmx_vmread(VMCS_GUEST_RFLAGS);
2390 }
2391
2392 if (flags & NVMM_X64_STATE_CRS) {
2393 state->crs[NVMM_X64_CR_CR0] = vmx_vmread(VMCS_GUEST_CR0);
2394 state->crs[NVMM_X64_CR_CR2] = cpudata->gcr2;
2395 state->crs[NVMM_X64_CR_CR3] = vmx_vmread(VMCS_GUEST_CR3);
2396 state->crs[NVMM_X64_CR_CR4] = vmx_vmread(VMCS_GUEST_CR4);
2397 state->crs[NVMM_X64_CR_CR8] = cpudata->gcr8;
2398 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2399
2400 /* Hide VMXE. */
2401 state->crs[NVMM_X64_CR_CR4] &= ~CR4_VMXE;
2402 }
2403
2404 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2405 if (flags & NVMM_X64_STATE_DRS) {
2406 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2407
2408 state->drs[NVMM_X64_DR_DR7] = vmx_vmread(VMCS_GUEST_DR7);
2409 }
2410
2411 if (flags & NVMM_X64_STATE_MSRS) {
2412 state->msrs[NVMM_X64_MSR_STAR] =
2413 cpudata->gmsr[VMX_MSRLIST_STAR].val;
2414 state->msrs[NVMM_X64_MSR_LSTAR] =
2415 cpudata->gmsr[VMX_MSRLIST_LSTAR].val;
2416 state->msrs[NVMM_X64_MSR_CSTAR] =
2417 cpudata->gmsr[VMX_MSRLIST_CSTAR].val;
2418 state->msrs[NVMM_X64_MSR_SFMASK] =
2419 cpudata->gmsr[VMX_MSRLIST_SFMASK].val;
2420 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2421 cpudata->gmsr[VMX_MSRLIST_KERNELGSBASE].val;
2422 state->msrs[NVMM_X64_MSR_EFER] =
2423 vmx_vmread(VMCS_GUEST_IA32_EFER);
2424 state->msrs[NVMM_X64_MSR_PAT] =
2425 vmx_vmread(VMCS_GUEST_IA32_PAT);
2426 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2427 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_CS);
2428 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2429 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_ESP);
2430 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2431 vmx_vmread(VMCS_GUEST_IA32_SYSENTER_EIP);
2432 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2433 }
2434
2435 if (flags & NVMM_X64_STATE_INTR) {
2436 intstate = vmx_vmread(VMCS_GUEST_INTERRUPTIBILITY);
2437 state->intr.int_shadow =
2438 (intstate & (INT_STATE_STI|INT_STATE_MOVSS)) != 0;
2439 state->intr.int_window_exiting = cpudata->int_window_exit;
2440 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2441 state->intr.evt_pending = cpudata->evt_pending;
2442 }
2443
2444 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2445 if (flags & NVMM_X64_STATE_FPU) {
2446 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2447 sizeof(state->fpu));
2448 }
2449
2450 vmx_vmcs_leave(vcpu);
2451 }
2452
2453 /* -------------------------------------------------------------------------- */
2454
2455 static void
2456 vmx_asid_alloc(struct nvmm_cpu *vcpu)
2457 {
2458 struct vmx_cpudata *cpudata = vcpu->cpudata;
2459 size_t i, oct, bit;
2460
2461 mutex_enter(&vmx_asidlock);
2462
2463 for (i = 0; i < vmx_maxasid; i++) {
2464 oct = i / 8;
2465 bit = i % 8;
2466
2467 if (vmx_asidmap[oct] & __BIT(bit)) {
2468 continue;
2469 }
2470
2471 cpudata->asid = i;
2472
2473 vmx_asidmap[oct] |= __BIT(bit);
2474 vmx_vmwrite(VMCS_VPID, i);
2475 mutex_exit(&vmx_asidlock);
2476 return;
2477 }
2478
2479 mutex_exit(&vmx_asidlock);
2480
2481 panic("%s: impossible", __func__);
2482 }
2483
2484 static void
2485 vmx_asid_free(struct nvmm_cpu *vcpu)
2486 {
2487 size_t oct, bit;
2488 uint64_t asid;
2489
2490 asid = vmx_vmread(VMCS_VPID);
2491
2492 oct = asid / 8;
2493 bit = asid % 8;
2494
2495 mutex_enter(&vmx_asidlock);
2496 vmx_asidmap[oct] &= ~__BIT(bit);
2497 mutex_exit(&vmx_asidlock);
2498 }
2499
2500 static void
2501 vmx_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2502 {
2503 struct vmx_cpudata *cpudata = vcpu->cpudata;
2504 struct vmcs *vmcs = cpudata->vmcs;
2505 struct msr_entry *gmsr = cpudata->gmsr;
2506 extern uint8_t vmx_resume_rip;
2507 uint64_t rev, eptp;
2508
2509 rev = vmx_get_revision();
2510
2511 memset(vmcs, 0, VMCS_SIZE);
2512 vmcs->ident = __SHIFTIN(rev, VMCS_IDENT_REVISION);
2513 vmcs->abort = 0;
2514
2515 vmx_vmcs_enter(vcpu);
2516
2517 /* No link pointer. */
2518 vmx_vmwrite(VMCS_LINK_POINTER, 0xFFFFFFFFFFFFFFFF);
2519
2520 /* Install the CTLSs. */
2521 vmx_vmwrite(VMCS_PINBASED_CTLS, vmx_pinbased_ctls);
2522 vmx_vmwrite(VMCS_PROCBASED_CTLS, vmx_procbased_ctls);
2523 vmx_vmwrite(VMCS_PROCBASED_CTLS2, vmx_procbased_ctls2);
2524 vmx_vmwrite(VMCS_ENTRY_CTLS, vmx_entry_ctls);
2525 vmx_vmwrite(VMCS_EXIT_CTLS, vmx_exit_ctls);
2526
2527 /* Allow direct access to certain MSRs. */
2528 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2529 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_EFER, true, true);
2530 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2531 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2532 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2533 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2534 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2535 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2536 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2537 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2538 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2539 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2540 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2541 vmx_vcpu_msr_allow(cpudata->msrbm, MSR_IA32_ARCH_CAPABILITIES,
2542 true, false);
2543 vmx_vmwrite(VMCS_MSR_BITMAP, (uint64_t)cpudata->msrbm_pa);
2544
2545 /*
2546 * List of Guest MSRs loaded on VMENTRY, saved on VMEXIT. This
2547 * includes the L1D_FLUSH MSR, to mitigate L1TF.
2548 */
2549 gmsr[VMX_MSRLIST_STAR].msr = MSR_STAR;
2550 gmsr[VMX_MSRLIST_STAR].val = 0;
2551 gmsr[VMX_MSRLIST_LSTAR].msr = MSR_LSTAR;
2552 gmsr[VMX_MSRLIST_LSTAR].val = 0;
2553 gmsr[VMX_MSRLIST_CSTAR].msr = MSR_CSTAR;
2554 gmsr[VMX_MSRLIST_CSTAR].val = 0;
2555 gmsr[VMX_MSRLIST_SFMASK].msr = MSR_SFMASK;
2556 gmsr[VMX_MSRLIST_SFMASK].val = 0;
2557 gmsr[VMX_MSRLIST_KERNELGSBASE].msr = MSR_KERNELGSBASE;
2558 gmsr[VMX_MSRLIST_KERNELGSBASE].val = 0;
2559 gmsr[VMX_MSRLIST_L1DFLUSH].msr = MSR_IA32_FLUSH_CMD;
2560 gmsr[VMX_MSRLIST_L1DFLUSH].val = IA32_FLUSH_CMD_L1D_FLUSH;
2561 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_ADDRESS, cpudata->gmsr_pa);
2562 vmx_vmwrite(VMCS_EXIT_MSR_STORE_ADDRESS, cpudata->gmsr_pa);
2563 vmx_vmwrite(VMCS_ENTRY_MSR_LOAD_COUNT, vmx_msrlist_entry_nmsr);
2564 vmx_vmwrite(VMCS_EXIT_MSR_STORE_COUNT, VMX_MSRLIST_EXIT_NMSR);
2565
2566 /* Force CR0_NW and CR0_CD to zero, CR0_ET to one. */
2567 vmx_vmwrite(VMCS_CR0_MASK, CR0_NW|CR0_CD|CR0_ET);
2568 vmx_vmwrite(VMCS_CR0_SHADOW, CR0_ET);
2569
2570 /* Force CR4_VMXE to zero. */
2571 vmx_vmwrite(VMCS_CR4_MASK, CR4_VMXE);
2572
2573 /* Set the Host state for resuming. */
2574 vmx_vmwrite(VMCS_HOST_RIP, (uint64_t)&vmx_resume_rip);
2575 vmx_vmwrite(VMCS_HOST_CS_SELECTOR, GSEL(GCODE_SEL, SEL_KPL));
2576 vmx_vmwrite(VMCS_HOST_SS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2577 vmx_vmwrite(VMCS_HOST_DS_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2578 vmx_vmwrite(VMCS_HOST_ES_SELECTOR, GSEL(GDATA_SEL, SEL_KPL));
2579 vmx_vmwrite(VMCS_HOST_FS_SELECTOR, 0);
2580 vmx_vmwrite(VMCS_HOST_GS_SELECTOR, 0);
2581 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_CS, 0);
2582 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_ESP, 0);
2583 vmx_vmwrite(VMCS_HOST_IA32_SYSENTER_EIP, 0);
2584 vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uint64_t)idt);
2585 vmx_vmwrite(VMCS_HOST_IA32_PAT, rdmsr(MSR_CR_PAT));
2586 vmx_vmwrite(VMCS_HOST_IA32_EFER, rdmsr(MSR_EFER));
2587 vmx_vmwrite(VMCS_HOST_CR0, rcr0());
2588
2589 /* Generate ASID. */
2590 vmx_asid_alloc(vcpu);
2591
2592 /* Enable Extended Paging, 4-Level. */
2593 eptp =
2594 __SHIFTIN(vmx_eptp_type, EPTP_TYPE) |
2595 __SHIFTIN(4-1, EPTP_WALKLEN) |
2596 (pmap_ept_has_ad ? EPTP_FLAGS_AD : 0) |
2597 mach->vm->vm_map.pmap->pm_pdirpa[0];
2598 vmx_vmwrite(VMCS_EPTP, eptp);
2599
2600 /* Init IA32_MISC_ENABLE. */
2601 cpudata->gmsr_misc_enable = rdmsr(MSR_MISC_ENABLE);
2602 cpudata->gmsr_misc_enable &=
2603 ~(IA32_MISC_PERFMON_EN|IA32_MISC_EISST_EN|IA32_MISC_MWAIT_EN);
2604 cpudata->gmsr_misc_enable |=
2605 (IA32_MISC_BTS_UNAVAIL|IA32_MISC_PEBS_UNAVAIL);
2606
2607 /* Init XSAVE header. */
2608 cpudata->gfpu.xsh_xstate_bv = vmx_xcr0_mask;
2609 cpudata->gfpu.xsh_xcomp_bv = 0;
2610
2611 /* These MSRs are static. */
2612 cpudata->star = rdmsr(MSR_STAR);
2613 cpudata->cstar = rdmsr(MSR_CSTAR);
2614 cpudata->sfmask = rdmsr(MSR_SFMASK);
2615
2616 /* Install the RESET state. */
2617 vmx_vcpu_setstate(vcpu, &nvmm_x86_reset_state, NVMM_X64_STATE_ALL);
2618
2619 vmx_vmcs_leave(vcpu);
2620 }
2621
2622 static int
2623 vmx_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2624 {
2625 struct vmx_cpudata *cpudata;
2626 int error;
2627
2628 /* Allocate the VMX cpudata. */
2629 cpudata = (struct vmx_cpudata *)uvm_km_alloc(kernel_map,
2630 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2631 UVM_KMF_WIRED|UVM_KMF_ZERO);
2632 vcpu->cpudata = cpudata;
2633
2634 /* VMCS */
2635 error = vmx_memalloc(&cpudata->vmcs_pa, (vaddr_t *)&cpudata->vmcs,
2636 VMCS_NPAGES);
2637 if (error)
2638 goto error;
2639
2640 /* MSR Bitmap */
2641 error = vmx_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2642 MSRBM_NPAGES);
2643 if (error)
2644 goto error;
2645
2646 /* Guest MSR List */
2647 error = vmx_memalloc(&cpudata->gmsr_pa, (vaddr_t *)&cpudata->gmsr, 1);
2648 if (error)
2649 goto error;
2650
2651 kcpuset_create(&cpudata->htlb_want_flush, true);
2652
2653 /* Init the VCPU info. */
2654 vmx_vcpu_init(mach, vcpu);
2655
2656 return 0;
2657
2658 error:
2659 if (cpudata->vmcs_pa) {
2660 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs,
2661 VMCS_NPAGES);
2662 }
2663 if (cpudata->msrbm_pa) {
2664 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2665 MSRBM_NPAGES);
2666 }
2667 if (cpudata->gmsr_pa) {
2668 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2669 }
2670
2671 kmem_free(cpudata, sizeof(*cpudata));
2672 return error;
2673 }
2674
2675 static void
2676 vmx_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2677 {
2678 struct vmx_cpudata *cpudata = vcpu->cpudata;
2679
2680 vmx_vmcs_enter(vcpu);
2681 vmx_asid_free(vcpu);
2682 vmx_vmcs_destroy(vcpu);
2683
2684 kcpuset_destroy(cpudata->htlb_want_flush);
2685
2686 vmx_memfree(cpudata->vmcs_pa, (vaddr_t)cpudata->vmcs, VMCS_NPAGES);
2687 vmx_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2688 vmx_memfree(cpudata->gmsr_pa, (vaddr_t)cpudata->gmsr, 1);
2689 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2690 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2691 }
2692
2693 /* -------------------------------------------------------------------------- */
2694
2695 static void
2696 vmx_tlb_flush(struct pmap *pm)
2697 {
2698 struct nvmm_machine *mach = pm->pm_data;
2699 struct vmx_machdata *machdata = mach->machdata;
2700
2701 atomic_inc_64(&machdata->mach_htlb_gen);
2702
2703 /* Generates IPIs, which cause #VMEXITs. */
2704 pmap_tlb_shootdown(pmap_kernel(), -1, PG_G, TLBSHOOT_UPDATE);
2705 }
2706
2707 static void
2708 vmx_machine_create(struct nvmm_machine *mach)
2709 {
2710 struct pmap *pmap = mach->vm->vm_map.pmap;
2711 struct vmx_machdata *machdata;
2712
2713 /* Convert to EPT. */
2714 pmap_ept_transform(pmap);
2715
2716 /* Fill in pmap info. */
2717 pmap->pm_data = (void *)mach;
2718 pmap->pm_tlb_flush = vmx_tlb_flush;
2719
2720 machdata = kmem_zalloc(sizeof(struct vmx_machdata), KM_SLEEP);
2721 mach->machdata = machdata;
2722
2723 /* Start with an hTLB flush everywhere. */
2724 machdata->mach_htlb_gen = 1;
2725 }
2726
2727 static void
2728 vmx_machine_destroy(struct nvmm_machine *mach)
2729 {
2730 struct vmx_machdata *machdata = mach->machdata;
2731
2732 kmem_free(machdata, sizeof(struct vmx_machdata));
2733 }
2734
2735 static int
2736 vmx_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2737 {
2738 struct nvmm_x86_conf_cpuid *cpuid = data;
2739 struct vmx_machdata *machdata = (struct vmx_machdata *)mach->machdata;
2740 size_t i;
2741
2742 if (__predict_false(op != NVMM_X86_CONF_CPUID)) {
2743 return EINVAL;
2744 }
2745
2746 if (__predict_false((cpuid->set.eax & cpuid->del.eax) ||
2747 (cpuid->set.ebx & cpuid->del.ebx) ||
2748 (cpuid->set.ecx & cpuid->del.ecx) ||
2749 (cpuid->set.edx & cpuid->del.edx))) {
2750 return EINVAL;
2751 }
2752
2753 /* If already here, replace. */
2754 for (i = 0; i < VMX_NCPUIDS; i++) {
2755 if (!machdata->cpuidpresent[i]) {
2756 continue;
2757 }
2758 if (machdata->cpuid[i].leaf == cpuid->leaf) {
2759 memcpy(&machdata->cpuid[i], cpuid,
2760 sizeof(struct nvmm_x86_conf_cpuid));
2761 return 0;
2762 }
2763 }
2764
2765 /* Not here, insert. */
2766 for (i = 0; i < VMX_NCPUIDS; i++) {
2767 if (!machdata->cpuidpresent[i]) {
2768 machdata->cpuidpresent[i] = true;
2769 memcpy(&machdata->cpuid[i], cpuid,
2770 sizeof(struct nvmm_x86_conf_cpuid));
2771 return 0;
2772 }
2773 }
2774
2775 return ENOBUFS;
2776 }
2777
2778 /* -------------------------------------------------------------------------- */
2779
2780 static int
2781 vmx_init_ctls(uint64_t msr_ctls, uint64_t msr_true_ctls,
2782 uint64_t set_one, uint64_t set_zero, uint64_t *res)
2783 {
2784 uint64_t basic, val, true_val;
2785 bool one_allowed, zero_allowed, has_true;
2786 size_t i;
2787
2788 basic = rdmsr(MSR_IA32_VMX_BASIC);
2789 has_true = (basic & IA32_VMX_BASIC_TRUE_CTLS) != 0;
2790
2791 val = rdmsr(msr_ctls);
2792 if (has_true) {
2793 true_val = rdmsr(msr_true_ctls);
2794 } else {
2795 true_val = val;
2796 }
2797
2798 #define ONE_ALLOWED(msrval, bitoff) \
2799 ((msrval & __BIT(32 + bitoff)) != 0)
2800 #define ZERO_ALLOWED(msrval, bitoff) \
2801 ((msrval & __BIT(bitoff)) == 0)
2802
2803 for (i = 0; i < 32; i++) {
2804 one_allowed = ONE_ALLOWED(true_val, i);
2805 zero_allowed = ZERO_ALLOWED(true_val, i);
2806
2807 if (zero_allowed && !one_allowed) {
2808 if (set_one & __BIT(i))
2809 return -1;
2810 *res &= ~__BIT(i);
2811 } else if (one_allowed && !zero_allowed) {
2812 if (set_zero & __BIT(i))
2813 return -1;
2814 *res |= __BIT(i);
2815 } else {
2816 if (set_zero & __BIT(i)) {
2817 *res &= ~__BIT(i);
2818 } else if (set_one & __BIT(i)) {
2819 *res |= __BIT(i);
2820 } else if (!has_true) {
2821 *res &= ~__BIT(i);
2822 } else if (ZERO_ALLOWED(val, i)) {
2823 *res &= ~__BIT(i);
2824 } else if (ONE_ALLOWED(val, i)) {
2825 *res |= __BIT(i);
2826 } else {
2827 return -1;
2828 }
2829 }
2830 }
2831
2832 return 0;
2833 }
2834
2835 static bool
2836 vmx_ident(void)
2837 {
2838 uint64_t msr;
2839 int ret;
2840
2841 if (!(cpu_feature[1] & CPUID2_VMX)) {
2842 return false;
2843 }
2844
2845 msr = rdmsr(MSR_IA32_FEATURE_CONTROL);
2846 if ((msr & IA32_FEATURE_CONTROL_LOCK) == 0) {
2847 return false;
2848 }
2849
2850 msr = rdmsr(MSR_IA32_VMX_BASIC);
2851 if ((msr & IA32_VMX_BASIC_IO_REPORT) == 0) {
2852 return false;
2853 }
2854 if (__SHIFTOUT(msr, IA32_VMX_BASIC_MEM_TYPE) != MEM_TYPE_WB) {
2855 return false;
2856 }
2857
2858 /* PG and PE are reported, even if Unrestricted Guests is supported. */
2859 vmx_cr0_fixed0 = rdmsr(MSR_IA32_VMX_CR0_FIXED0) & ~(CR0_PG|CR0_PE);
2860 vmx_cr0_fixed1 = rdmsr(MSR_IA32_VMX_CR0_FIXED1) | (CR0_PG|CR0_PE);
2861 ret = vmx_check_cr(rcr0(), vmx_cr0_fixed0, vmx_cr0_fixed1);
2862 if (ret == -1) {
2863 return false;
2864 }
2865
2866 vmx_cr4_fixed0 = rdmsr(MSR_IA32_VMX_CR4_FIXED0);
2867 vmx_cr4_fixed1 = rdmsr(MSR_IA32_VMX_CR4_FIXED1);
2868 ret = vmx_check_cr(rcr4() | CR4_VMXE, vmx_cr4_fixed0, vmx_cr4_fixed1);
2869 if (ret == -1) {
2870 return false;
2871 }
2872
2873 /* Init the CTLSs right now, and check for errors. */
2874 ret = vmx_init_ctls(
2875 MSR_IA32_VMX_PINBASED_CTLS, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2876 VMX_PINBASED_CTLS_ONE, VMX_PINBASED_CTLS_ZERO,
2877 &vmx_pinbased_ctls);
2878 if (ret == -1) {
2879 return false;
2880 }
2881 ret = vmx_init_ctls(
2882 MSR_IA32_VMX_PROCBASED_CTLS, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2883 VMX_PROCBASED_CTLS_ONE, VMX_PROCBASED_CTLS_ZERO,
2884 &vmx_procbased_ctls);
2885 if (ret == -1) {
2886 return false;
2887 }
2888 ret = vmx_init_ctls(
2889 MSR_IA32_VMX_PROCBASED_CTLS2, MSR_IA32_VMX_PROCBASED_CTLS2,
2890 VMX_PROCBASED_CTLS2_ONE, VMX_PROCBASED_CTLS2_ZERO,
2891 &vmx_procbased_ctls2);
2892 if (ret == -1) {
2893 return false;
2894 }
2895 ret = vmx_init_ctls(
2896 MSR_IA32_VMX_ENTRY_CTLS, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2897 VMX_ENTRY_CTLS_ONE, VMX_ENTRY_CTLS_ZERO,
2898 &vmx_entry_ctls);
2899 if (ret == -1) {
2900 return false;
2901 }
2902 ret = vmx_init_ctls(
2903 MSR_IA32_VMX_EXIT_CTLS, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2904 VMX_EXIT_CTLS_ONE, VMX_EXIT_CTLS_ZERO,
2905 &vmx_exit_ctls);
2906 if (ret == -1) {
2907 return false;
2908 }
2909
2910 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
2911 if ((msr & IA32_VMX_EPT_VPID_WALKLENGTH_4) == 0) {
2912 return false;
2913 }
2914 if ((msr & IA32_VMX_EPT_VPID_INVEPT) == 0) {
2915 return false;
2916 }
2917 if ((msr & IA32_VMX_EPT_VPID_INVVPID) == 0) {
2918 return false;
2919 }
2920 if ((msr & IA32_VMX_EPT_VPID_FLAGS_AD) != 0) {
2921 pmap_ept_has_ad = true;
2922 } else {
2923 pmap_ept_has_ad = false;
2924 }
2925 if (!(msr & IA32_VMX_EPT_VPID_UC) && !(msr & IA32_VMX_EPT_VPID_WB)) {
2926 return false;
2927 }
2928
2929 return true;
2930 }
2931
2932 static void
2933 vmx_init_asid(uint32_t maxasid)
2934 {
2935 size_t allocsz;
2936
2937 mutex_init(&vmx_asidlock, MUTEX_DEFAULT, IPL_NONE);
2938
2939 vmx_maxasid = maxasid;
2940 allocsz = roundup(maxasid, 8) / 8;
2941 vmx_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2942
2943 /* ASID 0 is reserved for the host. */
2944 vmx_asidmap[0] |= __BIT(0);
2945 }
2946
2947 static void
2948 vmx_change_cpu(void *arg1, void *arg2)
2949 {
2950 struct cpu_info *ci = curcpu();
2951 bool enable = (bool)arg1;
2952 uint64_t cr4;
2953
2954 if (!enable) {
2955 vmx_vmxoff();
2956 }
2957
2958 cr4 = rcr4();
2959 if (enable) {
2960 cr4 |= CR4_VMXE;
2961 } else {
2962 cr4 &= ~CR4_VMXE;
2963 }
2964 lcr4(cr4);
2965
2966 if (enable) {
2967 vmx_vmxon(&vmxoncpu[cpu_index(ci)].pa);
2968 }
2969 }
2970
2971 static void
2972 vmx_init_l1tf(void)
2973 {
2974 u_int descs[4];
2975 uint64_t msr;
2976
2977 if (cpuid_level < 7) {
2978 return;
2979 }
2980
2981 x86_cpuid(7, descs);
2982
2983 if (descs[3] & CPUID_SEF_ARCH_CAP) {
2984 msr = rdmsr(MSR_IA32_ARCH_CAPABILITIES);
2985 if (msr & IA32_ARCH_SKIP_L1DFL_VMENTRY) {
2986 /* No mitigation needed. */
2987 return;
2988 }
2989 }
2990
2991 if (descs[3] & CPUID_SEF_L1D_FLUSH) {
2992 /* Enable hardware mitigation. */
2993 vmx_msrlist_entry_nmsr += 1;
2994 }
2995 }
2996
2997 static void
2998 vmx_init(void)
2999 {
3000 CPU_INFO_ITERATOR cii;
3001 struct cpu_info *ci;
3002 uint64_t xc, msr;
3003 struct vmxon *vmxon;
3004 uint32_t revision;
3005 paddr_t pa;
3006 vaddr_t va;
3007 int error;
3008
3009 /* Init the ASID bitmap (VPID). */
3010 vmx_init_asid(VPID_MAX);
3011
3012 /* Init the XCR0 mask. */
3013 vmx_xcr0_mask = VMX_XCR0_MASK_DEFAULT & x86_xsave_features;
3014
3015 /* Init the TLB flush op, the EPT flush op and the EPTP type. */
3016 msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
3017 if ((msr & IA32_VMX_EPT_VPID_INVVPID_CONTEXT) != 0) {
3018 vmx_tlb_flush_op = VMX_INVVPID_CONTEXT;
3019 } else {
3020 vmx_tlb_flush_op = VMX_INVVPID_ALL;
3021 }
3022 if ((msr & IA32_VMX_EPT_VPID_INVEPT_CONTEXT) != 0) {
3023 vmx_ept_flush_op = VMX_INVEPT_CONTEXT;
3024 } else {
3025 vmx_ept_flush_op = VMX_INVEPT_ALL;
3026 }
3027 if ((msr & IA32_VMX_EPT_VPID_WB) != 0) {
3028 vmx_eptp_type = EPTP_TYPE_WB;
3029 } else {
3030 vmx_eptp_type = EPTP_TYPE_UC;
3031 }
3032
3033 /* Init the L1TF mitigation. */
3034 vmx_init_l1tf();
3035
3036 memset(vmxoncpu, 0, sizeof(vmxoncpu));
3037 revision = vmx_get_revision();
3038
3039 for (CPU_INFO_FOREACH(cii, ci)) {
3040 error = vmx_memalloc(&pa, &va, 1);
3041 if (error) {
3042 panic("%s: out of memory", __func__);
3043 }
3044 vmxoncpu[cpu_index(ci)].pa = pa;
3045 vmxoncpu[cpu_index(ci)].va = va;
3046
3047 vmxon = (struct vmxon *)vmxoncpu[cpu_index(ci)].va;
3048 vmxon->ident = __SHIFTIN(revision, VMXON_IDENT_REVISION);
3049 }
3050
3051 xc = xc_broadcast(0, vmx_change_cpu, (void *)true, NULL);
3052 xc_wait(xc);
3053 }
3054
3055 static void
3056 vmx_fini_asid(void)
3057 {
3058 size_t allocsz;
3059
3060 allocsz = roundup(vmx_maxasid, 8) / 8;
3061 kmem_free(vmx_asidmap, allocsz);
3062
3063 mutex_destroy(&vmx_asidlock);
3064 }
3065
3066 static void
3067 vmx_fini(void)
3068 {
3069 uint64_t xc;
3070 size_t i;
3071
3072 xc = xc_broadcast(0, vmx_change_cpu, (void *)false, NULL);
3073 xc_wait(xc);
3074
3075 for (i = 0; i < MAXCPUS; i++) {
3076 if (vmxoncpu[i].pa != 0)
3077 vmx_memfree(vmxoncpu[i].pa, vmxoncpu[i].va, 1);
3078 }
3079
3080 vmx_fini_asid();
3081 }
3082
3083 static void
3084 vmx_capability(struct nvmm_capability *cap)
3085 {
3086 cap->arch.xcr0_mask = vmx_xcr0_mask;
3087 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
3088 cap->arch.conf_cpuid_maxops = VMX_NCPUIDS;
3089 }
3090
3091 const struct nvmm_impl nvmm_x86_vmx = {
3092 .ident = vmx_ident,
3093 .init = vmx_init,
3094 .fini = vmx_fini,
3095 .capability = vmx_capability,
3096 .conf_max = NVMM_X86_NCONF,
3097 .conf_sizes = vmx_conf_sizes,
3098 .state_size = sizeof(struct nvmm_x64_state),
3099 .machine_create = vmx_machine_create,
3100 .machine_destroy = vmx_machine_destroy,
3101 .machine_configure = vmx_machine_configure,
3102 .vcpu_create = vmx_vcpu_create,
3103 .vcpu_destroy = vmx_vcpu_destroy,
3104 .vcpu_setstate = vmx_vcpu_setstate,
3105 .vcpu_getstate = vmx_vcpu_getstate,
3106 .vcpu_inject = vmx_vcpu_inject,
3107 .vcpu_run = vmx_vcpu_run
3108 };
3109